

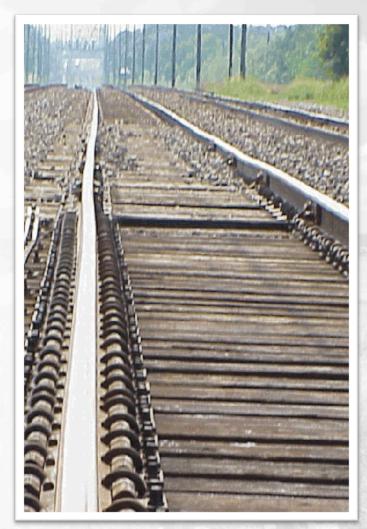
Autonomous Track Geometry Measurement System (ATGMS)

PROGRAM MANAGER
Office of Research and Development
Office of Railroad Policy and Development

Program Area & Risk Matrix

Autonomous Track Geometry Measurement System (ATGMS)

Program Areas	actors	Sedsa	Grade Crossing	Derailment	Tain Collision	All Other Safety Hazards
Railroad Systems Issues						
Human Factors						
Track & Structures				X		
Track & Train Interaction				X		
Facilities & Equipment						
Rolling Stock & Components						
Hazardous Materials						
Train Occupant Protection						
Train Control & Communications						
Grade Crossings & Trespass						

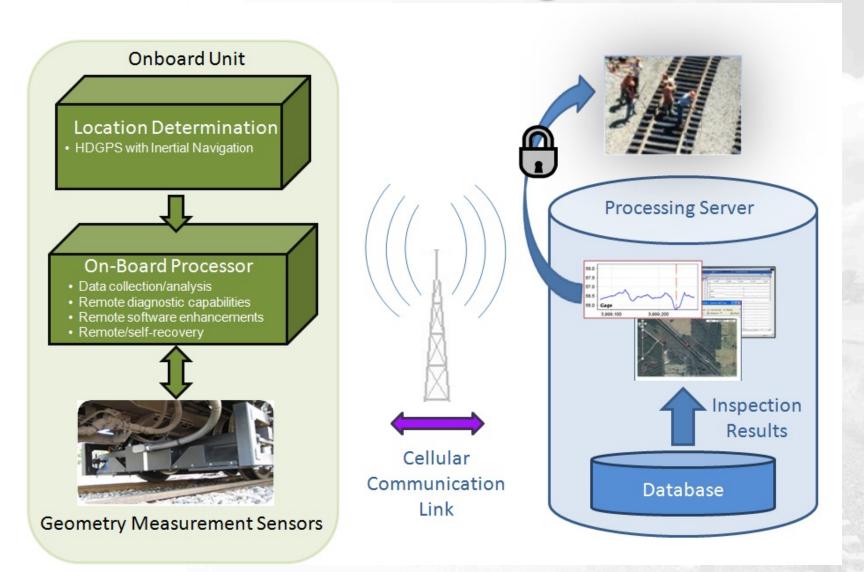

Topics

- What is Autonomous Track Inspection?
- Overview of the FRA's Research & Development (R&D) ATGMS Research Program
- Stages of Development Status
- Areas for Continued Development
- Conclusions and Acknowledgements

What is Autonomous Track Inspection?

- FRA's vision is to improve track safety and maintenance practices by enhancing conditional awareness through the use of autonomous inspection systems.
- Automated Inspection: Technique by which key track measurements are collected by specialized trained operators.
- Autonomous Inspection: Process of inspecting the track from revenue service trains using unattended instrumentation with minimal direct involvement.

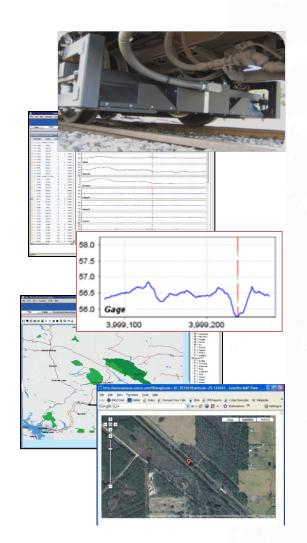
The FRA's R&D Vision for Autonomous Track Geometry Measurement System (ATGMS)


- Relatively low capital cost
- Able to collect/disseminate accurate track geometry data while installed on a standard revenue train
- Self-powered
- Deployable on wide range of equipment, including standard freight cars

ATGMS technology is designed to <u>enhance</u>, rather than replace, traditional inspection methods.

