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Guidelines for the Structural Evaluation of  
Cargo Tank Rollover Damage Protection Devices 

Criteria for DOT406, DOT407, DOT412 cargo tank motor vehicles are included in 
§178.345.  This section requires that guards “...must be designed and installed to 
withstand loads equal to twice the weight of the loaded cargo tank motor vehicle 
applied as follows: normal to the tank shell (perpendicular to the tank surface); 
and tangential (perpendicular to the normal load) from any direction.  The 
stresses shall not exceed the ultimate strength of the material of construction.  
These design loads may be considered to be uniformly distributed and 
independently applied.  If more than one rollover protection device is used, each 
device must be capable of carrying its proportionate share of the required loads 
and in each case at least one-fourth the total tangential load.  The design must be 
proven capable of carrying the required loads by calculations, test and a 
combination of test and calculations.” 

 

Analysis Procedures 

One common type of rollover damage protection device is an inverted “U” shaped 
member made of tubular elements as shown in Figure 1.  The devices are 
frequently installed at a stiffened cross section of the tank.  In some designs, 
gusset plates are used between the tank wall and the rollover device to increase 
capacity to carry horizontal longitudinal load.  Some designs have used a third leg 
to increase capacity. 

The two-legged inverted “U” devices behave as a frame when subjected to 
vertical load or horizontal transverse load.  Such frames can be analyzed using 
moment distribution procedures, frame analysis from Roark and Young, 
approximate methods of frames, or finite element methods.  For horizontal 
longitudinal load, these two legged devices can be idealized as cantilever beams. 

A difficulty, common to all of the suggested methods of analysis, is idealization of 
the strength and stiffness of the tank at its juncture with the rollover device. 
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Figure 1.  Inverted “U” rollover protection device. 

 

Example 1.  Analysis of inverted “U” using moment distribution. 

The two-legged inverted “U” device shown in Figure 2 is one of three devices used 
on a DOT 400 Series cargo tank motor vehicle whose total weight is 49,700 lbs.  
The device is made of 3-inch standard pipe with an ultimate strength of 65.2 ksi.  
Properties of the pipe cross section are given in Figure 2.  Each device must 
withstand a load of 2 W/n in which 2(49,700)/3 = 33.13 kips. 
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Figure 2.  Two-legged, inverted “U” rollover device for DOT 400 Series cargo tank. 

 

For the first analysis, it is assumed that the tank wall provides rigid support for the 
overturn device at the points of attachment.  This is a reasonable assumption but 
is not accurate because the tank walls are flexible. 

A moment distribution analysis table for “side sway” with assumed fixed-end 
moments of +100 in-k is presented in Figure 3.  The results show final joint 
moments of +77.9 in-k at joints A and D and 56.4 in-k at joints B and C.  Further 
analysis to impose static equilibrium for the horizontal force of 33.13 kips is 
required. 
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For member AB: 

∑𝑀𝐵 = 0: − 𝐻𝐴 (18) + 77.9 + 56.4 = 0 

𝐻𝐴 =
77.9 + 56.40

18
 

𝐻𝐴 = 7.46𝑘 

 𝑎𝑙𝑠𝑜 

 𝐻𝐷 = 7.46𝑘 

 

 

Joint A B C D 
Member AB BA BC CB CD DC 

K .1676 .1676 .1437 .1437 .1676 .1676 
Dist. F. 0 .538 .462 .462 .538 0 
F.E.M +100 +100 0 0 +100 +100 

1st Dist 0 -53.8 -46.2 -46.2 -53.8 0 
CO -26.9 0 -23.1 -23.1 0 -26.9 

2nd Dist 0 -12.4 +10.7 +10.7 +12.4 0 
CO +6.2 0 +5.3 +5.3 0 +6.2 

3rd Dist 0 -2.8 -2.5 -2.5 -2.8 0 
CO -1.4 0 -1.2 -1.2 0 -1.4 

4th Dist 0 +0.6 +0.6 +0.6 +0.6 0 
∑ +77.9 +56.4 -56.4 -56.4 +56.4 +77.9 

 
Figure 3.  Moment distribution analysis of rollover device with horizontal transverse load  

and bottom ends of vertical members fixed. 
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Figure 4.  Preliminary results of moment distribution analysis with assumed fixed end moments. 

 

For entire structure: 

∑𝐹𝑥 = 0;  𝐹 − 7.46 − 7.46 = 0 

𝐹 = 14.92𝑘 

The adjustment factor that must be applied to the results in Figure 3 is: 

33.13
14.92

= 2.22 

All moments (and forces) for the solution presented in Figure 3 must be 
multiplied by 2.22 for an actual load of 33.13 kips.  The final adjusted moments at 
joint A and D are each 173 in-k as shown in Figure 5. 

