

UNITED STATES DEPARTMENT OF TRANSPORTATION

ITS ePrimer Module 5: Personal Transportation

September 2013 Updated March 2016

ITS Professional Capacity Building Program ITS Joint Program Office U.S. Department of Transportation

Instructor

Alex Skabardonis

Research Engineer Kittelson & Associates, Inc. Oakland, CA, USA

Professor

University of California, Berkeley Berkeley, CA, USA

Learning Objectives

- 1. Learn of capabilities, features, and limitations of ITS technologies for personal transportation
- 2. Understand deployment opportunities and constraints
- 3. Understand how ITS personal transportation applications impact the user and the transportation system in terms of mobility and accessibility
- 4. Understand emerging and future trends in ITS technologies for personal transportation

Information types and impacts

Pre-Trip

- Trip departure time
- Mode of travel
- Route choice

En Route

- Change route
- Change mode (if alternate mode with parking available)
- Expected arrival times

Dissemination

Web

- Every State DOT offers traveler information Web site
- Pre-trip information
- Wide geographic area coverage
- Images from CCTV cameras on real-time conditions

511 Phone System

- More than 40 511 systems
- Bighest usage under major events
 - Extreme weather
 - Major road closures

Dissemination

Changeable Message Signs (CMS)

- Expected travel times to destinations
- Alerts on incidents, inclement weather, other events
- Location important (prior to decision point)
- Emergency Messages
 - AMBER Alert
 - LEO Alert
 - SILVER Alert

Dissemination

Changeable Message Signs (CMS)

CMS Implementation in Michigan DOT

https://www.youtube.com/watch?v=tUNgPSx0rxk

Dissemination

- Highway Advisory Radio (HAR)
- E-mail
- TV/Radio
- Kiosks
- Private Information Providers
 - In-vehicle navigation
 - Handheld devices
- Social Networking Media

Dissemination

Increasing use of mobile applications and social networking

Data Sources

- Fixed sensors approximately 0.5 mile apart in each travel lane (e.g., loops, radar, video)
- Event information from incident management teams, police patrols
- CCTV
- Probe vehicles
 - ETC transponders
 - Cell phones
 - Bluetooth readers

Data Collection-Fusion-Utilization

Benefits

Improve Traveler Decision Making

- Make accurate and timely decisions
 - Routing
 - Time of departure
 - Mode
 - Not make the trip
- Sense of "self control" to traveler

Reduce Frustration and Irrational Behavior

Improve perceived level of service

Benefits

Spread or Reduce Peak Traffic Demand

- Over space: alternative routes
- Over time
- Alternative modes
- Eliminating discretionary trips

Field Evaluation Results

- Traveler information users perceived time savings
- In-vehicle travel time savings are small

Transit

Dissemination

- Web
- Mobile Applications
- Station/Transit Stop Displays
- In-vehicle Displays

Content

- Maps/schedules
- Expected arrivals real-time
 - Transit vehicle tracking (AVL)
- Online Trip Planner

Parking Information

Public Agencies/Operators

- Maps with Parking Facilities
- Information on the Web: location/characteristics

Parking Lots

Space Availability

Private Service Providers

Web/Mobile Applications

- Real-time Parking Availability
- Online Reservation/Payment

City of San Francisco: Parking Information Web site <u>http://sfpark.org/</u>

Parking Information

Multimodal Information

- Driving Times
- Parking Availability at Transit Stations
- Transit Information
 Departure/Arrival Times
- Influences Mode Choice
 Travel Time Savings
 Perceived Congestion

- Night Vision
- Adaptive Cruise Control
- Collision Warning
- Collision Avoidance
 - Front collision
 - Lane keeping
- Precision Docking
 - Precise stopping at transit stops
 - Reduces passenger boarding and alighting times
- Driver Impairment Monitoring
- On-Board Monitoring for Commercial Vehicles

Advanced Driver Assistance System
https://www.youtube.com/watch?v=5vuKvW_5QVM

Precision Docking – Real World Demonstration http://www.youtube.com/watch?v=JvXLdifNfmg

Adaptive Cruise Control (ACC)

Conventional cruise control + radar sensors Adjust speed to maintain a preset headway (min. 1 sec)

Cooperative ACC (CACC)

ACC systems + wireless data communications among vehicles

- Allows adoption of shorter gaps
- Potential to increase lane capacity

Lane Capacity vs. CACC Market Penetration

Collision Warning (CW)

Available/Planned in Private Automobiles

Operational on Transit Systems

- Forward CW
 - Samtrans (San Mateo Bay Area)
- Rear Impact CW
 - Ann Arbor Transit
- Lane Change/Merge CW
 Pittsburgh Transit

Impairment Monitoring

Technology to monitor driving performance and physiological factors

Approaches:

