

<u>U.S. Navy Shipboard Fuel Cell</u> <u>Program</u>

U.S. Maritime Administration Workshop on Maritime Energy and Clean Emissions

29-30 January 2002 The St. Regis Washington, DC

> Edward House Naval Sea Systems Command Philadelphia, PA, USA

Fuel Cell Markets

*Arthur D. Little, Inc, Cambridge, MA, reference #44335.

COMPARISON OF EFFICIENCIES FOR ELECTRIC POWER PLANTS

Fuel Cell Types

	Electrolyte	Cell Temp (°F)	Lifetime Projected (Hrs)	Cell Contaminant	Single-Cycle Electrical Efficiency (%)
Proton Exchange Membrane (PEM)	Polymer Membrane (Solid)	180	40,000	S, CO	35-40
Alkaline (AFC)	Potassium Hydroxide (Solid)	200	10,000	CO, CO2	<40
Phosphoric Acid (PA)	Phosphoric Acid (Liquid)	450	40,000	S,CO	35-40
Molten Carbonate (MC)	Potassium Lithium Carbonate (Liquid)	1200	40,000	S	45-55
Solid Oxide (SO) [Tubular, planar, monolithic]	Zirconium Dioxide Ceramic (Solid)	1800	40,000	S	45-60

Annual Fuel Consumption (3,000 Operating Hours)

DDG51 Gas Turbine Generator Set

641,465 Gallons

\$628,636

AOE6 Diesel Generator Set

321,703 Gallons \$315,268

Ship Service Fuel Cell

214,315 Gallons

\$210,028

= 50,000 gallons; (\$.98/gallon)

EMISSION COMPARISON

(gm/HP Hr @ 100% Power)

Fuel Cell Design Comparison

Land Transportation

Utility

Power Density	High	High	Low Natural Gas/ Coal Derived	
Fuel Type	Navy Distillate	Gasoline/H2/ Methanol		
Life, MTBO	40,000 Hrs	< 5 Years	40,000 Hrs	
Dynamic Response	High	High	Low	
Operating Environment	Severe	Moderate	Benign	

Design Issues

FUEL CELL POWER PLANT

• FUEL CELL POWER PLANT INCLUDES:

- FUEL PROCESSING
- FUEL CELL STACK
- DC-TO-AC POWER CONVERSION

Significant Market Survey Results

- Marine Market Surveys for fuel cell power sources by MTI for PEM systems and FCE for MC systems conclude:
 - Ship Service fuel cell generators for both commercial and military marine markets compete economically with small turbines and marine diesels in terms of life cycle cost.
 - Diesel-fueled fuel cell ship service generator system for commercial marine applications (98% of total market) will be in the 200 kW to 1 Mw range; military applications (2%) in the 500 kW to 2.5 Mw range.
 - Diesel-fueled commercial and military surface ship markets represents a significant potential market; circa 2005.
- Independent USCG marine market survey validates conclusions.
- DOE/Industry also project future higher power, ultra-high efficiency fuel cell power systems adaptable for marine high power propulsion applications

Viable Commercial Marine Market leads to CONTRACTOR COST SHARED Phase II SSFC Demonstration Program

Program Summary

Objective: Develop shipboard fuel cell power systems with acquisition cost, weight, and volume comparable to other market options, for future Navy ships and craft.

<u>State of the Art</u>. Industry is developing fuel cell technology for stationary and non-marine transportation applications operating on non-logistics fuels. Commercial units expected between 2001 and 2005, with stationary systems available before automotive systems. Little effort in diesel reforming.

<u>Approach</u>: Develop fuel cell power systems and components to enable commercial fuel cell equipment to be used in the unique Naval shipboard environment.

