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Why is a better baseline needed?

• Current data (published) is very sparse
– e.g., Lloyd’s measured 60 engines on 50 ships
– study focused on older, oceangoing cargo ships

• Limited samples do not reflect diverse fleet
– e.g., ferry vessels are currently being studied
– e.g., even fewer inland river towboats tested

• Technology choices may differ across types
– e.g., costs and feasibility may differ greatly
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Take home message:
Monitoring is a Technology Enabler

• Emerging consensus that more testing needed
• Industry looking for guidance on testing and on

technology alternatives
– motivated by port needs, state implementation plans,

national and international policy action

• Technologies are available now, with advanced
emissions control systems emerging

• Efforts need to be reported in a way that makes their
insights comparable and robust

• Market-based efforts require low-cost monitoring
that is both accurate (enough) and verifiable
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Outline
• What is our current understanding? Gaps?
• Emissions measurement overview

– Current testing standards
– “Gold standard” emissions monitoring
– Industry-friendly options that meet policy goals

• Technology evaluation overview
– Getting beyond sticker shock
– Drawing insights out of the demonstrations
– Better performance through modernization
– Innovations in vessel, port, cargo interface
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Current MTS Trends
• Overarching trend: globalization and

integration of transportation systems
• Modernization and expansion
• Multiple constraints and policy issues

– ship air pollution only newest issue for industry
• Industry and government (DOT, MARAD)

increased partnering to promote U.S. fleet
– U.S. opportunity to be proactive, not left behind
– U.S. domestic waterborne freight offers capacity
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Complex System
• Tug and towboats

– 1-30 barges: .5-4 MW
• High speed ferries

– 150-350 passengers: 2-4 MW
• Roll-on\Roll-off

– 200-600 vehicles: 15-25 MW
• Tankers

– 250,000 tons of oil: 25-35 MW
• Container

– 1750 TEU: 20-25 MW
– 4300TEU: 35-45 MW
– 6000 TEU: 55-65 MW
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Maritime Transportation Emissions:
Evolving Consensus

Previous views about
ship emissions:
2% of CO2 therefore

not significant
Offshore, so no impact

Difficult to control

Current understanding:

14% of NOx, 5% of SOx,
2% of CO2 from fossil fuel

Nearshore and long range
impacts

Feasible technologies at
reasonable costs

Policy needed
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Ship Emissions Overview
• Cargo ships produce ~70% of ship emissions
• Ships are natural leaders in fuel economy,

resulting in lower CO2 per cargo-mile
• Last unregulated source for traditional air

pollutants (SOx, PM, NOx)
– Residual fuels result in higher emissions of

particulate matter (PM) and sulfur oxides (SOx)
– Marine diesel engines emit more NOx,

contributing to regional air pollution
The goal is to achieve win-win reductions



9

Traffic density Low
Medium
High
Extra high

Global ship traffic density

85 percent in Northern Hemisphere
70 percent within 400 km of land

Source: IMO Study on Greenhouse Gas Emissions from Ships, MEPC 45(8), 2000.
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NOX Emissions From US Ships
Waterborne Commerce NOx: 317,000 tpy
Inland River NOx: 127,000 tpy

Ranks 7th compared to controlled NOx sources

Source: J. Corbett and P. Fischbeck, ES&T, 2000



11

Gaps in current understanding
• Challenges

– geographic characterization
– treatment of uncertainty

• Important modeling weaknesses
– model assumptions may not be “real world”

• in-service sampling is too limited to adequately inform models

– calculations typically use large-scale averages
• ignore regional variability in activity
• in-plume chemistry may be very different than ambient average

– inverse modeling of actual observations requires
simultaneous monitoring and case-specific analysis
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Engine Test Standards

• ISO 8137 (Parts 1-9) is the source
– Only Parts 2 addresses in-service tests
– Part 4 defines standard marine duty cycles

• IMO NOx Technical Code is similar
• Measured at steady-state load points
• Produces one average emissions factor
• EPA requires the ISO E3 duty cycle
• Only EPA regulations address transients
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In general, the data reveals important insights:
IMO standard describes the current trend

Source: IMO Study on Greenhouse Gas Emissions from Ships, MEPC 45(8), 2000.
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Can we aggregate these data?
• Each of these summaries represent different numbers of

engines, different techniques
• Aggregating is tough enough with good data, but what makes

the data good?
– Briefcase NOx (single-pollutant) monitor only?
– Measure several combustion products?
– Response time enables transient readings?
– Engine load versus propeller load

Some Key Research Questions
• Is there a change in emissions with age?
• How large is the difference between engines types?
• Do these data apply to ferries, towboats, tugs?
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Distributions of NOx Emissions Factors (for illustration purposes)
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More measurement studies underway

Source: Corbett and Robinson, 2000.
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Continuous Monitoring
Captures Transients:

• Engine speed measured directly
• Combustion products provide fuel

balance (oxygen or carbon based)
• Raw measurements of NOx

(ppmv) identify pollutant
• Enables us to calculate engine

fuel-based emissions factor

• Need shaft horsepower to get ship
power-based emissions factor

Source: Corbett and Robinson, 2000.
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The challenge of moving
from engine-fuel to

shaft-power emissions:
• Propeller curve for a given vessel

may vary with load, current, etc.