Further, static analysis results in axial forces of 11.9 kips and shear forces of  
16.56 kips in each of the vertical members. 
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Figure 5.  Final results of the moment distribution analysis of structure in figure 31. 

 

The maximum axial stress in member A-B, near joint A, is: 

𝑀𝑎𝑥 𝑆 =
𝑃𝐴
𝐴

+  
𝑀
𝑍𝑒

 

𝑀𝑎𝑥 𝑆 =
11.9

2.229
+  

173(1.75)
3.017

 

𝑀𝑎𝑥 𝑆 = 5.3 + 100.3 
𝑀𝑎𝑥 𝑆 = 105 𝑘𝑠𝑖 > 65.2 𝑘𝑠𝑖  (𝑁𝑜 𝑔𝑜𝑜𝑑) 
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The axial stress in the horizontal member near joints B and C would be: 

𝑆 =
𝐹
𝐴

+  
𝑀
𝑍𝑒

 

𝑀 = 56.4(2.22) 

𝑀 = 125.2 

𝑆 =
16.56
2.229

+  
125.2(1.75)

3.017
 

𝑆 = 5.3 + 100.3 

𝑆 = 80.0 𝑘𝑠𝑖 

The axial stress vertical members near joints B and C would be: 

𝑆 =
𝐹
𝐴

+  
𝑀
𝑍𝑒

 

𝑆 =
11.9

2.229
+  

125.2(1.75)
3.017

 

𝑆 = 5.3 + 72.6 

𝑆 = 77.9 𝑘𝑠𝑖 > 65.2 𝑘𝑠𝑖 (𝑁𝑜 𝑔𝑜𝑜𝑑) 

 

An analysis of the two leg-devices for horizontal transverse load using the 
Moment Distribution Method and the assumption that the tank shell provides no 
stiffness in bending in the legs of the device is presented in Figure 6.  The final 
adjusted moments are shown in Figure 7.  The computed maximum tensile or 
compressive stresses in the vertical legs of the device occur near joints B and C, 
and is 186 ksi. 

If the effective stiffness of the tank wall were known and could be included in the 
analysis, the results would be expected to be somewhere between the two 
Moment Distribution solutions presented herein. 
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Joint A B C D 
Member AB BA BC CB CD DC 

K .1676 .1676 .1437 .1437 .1676 .1676 
Dist. F. 1 .538 .462 .462 .538 1 
F.E.M +100 +100 0 0 +100 +100 

1st Dist -100 -53.8 -46.2 -46.2 -53.8 -100 
CO -26.9 -50 -23.1 -23.1 -50 -26.9 

2nd Dist +26.9 +39.3 +33.8 +33.8 +36.3 +26.9 
CO +19.6 +13.4 +16.9 +16.9 +13.4 +19.6 

3rd Dist -19.6 -16.3 -14 -14 -16.3 -19.6 
CO -8.1 -9.8 -7.0 -7.0 -9.8 -8.1 

4th Dist +8.1 -9 +7.8 +7.8 +9.0 +8.1 
CO 4.5 4.0 3.9 3.9 4.0 4.5 

5th Dist -4.5 -4.2 -3.6 -3.6 -4.2 -4.5 
CO -2.1 -2.2 -1.8 -1.8 -2.2 -2.1 

6th Dist +2.1 +2.1 +1.8 +1.8 +2.1 +2.1 
∑ 0 31.5 -31.5 -31.5 31.5 0 

 
Figure  6.  Moment distribution analysis of rollover device with horizontal transverse load and 

bottom ends of vertical members hinged. 

 

It is noticed that for each of the two solutions by Moment Distribution presented 
on the previous pages, the sum of the moments for the two ends of a vertical 
member of the device is 298 in-k at the bottom and 125 in-k at the top.  For the 
second solution (with the ends of the legs pinned) the moments are zero at the 
bottom and 298 in-k at the top. 
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For a more accurate solution wherein partial fixity of the tank wall would be 
accurately included, the moments would also total 298 in-k.  The degree of fixity 
that would result in the lowest maximum stresses in the legs of the device would 
be one that caused the moments to be equal at each end of the leg  
(i.e., 298 ÷ 2 =149 in-k).  In this case, the stresses in each end of the legs would be: 

𝑆 =
𝐹
𝐴

+  
𝑀
𝑍𝑒

 

𝑆 =
𝐹
𝐴

+  
149(1.75)

3.017
 

𝑆 =
𝐹
𝐴

+  86 𝑘𝑠𝑖 

F/A would be somewhere between 5.3 and 12.7 ksi which would make the 
maximum stress over 90 ksi. 
 

 

 
Figure 7.  Results of moment distribution analysis of structure in Figure 6. 
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Roark and Young Analysis 

Equations for structural analysis of single bent frames are given in Roark and 
Young for various combinations of member sizes, member lengths and support 
conditions.  For a frame subjected to a concentrated side load and with fixed 
supports as shown in Figure 8, the following six general equations for coefficients 
are given: 

  

 
Figure 8:  Idealization of rollover protection device for analysis  

using formulas from Roark and Young. 