ATGMS Technical Arrangement

FRA ATGMS Development Plan


- ✓ Stage 1: Long-Term Pilot with Standard Inspection Technology to Establish Baseline Performance
- ✓ Stage 2: Revenue Operations Simulation Test (partner FRA's Automated Track Inspection Program (ATIP)
- Stage 3: Develop Advanced Measurement Technology (partner Amtrak)
- Stage 4: Develop Energy Harvesting Technology
- Stage 5: Demonstrate in Freight Service

Partnerships with railroads and equipment owners are a critical aspect to the success of the Development Plan.

Stage 1: Accomplishments-to-Date

FRA deployed its pilot ATGMS in early 2008 on Amtrak's Auto Train running on CSX track:

- Remote assessment of track geometry conditions
- Alert/alarm message with location, time and exception description when specific thresholds are exceeded
- Periodic status reports and vehicle location information available through secure Web access
- Advance exception filtering and data correlation and trend analysis

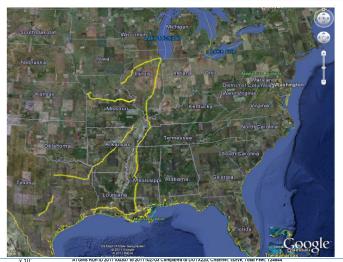
Through March 2011, the pilot system surveyed over **460,000** track miles.

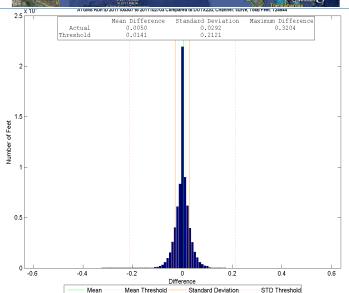
Current Activities

Targeted improvements building upon Stage 1 success:

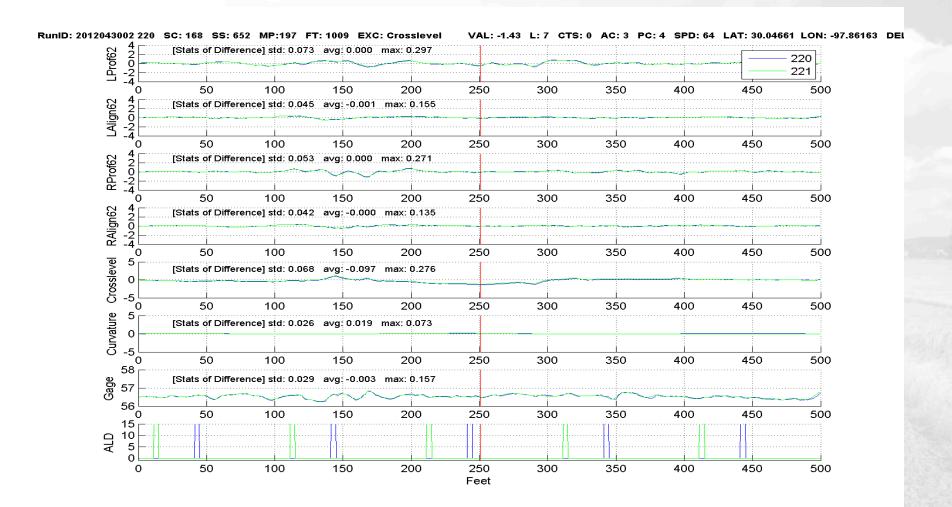
- Transfer of foot-by-foot geometry data, in addition to distinct track geometry exceptions
- Implementation of track degradation tools to analyze repeated surveys
- Improvements to film-based optical protection system
- Enhanced diagnostic health monitoring to improve knowledge of system operational status and potential data quality issues

