Relationships Between Fatality Risk, Mass, and Footprint in Model Year 2000-2007 and in Future Passenger Cars and LTVs May 14, 2013

- Estimate the effect on societal fatality rates of mass reduction without changing footprint
 - "Societal" fatality rate: includes occupants of other vehicles and pedestrians
 - Footprint = track width x wheelbase

How to reduce mass without changing footprint

- Substitute with lighter materials
- Substitute with stronger materials but use less of them
- Downsize engine and powertrain
- Use light-weighted features
- Reduce overhang outside the wheels

Predictable effects of mass reduction

- Conservation-of-momentum factors
 - In collisions of two light vehicles
 - Depends how mass reduction is applied across the light-vehicle fleet
 - Slightly higher risk in a collision with a movable object or a heavy vehicle
- Improved braking and steering
- Less roof crush in rollovers

Conservation of momentum in collisions of 2 light vehicles

- Mass reduction in my vehicle harms me and helps the other vehicle
- Societal effect depends on relative mass of the 2 vehicles:
 - If mine is lighter, mass reduction harms me more than it helps you
 - If mine is heavier, mass reduction helps you more than it harms me

Conservation of momentum in collisions of 2 light vehicles

- Proportionate reductions in <u>both</u> vehicles: no net effect
- Increasing fleet-wide mass disparities will increase societal risk
- Reducing disparities will reduce societal risk

Unpredictable effects of future mass reduction

- Will heavier and larger vehicles continue to be better driven?
 - Historical trend since 1976
- Will material substitution change force/deflection properties of vehicles?

Harmful effects of reducing footprint

- More rollover-prone
- Reduced directional stability
- Less crush space around the occupants

2012 NHTSA Report

Issued September 17, 2012 Report available at wwwnrd.nhtsa.dot.gov/Pubs/811665.PDF Databases available at www.nhtsa.gov/fuel-economy • Earlier reports in 2011, 2010, 2003, 1997, 1991

Analysis Method

- Statistical analysis of fatality rates of MY 2000-2007 cars and LTVs in CY 2002-2008
 - By curb weight and footprint
 - Societal fatality rate per billion VMT
 - VMT apportioned by driver age & gender, rural/urban, etc., based on induced-exposure crash data
 - Logistic regressions for 9 crash types

Independent variables

- Curb weight (2-piece linear)
- Footprint
- Driver age & gender
- Rural/urban, day/night, speed limit
- ESC, ABS, AWD, side air bag, blocker beam
- IIHS offset-frontal test ratings
- Vehicle age, calendar year

Fatality increase per 100-pound reduction (holding footprint constant)

Cars < 3,106 lbs	1.56 %	Statistically significant
Cars \geq 3,106 lbs	.51 %	Not significant
CUVs & minivans	37 %	Not significant
LTVs < 4,594 lbs	.52 %	Not significant
$LTVs \ge 4,594 lbs$	34 %	Not significant

Discussion

- Only significant effect: cars < 3,106 pounds
- Mass reduction more harmful in lighter vehicles, more beneficial in heavier vehicles
 - Consistent with momentum considerations

Sensitivity tests: plausible alternative models

- Reviewers suggested 13 alternatives:
 - Delete some control variables
 - Add new control variables:
 - Track width, wheelbase instead of footprint
 - Driver income (based on ZIP)
 - **o** Vehicle manufacturer, nameplate, price
 - Apportion VMT based on stopped-vehicle crash involvements
 - Limit to sober drivers or good drivers

Sensitivity tests: range of estimated effect on fatalities per year

Scenario: reduce mass by 14 pounds (light cars) to 247 pounds (big LTVs)

- Effect in NHTSA baseline model:
 - Point estimate: ZERO (safety neutral)
 - Confidence bounds: ± 240 fatalities/year
- 13 alternative models:
 - Point estimates ranging from -321 to +276 fatalities

Conclusions

- If mass reduction in MY 2017-2025 emphasizes the heavier LTVs and maintains footprint:
 - Fatalities will not increase significantly
 - May decrease
- Confidence bounds, sensitivity tests show limitations of estimating future effects from historical data

Comparison of MY 2000-2007 with MY 1991-1999 results

	2000-07	1991-99
Lighter cars	1.56 %	2.21 %
Heavier cars	.51 %	.90 %
CUVs/ minivans	37%	with LTVs
Lighter LTVs	.52 %	.17 %
Heavier LTVs	34 %	- 1.90 %

Comparison of MY 2000-2007 with MY 1991-1999 results

- Directionally similar
- 2000-07 results lower magnitude
 - ◆ Lighter cars: from 2.21% to 1.56%
 - Heavier LTVs: from -1.90% to -.34%

Possible explanations for smaller effects (2000-2007 developments in vehicles)

- Light vehicles up-sized or phased out
 Trend might not continue after 2007
- Older designs with poor safety performance phased out
 - Many of these were the lighter vehicles
- Compatibility improved in heavy LTVs
- Diminishing tendency of small/light vehicles to be driven poorly

Lessons for the future

- Laws of physics stay the same
 - Conservation-of-momentum effects
 - Mass reduction and braking/steering
- Other things can change year to year
 - Mass distribution of new-vehicle fleet
 - Safety equipment
 - Vehicle use patterns
 - Who selects what type of vehicle

- Revisit analyses circa 2015 (interim CAFE review)
 - Crash data may be available up to MY 2011 and CY 2012
- Consider revisions to the model
 - Techniques in the alternative models
 - New ideas to address changes in the crash environment