 

𝐶𝐻𝐻 =
𝑙13

3𝐸1𝐼1
+ [𝑙13 − (𝑙1 − 𝑙2)3]3𝐸2𝐼2 +

𝑙12𝑙3
𝐸3𝐼3

 

𝐶𝐻𝑉 = 𝐶𝑉𝐻 =
𝑙2𝑙3(2𝑙1 − 𝑙2)

2𝐸2𝐼2
+

𝑙1𝑙32

2𝐸3𝐼3
 

𝑐𝐻𝑀 = 𝐶𝑀𝐻 =
𝑙12

2𝐸1𝐼1
+
𝑙2(2𝑙1 − 𝑙2)

2𝐸2𝐼2
+
𝑙1𝑙3
𝐸3𝐼3
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𝐶𝑉𝑉 =
𝑙2𝑙32

𝐸2𝐼2
+

𝑙33

3𝐸3𝐼3
 

𝐶𝑉𝑀 = 𝐶𝑀𝑉 =
𝑙2𝑙3
𝐸2𝐼2

+
𝑙32

𝐸3𝐼3
 

𝐶𝑀𝑀 =
𝑙1
𝐸1𝐼1

+
𝑙2
𝐸2𝐼2

+
𝑙3

𝐸3𝐸3
 

 

For the frame shown in Figure 8, the equations reduce to: 

 

𝐶𝐻𝐻 =
2𝑙13

3𝐸𝐼
+
𝑙12𝑙3
𝐸𝐼

 

𝐶𝐻𝑉 =
𝑙12𝑙3
2𝐸𝐼

+
𝑙1𝑙32

𝐸𝐼
 

𝐶𝐻𝑀 =
𝑙12

𝐸2𝐼2
+
𝑙1𝑙3
𝐸𝐼

 

𝐶𝑉𝑉 =
𝑙2𝑙32

𝐸𝐼
+

𝑙33

3𝐸𝐼
 

𝐶𝑉𝑀 =
𝑙2𝑙3
𝐸𝐼

+
𝑙32

2𝐸𝐼
 

𝐶𝑀𝑀 =
𝑙1
𝐸𝐼

+
𝑙2
𝐸𝐼

+
𝑙3
𝐸𝐼

 

 

Factors for loads are computed using the three following equations: 
 

𝐿𝐹𝐻 = 𝑊�𝐶𝐻𝑀 − 𝑙1𝐶𝐻𝑀 +
𝑙13

6𝐸1𝐼1
� 

𝐿𝐹𝑣 = 𝑊(𝐶𝑉𝐻 − 𝑙1𝐶𝑉𝑀) 

𝐿𝐹𝑀 = 𝑊�𝐶𝑀𝐻 − 𝑙1𝐶𝑀𝑀 +
𝑙12

2𝐸1𝐼1
� 
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Coefficients and factors for loads can then be used in the following equations to 
solve for reactions at the left support.  Reactions at the right support can then be 
evaluated using equations of static equilibrium. 
 

𝐶𝐻𝐻𝐻𝐴 + 𝐶𝐻𝑉𝑉𝐴 + 𝐶𝐻𝑀𝑀𝐴 = 𝐿𝐹𝐻 

𝑐𝑉𝐻𝐻𝐴 + 𝐶𝑉𝑉𝑉𝐴 + 𝐶𝑉𝑀𝑀𝐴 = 𝐿𝐹𝑉 

𝐶𝑀𝐻𝐻𝐴 + 𝐶𝑀𝑉𝑉𝐴 + 𝐶𝑀𝑀𝑀𝐴 = 𝐿𝐹𝑀 

 

Example 2. Structural analysis of frame using equations from Roark and Young. 

 

  

 

Figure 9.  Idealization of frame for analysis using formulas from Roark and Young. 

 

𝑈𝑠𝑒 𝐸 = 29 × 106 

𝑇ℎ𝑒𝑛 𝐸𝐼 = 29 × 106(3.017) 

𝐸𝐼 = 87.5 × 106 
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𝐶𝐻𝐻 =
2𝑙13

3𝐸𝐼
+
𝑙12𝑙3
𝐸𝐼

 

𝐶𝐻𝐻 =
2(18)3

3(87.5 × 106) +
(18)2(21)
87.5 × 106

 

𝐶𝐻𝐻 = 122.2 × 106 

 

𝐶𝐻𝑉 =
𝑙12𝑙3
2𝐸𝐼

+
𝑙1𝑙32

𝐸𝐼
 

𝐶𝐻𝑉 =
(18)2(21)