Stage 2: Accomplishments-to-Date

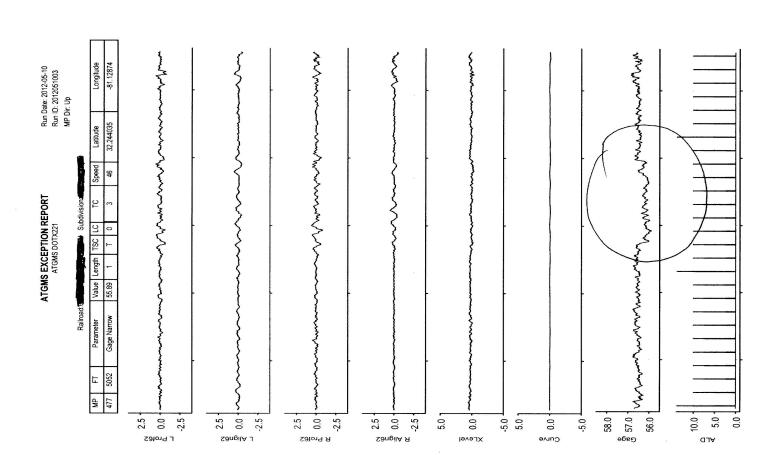

In August 2011, FRA deployed its pilot ATGMS on DOTX 221 for evaluation around the country in revenue service


- Comparison of geometry data collected with the autonomous system to geometry data collected with a typical manned vehicle system over a wide range of track conditions
- Regular transfer of foot-by-foot track geometry through cellular transmission
- Equipment reliability

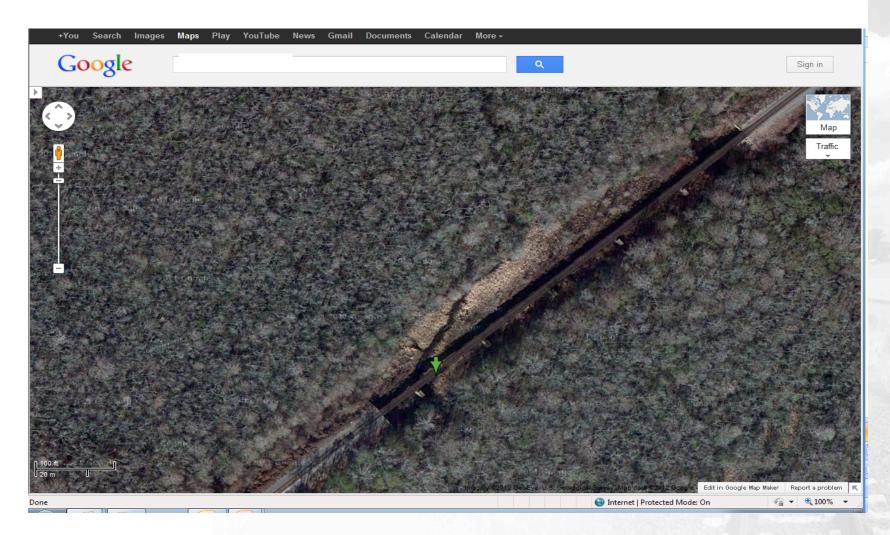
Stage 2: Accomplishments-to-Date



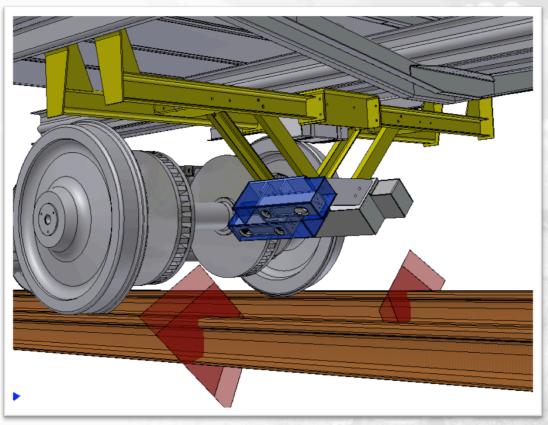
- Joint surveys with DOTX220 (ATIP)
 - Fall 2011: ~ 21,000 miles
 - Spring 2012: ~ 12,000 miles
- Data Analysis shows good agreement between manned and autonomous systems. The differences are within accepted thresholds.
- System overall reliability = good
- Technical development:
 - Exception editing human vs. machine
 - Track determination
 - 24/7 operational procedures


Parameter	Mean Difference (inches)	Standard Deviation (inches)	Maximum Difference (inches)
Profile (Inches)	0.000	0.060	2.575
Alignment (Inches)	0.000	0.051	1.256
Crosslevel (Inches)	-0.085	0.100	2.673
Curvature (Degrees/100Feet)	0.005	0.029	0.320
Gage (Inches)	0.013	0.030	1.205

Detailed Data Comparison



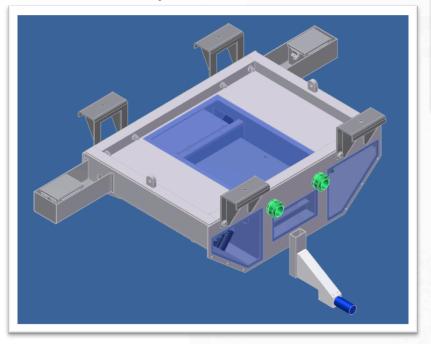
ATGMS E-mail Reporting


Exception is centered with 1320 feet on either side.