• However, the overall relationship
is very strong

• How this may differ between hull
designs can be generally inferred
but has not been measured
– Faster hull designs and advanced

propulsion may require special tests

Source: Corbett and Robinson, 2000.
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By ignoring idle, both ISO E3 and E5 overestimate
average emissions factor for this vessel by ~14%

Source: Corbett and Robinson, 2000.

Getting duty cycle right is easy & important
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Measuring at steady-state versus
averaging normal operations shows same

trends, but different values

Source: Corbett and Robinson, 2000.
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EPA limits on transients

Source: EPA 1999.
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At least on one vessel, EPA standards for
transients miss 61% of load profile

Source: Corbett and Robinson, 2000.
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Technology Perspectives
• Demo projects produce learning-by-doing
• Evaluating technologies requires more than vendor

estimates of capital costs
– Needs to include life-cycle costs to ship, acknowledge that costs

decline over time
– May need to consider infrastructure and port costs/impacts
– Should be extended to consider costs/impacts on other units

• per ship, per voyage, per year
• per TEU (ton cargo or per passenger), per ton-mile (or pass-mile)

Technology costs will come down with
market penetration, demo successes
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Opportunities to Reduce Emissions
• Short-term: Operational measures, limited potential

• IMO study showed potential for slower speeds to reduce emissions
• Being tried in Southern California under voluntary plan
• Other operational improvements possible, but difficult to enforce

• Near-term: After-treatment retrofits, cleaner diesels
• This is being done in Europe! Demonstration projects in U.S.

• Long-term: Alternative fuels for diesels, advanced
engine technologies, alternative propulsion

• Need for demonstration projects, policy and business incentives
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New design requirements in
the MTS context?

• Global shipping may be  “market-optimized”
for low CO2 emissions unless innovation occurs

• Not simply a NOx-reduction problem

• Pollution control may incur CO2 penalties

Environment Systems Energy Technology
Systems

Institutional
and Economic Systems

 



28

Technologies for Existing Engines:
Performance Attributes Summary of NOx Control

Technologies for Existing Engines

Control Technology

Nominal
NOx

Reduction
(%)

Nominal
Reduction
in PM and

Other
Pollutants

(%)a

Nominal
Increased
Fuel Use

(%)

NPV Costs
(15% interest
annually over

23 years)

Global Cost
Effectiveness
($/ton NOx)

Aftercooler upgrade 10 -1 2  $184,000 $620
Engine derating 14 -10 4  $386,000 $933
Fuel pressure increase 14 -21 2  $220,000 $523
Injector upgrade 16 -21 2  $192,000 $410
Injection Timing Retard 19 -11 4  $363,000 $618
Water in combustion air 28 1 3  $365,000 $468
Exhaust gas recirculation 34 -51 0  $16,900,000 $16,377
Water/fuel emulsion 42 15 2  $325,000 $284
Selective catalytic reduction 81 0 0  $475,000 $227

Source: J. Corbett and P. Fischbeck, MEETS 2001
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Implications of Different Policy Frameworks:
Variation in annual costs dominated by fuel penalties
NOx Control Technology
(Percent Change in NOx)

Policy Scenario NPV Costs
(10 yrs at i=15%)

% of Annual
Costs in NPV

Cost-effectiveness
($/ton NOx)

Aftercooler upgrade
(-10%)

Port Control
Regional control
Global control

$21,000
$103,000
$146,000

43%
89%
92%

$920
$640
$620

Fuel system upgrade
(-14%)

Port Control
Regional control
Global control

$180,000
$180,000
$180,000

80%
80%
80%

$2,420
$770
$520

Unit injection upgrade
(-16%)

Port Control
Regional control
Global control

$160,000
$160,000
$160,000

74%
74%
74%

$1,877
$600
$410

Injection retard timing
(-19%)

Port Control
Regional control
Global control

$19,000
$194,000
$285,000

99%
100%
100%

$790
$620
$620

Water in combustion air
(-28%)

Port Control
Regional control
Global control

$146,000
$257,000
$315,000

8%
48%
58%

$1,100
$560
$470

Water/Fuel Emulsion
(-42%)

Port Control
Regional control
Global control

$130,000
$229,000
$281,000

8%
48%
58%

$670
$340
$280

Selective Catalytic Reduction
(-81%)

Port Control
Regional control
Global control

$295,000
$386,000
$434,000

3%
26%
34%

$670
$300
$230

Source: J. Corbett and P. Fischbeck, MEETS 2001
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Monitoring helps define way ahead

• Our approach is to begin with “research
standard” and look for least-cost equivalent
– How bad do the data get if we estimate this

element less well?
– Is Better the Enemy of Good Enough?
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Is a Better Baseline the Enemy?

• Better is the enemy of Good Enough.
– Motto that hung on the wall of Admiral Sergei Gorshkov,

head of the Russian Navy, 1950's-1980's, to remind him
of the relative quality of the U.S. and Soviet fleets.

• Today, we are no where near good enough
– Monitoring provides inadequate detail, accuracy
– Technology evaluations are not vessel-specific
– Costs are very sensitive to assumptions, interest

rates, and market penetration
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Better Baseline is not the Enemy

We need to proceed with testing, but
ensure that we can compare results

Monitoring for baseline will lead to
monitoring for reductions
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http://w
w

w
.riverbarges.com

/riverfun/riverpics/picsintro.htm

A modern fleet of ships does not so
much make use of the sea as exploit a
highway.

-- Joseph Conrad
The Mirror of the Sea, Ch. 22, 1906

Discussion welcome