2𝐸𝐼
+

18(21)2

𝐸𝐼
 

𝐶𝐻𝑉 = 84.24 × 10−6 

 

𝐶𝐻𝑀 =
𝑙12

𝐸2𝐼2
+
𝑙1𝑙3
𝐸𝐼

 

𝐶𝐻𝑀 =
(18)2

87.5 × 106
+

18(21)
87.5 × 106

 

𝐶𝐻𝑀 = 8.023 × 10−6 

 

𝐶𝑉𝑉 =
𝑙2𝑙32

𝐸𝐼
+

𝑙33

3𝐸𝐼
 

𝐶𝑉𝑉 =
18(21)

87.5 × 106
+

213

3(87.5 × 106) 

𝐶𝑉𝑉 = 126.0 × 10−6 

 

𝐶𝑉𝑀 =
𝑙2𝑙3
𝐸𝐼

+
𝑙32

2𝐸𝐼
 

𝐶𝑉𝑀 =
18(21)

87.5 × 106
+

212

2(87.5 × 106) 

𝐶𝑉𝑀 = 6.84 × 10−6 
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𝐶𝑀𝑀 =
𝑙1
𝐸𝐼

+
𝑙2
𝐸𝐼

+
𝑙3
𝐸𝐼

 

𝐶𝑀𝑀 =
18

87.5 × 106
+

18
87.5 × 106

+
21

87.5 × 106
 

𝐶𝑀𝑀 = 0.651 × 10−6 

 

𝐿𝐹𝐻 = 𝑊�𝐶𝐻𝑀 − 𝑙1𝐶𝐻𝑀 +
𝑙13

6𝐸𝐼
� 

𝐿𝐹𝐻 = 𝑊�𝐶𝐻𝑀 − 𝑙1𝐶𝐻𝑀 +
𝑙13

6𝐸𝐼
� 

𝐿𝐹𝐻 = 𝑊(−11.09 × 10−6) 

 
𝐿𝐹𝑉 = 𝑊(𝐶𝑉𝐻 − 𝑙1𝐶𝑉𝑀) 

𝐿𝐹𝑉 = 𝑊(84.24 × 10−6 − 18(6.84 × 10−6) 

𝐿𝐹𝑉 = 𝑊(−38.88 × 10−6) 

𝐿𝐹𝑀 = 𝑊�𝐶𝑀𝐻 − 𝑙1𝐶𝑀𝑀 +
𝑙12

2𝐸1𝐼1
� 

𝐿𝐹𝑀 = 𝑊�8.023 × 10−6 − 18(.651 × 10−6) +
(182)

2(87.5 × 106)
� 

𝐿𝐹𝑀 = 𝑊(−1.847 × 10−6) 

 
𝐶𝐻𝐻𝐻𝐴 + 𝐶𝐻𝑉𝑉𝐴 + 𝐶𝐻𝑀𝑀𝐴 = 𝐿𝐹𝐻 

122.2 × 10−6𝐻𝐴 + 84.24 × 10−6𝑉𝐴 + 8.023 × 10−6𝑀𝐴 = −11.09 × 10−6𝑊 

 
𝐶𝑉𝐻𝐻𝐴 + 𝐶𝑉𝑉𝑉𝐴 + 𝐶𝑉𝑀𝑀𝐴 = 𝐿𝐹𝑉 

84.24 × 10−6𝐻𝐴 + 126 × 10−6𝑉𝐴 + 6.84 × 10−6𝑀𝐴 = −38.88 × 10−6𝑊 

 
𝐶𝑀𝐻𝐻𝐴 + 𝐶𝑀𝑉𝑉𝐴 + 𝐶𝑀𝑀𝑀𝐴 = 𝐿𝐹𝑀 

8.023 × 10−6𝐻𝐴 + 6.84 × 10−6𝑉𝐴 + 0651 × 10−6𝑀𝐴 = −1.847 × 10−6𝑊 
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These equations are solved simultaneously to result in: 

 

𝐻𝐴 = +16.6𝑘 

𝑉𝐴 = −11.9𝑘 

𝑀𝐴 = −173 𝑖𝑛 𝑘 

 

The combined stress adjacent to joint A due to axial force and bending  
moment is: 

𝑀𝑎𝑥 𝑆 =
𝑉𝐴
𝐴

+
𝑀𝐴

𝑍𝑒
 

𝑀𝑎𝑥 𝑆 =
11.9

2.229
+

173
1.724

 

𝑀𝑎𝑥 𝑆 = 5.34 + 100.34 

𝑀𝑎𝑥 𝑆 = 105.68 𝑘𝑠𝑖 

 

Approximate Methods 

Approximate methods of structural analysis can be used to analyze two legged 
inverted “U” rollover protection devices.  One such method is the portal method.  
In the portal method, it is assumed that points of inflection (zero moment) occur 
at mid-height of the vertical members.  The horizontal shear will be the same 
value in each of the two vertical members will be the same. 

