

Introduction to the Coast Guard's Regulatory Approach to Novel Ship Designs/ Alternative Fuels

G-M Goal - "Protect the public, environment, and U.S. economic interests by <u>preventing</u> and <u>mitigating</u> marine accidents"

LT Robb Wilcox, P.E. Assistant Branch Chief Machinery Branch, USCG Marine Safety Center

PRESENTATION TOPICS

- Overview of Responsibilities of Coast Guard's Marine Safety Organization
- Process for Submitting Novel System
 Designs to Coast Guard
- Novel Design Acceptance Criteria -Safety Equivalency
- Existing Regulations for CNG
 Application
- Examples of Coast Guard Plan Review Projects for CNG Fueled Vessels
- Summary/ Conclusions

- Marine Safety Organization
 - G-M (Coast Guard Headquarters)
 - Drafting/ Modifying Regulations
 - Policy Development for Interpretation of Laws
 - Appeal of Plan Review Issues
 - Marine Safety Center (CG Centralized Plan Review)
 - Engineering/ Hull/ Cargo Divisions
 - Safety Equivalency Evaluations
 - Marine Safety Offices
 - Field Offices Oversight for Construction & Operation

General Process for Submitting Novel System Designs to Coast Guard Marine Safety Center

- Concept Proposal
 - Design and Operation Overview of Proposed System
 - Presentation/Discussion with MSC Staff
 - Determination of Coast Guard Headquarters Role in Approval
- Detailed Plan Submittal
 - Plan Review Details Submitted
 - Risk Analysis
 - Failure Mode and Effects Analysis
 - Preliminary Hazard Analysis
 - Fault Tree Analysis

RISK -BASED APPROVAL PROCESS FOR SYSTEM SAFETY

RISK ASSESSMENT QUESTIONS

RISK CONTROLS

- Reduce Risk:
 - Preventing Unfavorable Scenario
 - Reducing the Likelihood of an Event
 - Reducing the Consequence of an Event
- Possible Means of Controlling Risk
 - Engineering Controls
 - Alternate Design
 - Improved Reliability
 - Additional Safety Systems
 - Warning Devices
 - Administrative Controls
 - Training
 - Operating/ Emergency Procedures

- Existing Regulations (Source for Risk Control)
 - Code of Federal Regulations
 - 46 CFR Part 154 CNG for LNG Tankers Boiloff
 - 46 CFR Part 54 ASME PV Code
 - 46 CFR Part 56 Piping Standards
 - Other Sources of Standards
 - ABS/ Classification Society Main Propulsion Machinery
 - NFPA52/ ANSI NGV2

Examples of Coast Guard Approval of CNG Fuel Systems

- Marine Applications of CNG Fuel
 - LNG Tankers (Auxiliary Machinery)
 - JAMES C. ECHOLS (Norfolk Ferry)
 - KINGS POINTER (Kings Point Training Vessel)

SUMMARY/ CONCLUSIONS

- Overview of G-M Organization
- Criteria for Novel Design Acceptance Safety Equivalency
- Risk Analysis
- Alternative Fuel Regulations
- Existing Applications of CNG Systems
- Acceptance of Novel Concepts on a Case by Case Basis for a Specific Vessel and Operating Zone

RISK DIAGRAM

RISK ACCEPTANCE CRITERIA IN EXISTING MARINE REGULATIONS

<u>IMO High Speed Craft Code & NVIC 5-93 Passenger</u> <u>Submersible Guidance</u>

- "If end effect is hazardous or catastrophic, a backup system and corrective operating procedure are required."
- Single failure must not result in a catastrophic event, unless the likelihood is extremely remote."
- Part 62 "Vital System Automation"
 - Failsafe design to levels of least critical consequence.