Pipeline System: Houstonia 200 Line	Operator: Panhandle Eastern Pipeline Company, LP			
Location: Mile Post 21.6	Date of Occurrence: 8/25/2008			
Medium Released: Natural gas	Quantity: 13,518,578 CF			
PHMSA Arrival Time & Date: 8/25/08 1:00 p.m.	Fotal Damages \$ 1,046,359			
Investigation Responsibility: State State State	NTSB Other			
Company Reported Apparent Cause: Corrosion	Excavation			
Natural Forces Incorrect Operation	cation Other Outside Force Damage			
Material and/or Welds Equipment an	d Operations Other			
Rupture Yes No				
Leak 🗌 Yes 🖾 No				
Fire Yes No				
Explosion Yes No				
Evacuation Yes No Number of Per	sons Area			
Narrative S	ummary			
Short summary of the Incident/Accident which will give interested person facts.	s sufficient information to make them aware of the basic scenario and			
Panhandle Eastern Pipeline Company (PEPL) experienced failure of evacuations, road closings, fires, injuries or fatalities as a result of area (HCA).	of the Houstonia 200 line near Mile Post 21.6. There were no the failure. The failure did not occur in a high consequence			
The failure occurred on August 25, 2008, at approximately 8:51 a.m. CDT. The failure is located on a rocky hillside in a rural area west of Pilot Grove, Missouri in Cooper County. The failure was identified by PEPL when Houston Gas Control detected a pressure drop in the Houstonia 200 Line. The failure was located at approximately 9:00 a.m. when a PEPL field technician reported gas blowing near Mile Post 21.6. PEPL isolated the segment at approximately 9:30 a.m., by manually closing mainline valves 2 Gate and 3 Gate. The distance between 2 Gate and 3 Gate is approximately 16 miles.				
The pipeline experienced a longitudinal rupture in the pipe body. The rupture created a 50 feet by 33 ft by 7 feet deep crater in the ground. Two pipeline segments totalling 28 feet in length and a coupling were ejected from the crater a distance up to 300 feet from the rupture site. The failure origin was a 16 inch long area of reduced wall thickness located at the 6:00 orientation.				
The portion of the pipeline containing the failure is comprised of 24-inch diameter by 0.281-inch wall thickness, API 5L-X48, manufactured by A.O. Smith and contains a longitudinal electric flash welded (EFW) seam. The reported maximum allowable operating pressure (MAOP) is 800 psig, which corresponds to 71% of the specified minimum yield strength (SMYS). The pressure at the time and location of failure was 795 psig, which corresponds to 70% of the SMYS (99% of MAOP). The MAOP was established in accordance with 192.619 (c), the highest actual operating pressure to which the segment was subjected during the five years preceding July 1, 1970. A hydrostatic test of the pipeline was performed in 1955. Details of the hydrostatic test are unknown.				
The pipeline, installed in 1937, is joined by circumferential girth w coal tar. The pipeline has an impressed curent cathodic protection	relds and Dresser couplings. The pipeline external coating is system that was reportedly energized in 1955.			
The findings of PEPL's investigation are as follows: 1) The failure occurred due to tensile overload at a region	of wall thinning caused by external corrosion.			

2) The maximum wall loss measured at the rupture surface was 0.21 inches depth (75% of wall thickness).

PEPL submitted a return to service plan to PHMSA that included a temporary 20% pressure reduction and remediation of anomalies found in a high resoultion MFL tool run. They subsequently remediated 30 anomalies with RPR less than 1.15 and replaced 912 feet of pipe. On 12/19/2009 the temporary pressure restriction was removed.

ACTIVITY #: 122653 OPERATOR ID #: 15105 UNIT ID #: 4093 NRC REPORT #: 881717 INCIDENT REPORT # (FORM 7100.2): 20090030 -- 5319

Region/State <u>Central</u>

Principal Investigator: <u>Roger Sneegas</u>

Date: <u>10/12/2010</u>

Reviewed by: <u>David Barrett</u> original initialed

Title: <u>Director – Central Region</u>

Date: <u>10/13/2010</u>

Failure Location & Response			
Location (City, Township, Range, County/J	Parish):		(Acquire Map)
Pilot Grove, Missouri			
Address or M.P. on Pipeline:	(1)	Type of Area (Rural, City)	(1)
21.6		Rural	
Date: 8/25/2008		Time of Failure: 8:51 a.r	n.
Time Detected: 9:00 a.m.		Time Located: 9:10 a.m.	
How Located: A technician - Jerry Mille had previously noted a pre-	er - heard the pipeline sessure drop at 8:51 a.r	blowing from the nearest roam.	ad at about 9:00 a.m. Gas control
			. <u></u>
NRC Report #: (Attach Report)	Time Reported to N	RC:	Reported by:
881717	10:15 a.m. on 8/25/2	2008	Liz Rutherford
Type of Pipeline:			
Gas Distribution	Gas Transmission	Hazardous J	Liquid LNG
	Interstate Gas	Interstate Liquid	d LNG Facility
Municipal	Intrastate Gas	Intrastate Liquid	d
Public Utility	Jurisdictional Gas Gather	ring Offshore Liquid	1
Master Meter	Offshore Gas	Jurisdictional L	iquid Gathering
	Offshore Gas - High H ₂ S		
Pipeline Configuration (Regulator Station, 1	Pump Station, Pipelin	ie, etc.):	
Mainline Houstonia 200			
	Operator/Own	er Information	
Owner: Panhandle Eastern Pipeline		Operator: Panhandle East	ern Pipeline
Address:	l	Address:	
5444 Westheimer Road		5444 Westheimer Road	
Houston TX		Houston TX	
Company Official: Eric Amundsen		Company Official: Eric A	Amundsen
Phone No.: 713-989-7460 Fax No.:		Phone No. 713-989-7460	Fax No.

Drug Program Contact & Phone: Brett Laaser

Alcohol Program Contact & Phone: 713-989-7549

Damages				
Product/Gas Loss or Spill ⁽²⁾	13,518,578 CF	Estimated Property Damage \$	25,000	
Amount Recovered	0	Associated Damages ⁽³⁾ \$	628,063	

Drug and Alcohol Testing Program Contacts

N/A

1 Photo documentation

2 Initial volume lost or spilled

3 Including cleanup cost

Damages						
Estimated Amount \$	393,296	2 4.1.4.8.6.				
Description of Property Dama	age:					
The failure caused a crater in the right-of-way measuring about 50 X 33 feet and 7 feet deep. Two segments of pipe (46 feet total) were ejected from the crater.						
Customers out of Service:	Yes	No	Nu	mber:		
Suppliers out of Service:	Yes	No	Nu	mber:	_	
		Fatalities and I	njuries			
Fatalities:	Yes	No Compa	ny:	Con	tractor:	Public:
Injuries - Hospitalization:	Yes	No Compa	ny:	Con	tractor:	Public:
Injuries - Non-Hospitalization	n: Yes	No Compa	ny:	Con	tractor:	Public:
Total Injuries (including Non	-Hospitalization):	Compa	ny:	Con	tractor:	Public:
Name	Job	Function	Yrs w/ Comp.	Yrs. Exp.		Type of Injury
	•		-			—
	11 11 1	Drug/Alcohol T	esting	1 1 1 1 1	- 1	
Were all employees that could have contributed to the incident, post-accident tested within the 2 hour time frame for alcohol or the 32 hour time frame for all other drugs? Yes \Box No						
Job Function	Test Date & Time	t Date & Time Location Results Type of Pos Neg		Type of Drug		
Gas System Controller	8/25/2008	2008 Houston TX			\square	

System Description
Describe the Operator's System:
The Houstonia 200 line runs from Liberal KS to Howell MI. It is 24-inch diameter 0.281-inch wall X48 pipe installed in 1937.

Pipe Failure	Description	
Length of Failure (inches, feet, miles): 46 feet	(1)	
Position (Top, Bottom, include position on pipe, 6 O'clock): ⁽¹⁾	Description of Failure (Corrosion Gouge, Seam Split): (1)	
Bottom 6 O'clock	External corrosion.	
Laboratory Analysis: Xes No		
Performed by: CC Technologies Inc.		
Preservation of Failed Section or Component: Yes	No	
If Yes - Method: Wrapped		
In Custody of: Panhandle		
Develop a sketch of the area including distances from roads, houses, stress inducing factors, pipe configurations, etc. Bar Hole Test Survey Plot should be outlined with concentrations at test points. Direction of Flow.		

Component Failure Description			
Component Failed:			(1)
Manufacturer:		Model:	
Pressure Rating: Size			
Other (Breakout Tank, Underground Storage):			

Pipe Data		□ N/A
Material: steel	Wall Thickness/SDR: 0.281- inch	
Diameter (O.D.): 24-inch	Installation Date: 1937	
SMYS: 48,000	Manufacturer: A. O. Smith	
Longitudinal Seam: Electric Flash Weld	Type of Coating: Coal Tar	
Pipe Specifications (API 5L, ASTM A53, etc.): API 5L, X48		

Join	ing			□ N/A
Type: Girth weld with Coupling every other joint	Procedure:			
NDT Method: Unknown	Inspected:	Yes	No	

Pressure @ Time of Failure @ Failure Site				□ N/A	
Pressure @ Failure Site: 795 psig at the Houstonia Station Elevation		@ Failure Site: 660			
Pressure Readings @ Various Locations:				Direction fr	om Failure Site
Location/M.P./Station #	Pressure (psig)		Elevation (ft msl)	Upstream	Downstream
N/A					

Upstream Pun	np Station Data 🛛 N/A
Type of Product:	API Gravity:
Specific Gravity:	Flow Rate:
Pressure @ Time of Failure ⁽⁴⁾	Distance to Failure Site:
High Pressure Set Point:	Low Pressure Set Point:

Upstream Compressor Station Data		
Specific Gravity: .55	Flow Rate:	
Pressure @ Time of Failure ⁽⁴⁾ 795 psig	Distance to Failure Site: 21.6 miles	
High Pressure Set Point: 830 psig	Low Pressure Set Point:	

Operatin	g Pressure $\Box N/A$
Max. Allowable Operating Pressure: 800 psig	Determination of MAOP: 192.619 (c)
Actual Operating Pressure: 795 psig	
Method of Over Pressure Protection: Engine safeties - first engin	e speed and torque, then shutdown.
Relief Valve Set Point: 830 psig	Capacity Adequate? Xes No

Integrity Test After Fa	ilure] N/A
Pressure Test Conducted in place? (Conducted on Failed Components or As	ssociated	Piping):	Yes	🔀 No	
If NO, Tested after removal?	Yes	No No			
Method: N/A					
Describe any failures during the test.					