The assumptions stated above make the structure statically determinate and the 
analysis can be completed using statics. 
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Example 3. Analysis of inverted “U” using portal (approximate) method. 

 

𝑉1 = 𝑉2 

𝐹1 = 𝐹2 

𝑀1 = 𝑀2 

𝐹1 = �
9

21
� 𝐹 

𝑉1 =
𝐹
2

 

𝑀1 = 9𝑉1 = 9 �
𝐹
2
� 

max 𝑆 =
𝐹1
𝐴

+
𝑀1

𝑍𝑒
 

 

For the values given in Figure 4, the solution should be: 

 

𝑉1 =
𝐹
2

=
33.13

2
= 16.57𝑘 

𝐹1 = �
9

21
�33.13 = 14.2𝑘 

𝑀1 = 9𝑉1 = 9(16.57) = 149𝑖𝑛 𝑘 

max 𝑆 =
𝐹1
𝐴

+
𝑀1

𝑍𝑒
 

max 𝑆 =
14.2

2.229
+

149
1.724

 

max 𝑆 = 6.4 + 86.4 

max 𝑆 = 92.8 𝑘𝑠𝑖 
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Figure 10.  Idealization of rollover protection device for approximate analysis. 

 

Example 4. Analysis of inverted “U” using finite elements. 

Stresses in the rollover devices were further evaluated using a finite element 
analysis procedure.  For these analyses, the ends of the legs of the devices were 
assumed fixed against rotation at the points of attachment to the tank wall. 

For the two-leg device subjected to a horizontal transverse load of 33.13 kips the 
maximum stress is: 



18 
 

 

 
Figure 11.  Results of finite elements analysis of device subjected to  

horizontal transverse load of 33.13 kips. 

Method of Analysis Maximum Normal 
Stress, ksi 

Location of 
Maximum Normal 

Stress 
Moment Distribution 

w/ ends fixed 105 Bottom end of 
vertical members 

Moment Distribution 
w/ ends hinged 186 Top end of vertical 

members 
Roark and Young w/ 

ends fixed 105 Bottom ends of 
vertical members 

Portal Method 92.8 Both ends at vertical 
members 

Finite Element 
method w/ ends fixed 110 Bottom end of 

vertical members 
 

Table 1.  Comparison of results of various analysis procedures for inverted “U” rollover 
protection device subjected to horizontal transverse load. 
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A moment distribution analysis can be performed for vertical load on the device.  
Idealization of the structure and load, and the moment distribution table are 
shown in Figure 12.  Further static analysis results are shown in Figure 12.  Further 
static analysis gives the results shown in Figure 13. 

 

 

 

Joint A B C D 
Member AB BA BC CB CD DC 

K .1676 .1676 .1437 .1437 .1676 .1676 
Dist. F. 0 .538 .462 .462 .538 0 
F.E.M 0 0 +58 -58 0 0 

1st Dist 0 -31.2 -26.8 +26.8 +31.2 0 
CO -15.6 0 +13.4 -13.4 0 +15.6 

2nd Dist 0 -7.2 -6.2 +6.2 +7.2 0 
CO -3.6 0 +3.1 -3.1 0 03.6 

3rd Dist 0 -1.7 -1.4 +1.4 +1.7 0 
CO -.9 -0 +.7 -.7 0 +.9 

4th Dist 0 -.4 -.3 +.3 +.4 0 
∑ -20.1 -40.5 +40.5 -40.5 +40.5 +20.1 

 
Figure 12. Moment distribution analysis of rollover device with vertical load and  

bottom ends of vertical members fixed. 
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Figure 13.  Results of moment distribution analysis for vertical load. 

The maximum normal stresses in members A-B and C-D occur near  
joints B and C and are: 

max 𝑆 =
𝐹
𝐴

+
𝑀
𝑍𝑒

 

max 𝑆 =  
16.6

2.229
+

40.5
1.724

 

max 𝑆 = 7.5 + 23.5 

max 𝑆 = 31.0 𝑘𝑠𝑖 

It is noted that an approximate analysis such as 𝑆 = 𝑃
𝐴

 would result in: 

𝑆 =
33.13

(2)(2.229)
 

𝑆 = 7.4 𝑘𝑠𝑖 

which is much less than 31.0 ksi computed using moment distribution. 
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A finite element analysis of the rollover device shown in Figure 12 and subjected 
to vertical load was performed and the results are presented in Figure 14.  The 
maximum normal stress in vertical member A-B occurs near joint B and is: 

max 𝑆 =
𝐹
𝐴

+
𝑀
𝑍𝑒

 

max 𝑆 =
16.565
2.229

+
38.086
1.724

 

max 𝑆 = 7.43 + 22.09 

max 𝑆 = 29.5 𝑘𝑠𝑖 

 

 

 
Figure 14.  Results of finite element analysis for structure in Figure 12. 
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Rectangular box-like structures fabricated from flat plates and resembling 
“tombstones” have been used for rollover protection devices.  One such design 
used on a DOT 400 series trailer is shown in Figure 15. 