ATGMS Location Determination

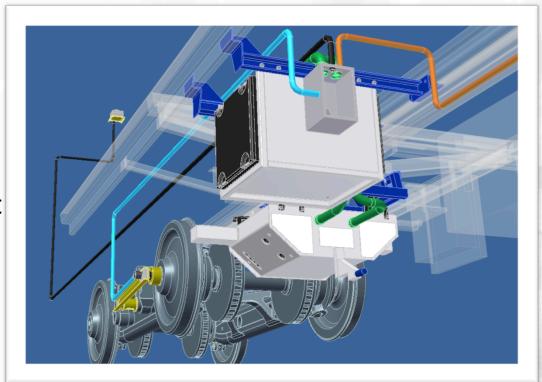
Stage 3: Carbody ATGMS

- Reduced capital cost of technology
- Minimize truck interfaces
- Easily adapts to different car types (freight and passenger)
- Amtrak: Development partner


Conceptual Design

Carbody ATGMS Development

- New technology laser/ camera assembly which covers a wider field of view
- Bracket mounted to carbody sills


- Wheel-mounted Tachometer
- Upgraded electronics package
- Acceleration and brake pressure signals

Schedule of the Carbody ATGMS

- Current: System installation (Amfleet I) and calibration
- Summer 2012: North Ease Corridor (NEC) demonstration in consist with Amtrak geometry cars
- Fall 2012: Complete corridor demonstration testing

Stage 4: Energy Harvesting

- Goal: Autonomous Track Geometry Measurement System (ATGMS) self-powered freight car
- Current power requirements: <200 Watts</p>
- Combined systems approach
 - Solar: Primary
 - Wind: Experimental
 - Some experience under the BAA program
 - Small scale diesel generator: Back-up
 - Department of Transportation Small Business Innovative Research (SBIR) program initiated

Stage 5: Freight Demonstration

- Boxcar or DOTX 223 deployment
- Cost sharing opportunity
- Industry demand?

Areas for Continued Development

Automatic Exception Editing

- Man vs. Machine
- Editing station

Track Location

Track number vs. GPS coordinates

Using ATGMS as a quality control tool

- System calibration and the need for absolute accuracy
- Degradation role and tools to support:
 - The 1% filter
- Awareness and reaction regulatory compliance

Tachometer development

Conclusions

- The vision of the autonomous track geometry measurement system (ATMGS) is nearly a reality
 - Truck-mounted system is ready for service
 - Significant milestones in the next year:
 - Carbody system testing
 - Energy harvesting
 - Freight demonstration
- Technology refinements and regulatory arrangements can be efficiently addressed with direct industry participation in the research

Acknowledgements

Amtrak:

- Mr. Paul Steets
- Mr. Michael Trosino

CSX Transportation:

- Mr. Ron Bright
- Mr. Larry Biess

ENSCO:

- Mr. Eric Sherrock
- Mr. Soheil Saadat
- Ms. Jacinda Clemenz

Break | Nearby Food Options (all within 5-7 minutes walking distance)

- Au Bon Pain: 601 Indiana Ave NW # 1Washington, DC 20004
- Burger King: 501 G Street NW, Washington, DC 20001
- Chipotle: 601 F Street NW, Washington, DC 20005
- Cosi: 601 Pennsylvania Ave NW # 2 Washington, DC 20004
- Dunkin Donuts: 601 F Street NW, Washington, DC 20004
- Firehook Bakery & Coffee House: 441 4th Street NW, Washington, DC 20001
- Jack's Famous Deli: 501 3rd St NW # 2, Washington, DC 20001
- Quiznos Sandwiches: 772 5th St NW, Washington, DC 20001
- Starbucks: 443 7th St. NW, Washington, DC 20004
- Subway: 501 D Street NW, Washington, DC 20001