Soil/water Conditions @ Failure Site

□ N/A

Condition of and Type of Soil around Failure Site (Color, Wet, Dry, Frost Depth): Dry and very rocky

Type of Backfill (Size and Description): Rock

4 Obtain event logs and pressure recording charts

Soil/water Conditions @ Failure Site			
Type of Water (Salt, Brackish): N/A	Water Analysis ⁽⁵⁾ Yes No		
External Pipe or Con	nponent Examination N/A		
External Corrosion? Xes No	Coating Condition (Disbonded, Non-existent): (1) Coal tar - some disbonded		
Description of Corrosion: The failed pipeline segments showed multiple areas of external of	corrosion with reduced wall thickness.		
Description of Failure Surface (Gouges, Arc Burns, Wrinkle Bends, Cracks, Stress Cracks, Chevrons, Fracture Mode, Point of Origin): A 23 foot section of pipe was ejected and completely ruptured by the failure. Chevrons along the rupture pointed toward the origin in an area of external corrosion with reduced wall thickness.			
Above Ground: \Box Yes \boxtimes No (1)	Buried: \bigvee Yes \square No (1)		
Stress Inducing Factors: (1)	Depth of Cover: 6 feet (1)		
P/S (Surface): Readings taken this Spring were adequate - > .85	P/S (Interface): Not taken		
V - Recent reading in the area -2.1 V $3/26/08$			
Soil Resistivity: No soil - rock pH:	Date of Installation: 1955		
Method of Protection: Rectifiers			
Did the Operator have knowledge of Corrosion before the Incide	ent? Yes No		
How Discovered? (Close Interval Survey, Instrumented Pig, Annual Survey, Rectifier Readings, ECDA, etc): A close interval survey was performed in 2000 from 2 Gate to 3 Gate. Some areas of low pipe to soil potential were found but not in the area of the failure. See Appendix D.			
Internal Pipe or Co.	mponent Examination N/A		
Internal Corrosion: Yes No	Injected Inhibitors: Yes No		
Type of Inhibitors: N/A	Testing: Yes No		
Results (Coupon Test, Corrosion Resistance Probe): N/A			
Description of Failure Surface (MIC, Pitting, Wall Thinning, Chevrons, Fracture Mode, Point of Origin): The cause of the failure was external corrosion with reduced wall thickness.			
Cleaning Pig Program: A res No	Gas and/or Liquid Analysis: Yes No		

5 Attach copy of water analysis report

Internal Pipe or Component Examination	
Results of Gas and/or Liquid Analysis ⁽⁶⁾ N/A	
Internal Inspection Survey: Yes No Results ⁽⁷⁾ ILI had been scheduled but not done.	
Did the Operator have knowledge of Corrosion before the Incident? Yes No	
How Discovered? (Instrumented Pig, Coupon Testing, ICDA, etc.): N/A	

Outside Force Damage		
Responsible Party:	Telephone No.:	
Address:		
Work Being Performed:		
Equipment Involved:	(1) Called One Call System? Yes No	
One Call Name:	One Call Report # ⁽⁸⁾	
Notice Date:	Time:	
Response Date:	Time:	
Was Location Marked According to Procedures?	□ No	
Pipeline Marking Type:	(1) Location: (1)	
State Law Damage Prevention Program Followed?	No No State Law	
Notice Required: Yes No	Response Required: Yes No	
Was Operator Member of State One Call? Yes No	Was Operator on Site? Yes No	
Did a deficiency in the Public Awareness Program contribute to	the accident? Yes No	
Is OSHA Notification Required? Yes No		

6 Attach copy of gas and/or liquid analysis report7 Attach copy of internal inspection survey report8 Attach copy of one-call report

	Natural Forces	N/A
Description (Earthquake, Tornado, Flooding, Erosion):		

Failur	re Isolation N/A		
Squeeze Off/Stopple Location and Method: (1)			
Panhandle isolated the failure by manually closing 2 Gate and 3 Gate.			
Valve Closed - Upstream: 2 Gate	I.D.:		
Time: 9:38 AM	M.P.: 12.97		
Valve Closed - Downstream: 3 Gate	I.D.:		
Time: 9:23	M.P.: 28.43		
Pipeline Shutdown Method: Manual Auto	matic SCADA Controller ESD		
Failed Section Bypassed or Isolated: Isolated			
Performed By: Field Tech.	Valve Spacing: 16 miles		
Odor	rization N/A		
Gas Odorized: Yes No	Concentration of Odorant (Post Incident at Failure Site):		
Method of Determination: Yes No	% LEL: Yes No % Gas In Air: Yes No		
	Time Taken: Yes No		
Was Odorizer Working Prior to the Incident?	Type of Odorizer (Wick, By-Pass):		
Yes No			
Odorant Manufacturer:	Type of Odorant:		
Model:			
Amount Injected:	Monitoring Interval (Weekly):		
Odorization History (Leaks Complaints, Low Odorant Levels, Monitoring Locations, Distances from Failure Site):			

Odorization	N/A

Weather Conditions	
Temperature: 85 F	Wind (Direction & Speed): light
Climate (Snow, Rain): Sunny	Humidity:
Was Incident preceded by a rapid weather change? Yes	No
Weather Conditions Prior to Incident (Cloud Cover, Ceiling Heig Clear	ghts, Snow, Rain, Fog):

Gas Migrat	tion Survey	N/A
Bar Hole Test of Area: Yes No	Equipment Used:	
Method of Survey (Foundations, Curbs, Manholes, Driveways, N	Mains, Services) ⁽⁹⁾	(1)

Environment Sensitivity Impact			
Location (Nearest Rivers, Body of Water, Marshlands, Wildlife Refuge, City Water Supplies that could be or were affected ⁽¹⁾			
by the medium loss):			
OPA Contingency Plan Available? Yes No	Followed? Yes No		
Class Location/High	e Consequence Area		
Class Location: $1 \times 2 \times 3 \times 4$	HCA Area? \Box Yes \boxtimes No \Box N/A		
Determination:	Determination:		
Odorization Required? Yes No N/A			

Pressure Test History	N/A
(Expand List as Necessary)	

⁹ Plot on site description page

Pressure Test History (Expand List as Necessary)					N/A	
	Req'd ⁽¹⁰⁾ Assessment Deadline Date	Test Date	Test Medium	Pressure (psig)	Duration (hrs)	% SMYS
Installation	N/A					
Next	N/A	1955	Water	Unknown	Unknown	Unknown
Next						
Most Recent						
Describe any problems experienced during the pressure tests. Hydrostatic test done in 1955 - details unknown.						

Internal Line Inspection/Other Assessment History (Expand List as Necessary)					N/A
	Req'd ⁽¹⁰⁾ Assessment Deadline Date	Assessment Date	Type of ILI Tool ⁽¹¹⁾	Other Assessment Method ⁽¹²⁾	Indicated Anomaly If yes, describe below
Initial	2012				Yes No
Next					Yes No
Next					Yes No
Most Recent					Yes No
Describe any previously indicated anomalies at the failed pipe, and any subsequent pipe inspections (anomaly digs) and remedial actions. Not scheduled until 2012. Not in top 50%. Gauge tool run already.					

Pre-Failure Conditions and Actions	N/A
Was there a known pre-failure condition requiring ⁽¹⁰⁾ the operator to schedule evaluation and remediation? Yes (describe below or on attachment) No	
If there was such a known pre-failure condition, had the operator established and adhered to a required ⁽¹⁰⁾ evaluation and remediation schedule? Describe below or on attachment. \square Yes \square No \bigotimes N/A	d
Prior to the failure, had the operator performed the required $^{(10)}$ actions to address the threats that are now known to be returned the cause of this failure? Yes No N/A List below or on an attachment such operator-identified threats, and operator actions taken prior to the accident.	elated to
Describe any previously indicated anomalies at the failed pipe, and any subsequent pipe inspections (anomaly digs) and actions. N/A	remedial

Maps & Records

N/A

¹⁰ As required of Pipeline Integrity Management regulations in 49CFR Parts 192 and 195

¹¹ MFL, geometry, crack, etc.

¹² ECDA, ICDA, SCCDA, "other technology," etc.

Are Maps and Records Current? ⁽¹³⁾	Yes	No	
Comments:			
	L	eak Survey History	□ N/A
Leak Survey History (Trend Analysis, Leal	k Plots):		
Leak survey on 6/25/2007. No leaks were	e found in th	he area of the failure.	