 

Figure 15.  Box-like or “tombstone” rollover protection device. 

 

The box is made from 10 gage (0.135 in.) Type 304 stainless steel.  The device is 
welded to a stiffener ring made from 12 gage (0.105) in. stainless steel.  Two of 
these devices are used on a trailer having a total weight of 61,500 lbs.  The 
vertical load that must be supported by the two devices is twice the total weight 
of the loaded (i.e., 2(61,500)=123,000 lbs.).  Each device must support half of this 
load or 61,500 lbsThe direct comprehensive stress in the device due to vertical 
load would be: 

𝑆 =
𝐹
𝐴

=
61,500

8.91
= 6,900 𝑝𝑠𝑖 

The devices are required to support a horizontal longitudinal load and a horizontal 
transverse load of twice the total weight.  Each device would be required to 
support 61,500 lbs.  For horizontal load, the device will behave as a cantilever 
beam.  The elastic section modulus for bending in the longitudinal direction is 
12.55 in.3  and the bending stress is: 
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𝑆 =
𝑀
𝑍𝑒

 

𝑆 =
61,500(23.75)

12.55
 

𝑆 = 116,400 𝑝𝑠𝑖 

 

The elastic section modulus for bending in the transverse direction is 52.5 in3  
and the bending stress is: 

𝑆 =
𝑀
𝑍𝑒

 

𝑆 =
61,500(23.75)

52.5
 

𝑆 = 27,820 𝑝𝑠𝑖 

 

The average shear stress in the walls of the box when subjected to horizontal 
transverse load would be: 

𝑆𝑠 =
𝑉
𝐴

 

𝑆𝑠 =
61,500

(2)(30)(.135)
 

𝑆𝑠 = 7,593 𝑝𝑠𝑖 

 
The average shear stress in the walls of the box when subjected to horizontal 
longitudinal load would be: 

𝑆𝑠 =
𝑉
𝐴

 

𝑆𝑠 =
61,500

(2)(3.27)(.135)
 

𝑆𝑠 = 69,657 𝑝𝑠𝑖 
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Buckling of Plates in Compression  (Roark and Young) 

Elastic buckling of the thin plates used in “tombstone” devices should be checked.  
The compression “flange” for horizontal longitudinal bending can be checked 
using formulas from Roark and Young analysis tables.1  Case 1 in that table is for a 
rectangular plate loaded with uniform compression on two opposite edges. 

 

Figure 16.  Rectangular plate under equal uniform compression  

on two opposite edges b with  𝑏
𝑡

> 10. 

 

Case 1a is for all edges of the plate simply supported and the formula for critical 
buckling stress is: 

𝑆𝑐𝑟 = �
𝐾𝐸

1 − 𝑣2
� �
𝑡
𝑏
�
2

 

Where K depends on the ratio of 𝑎
𝑏

 and b is the length of each loaded edge. 

a/b 
= 0.2 0.3 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.7 3 ∞ 

K 22.20 10.90 6.92 4.23 3.45 3.29 3.40 3.68 3.45 3.32 3.29 3.32 3.40 3.32 3.29 3.29 

 

For the example at hand 𝑎
𝑏

 would be 24.75
30

= 0.825 which would give a value  

of K = 3.43. 
                                                           
1 Specifically, Table 15.2 – Formulas for Elastic Stability of plates and Shells, in Roark’s Formulas for Stress and 
Strain, 7th edition. 



25 
 

The critical bulking stress would be: 

𝑆𝑐𝑟 = �
𝐾𝐸

1 − 𝑣2
� �
𝑡
𝑏
�
2

 

𝑆𝑐𝑟 = [
(3.43)(28 × 106

1 − 0.32
] �

0.135
30

�
2

 

𝑆𝑐𝑟 = 2,317 𝑝𝑠𝑖 

 

For all edges of the plate clamped, the formula for critical buckling stress is the 
same as given above and values of K are: 

𝑎
𝑏�   = 1 2 3 ∞ 

K   = 7.7 6.7 6.4 5.73 
 

If the value of K = 7.7 is used for the device being considered the critical buckling 
stress would be: 

𝑆𝑐𝑟 = �
𝐾𝐸

1 − 𝑣2
� �
𝑡
𝑏
�
2

 

𝑆𝑐𝑟 = [
(7.7)(28 × 106

1 − 0.32
](

0.135
30

)2 

𝑆𝑐𝑟 = 4,798 𝑝𝑠𝑖 

 

It is noted that both of the values computed above are extremely small in 
comparison with both the yield strength of the material and the computed stress 
due to load. 
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Buckling of Plates in Shear  (Roark and Young) 

Case 4 in Table 35 in Roark and Young is for a rectangular plate under uniform 
shear on all edges. 

