Exhaust Emissions from a CNG Ferry

Sponsored By: MARAD USCG DOE EPA Navsea Philadelphia Hampton Roads Transit Authority

Comparison of exhaust emissions from two ferries

- Owner: Hampton Roads Transit Authority
- Location: Elizabeth River, Norfolk/Portsmouth, VA
- Ferries have similar sizes and hull shapes
- One ferry converted from diesel to CNG in 1995

Ferry Details

- MV James C Echols (JCE)
 - Twin Cat 3406-G, natural gas fueled engines
 - Certified for 138 passengers
- MV Elizabeth River II
 - Twin Detroit Diesel 671, diesel fueled engines
 - certified for 151 passengers
- Both engines have similar fuel consumption and brake horsepower

Study Objectives

- Conduct in-use emissions testing to determine environmental benefits of ferry conversion to CNG
- Compare West Virginia University's portable laboratory grade testing equipment to new EPA portable instrumentation
- Follow ISO and CFR standards/specifications for measurement & precision
 - Comparison of operating economics

Measured Parameters

- Particulate mass
- Gaseous emission analysis
 NOx, CO, CO₂, HC
- Fuel mass flow rate
- Intake Air & exhaust flow rates
- Shaft speed/torque
- Additional signals
 - air temperature, pressure, humidity
- EPA Method

Fuel & Oil Analyses

Diesel and gas analyses typicalJCE Oil Analysis

- Starboard High Tin Wear Indicator
- Port High Tin Wear Indicator
- ERII Oil Analysis
 - Starboard High Tin Wear Indicator
 - Port High Water Coolant Leak Indicator

Test Scheme

Constant Speed Measurements

 Idle, 40%, 60%, 80%, 100%

 Transient Measurement

 Average emissions over one circuit of the ferry route 1.37miles

 Lean Burn Setback Experiment

NOx

CO

Particulates

Transient Emissions

Lean Set Back Operation

	Normal Operating	Lean Burn Setback
Air Fuel Ratio	19.9	31.6
Engine RPM	1841	1463
Engine Power (bhp)	163	76.5
CO (g/bhp-hr)	3.15	5.31
NOx (g/bhp-hr)	18.8	0
PM (g/bhp-hr)	0.022	0

Summary of Data

- Compared to diesel, gas engine emissions have:
 - 10-100x lower particulates
 - 2-3x higher CO
 - Approximately the same NOx

Other Observations

- Cannot just retrofit a vessel with a gas engine and automatically improve over diesel
 - Vessels need to be designed as whole system to get optimum RPM/Power and match engine power to transmission and propeller
- Gas fueled engine needs to be properly tuned.Local Cat dealer is not an expert with gas engines

Recommended Action

- Replace air/gas mixer and install oxygen sensor in the exhaust stream
- Add closed loop control to allow precise control of air/fuel mixture
- Install
- Adjust engine for optimum power and minimum emissions
- Add permanent instrumentation to measure engine condition