Pipeline Operation History	N/A
Description (Repair or Leak Reports, Exposed Pipe Reports): N/A	
Did a Safety Related Condition Exist Prior to Failure? Yes No Reported? Yes	No No
Unaccounted For Gas: None before the incident.	
Over & Short/Line Balance (24 hr., Weekly, Monthly/Trend):	

Operator/Contractor E	Error N/A
Name:	Job Function:
Title:	Years of Experience:
Training (Type of Training, Background):	
Was the person "Operator Qualified" as applicable to a precursor abnorm	al operating condition? Yes No N/A
Was qualified individual suspended from performing covered task 🗌 Ye	s No N/A
Type of Error (Inadvertent Operation of a Valve):	
Procedures that are required:	
Actions that were taken:	
Pre-Job Meeting (Construction, Maintenance, Blow Down, Purging, Isola	tion):
Prevention of Accidental Ignition (Tag & Lock Out, Hot Weld Permit):	
Procedures conducted for Accidental Ignition:	
Was a Company Inspector on the Job? Yes No	
Was an Inspection conducted on this portion of the job? Yes	No

¹³ Obtain copies of maps and records

	Operator/Contracto	r Error		N/A	
Additional Actions (Contributing facto conducted):	Additional Actions (Contributing factors may include number of hours at work prior to failure or time of day work being conducted):				
Training Procedures:					
Operation Procedures:					
Controller Activities:					
Name	Title	Years Experience	Hours on Duty Prior to Failure	Shift	
Alarm Parameters:		I	1		
High/Low Pressure Shutdown:					
Flow Rate:					
Procedures for Clearing Alarms:					
Type of Alarm:					
Company Response Procedures for Ab	normal Operations:				
Over/Short Line Balance Procedures:					
Frequency of Over/Short Line Balance	:				
Additional Actions:					

Additional Actions Taken by the Operator

N/A

Make notes regarding the emergency and Failure Investigation Procedures (Pressure reduction, Reinforced Squeeze Off, Clean Up, Use of Evacuators, Line Purging, closing Additional Valves, Double Block and Bleed, Continue Operating downstream Pumps):

Additional Actions Taken by the Operator] N/A
The failure was detected by Gas Control in Houston at 8:51 a.m. on 8/25/2008. Field crews located the failure at 9:1 a.m. The failure was isolated by closing values at about 9:30 a.m.	.0
Panhandle sent a team to investigate the failure on 8/26/08. After the initial investigation, the pipeline was repaired	and
returned to service at 80% of the pressure at the time of the incident (795 psi) pending the results of the investigation	n.

Photo Documentation (1)					
Overall Address	Area from best possible view. Pictures from the four Markings, etc.	points of t	he compas	s. Failed Component, Operator Action, Damages in A	area,
Photo		Roll	Photo		Roll
No.	Description	No.	No.	Description	No.
1	View looking west at the crater		1		
2	East view of exposed pipe in crater		2		
3	West view of exposed pipe in crater		3		
4	View of longer ejected pipe segment		4		
5	Close view of longer segment		5		
6	View of shorter ejected segment		6		
7	Another view of shorter segment		7		
8	Possible failure origin on shorter segment		8		
9	Side view of possible failure.		9		
10	View of coupling ejected into the woods		10		
11	Close up of corrosion at possible failure origin.		11		
12	View of another area of external corrosion near the failure origin		12		
13	View of failure origin after the pipe was moved.		13		
14			14		
15			15		
16			16		
17			17		
18			18		
19			19		
20			20		
21			21		
22			22		
23			23		
24			24		
25			25		
26			26		
27			27		
28			28		
29			29		
30			30		
Type of	f Camera:				

Photo Documentation ⁽¹⁾

Film ASA:

Video Counter Log (Attach Copy):

Additional Information Sources				
Agency	Name	Title	Phone Number	
Police:	Cooper County Sheriff			
Fire Dept.:	Pilot Grove Fire Dept			
State Fire Marshall:				
State Agency:	Missouri DOT Emergency Response Team			
NTSB:				
EPA:				
FBI:				
ATF:				
OSHA:				
Insurance Co.:				
FRA:				
MMS:				
Television:	No			
Newspaper:				
Other:				

Persons Interviewed				
Name	Title	Phone Number		
Brad Howard	Operations Specialist	660-568-1221		
Mike Dawson				
Steve Atkinson	Technical Specialist	913-906-1522		
Jerry Rau	Director Pipeline Integrity	713-989-7417		
Rob Wesch				
Liz Rutherford				
Brian Kraft	Measurement Tech			
Dan Corpening	Area Director			
Ross Cummins	CP Tech			
Richard Gifford	Corrosion Tech			
Gerald Moore	Environmental Coordinator			

Event Log				
Sequence of events Police reports, Oper	prior, during, and after the incident by time. (Consider the events of all parties involved in the incident, Fire Department and rator Logs and other government agencies.)			
Time	Event			
8:51 a.m. 8/25/08	Gas Control detects a pressure drop on the Houstonia 200 line and asks field techs to check for a leak.			
9:00 a.m.	Filed techs hear blowing gas near mile post 21.6			
9:10 a.m.	Field techs locate the failure			
9:23 a.m.	3 Gate at MP 28.43 is closed manually			
9:38 a.m.	2 Gate at MP 12.97 is closed manually			
9:00 -11:00 a.m.	Panhandle, Fire and police check the area to see if evacuations are necessary			
1:00 p.m.	PHMSA investigator arrives on site.			
1:00 - 8:00 p.m.	Investigation by PHMSA and Panhandle			
12:00 p.m. 8/26	Panhandle investigation team from Houston arrives			
12:00 - 7:00 p.m.	Investigation of the failure site by PHMSA and Panhandle.			

Investigation Contact Log					
Time Date Name			Description		
1:00 p.m.	8/26/08	Brad Howard	Operations Specialist		
1:30 p.m.	8/26/08	Steve Atkinson	Technical Specialist		
12:00 p.m.	8/27/08	Jerry Rau	Director Pipeline Integrity		
1:00 p.m.	8/26- 10/20	Brad Howard	Follow up on various issues		
10:00 a.m.	9/26/08	David McQuilling	Principal Engineer - conference call on cathodic protection		
10:00 a.m.	9/26/08	Steve Atkinson	Same conference call.		

Failure Investigation Documentation Log							
Operator:		Unit #:	CPF #:		Date:		
Appendix	De sum entertiere Description			Date	FO	FOIA	
Number	Documentation Description			Received	Yes	No	
Α	Investigation Pictures			8/25/08		X	
В	Panhandle Incident Report			9/18/08		X	
С	Panhandle Laboratory Failure Analysis			10/29/08		X	
D	Panhandle Close Interval Survey			9/18/08		X	

Site Description

Provide a sketch of the area including distances from roads, houses, stress inducing factors, pipe configurations, etc. Bar Hole Test Survey Plot should be outlined with concentrations at test points. Photos should be taken from all angles with each photo documented. Additional areas may be needed in any area of this guideline.

The Failure location was about two miles northwest of Pilot Grove (Cooper County) Missouri near Highway HH. The location was near milepost 21.6 on the Houstonia 200 line on a rocky hillside in a rural area. No structures were close to the failure location. The following page shows a sketch of the location provided by Panhandle. The image below shows the Panhandle system map.

Panhandle Eastern Pipe Line Company, LP

Panhandle Eastern Pipe Line Company operates a 6,500-mile pipeline system with access to diverse supply sources and can deliver 2.8 Bcf/d of natural gas to Midwest and East Coast markets. Tie-ins to Chicago, Dayton and Cincinnati have added to a Midwest customer base that includes some of the nation's largest utility and industrial natural gas users. We lead the way in offering competitive rates and a constantly evolving array of customer-friendly service options.

Panhandle Eastern provides:

- Access to diverse Midcontinent and Canadian supply sources and to major Midwest and Northeast markets.
- Access to 74 Bcf of storage facilities.

To request a receipt and delivery point map, please contact Customer Service at 1-800-275-7375.

Appendix A

Houstonia 200 failure Pictures – 8/25/08 near Pilot Grove MO.

8/25/08 – #1- views looking West at the crater caused by the Houstonia 200 failure.

8/25/08 #2 - East view of the exposed pipe.

8/25/08 #3 -West close up.

8/25/08 #4 - One of two pipe sections ejected – the longer one – about 30 feet.

8/25/08 #5 -Closer view of the longer ejected section.

8/25/08 #6 -View of the shorter section ejected – about 23 feet – ruptured full length.

8/25/08 #7 - Another view of same looking north.

#8 - Areas with external corrosion and reduced wall thickness – possible failure origin.

8/25/08 #9 -Side view of the failure origin site with reduced wall thickness.

8/25/08 #10 -View of coupling ejected from pipeline.

8/25/08 #11 -Close up of external corrosion on the possible origin site.

8/25/08 #12 - Another area of external corrosion on the shorter section near the possible failure.

8/26/08 #13 -Different view of the possible failure origin after the pipe was turned over.