 

Figure 17.  Rectangular plate under uniform shear on all edges. 

 

For all edges of the plate simply supported, the critical shear stress is:   

𝑆𝑠𝑐𝑟 = �
𝐾𝐸

1 − 𝑣2
� �
𝑡
𝑏
�
2
 

where K depends on the ratio 𝑎
𝑏

 and b is the length of the shorter sides. 

a/b 
= 

1 1.2 1.4 1.6 1.8 2 2.5 3 
∞ 

  

K 
= 

7.75 6.58 6.00 5.84 5.76 5.59 5.43 5.18 5.02 4.40 

 

For an 𝑎
𝑏

 ratio of 30
24.75

= 1.21, K would be 6.55.  The critical shear stress would be: 

𝑆𝑠𝑐𝑟 = �
𝐾𝐸

1 − 𝑣2
� �
𝑡
𝑏
�
2
 

𝑆𝑠𝑐𝑟 = [
(6.55)(28 × 106)

1 − 0.32
](

0.135
24.75

)2 

𝑆𝑠𝑐𝑟 = 5,996 𝑝𝑠𝑖 



27 
 

For all edges of the plate clamped, the formula for critical shear stress is the same 
as above but the following values of K are given: 

a/b = 1 2 ∞ 

K = 12.7 9.5 7.38 

 

For an 𝑎
𝑏

 ratio of 1.21, K would be 12.0 and the critical shear stress would be:  

𝑆𝑠𝑐𝑟 = �
𝐾𝐸

1 − 𝑣2
� �
𝑡
𝑏
�
2
 

𝑆𝑠𝑐𝑟 = [
(12.0)(28 × 106)

1 − 0.32
](

0.135
24.75

)2 

𝑆𝑠𝑐𝑟 = 10,985 𝑝𝑠𝑖 

 

Buckling of Plates in Shear  (Salmon and Johnson) 

Salmon and Johnson give the following formula for critical buckling shear stress 
for a thin rectangular plate simply supported on all edges and subjected to shear: 

𝑆𝑠𝑐𝑟 =
[𝐾𝜋2𝐸]

�[12(1 − 𝑣2)] �𝑏𝑡�
2
�
 

where: 

 𝐾 = 5.34 + 4.0 �𝑏
𝑎
�
2
 

𝐸 = 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦,𝑝𝑠𝑖  

𝐸 = 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦,𝑝𝑠𝑖  

𝑣 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛^′ 𝑠 𝑟𝑎𝑡𝑖𝑜   

𝑡 = 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒, 𝑖𝑛.  

𝑏 = 𝑠ℎ𝑜𝑟𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒, 𝑖𝑛.  

𝑎 = 𝑙𝑜𝑛𝑔 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒, 𝑖𝑛.  
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From the previous computations, the ratio of b/a would be 0.825 and the value  
of K would be: 

𝐾 = 5.34 + 4.0 �
𝑏
𝑎
�
2

 

𝐾 = 5.34 + 4.0(0.825)2 

𝐾 = 8.06 

 

The critical buckling shear would be: 

𝑆𝑠𝑐𝑟 =
[𝐾𝜋2𝐸]

�[12(1 − 𝑣2)] �𝑏𝑡�
2
�
 

𝑆𝑠𝑐𝑟 =
[8.06𝜋2(28 × 106]

�[12(1 − 0.32)] �24.75
. 135 �

2
�
 

𝑆𝑠𝑐𝑟 = 6,068 𝑝𝑠𝑖 

 

This compares to 5,996 psi from the Roark and Young formula. 

 

  



29 
 

Buckling of Plates in Shear  (Guide for Stability Design) 

The Structural Stability Research Council, in their Guide to Stability Design-Criteria 
for Metal Structures, give the following formula for critical buckling shear for a 
thin rectangular plate subjected to shear with all edges fixed: 

𝑆𝑠𝑐𝑟 =
[𝐾𝜋2𝐸]

�[12(1 − 𝑣2)] �𝑏𝑡�
2
�
 

where: 

𝐾 = 8.98 + 5.6 �
𝑏
𝑎
�
2

 

and all other variables as defined by Salmon and Johnson in the previous section. 

 

From the previous computation, the ratio of b/a would be 0.825 and the value  
of K would be: 

𝐾 = 8.98 + 5.6(0.825)2 

𝐾 = 12.79 

 

The critical buckling shear stress would be: 

𝑆𝑠𝑐𝑟 =
[12.79𝜋228 × 106]

�[12(1 − 0.32)] �24.75
0.135�

2
�
 

𝑆𝑠𝑐𝑟 = 9,630 𝑝𝑠𝑖 

 

This compares to 10,985 psi from the Roark and Young formula. 
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Example 5. Analysis of continuous overturn rails. 

