

Assessment of Vehicle Mass Reduction Feasibility, Cost and Safety Effects for CAFE and GHG Rulemaking

May 13, 2013

Jim Tamm Chief, Fuel Economy Division

Topics

- 2017 and Beyond CAFE & GHG Rulemaking
- Mid-term Evaluation and NHTSA MYs 2022-2025 Full Rulemaking
- Assessment of Mass Reduction Feasibility and Cost for Rulemaking
- Assessment of Effects of Mass Reduction on Safety for Rulemaking

MY 2017+ CAFE & GHG Emission Rulemaking

- NHTSA and EPA joint federal rulemaking
 - NHTSA Fuel Economy standards.
 - EPA Greenhouse Gas Emission standards.
 - CARB Accept EPA standards as compliance with California standards.
- Extensive technical, economic and environmental analyses.
- The standards are performance-based
 - Manufacturers will choose the technologies they will use for compliance.

"No Later Than" Timeline for 2022-2025 NHTSA Rulemaking and Midterm Evaluation

Fuel Economy Improving Technologies

Engine:

Low friction lubricants Engine friction reduction Camshaft phasing control (VVT) Valve lift control (VVL) Cylinder deactivation

Transmission;

6-speed manual Improved automatic trans control High efficiency gears

Electrification and Accessories:

Electric power steering

Hybrid Technologies:

12v micro hybrid (start-stop) Belt mounted integrated starter generator

Stoichiometric Gasoline Direct Injection Combustion restart Turbocharging and downsizing Cooled EGR Advanced Diesel

6-, 7-, and 8-speed automatic6- and 8-speed Dual clutch transmissionShift optimization

Improved accessories

Plug-in hybrid EV

Vehicle Technologies:

MASS REDUCTION

Aerodynamic drag reduction

Low drag brakes Low rolling resistance tires Secondary axle disconnect

Engineering Studies for Mass Reduction Feasibility and Cost

Agency Holistic Vehicle Studies

Assessment of Effects of Mass Reduction on Societal Safety

Assessment of Societal Safety

- NHTSA has long considered the potential safety effects in determining maximum feasible CAFE standards
- If OEMs will reduce vehicle mass or build smaller vehicles in response to future CAFE standards, we want to anticipate:
 - Whether there will be safety implications
 - If so, what are those safety implications
- CAFE standards should be designed to encourage manufacturers to pursue a path toward compliance that is both safe and cost-effective.

Assessment of Societal Safety

NHTSA is assessing societal safety using two approaches:

- Backward Looking:
 - Statistical analysis of historical crash data
 - Study the effects of vehicle mass reduction and vehicle size on safety
- Forward Looking:
 - Engineering design and analysis approach
 - Crash simulation using CAE models
 - Use holistic light-weighted vehicle designs

Safety Assessment: Statistical Analysis of Historical Crash Data

NHTSA Statistical Analysis of Historical Crash Data

- Analyze historical crash data to assess the impact of vehicle mass and/or size changes on societal safety
- Why is statistical analysis of historical crash data useful to NHTSA's consideration of potential safety effects of CAFE standards?
 - It shows <u>real-world</u> trends in crash incidence and severity for smaller versus larger and lighter versus heavier vehicles – this information is not available elsewhere
 - It provides the agency with a substantial pool of data to analyze, which enables the agency to study various crash scenarios and exposures.
- However, there are some drawbacks to using historical crash data:
 - Data is historical are we confident that it's representative of future trends?
 - Data are mixed from various crash scenarios/exposure. Sometimes there is not enough data to pinpoint the exact root cause.

NHTSA Statistical Analysis of Historical Crash Data

- Peer-Review of 20+ Studies
 - Independent review by UMTRI of the methodologies used in 20+ statistical studies
- Creation of Common Database
 - Purpose: Reduce discrepancies among various studies due to use of different input data
 - Contains fatality data from MY 2000-2007 vehicle crashes in CY 2002-2008
- Dr. Chuck Kahane's Updated Report
 - Uses the common database above
 - Responsive to comments from peer-reviews as well as from a NHTSA, DOE and EPA interagency team
 - Report published in August 2012

Mass Reduction Applied in MYs 2017+ Final Rule

 In MYs 2017+ final rule, the agencies used vehicle weight reduction levels that maintained safety for the analysis.

The analysis shows a path that the industry could use to maintain overall fleet safety while meeting the new fuel economy standards.

- > The following mass reduction levels were used in the analysis:
 - All vehicles must, of course, meet all applicable safety standards.
 - Relative to 2010 fleet levels

	Subcompact Car	Compact Car	Midsize Car	Large Car	MiniVan	Small Light Truck	Midsize Light Truck	Large Light Truck
Maximum Amount of Mass Reduction Allowed	0%	0%	3.5%	10%	20%	20%	20%	20%
Projected Industry Average Amount of Mass Reduction Applied in MY2025	0%	0%	3.5%	10%	15.3%	12.5%	10.2%	11.3%

Safety Assessment: Crash Simulation Modeling

NHTSA Safety Analysis Using Crash Simulation Modeling

• Sponsored by NHTSA

- Utilize finite element models of concept vehicles and on-road vehicles to evaluate safety of light-weighted vehicles
- Vehicle-to-vehicle and vehicle-to-object crashes
- Beyond crash conditions used for standards
 - Vehicle speed from 15mph 40 mph;
 - Represents a broader array of crashes
 - Weighted by frequency of occurrence from the National Automotive Sampling System (NASS) database
- Interaction between light-weighted and non-light-weighted vehicles
- Evaluate potential countermeasures
 - Potentially different air-bag deployment timing for light-weighted vehicles
 - Adaptive occupant restraint systems

Next Steps

Will be covered by other presenters later today and tomorrow.