Appendix B

Panhandle Incident Report

 Department of Transportation search and Special Programs ministration 	INCIDENT REPORT - G GATHERIN	AS TRANSMISSION AND IG SYSTEMS	Report Date No (DOT Use Only)
STRUCTIONS nportant: Please read the information req can obtain one	e separate instructions for uested and provide specifi from the Office Of Pipeline	completing this form before c examples. If you do not h s Safety Web Page at http://	you begin. They clarify the ave a copy of the instructions, you ′ops.dot.gov .
ART A – GENERAL REPORT INF	FORMATION Check one or	more boxes as appropriate:	enert Final Depart
perator Name and Addres	ss Original i	Report Supplemental R	eport Final Report
a. Operator's 5-digit Identificatio	n Number (when known) /	<u> </u>	
 If Operator does not own the 	pipeline, enter Owner's 5-algit la	lentification Number (when known)	
c. Name of Operator			
 Operator street address 			
e. Operator address City, (County or Parrish, State and Zip Code	e	
Time and date of the incident		5. Consequences (check and	complete all that apply)
		a. Fatality	Total number of people: //
hr. nont	h day year	Employees: /	X General Public: / /
Location of incident		Non-employee Contractor	s: <u>/</u> /
a		b. Injury requiring inpatien	nt Notal number of people: / / /
Nearest street or road		Fmplovees:	General Public: / /
City and County or Parrish		Non-employee Contractor	s: / /
CState and Zin Code		c. Property damage/loss	(estimated) Total \$
d Mile Post/Valve Station		Gas loss \$	Operator damage \$
e Survey Station No		Public/private propert	ty damage \$
f Latitude:	Longitude:	d. Release Occurred in a	'High Consequence Area'
(if not available, see instructions for	how to provide specific location)	Gas ignited – No explo	osion f. Explosion
g. Class location description		g. Evacuation (general pu	ublic only) // people
Offshore: Class 1 (cor	ass 2 Class 3 Class 4	Reason for Evacuation:	
	Block #	Emergency worker o	r public official ordered, precautionary
State / / or Ow	ter Continental Shelf	6 Flapsed time until area was	made safe:
h Incident on Federal Land othe	ar than Outer Continental Shelf		/ min
Yes No		7. Telephone Report	,
. Is pipeline Interstate Yes	No	/ /	
Type of leak or rupture		NRC Report Number	month day year
Leak: Pinhole Conne	ction Failure (complete sec. F5)	8. a. Estimated pressure at po	bint and time of incident:
Puncture, diameter	r (inches)		PSIG
	ai – Separation	b. Max. allowable operating	pressure (MAOP): PSIG
Longitudinal – Tear/	tatal hath sides (fast)	c. MAOP established by 49	CFR section:
Propagation Length	, total, both sides (feet)	192.019 (a)(1)	192. 619 (a)(2) 192. 619 (a)(3)
Other:		d Did an overpressurization	n occur relating to the incident? Ves
			roccurrelating to the incident: 103
RT B – PREPARER AND AUTH	ORIZED SIGNATURE		
		-	Area Code and Telephone Number
e or print) Preparer's Name and Title		F	
		-	
parer's E-mail Address		<i>P</i>	Area Code and Facsimile Number

PART C - ORIGIN OF THE INCIDENT					
1. Incident occurred on Transmission System	3. Material involved (pipe, fitting, or other component) Steel				
Gathering System	Plastic (If plastic, complete all items that apply in a-c)				
Transmission Line of Distribution System	Plastic failure was: a.ductile b.brittle c.joint failure				
2. Failure occurred on	Material other than plastic or steel:				
Joint	4. Part of system involved in incident Pipeline Regulator/Metering System				
Component	Compressor Station Other:				
Other:	5. Year the pipe or component which failed was installed: / /				
PART D – MATERIAL SPECIFICATION (if applicable)	PART E – ENVIRONMENT				
1. Nominal pipe size (NPS) / / in.	1. Area of incident In open ditch				
2. Wall thickness / / / in.	Under pavement Above ground				
3. Specification SMYS / /	, Under ground Under water				
4. Seam type	Inside/under building Qther:				
	2. Depth of cover:inches				
5. Valve type					
6. Pipe or valve manufactured by	(in, year X,/				
PART F – APPARENT CAUSE Important: There are 25 m cause of the incident. Chec cause you indicate. See the	umbered causes in this section. Check the box to the left of the primary k one circle in each of the supplemental items to the right of or below the pristructions for this form for guidance.				
F1 – CORROSION If either F1 (1) External Corrosion,	or F1 (2) Internal Corrosion is checked, complete all subparts a – e.				
a. Pipe Coating b. Visual Exa	mination C. Cause of Corrosion				
1 External Correction Bare Localize	ed Pitting Galvanic Stray Current				
L Coated Genera	T Corrosion Improper Cathodic Protection				
Other:	Microbiological				
	Stress Corrosion Cracking				
	Other:				
d. Was corroded part of pipeline co	onsidered to be under cathodic protection prior to discovering incident?				
2. Internal Corrosion e. Was pipe previously damaged in No Yes, How long	the area of corrosion? prior to incident: // years // months				
F2 – NATURAL FORCES					
3. Earth Movement => Earthquake Subside	nce Landslide Other:				
5. Heavy Rains/Floods => Washouts Flotation	n Mudslide Scouring Other:				
6. Temperature => Thermal stress Frost he	eave Frozen components Other:				
7. High Winds					
8. Operator Excavation Damage (including their contractors)/	Not Third Party				
9. Third Party Excavation Damage (complete a-d)					
General Public Government Excavator of b. Type: Road Work Pipeline Water Electron	ther than Operator/subcontractor ctric Sewer Phone/Cable Landowner Railroad				
Other: c. Did operator get prior notification of excavation activity? No Yes: Date received: / / mo /	- /dav / /vr.				
Notification received from: One Call Sy d. Was pipeline marked?	ystem Excavator Contractor Landowner				
No Yes (If Yes, check applicable items i – iv) i. i. Temporary markings: Flags ii. Permanent markings: Yes No iii. Marks were (check one) Accurate iv. Were marks made within required time?	Stakes Paint Not Accurate Yes No				
F4 – OTHER OUTSIDE FORCE DAMAGE					
10 Fire/Explosion as primary cause of failure -> Fire/Explosion	sion cause: Man made Natural				
10. The Laplosion as primary cause of failure => File/Explos	Γ_{He} = Laplosion as primary cause or railure => Γ_{He} = Laplosion cause. With made Natural				
Cal, truck of other vehicle hot relating to excavation activity	uamaying pipe				
12. Rupture of Freviously Damaged Pipe					
is. valualisti					

F5 – M	ATERIAL AND WE	ELDS							
Mate	erial								
14.	Body of Pipe	=>	Dent	Gouge	Wrinkle Bend	Arc Burn	Other:		
15.	Component	=>	Valve	Fitting	Vessel	Extruded Outlet	Other:		
16.	Joint	=>	Gasket	O-Ring	Threads		Other:		
Weld	d								
17.	Butt	=>	Pipe	Fabrication			Other:		
18.	Fillet	=>	Branch	Hot Tap	Fitting	Repair Sleeve	Other:		
19.	Pipe Seam	=>	LF ERW	DSAW	Seamless	Flash Weld			
			HF ERW	SAW	Spiral		Other:		
Com	plete a-g if you	indica	ate any cause i	in part F5.					
	a. Type of failure):	-				\wedge		
	Constru Material	ction De	efect => Poo	r Workmanship	Procedure no	t followed Poor C	Construction Procedures		
	b. Was failure du	le to pip	be damage sustair	ned in transportatio	on to the construction (or fabrication site?	Yes No		
	c. Was part whic	h leake	d pressure tested	before incident occ	curred? Yes, co	mplete d-g			
	d. Date of test:	<u>/</u>	<u>/</u> mo. /	<u>/</u> day /	<u>/</u> yr.				
	e. Test medium:	N N	Water Natur	al Gas Inert (Gas Other:				
	f. Time held at te	st press	sure: /	<u>/</u> hr.	^				
	g. Estimated test	t pressu	ire at point of incid	lent:	- + + + + + + + + + + + + + + + + + + +	RSIG			
F6 – E	QUIPMENT AND C	PERA	FIONS			$\leftrightarrow ightarrow$			
20.	Malfunction of Co	ontrol/Re	elief Equipment	=> Valve	Instrumentation	Pressure Regulator	Other:		
21.	Threads Stripped	i, Broker	n Pipe Coupling	=> Nipples	Valve Threads	Mechanical Coupling	js Other:		
22.	Ruptured or Leak	ting Sea	al/Pump Packing	$\langle \sim \rangle$	S/N -				
					<u></u>				
23.	Incorrect Operation a. Type: Inc	on adequat	te Procedures	Inadequate Safet	ty Practices Failu	ure to Follow Procedure	s Other:		
	b. Number of em	ployees	involved who fail	ed post-incident dr	rug test: /	/ Alcohol test: /	<i> </i>		
	c. Were most se	nior em	ployee(s) involved	qualified?	Yes No	d. I	Hours on duty: / /		
F7 – O 24.	THER Miscellaneous, d	escribe:							
25.	Unknown Investigation		ete Still.Un	der Investigation (s	submit a supplementa	al report when investigat	ion is complete)		
PART	G – NARRATIVE D	ESCR	PTION OF FACTO	ORS CONTRIBUTI	ING TO THE EVENT	(Attach additional si	heets as necessary)		

Appendix C

Panhandle Failure Analysis

Metallurgical Analysis of 24-Inch Houstonia 200 Service Failure at MP 21.6 (8/25/08)

Panhandle Eastern Pipe Line Company, LP Final Report – 813 8385 1 October 29, 2008

Metallurgical Analysis of 24-Inch Houstonia 200 Service Failure at MP 21.6 (8/25/08) for

Panhandle Eastern Pipe Line Company, L.P. 5444 Westheimer, Suite 432 Houston, TX 77056 5777 Frantz Road Dublin, Ohio 43017-1386 U.S.A.

Tel: (614) 761-1214 Fax: (614) 761-1633 www.dnv.com www.cctechnologies.com

Summary:	Final Report	
Prepared by:	Gregory T. Quickel, M.S. Staff Engineer	Any Quike
Reviewed by:	John Beavers, Ph.D., FNACE .	Joh a Beaners
Approved by:	Patrick H. Vieth	Patn L. Well

Approved by: Patrick H. Vieth Senior VP – Integrity & Materials

Date of Issue: October 29, 2008

Project Number: 813 8385 1

- No distribution without permission from the client or responsible organizational unit (however, free distribution for internal use within DNV after 3 years)
- No distribution without permission from the client or responsible organizational unit
- Strictly confidential
- Unrestricted distribution

All copyrights reserved CC Technologies, Inc. This publication, or parts thereof, may not be reproduced or transmitted in any form or by any means, including photocopying or recording, without the prior written consent of CC Technologies, Inc.