 

 
Figure 18.  Continuous overturn protection rail on single unit cargo tank truck. 
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The continuous overturn rails shown on the vehicle in Figure 18 are to be 
analyzed for the required loads of 2 g’s in the vertical, horizontal transverse and 
horizontal longitudinal directions. 

The analysis presented serves to illustrate the manner in which over turn rails 
have been analyzed.  IT IS NOT A RECOMMENDED METHOD.  The method is based 
on assumed uniform support at the rail throughout its length and that assumption 
has not been substantiated.  The authors think that concentrations of force at 
bulk heads and baffles make that assumption inappropriate. 
 

𝐺𝑟𝑜𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 = 51,000 𝑙𝑏𝑠. 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑   𝐹 = 2𝐺 = 2(51,000𝑙𝑏𝑠. ) = 102,000 𝑙𝑏𝑠. 

102,000
241

= 423.25
𝑙𝑏𝑠
𝑖𝑛𝑐ℎ

 (𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑) 

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑙𝑜𝑎𝑑:𝑊 = 2𝐺 = 2(51,00 𝑙𝑏𝑠) = 102,000 𝑙𝑏𝑠. 

102,000
241

= 423.25
𝑙𝑏𝑠
𝑖𝑛𝑐ℎ

 (𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑) 

 
A free body diagram for the rail for vertical load is shown in Figure 19. 

 

Figure 19.  Free body diagram for overturn rail for vertical load. 
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Strength of the rail element in compression is controlled by either the yield 
strength or the compressible buckling strength.  The compressive buckling 
strength is computed using Euler’s formula. 

𝑃𝑐𝑟 =
𝜋2𝐸𝐼
𝐿2

 

where: 

𝐸 = 10.2 × 106𝑝𝑠𝑖 

𝐼 =
𝑏ℎ3

12
=

(241)(0.125)3

12
= 0.0392 𝑖𝑛4 

For the 8” leg: 

𝑃𝑐𝑟 =
𝜋2(10.2 × 10 6)(0.0392)

82  

𝑃𝑐𝑟 = 61,600 𝑙𝑏𝑠. 

𝑆𝑐𝑟 =
𝑃𝑐𝑟
𝐴

=
61,600

241 × 0.125
 

𝑆𝑐𝑟 = 2,047 𝑝𝑠𝑖 

For 9 3/8” leg: 

𝑃𝑐𝑟 =
𝜋2(10.2 × 10 6)(0.0392)

82  

𝑆𝑐𝑟 =
𝑃𝑐𝑟
𝐴

=
44,900

241 × 0.125
 

𝑆𝑐𝑟 = 1,490 𝑝𝑠𝑖 

The actual compressive stress in the 8” leg is: 

𝑆 =
𝐹
𝐴

 

𝑆 =
102,000

[241(0.125)(2)]  (2 𝑑𝑒𝑣𝑖𝑐𝑒𝑠) 

𝑆 = 1,693 𝑝𝑠𝑖 < 2,047 𝑝𝑠𝑖    𝑂𝐾 



33 
 

A free body diagram for the overturn rail subjected to horizontal transverse load 
is shown in Figure 20. 

 

Figure 20.  Free body diagram for overturn rail for horizontal transverse load. 

 
Computation of stresses for this loading yields the following: 

𝐻𝐴 = 102,000 𝑙𝑏𝑠 

𝑉𝐵 =
102,000(8)

4.88
  

𝑉𝐵 = 167,213 𝑙𝑏𝑠 

𝑆𝐵 =
167,213(241)

. 125
  

𝑆𝐵 = 5,551 𝑝𝑠𝑖 (𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

𝑉𝐴 = 167,213 𝑙𝑏𝑠 

𝑅 =  (167,2132 + 102,0002)0.5 

𝑅 = 195,868 𝑙𝑏𝑠 

𝑆𝐴 =
195,868

(241)(0.125)
 

𝑆𝐴 = 6,502 𝑝𝑠𝑖 (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) > 1,490 𝑝𝑠𝑖 𝐹𝐴𝐼𝐿𝑆 

Note this analysis assumes that the overturn rails are fully supported by the shell 
along their entire length. 
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Analysis of Local Stresses 

Local stresses which occur at pads, cradles, or other supports must be considered 
in accordance with Appendix G of the ASME Code.  Appendix G references several 
other publications for analyzing different types of local stresses.  For local stresses 
in cylinders due to external loads it references the Welding Research Council 
(WRC) Bulletin No. 107. 

One common loading situation which must be considered is the stresses in the 
tank wall due to loads on overturn protection devices. 

 

 

 

 

 

 

 

 