Technical Challenges

- Fuel Type
 ✓ Logistic & Alternate Fuel reforming
- Power Density, Cost & System Efficiency
- Reliability and Maintainability
- Duty Cycle/Transient Response
- Marine Environment
 - Cell Life
 - Environmental Contaminants
 - ✓ Shock & Vibration
 - Ship Motions

Goals

	DDG-51 GTG	AOE-6 SSDG	SSFC Goals 2005	HPFC Goals 2010
Unit Volume (ft3/kW)	1.1	2.84	2	1.7
Unit Weight (Ib/kW)	27.2	36.4	40	30
Fuel Efficiency (at 50% load)	16%	32%	40%	70%
Acquisition Cost (\$/kW)	1600	480	1500	1200
Scalable to: (MW)	-	-	3	20

GTG: Gas Turbine Generator SSDG: Ship Service Diesel Generator SSFC: Ship Service Fuel Cell Program HPFC: High Performance Fuel Cell Program

S&T Demonstration / Accomplishment

FuelCell Energy 625kW 450V, 30, 60 HZ, MC SSFC Power System

PHASE I: Complete FY00

- 2.5 MW SSFC Conceptual Design
- Sub-scale risk reduction demonstrations
 - Cell salt air tolerance
 - NATO F-76 diesel fuel reforming
 - Fuel contaminant removal and cell sensitivity (sulfur)
 - Cell shock and vibration
- Analytical model
- Marine/Navy market surveys

PHASE II:

- 625kW SSFC module detailed design
- 625kW SSFC module fabrication
- Factory testing
- Dynamic simulation model
- IPS program transition planned ship impact/cost studies underway
- LABEVAL (FY04)

PHASE III:

• At-Sea demonstration (FY05)

S&T Demonstration / Accomplishment

McDermott Technology 500kW SSFC Integrated Fuel Processor (IFP)

PHASE I: Completed

- 2.5 MW PEM SSFC Conceptual Design
- Sub-scale risk reduction demonstrations
 - Cell salt air tolerance
 - NATO F-76 diesel fuel reforming
 - Fuel contaminant removal and cell sensitivity (sulfur, CO, ammonia, amines)
 - Cell shock and vibration
- Analytical performance model
- Marine/Navy market surveys

PHASE II:

- 500kW IFP preliminary design
- 500kW IFP detailed design
- 500kW IFP fabrication
- 500kW IFP factory testing
- Dynamic simulation model

Program Timeline/Transition

Naval Fuel Cell Development Center

Diesel Engine Test Facility

Milcon P-104 Test Cell Hybrid Gas Turbine/ Fuel Cell Test Site

GT MILCON P-104 PROJECT SUMMARY

SCOPE: - construct a complete facility for testing propulsion and auxiliary gas turbines in the 30,000 HP range & fuel cells both alone and in hybrid cycle tests

≻COST: \$10.6M

► FOOTPRINT: 8200 FT²

► LOCATION: Building 633

➤Design: FY01

➤Construction: FY02

Transition Benefits

Affordability

- Ship Service Fuel Savings of ~30% (>\$1M / yr / Navy Ship)
- Workload savings due to Unattended Operation and Reduced PMS

Performance

- Fuel Cells inherently Meet Future Air Emission Limits (96% Reduction in NOx, CO and HC)
- Enables reduction of Radar Cross Section and Infrared Signature

Ship Design Flexibility

- Modular Approach Applicable to all Ship Power Requirements
- Applicable to Multiple Platforms
- Facilitates All-Electric Ship with Integrated Power System and Zonal Electrical Distribution System
- Reduces Intake and Exhaust Ducting Volume by 60%
- Permits use of alternate non-petroleum fuels

Original Signatories MOU Approval 2 February 1998

RADM John T. Tozzi Assistant Commandant for Systems

RADM G. Gaffnev, II Chief of Naval Research

RADM M.T. Covle Deputy Commander for Engineering

- **MISSION STATEMENT:**
- Foster the use of Fuel Cells for ship applications utilizing diesel fuels to fulfill national transportation needs.
- Transfer the technology to the public.
- Actively involve industry in the development efforts.

Diana H. Josephson

Deputy Undersecretary for Oceans Monocoment & Atmosphere[•] Reduce duplicative efforts - coordinate/cooperative on marine fuel cell requirements.

> Demonstrate the effectiveness of focused interagency partnership.

R.S. Begura Director, Office of Fossil Energy

Fenton Carey Associate Administration for Research. Technology & Analysis