Disclaimer

This report documents work performed by CC Technologies, Inc. (*CC Technologies*) Dublin, Ohio, for Panhandle Eastern Pipe Line Company, L.P. (*Panhandle*) Houston, Texas. Neither CC Technologies nor any person acting on behalf of CC Technologies:

- assumes any liability for consequences or damages resulting from the use, misuse, or reliance upon the information disclosed in this report.
- makes any warranty or representations that the use of any information, apparatus, method, or process disclosed in this report may not infringe on privately-owned rights.

Executive Summary

Panhandle Eastern Pipe Line Company, L.P (*Panhandle*) retained CC Technologies, Inc. (*CC Technologies*) to perform a metallurgical analysis on a section of pipe from the 24-inch diameter Houstonia 200 natural gas pipeline that failed during service. The failure occurred on August 25, 2008 near Pilot Grove (Cooper County), Missouri at milepost (MP) 21.6.

The portion of the pipeline containing the failure is comprised of 24-inch diameter by 0.281-inch wall thickness line pipe with an estimated yield strength (EYS) of 48.0 ksi that was manufactured by A.O. Smith and contains an electric flash welded (EFW) longitudinal seam. The maximum allowable operating pressure (MAOP) and normal operating pressure are 800 psig, which corresponds to 71.2% of the EYS. The operating pressure at the time and location of the failure was 790 psig, which corresponds to 70.3% of the EYS.

The pipeline was installed in 1937 and was reportedly externally coated with a bitumastic pipe wrap. The pipeline has an impressed current cathodic protection (CP) system that was installed between 1951 and 1953. CP readings taken on March 25^{th} , 2008 in the vicinity of the failure were -4.162 V (on) and -1.320 V (off).

A hydrostatic pressure test was performed in 1955 on Segments 1031+39 to 1317+15, which encompasses the failure site.

Four segments of line pipe steel, one which contained the failure origin, were delivered to CC Technologies for analysis. The received segments consisted of: a segment that contained the upstream (U/S) girth weld and failure origin, a mating downstream (D/S) segment, the D/S arrest segment from the joint that failed, and a segment of pipe from the joint D/S of the joint that failed. The objective of the analysis was to document the factual metallurgical evidence.

The pipe segments were visually examined and photographed in the as-received condition. Scale samples were removed from the external pipe surface, at and away from a region of wall loss near the failure origin. The following was performed on the scale samples: elemental analysis using energy-dispersive spectroscopy (EDS) with a scanning electron microscope (SEM), bacteria culture inoculation using a serial dilution technique, and qualitative spot testing using 2N HCI for the presence of carbonates and/or sulfides. A grid with 1-inch by 1-inch divisions was drawn on the internal surface of the pipe near the failure origin where external wall loss was present. Wall thickness values were recorded every 1 inch (measured on the internal surface) with an ultrasonic testing (UT) gauge and/or with calipers. Calipers were used where the UT gauge could not be used, because of sharp bends in the pipe. The external surface at the wall loss region near the failure origin was cleaned with a soft bristle brush and inhibited acid. Magnetic particle inspection (MPI) was performed on the external surface at the wall loss region near the failure origin to identify any indications. Transverse cross-sections were removed from the failure origin and seam weld, mounted, polished, and etched. Liaht photomicrographs were taken to document the corrosion morphology and steel microstructure.

Executive Summary (continued)

A pipe sample for chemical analysis was removed from the joint that failed to determine the composition. Transverse pipe samples for mechanical (duplicate tensiles and Charpy V-notch impact) testing were removed from the base metal of the downstream joint.

The predicted burst pressure for the region of wall loss that contained the rupture was calculated using the RSTRENG effective area method embodied in $CorLAS^{TM}$. Two flaw profiles were obtained. The first flaw profile (profile 1) was obtained by using a modified river bottom method. A second flaw profile (profile 2) was constructed by measuring the wall thicknesses at the edge of the counter-clockwise fracture surface. A flow strength of the measured yield stress (MYS)+10 ksi was used for the calculation.

Below is a summary of our preliminary observations and conclusions:

- The failure occurred at a region of external wall loss from corrosion.
- The maximum depth of wall loss at the rupture surface was 0.210 inches (74.7% of wall thickness).
- Bacteria did not likely play a role in the external corrosion based on the morphology of the corrosion and the results of the bacteria culture testing.
- The morphology of the fracture surfaces suggests that the failure initiated in a ductile manner.
- The morphology of the seam weld is consistent with an EFW seam.
- The microstructure and steel composition are consistent with line pipe steel.
- The results of the tensile and Charpy testing are consistent with this vintage of line pipe steel.
- The estimated burst pressure ranged between 663 psig to 868 psig, compared to an actual failure pressure of 790 psig.

Contents

1.0	BACKGROUND1		
2.0	APPROACH1		
3.0	RESU	LTS AND DISCUSSION	2
	3.1	Optical Examination	2
	3.2	Magnetic Particle Inspection (MPI)	3
	3.3	Metallurgical Analysis	3
	3.4	Energy Dispersive Spectroscopy (EDS)	4
	3.5	Qualitative Spot Test	4
	3.6	Bacteria Culture Testing	4
	3.7	Mechanical Test Results	4
	3.8	Chemical Analysis	5
	3.9	Predicted Burst Pressure	5
4.0	CONC	CLUSIONS	5

Tables

Table 1.	Summary of the results (in areas of minimal or no corrosion) of wall thickness measurements performed on the pipe segments	7
Table 2.	Results of elemental analysis of scale samples removed from the external pipe surface using energy dispersive spectroscopy (EDS)	7
Table 3.	Results of bacteria analysis performed on scale samples removed from the external surfaces, at and away from the region of external corrosion	8
Table 4.	Results of tensile tests performed on transverse samples from Pipe Segment C (D/S of failure joint).	8
Table 5.	Results of Charpy V-notch impact tests performed on samples removed from the base metal of Pipe Segment C.	9
Table 6.	Results of analysis of the Charpy V-notch impact energy and percent shear plots	9
Table 7.	Results of chemical analysis of a pipe steel sample from Pipe Segment A2 (failure joint) by optical emission spectroscopy (OES) removed from the joint that ruptured.	0

Figures

Figure 1.	Photograph of Pipe Segment A1 (internal surface) in the as-received condition	11	
Figure 2.	Photograph of Pipe Segment B1 in the as-received condition	12	
Figure 3.	Photograph of Pipe Segment C in the as-received condition	13	
Figure 4.	Photograph of Pipe Segment A2 (external surface) in the as-received condition.	14	
Figure 5.	Photograph of the external surface of Pipe Segment A2 on the clockwise side of rupture	15	
Figure 6.	Photograph of the external surface of Pipe Segment A2 on the counter-clockwise side of rupture	16	
Figure 7.	Remaining wall in the region of the probable failure origin.	17	
Figure 8.	Stereo light photomicrograph of a transverse cross-section removed from the rupture near the failure origin (Mount M1, 4% Nital Etchant)	18	
Figure 9.	Stereo light photomicrograph of the rupture area indicated in Figure 8 (Mount M1, 4% Nital Etchant).	19	
Figure 10.	Light photomicrograph of the external surface of the pipe in Mount M1 (4% Nital Etchant, area indicated in Figure 8)	19	
Figure 11.	Stereo light photomicrograph of the seam weld cross-section (Mount M2, 4% Nital Etchant).	20	
Figure 12.	Light photomicrograph of the typical base metal microstructure from Mount M2 (4% Nital Etchant).	20	
Figure 13.	EDS spectrum of scale that was removed from the external surface	21	
Figure 14.	Plot of percent shear from Charpy V-notch tests as a function of temperature for samples removed from Pipe Segment C	22	
Figure 15.	Plot of Charpy V-notch impact energy as a function of temperature for samples removed from Pipe Segment C		
Figure 16.	Flaw depth vs. length profile of the measured flaws.	23	

1.0 BACKGROUND

Panhandle Eastern Pipe Line Company, L.P (*Panhandle*) retained CC Technologies, Inc. (*CC Technologies*) to perform a metallurgical analysis on a section of pipe from the 24-inch diameter Houstonia 200 natural gas pipeline that failed during service. The failure occurred on August 25th, 2008 near Pilot Grove (Cooper County), Missouri at milepost (MP) 21.6.

The portion of the pipeline containing the failure is comprised of 24-inch diameter by 0.281-inch wall thickness line pipe with an estimated yield strength (EYS) of 48.0 ksi that was manufactured by A.O. Smith and contains an electric flash welded (EFW) longitudinal seam. The maximum allowable operating pressure (MAOP) and normal operating pressure are 800 psig, which corresponds to 71.2% of the EYS. The operating pressure at the time and location of the failure was 790 psig, which corresponds to 70.3% of the EYS.

The pipeline was installed in 1937 and was reportedly externally coated with a bitumastic pipe wrap. The pipeline has an impressed current cathodic protection (CP) system that was installed between 1951 and 1953. CP readings taken on March 25th, 2008 in the vicinity of the failure were -4.162 V (on) and -1.320 V (off).

A hydrostatic pressure test was performed in 1955 on Segments 1031+39 to 1317+15, which encompasses the failure site.

Four segments of line pipe steel, one which contained the failure origin, were delivered to CC Technologies for analysis. The received segments consisted of a segment that contained the upstream (U/S) girth weld and failure origin, a mating downstream (D/S) segment, the D/S arrest segment from the joint that failed, and a segment of pipe from the joint D/S of the joint that failed. The objective of the analysis was to document the factual metallurgical evidence.

2.0 APPROACH

The procedures used in the analysis were in accordance with industry accepted standards. Six of the general standards governing terminology, chemical analysis, mechanical testing, and specific metallographic procedures used are as follows:

- ASTM E3, "Standard Methods of Preparation of Metallographic Specimens."
- ASTM E7, "Standard Terminology Relating to Metallography."
- ASTM E8, "Test Methods for Tension Testing of Metallic Materials."
- ASTM E23, "Standard Test Methods for Notched Bar Impact Testing of Metallic Materials."
- ASTM A751, "Standard Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products."
- ASTM G15, "Standard Terminology Relating to Corrosion and Corrosion Testing."

MANAGING RISK

The pipe segments were visually examined and photographed in the as-received condition. Scale samples were removed from the external pipe surface, at and away from a region of wall loss near the failure origin. The following was performed on the scale samples: elemental analysis using energy-dispersive spectroscopy (EDS) with a scanning electron microscope (SEM), bacteria culture inoculation using a serial dilution technique, and qualitative spot testing using 2N HCl for the presence of carbonates and/or sulfides. A grid with 1-inch by 1-inch divisions was drawn on the internal surface of the pipe near the failure origin where external wall loss was present. Wall thickness values were recorded every 1 inch (measured on the internal surface) with an ultrasonic testing (UT) gauge and/or with calipers. Calipers were used where the UT gauge could not be used, because of sharp bends in the pipe. The external surface at the wall loss region near the failure origin was cleaned with a soft bristle brush and inhibited acid. Magnetic particle inspection (MPI) was performed on the external surface at the wall loss region near the failure origin to identify any indications. Transverse cross-sections were removed from the failure origin and seam weld, mounted, polished, and etched. Light photomicrographs were taken to document the corrosion morphology and steel microstructure. A pipe sample for chemical analysis was removed from the joint that failed to determine the composition. Transverse pipe samples for mechanical (duplicate tensiles and Charpy V-notch impact) testing were removed from the base metal of the downstream joint.

The predicted burst pressure for the region of wall loss that contained the rupture was calculated using the RSTRENG effective area method embodied in $CorLAS^{TM}$. Two flaw profiles were obtained. The first flaw profile (profile 1) was obtained by using a modified river bottom method. A second flaw profile (profile 2) was constructed by measuring the wall thicknesses at the edge of the counter-clockwise fracture surface. A flow strength of the measured yield stress (MYS)+10 ksi was used for the calculation.

3.0 RESULTS AND DISCUSSION

3.1 Optical Examination

Figure 1 through Figure 4 are photographs of the four as-received pipe segments. The pipe segments were designated as Pipe Segment A1, A2, B1, and C and by Panhandle personnel. Pipe Segments A1, B1, and A2 contained portions of the rupture paths. Pipe Segment C did not contain a rupture path and was used for mechanical testing. None of the pipe segments contained in-tact coating (in the as-received condition) and all segments, except for Segment C, contained localize regions of wall loss. Top-dead-center (TDC) was not indicated on the pipe segments. Flow direction was not identified on the pipe segments but is labeled on pipe segments that ruptured.

The wall thicknesses were measured at four equally spaced locations on the pipe segments. The wall thickness values for the segments are shown in Table 1. The wall thickness values were consistent with a nominal wall thickness of 0.281 inches.

Figure 1 is a photograph of the internal surface of Pipe Segment A1 is the as-received condition. The pipe segment was approximately 6.5 feet in length and was the D/S mating

segment to Segment A2. The seam weld is located between the two rupture faces. The orientation of the chevron markings on the rupture surfaces indicated that the failure origin was U/S.

Figure 2 is a photograph of the external and internal surfaces of Pipe Segment B1 in the as-received condition. Pipe Segment B1 was approximately 11 feet in length from the joint that ruptured, and contained the D/S portion of rupture arrest. Again, the orientation of the chevron markings on the rupture surfaces indicated that the failure origin was U/S of this segment.

Figure 3 is a photograph of the external surface of Pipe Segment C in the as-received condition. The pipe segment was approximately 1.5 feet in length, was from the joint D/S of the joint that ruptured, and was intact. The diameter of the pipe segment was 23.9 inches, which is consistent with a nominal diameter of 24 inches.

Figure 4 is a photograph of Pipe Segment A2 in the as-received condition. The pipe segment was approximately 4.2 feet in length and U/S of Pipe Segment A1. Chevron markings that were located on the fracture surfaces pointed to a rupture origin in the segment. Figure 5 and Figure 6 are photographs of the external pipe surface on the clockwise and counter-clockwise side of the rupture path, respectively. Corrosion wall loss is located on the external pipe surface on adjacent surfaces. The corroded region extended 0.5 feet to 1.79 feet from the U/S girth weld and the fracture surface within the region was at a 45° angle, indicating a shear type of failure. Outside of the region, the fracture surface contained chevron marks and was predominantly perpendicular to the pipe surface.

Figure 7 shows remaining wall produced from wall thickness measurements obtained. The measurements were recorded from approximately 34 to 47 inches clockwise of the seam weld and from 6 to 25-inches D/S of the U/S girth weld. The rupture surface regions were located approximately 40 to 41 inches clockwise of the seam weld (looking D/S). This figure shows that the maximum depth of attack ranges from 0.05 to 0.1 inches and the deepest portions of the attack are at/near the fracture surface. Based on a wall thickness of 0.281 inches, the maximum depth of wall loss was 0.188 inches (66.9% of wall thickness).

3.2 Magnetic Particle Inspection (MPI)

MPI was performed on the external pipe surface in the region of wall loss associated with the failure origin. No evidence of linear indications was identified on the pipe body.

3.3 Metallurgical Analysis

Figure 8 is a photograph of the mounted transverse cross-section (Mount M1) removed near the rupture origin (see Figure 5 and Figure 6 for location). The cross-section shows significant wall loss. Figure 9 is a stereo light photomicrograph of the area indicated in Figure 8. The rupture surfaces are at approximately a 45° angle to each other and there is evidence of necking near the rupture surfaces. Both observations are indicative of a ductile overload failure. Figure 10 is a light photomicrograph showing the cross-section of Mount M1 near the external surface. The

figure shows a banded microstructure and there was no evidence in the cross-section of morphology that is indicative of microbial influenced corrosion (MIC).

Figure 11 is a stereo light photomicrograph of the mounted cross-section that was removed from the seam weld. The morphology of the weld is consistent with an EFW seam.

Figure 12 is a light photomicrograph of the typical microstructure of the base metal from Mount M2. The microstructure consists of ferrite (white areas), pearlite (dark areas consisting of lamellae), and inclusions. This microstructure is typical for this vintage and grade of line pipe steel.

3.4 Energy Dispersive Spectroscopy (EDS)

Table 2 is a summary of the EDS results of the scale samples removed from the external pipe surface; see Figure 5 for the locations where the scale was removed. Sample A was removed from the region of wall loss and Sample B was removed away from the region of wall loss. Figure 13 shows a representative EDS spectrum. High amounts of oxygen (O) and iron (Fe), lesser amounts of sodium (Na), magnesium (Mg), aluminum (Al), silicon (Si), sulfur (S), potassium (K), calcium (Ca), manganese (Mn), and carbon (C) were found in the samples.

The Fe and O were likely in the form of an iron oxide and other elements are commonly found in soils.

3.5 Qualitative Spot Test

Spot tests for the presence of carbonates and/or sulfides were performed on scale at locations where samples were removed for elemental analysis. The deposits were positive for the presence of carbonates (bubbling) and negative for the presence of sulfides (no rotten egg odor). Carbonates are commonly associated with CP.

3.6 Bacteria Culture Testing

Scale samples were removed from the external surface, inoculated, and incubated for the presence of aerobic, anaerobic, sulfate-reducing (SRB), acid-producing (APB), and iron-related bacteria (IRB) in concentrations ranging from 1-99,999 bacteria per mL. The samples were removed from the same locations where samples were removed for elemental analysis. Table 3 shows the results of the bacteria testing for the scale samples. The scale samples removed from both locations were positive for the presence of aerobic bacteria, anaerobic bacteria, and acid-producing bacteria (APB) in very high (10,000 – 99,999 bacteria per mL) concentrations. The fact that there was no evidence of an increased concentration of the bacteria near the failure site suggests that bacteria did not play a role in the failure.

3.7 Mechanical Test Results

The results of the tensile testing for samples removed from the Segment C (D/S joint) are shown in Table 4. The MYS and ultimate tensile strength (UTS) for the pipe segment were

determined to be 51.8-ksi and 71.5-ksi, respectively, compared to an EYS of 48.0-ksi. The failure joint was not tested since it was deformed during the failure event.

Table 5 summarizes the results of the Charpy testing while Figure 14 and Figure 15 show the Charpy percent shear and impact energy curves, respectively. An analysis of the data indicates that the 85% FATT is 96.8°F and the upper shelf Charpy energy is 38.8-ft-lbs, full size. The CVN test results can be adjusted to account for material constraint effects by applying temperature shifts to the data.^{*} The modified transition temperatures (brittle-to-ductile fracture initiation temperature) for the pipe segment were estimated as 90.4°F, based on a pipe wall thickness of 0.281 inches; see Table 6. Based on this analysis, the tested material is expected to exhibit ductile fracture propagation behavior above 90.4°F.

3.8 Chemical Analysis

The results of the chemical composition analysis conducted on a sample removed from the pipe section that ruptured are shown in Table 7. The composition is consistent with this vintage of line pipe steel.

3.9 Predicted Burst Pressure

The predicted burst pressure for the region of wall loss that contained the rupture was calculated using the RSTRENG effective area method embodied in $CorLAS^{TM}$. The predicted burst pressure relied upon the remaining wall thicknesses measurements at and near the rupture of flaw profile 1 and 2, the average mechanical properties from the mechanical testing, and the pipe dimensions; see Figure 16 for flaw profiles. The results of the analysis are summarized in Appendix A. The maximum depth of wall loss in flaw profile 1 and 2 were 0.188 inches (66.9% of wall thickness) and 0.210 inches (74.7% of wall thickness), respectively. The estimated burst pressure ranged between 663 psig to 868 psig, compared to an actual failure pressure of 790 psig.

4.0 CONCLUSIONS

Below is a summary of our preliminary observations and conclusions:

- The failure occurred at a region of external wall loss from corrosion.
- The maximum depth of wall loss at the rupture surface was 0.210 inches (74.7% of wall thickness).
- Bacteria did not likely play a role in the external corrosion based on the morphology of the corrosion and the results of the bacteria culture testing.
- The morphology of the fracture surfaces suggests that the failure initiated in a ductile manner.

[&]quot;A Simple *Procedure* for Synthesizing Charpy Impact Energy Transition Curves from Limited Test Data," Michael J. Rosenfeld, International Pipeline Conference – Volume 1, ASME 1996, p. 216.

- The morphology of the seam weld is consistent with an EFW seam.
- The microstructure and steel composition are consistent with line pipe steel.
- The results of the tensile and Charpy testing are consistent with this vintage of line pipe steel.
- The estimated burst pressure ranged between 663 psig to 868 psig, compared to an actual failure pressure of 790 psig.

Table 1.Summary of the results (in areas of minimal or no corrosion) of wall thickness
measurements performed on the pipe segments.

Segment ID	Description	Wall Thickness 1 (inches)	Wall Thickness 2 (inches)	Wall Thickness 3 (inches)	Wall Thickness 4 (inches)
A1	D/S of and cut from Segment A2	0.271	0.275	0.281	0.280
A2	Segment that contained U/S girth weld and failure origin	0.282	0.281	0.278	0.275
B1	D/S arrest segment	0.279	0.276	0.280	0.280
С	Segment for mechanicals	0.281	0.281	0.282	0.283

Table 2.Results of elemental analysis of scale samples removed from the external
pipe surface using energy dispersive spectroscopy (EDS).

	Location A, Corroded Region (wt %)	Location B, Non-Corroded Region (wt %)
0	26	68
Na	<1	-
Mg	<1	3.4
AI	<1	1.6
Si	<1	5.6
S	<1	<1
К	<1	<1
Ca	1.5	4.3
Mn	1.3	-
С	-	15
Fe	69	2.1

	Scale from	n Location A	Scale from Location B		
	BacteriaTest ResultConcentration		Test Result	Bacteria Concentration	
Aerobic	positive	Very High	positive	Very High	
Anaerobic	positive	Very High	positive	Very High	
Acid-Producing	positive	Very High	positive	Very High	
Sulfate-Reducing	negative	-	negative	-	
Iron-Related	negative	-	negative	-	

Table 3.Results of bacteria analysis performed on scale samples removed from the
external surfaces, at and away from the region of external corrosion.

Bacteria Concentration Key:

Very Low	(1 – 9 bacteria per mL),
Low	(10 – 99 bacteria per mL),
Moderate	(100 – 999 bacteria per mL),
High	(1,000 – 9,999 bacteria per mL),
Very High	(10,000 – 99,999 bacteria per mL)

Table 4.Results of tensile tests performed on transverse samples
from Pipe Segment C (D/S of failure joint).

	Pipe Segment C
Yield Strength, ksi	51.8
Tensile Strength, ksi	71.5
Elongation in 2 inches, %	33.0
Reduction of Area, %	52.0

Table 5.Results of Charpy V-notch impact tests performed on samples removed from
the base metal of Pipe Segment C.

Sample ID	Temperature, °F	Sub-size Impact Energy, ft-lbs	Full Size Impact Energy, ft-Ibs	Shear, %	Lateral Expansion, mils
1	-30	2	3.5	0	0
2	-5	3	5.3	5	0
3	20	4	7	15	1
4	45	10	17.6	40	9
5	70	16	28.1	60	22
6	95	21	36.9	85	30
7	120	22	38.7	95	31
8	145	21.5	37.8	98	31

Table 6.Results of analysis of the Charpy V-notch impact
energy and percent shear plots.

	Pipe Segment C
Upper Shelf Impact Energy (Full Size), Ft-lbs	38.8
85% FATT, °F	96.8
Maxey Adjusted 85% FATT, °F	90.4

Table 7. Results of chemical analysis of a pipe steel sample from Pipe Segment A2 (failure joint) by optical emission spectroscopy (OES) removed from the joint that ruptured.

	Element	Base Metal (Wt. %)
С	(Carbon)	0.287
Mn	(Manganese)	1.07
Р	(Phosphorus)	0.011
S	(Sulfur)	0.029
Si	(Silicon)	0.008
Cu	(Copper)	0.023
Sn	(Tin)	0.002
Ni	(Nickel)	0.014
Cr	(Chromium)	0.015
Мо	(Molybdenum)	0.000
AI	(Aluminum)	0.002
V	(Vanadium)	0.001
Nb	(Niobium)	0.002
Zr	(Zirconium)	0.001
Ti	(Titanium)	0.001
В	(Boron)	0.0002
Са	(Calcium)	0.0000
Со	(Cobalt)	0.003
Fe	(Iron)	Balance
Carbon	Equivalent (CE _{IIW})	0.47

Figure 1. Photograph of Pipe Segment A1 (internal surface) in the as-received condition.

Figure 2. Photograph of Pipe Segment B1 in the as-received condition.

Figure 3. Photograph of Pipe Segment C in the as-received condition.

Figure 4. Photograph of Pipe Segment A2 (external surface) in the as-received condition.

Figure 5. Photograph of the external surface of Pipe Segment A2 on the clockwise side of rupture.

Figure 6. Photograph of the external surface of Pipe Segment A2 on the counter-clockwise side of rupture.

Figure 8. Stereo light photomicrograph of a transverse cross-section removed from the rupture near the failure origin (Mount M1, 4% Nital Etchant).

Figure 9. Stereo light photomicrograph of the rupture area indicated in Figure 8 (Mount M1, 4% Nital Etchant).

Figure 10. Light photomicrograph of the external surface of the pipe in Mount M1 (4% Nital Etchant, area indicated in Figure 8).

Figure 11. Stereo light photomicrograph of the seam weld cross-section (Mount M2, 4% Nital Etchant).

Figure 12. Light photomicrograph of the typical base metal microstructure from Mount M2 (4% Nital Etchant).

Figure 13. EDS spectrum of scale that was removed from the external surface.

Figure 14. Plot of percent shear from Charpy V-notch tests as a function of temperature for samples removed from Pipe Segment C.

Figure 15. Plot of Charpy V-notch impact energy as a function of temperature for samples removed from Pipe Segment C.

APPENDIX A

DESCRIPTION OF CORLAS[™]

APPENDIX A

Description of CorLAS[™]

The CorLASTM computer program was developed by CC Technologies to evaluate crack-like flaws in pipelines based on inelastic fracture mechanics. Using the effective area of the actual, measured crack length-depth profile, an equivalent semi-elliptical surface flaw is modeled and used to compute the effective stress and the applied value of J for internal pressure loading. The effective stress and applied J are then compared with the flow strength (σ_{fs}) and fracture toughness (J_C), respectively, to predict the failure pressure.

The program also contains a similar inelastic fracture mechanics analysis for through-wall flaws. The fracture toughness of the steel can be estimated from Charpy data or measured by means of a J_{IC} test. In the most recent version of CorLASTM, the fracture toughness analysis automatically checks for plastic instability and only the fracture toughness curve needs to be considered for crack-like flaws. The actual tensile and Charpy properties of the pipe joint, measured from the samples removed, can be used for the critical leak/rupture length calculation.

Houstonia 200 :SEMI-ELLIPTICAL FLAW PROFILE EST YS 48 ksi

UTS, psi = 71500. YS, psi = 51750. FS, psi = 61750. E, ksi = 29500. nexp = 0.110 Jc, lb/in = 1935. Thin-wall (OD) formula for hoop stress Tmat = 62.5 OD, in. = 24.00 Wall Thickness, in. = 0.281

SUMMARY OF RESULTS FOR EFFECTIVE-AREA METHOD

Flaw: Start, in. = 4.000 Length, in. = 9.000 Area, in.^2 = 1.283Depth, in.: Maximum = 0.188 Equivalent Flaw = 0.182Failure Stress, psi = 37048. Failure Pressure, psig = 867.53

******	Input	Flaw Profile Data ********
		Depth,
Length,	in.	in.
		<mark></mark>
	<mark>0</mark>	0
	1	0.052
	2	<mark>0.061</mark>
	3	<mark>0.059</mark>
	<mark>4</mark>	<mark>0.138</mark>
	<mark>5</mark>	<mark>0.132</mark>
	6	<mark>0.188</mark>
	7	0.158
	8	0 155

CC TECHNOLOGIES, INC.

<mark>9</mark>	<mark>0.086</mark>
<mark>10</mark>	<mark>0.126</mark>
<mark>11</mark>	<mark>0.145</mark>
<mark>12</mark>	<mark>0.173</mark>
<mark>13</mark>	<mark>0.102</mark>
<mark>15</mark>	<mark>0.071</mark>
<mark>16</mark>	<mark>0.079</mark>
<mark>17</mark>	<mark>0.096</mark>
<mark>18</mark>	<mark>0.03</mark>
<mark>19</mark>	<mark>0.029</mark>
<mark>20</mark>	<mark>0.021</mark>
<mark>21</mark>	<mark>0</mark>

******** Effective Flaw Results *********

				Flow				
	Flaw	Flaw	Effective	Failure	Japplied.		Failure	
	Start.	Lenath.	Area.	Stress.				
i	in	in	in ^2	nsi	lb/in	Tapplied	Pressure osia	
•			III. Z	por	10/111	rupplieu	r ressure, poig	
THOSE BELOW ARE FOR FLOW-STRENGTH FAILURE CRITERION								
1	4	9	1.283	37048	4278.6	1794.1	867.5	

Houstonia 200 EST YS 48 ksi :SEMI-ELLIPTICAL FLAW PROFILE

UTS, psi = 71500. YS, psi = 51750. FS, psi = 61750. E, ksi = 29500. nexp = 0.110 Jc, lb/in = 1935. Thin-wall (OD) formula for hoop stress Tmat = 62.5

OD, in. = 24.00 Wall Thickness, in. = 0.281

SUMMARY OF RESULTS FOR EFFECTIVE-AREA METHOD Flaw: Start, in. = 5.000 Length, in. = 8.000 Area, in.^2 = 1.480 Depth,in.: Maximum = 0.210 Equivalent Flaw = 0.236 Failure Stress, psi = 28328. Failure Pressure, psig = 663.34

******** Input Flaw Profile Data ******** _____ -----Depth, Length, in. in. -----_____ 0 0 1 2 3 4 <mark>0.094</mark> <mark>0.119</mark> 0.139 0.131 5 0.126

<mark>6</mark>	<mark>0.21</mark>
7	<mark>0.201</mark>
8	<mark>0.192</mark>
9	<mark>0.179</mark>
<mark>10</mark>	<mark>0.188</mark>
<mark>12</mark>	<mark>0.189</mark>
<mark>13</mark>	<mark>0.139</mark>
<mark>15</mark>	<mark>0.076</mark>
<mark>16</mark>	<mark>0.071</mark>
<mark>17</mark>	<mark>0.051</mark>
<mark>18</mark>	<mark>0.054</mark>
<mark>19</mark>	<mark>0.051</mark>
<mark>20</mark>	<mark>0.032</mark>
<mark>21</mark>	<mark>0</mark>

******** Effective Flaw Results *********

				Flow			
	Flaw	Flaw	Effective	Failure	Japplied,		Failure
	Start.	Lenath.	Area.	Stress.	11 /		
i	in.	in.	in.^2	psi	lb/in	Tapplied	Pressure, psia
THOSE BELOW ARE FOR FLOW-STRENGTH FAILURE CRITERION							
1	5	8	1.48	28328	10025.2	6519.7	663.3

CC Technologies / Det Norske Veritas

CCT/DNV is a leading provider of technology in managing corrosion and materials risks. As one of the few firms to combine practical engineering solutions with state-of-the-art research and testing, we can offer our clients innovative, cost effective solutions. We specialize in engineering, research and testing for corrosion control and monitoring, fitness-for-service, pipeline/plant integrity analysis, materials evaluation and selection, failure analysis, litigation support, management systems approaches and instrumentation and software design and development.

MANAGING RISK

Appendix D

Panhandle Close Interval Survey
CLOSE INTERVAL POTENTIAL SURVEY

LINE 200 24 INCH 2 GATE TO 3 GATE

EAST EDGE RIVER TS 24.4 FROM TO

FOR

CMS PANHANDLE EASTERN

CORRPRO COMPANIES, INC.

BΥ

HOUSTON, TEXAS

NOVEMBER, 2000

F

Ν

U

(feet)

ω

1		1				
1		1				1
	1	1	I	1		+ I
	ш	່ກ :	N 0	<u>}</u>	<u></u>	
	5	5	S S		20	m
				N	<u>UI</u>	
				N	0	
			-			-2129
1076+00						-2138
1070-00		1				2140
						-2132
						-2145
				7		
				L		-2156
						-2138
1077+00		i				-2143
1				L		
						-2132
						-2120
						-2130
				7		
				<u> </u>		-2135
		1				-2124
1078+00						-2135
		1		T		
				L		-2151
		1				-2130
						2130
						-2130
				<u>γ</u>		
			[-2124
		1				-2124
1079+00						Z 1 Z 7
		1		1		-2190
				· · · · · · · · · · · · · · · · · · ·		
						-2111
		1				-2124
1					· · · · · · · · · · · · · · · · · · ·	
			2	2		-2153
		1				-2116
		-				-2116
1000.00						-2109
1080+00				<u> </u>		-2169
						2107
						-2107
		1		-		-2116
				5		
						-2116
						-2103
						2100
1081+00		1		5		
		:				
		-				-2103
						-2111
				<u> </u>		
						-2106
						7
						I J
					l	2101
1082+00				3		
					<u> </u>	
						}
		1				
					<u> </u>	<u>+</u>
		, · · ·		<u> </u>		
1						
	-					L
1000.00						
1083+00				<u> </u>		-2103_
1						I SI
			1.			
					<u> </u>	<u> </u>
				L		
1						5
						{
1		1				L/
				7		
1084+00				٤		<u> </u>

Dista (feet)

ភ

(

Ć

ĺ

1	-f										
(•				
								1		I	
			- · ·		<u> </u>		- -				
			ω		u i (1					P	
			0					NI		гп	m
			2				2				<u>₩</u>
										2	
								2		0	-4001
	1139+00			i			<u> </u>			-4196-	
									1		4100
	1137	1131	+76	15 Z1.3 I	-6 GN- 354/						-4107
				0FF-1349	NG ON-3781	22					-4162
				0FF-132/	LR UN+ZZ5	. т	-				-4220
			. 4	21 2 AMP		1 S					
		1127		3 40.0 EUS ' And e easter	DM	2				4032	
		110,	. 70	GATE TO	A GATE I THE	2	ดดี				-4022-
			24 TN CO	ATED AS TS 2	21	21 3				-3845	
	1140.00	1		NG 0N-378	31 0FF-1327						- 3980-
	1140-00	1138	+31	CZL ASPH	ALT RD						3700-
		1138	+84	MARKER						·····	-4064
		1138	+96	C/L FIEL	D RD					-34	-4075
		1140	+26	TOP OF H	ILL			~			-3995
		1140	+36	FENCE/MAR	RKER			-			
											-3781
											-3966
									\sim		
	1141+00_				1						-3740
		[1						-3895
		1 1 4 1	120	BOTTOM OF	- 11			4	<u> </u>		
		1141	+28	BOLLON OF	F HILL						-3916
								4	/		
											-3929
								\leq		· · · · · · · · · · · · · · · · · · ·	_2050
	1142+00										
					1						-3990
4											
D)					1					· · · · · · · · · · · · · · · · · · ·	
1											-4188
ò	I.										-2164
£						- 1					-4222
n											
9											-4228
+)	1143+00										-4217
											- 1290
											-4208
											-4206
					i i	- 1					
						- 1					-4204
							·				
	1144+00				i				5		
					_						-4151
					1						
					i				4		
					ĺ						-3885
					1				<u> </u>		-3850-
	1145+00				1						
l										-3766	
					1				_		-3795
					1				\langle	_	-3724-
					1						-3731
1					1						
					k L						-3/13
					1				+		2721
		1145-	+86	TOP OF H	LL H						
	1140+00	··		· · · · · · · · ·					$ \longrightarrow $		_ 2722
ŀ	1146+00				+						
										-3/39	
1										-3763	
					1				-		
					1						-3784
1					1						
(1				i t				4		
ો					1						-3787
					1						5,5,
	1147+00	1			1				,+		

(

Ĺ

(~	 	
Ĺ		1	1		1	1	
		1			· ~	 <u> </u>	
		ω	0	10	┝╸ ~		
		Ø		Ø	N	СЛ I	00
		5				 2	N
					2 -	~	-2720
	1148+00				Ц Ц	<u>∠</u>	U -3737
			1				-3753
							-3737
						 	-3695-
			1 1			 ······	20.42
					_	 	-3644
							-3012-
	1149+00		1			 	-3576
						 	-3523
							-3492
						 	<u> </u>
							-3489
						 	-3494
							-3462
						·····	-3446
	1150+00					 	-2417-
							-2202
					<u> </u>	 	-3362
							-3362
							-2335
						 ·····	
							5277
_						 	
<u> </u>	1151+00					 	
თ +					\sim	 	-3256
ġ.	ŀ						-3262-
1						 	
0					<u></u>	 	-3235
				4			-3209
÷.			1			 	-3151
0	1152.22						-3180
J	1152+00_1152	+01 TOP OF H	Ţ ĹĹ			 	-3172=
							-3172
						 	-2291
							-3159
							-3154
						 	-3061_
							-3167
	1153+00						-3169
	1100.00				/		-3164
			-				-3095
							-3143
					<u> </u>	 	
					L	 	
			1				-3138
			1			 	-3148
	1154+00		1		<u> </u>	 	-3159
							-3148
							-3148
						 	-3161
							-3156
							-3156
					2	 	-2370
			1				-3135
	1155+00					 	-3130
			i		2	 	
							-3151
			1				-3156
			, 1 1		<u></u>	 	-3050
(······································	-3146
-						4	-3138
							_ 2200
	1156+00				·	 	

Distance

x

(feet)

аø

ω

ω

ω 4