- Ocular measures—image processing, eye-tracking
- Doppler radar illumination of face/body
- Head movement monitoring using capacitor plates
- Stereo image processing of eyes/face/head
- Lane-keeping and steering input patterns

On-Board Monitoring for Commercial Vehicles

developed for FMCSA

- Speed Selection
- Following Distance
- Attention (Inattention)
- Fatigue

In-Vehicle Navigation and Route Guidance Systems

- GPS-based
- Turn-by-turn directions
- May include real-time traffic information
- Additional Information (Parking, Yellow Pages)
- Autonomous or through subscription

Transit Fare Payment Systems

- Magnetic cards
- Smart cards for multiple transit lines/agencies
- Mobile phones

Electronic Toll Collection (ETC)

- Toll paid though transponders without stopping
- ETC increases toll lane capacity 4 times
- ETC transponders may operate across states/facilities
- ETC mandatory for congestion pricing implementation

Open Road Tolling (ORT): toll collection at highway speeds

- Higher capacity
- Improved safety
- Reduced fuel and emissions

Mobile applications for ride-share services

Carsharing

- Car availability without car ownership
- Designed for occasional car users
- Offered by private companies and car manufacturers through membership
- Extensive tech use (mobile applications) for operations
- Benefits
 - Reduction in auto ownership
 - Increase in transit ridership
 - Reduction in fuel consumption/emissions

Carsharing: North American Member Growth

Electrified Vehicles

Increasing interest in Electric Vehicles = 3.5% U.S. car sales

- Rising fuel costs
- Environmental concerns
- Improved Technology/Options for Electric Vehicles

Types/Options:

- Electric Vehicles (EVs)
 - Batteries
 - Zero emissions
 - Limited range
- Hybrid Electric Vehicles (HEVs)
- Plug-In Hybrids (PHEVs)

Personal Rapid Transit (PRT)

Concept: Alternative to Conventional Transit in Low Density Areas

- Small driverless vehicles (up to 15 passengers)
- Dedicated tracks/Off-line Stations
- High Capacity (2 seconds Headways)
- Point-to-Point Service/Passenger Comfort
- Limited Implementations

Morgantown PRT system, West Virginia. Courtesy of West Virginia University.

Personal Rapid Transit (PRT)

Recent Implementations

ULTRA Heathrow airport
 (2.4 miles, 21 vehicles)

ULTRA PRT system http://www.ultraglobalprt.com/ Source: Ultra Global PRT 2013

2getthere Abu Dhabi (1.1 mile, 13 vehicles) 2getthere PRT system http://www.2getthere.eu

Personal Rapid Transit (PRT)

Recent/Planned Implementations

- Suncheon, South Korea
- Heathrow airport expansion

Feasibility Studies

- "Last Mile" solution for transit systems
- Major employment centers/business parks
- San Jose International Airport-ground access

Cooperative Vehicle-Infrastructure Systems

- Vehicle-to-vehicle (V2V)
- Communications

 - Mobile Devices
- Applications
 - Active Safety Systems
 - Reduce crashes by 80%
 - Driver Alerts (Queue Warning)

Connected Vehicles—Queue Warning

Cooperative Vehicle-Infrastructure Systems

Vehicle-to-Infrastructure (V2I)

- SPaT (Signal Phasing and Timing) Message
- Applications
 - Safety
 - Mobility
 - Improved traffic signal control
 - Dynamic route advisory
 - Environment
 - Speed advisory for minimum fuel/emissions

Dynamic Speed Advisory (source: BMW)

V2I Example: SPaT message

Summary

Traveler Information

- Increased usage of mobile devices as data sources and information dissemination
- Multimodal applications

Driver Assistance Systems

Several in-vehicle systems to improve safety

Emerging Applications

- Connected Vehicle (CV) technologies (V2V, V2I, I2V)
 - Prevent most accidents
 - Improved control, incident management, travel information
 - Effectiveness depends on penetration rates of CV vehicles

References

- "Traveler Information Systems and Wayfinding Technologies in Transit Systems," *Report FTA-MA-26-7998-2011.1*, May 2011.
- NCHRP Synthesis 399, "Real Time Traveler Information Systems." Transportation Research Board, Washington, D.C., 2009.
- USDOT RITA, "Intelligent Transportation Systems Benefits, Costs, Deployment, and Lessons Learned Desk Reference: 2011 Update." *Final Report FHWA-JPO-11-140*, September 2011.
- Nowakowski, C., et al., "Cooperative Adaptive Cruise Control: Testing Drivers' Choices of Following Distances." *California PATH Research Report for FHWA Exploratory Advanced Research Program Cooperative Agreement DTFH61-07-H-00038*, January 2011.

References (cont'd)

- Overview of PRT systems and links to PRT Web sites. Maintained by J. B. Schneider. <u>http://faculty.washington.edu/jbs/itrans/prtquick.htm</u>.
- ITS JPO Connected vehicle initiative: <u>www.its.dot.gov/connected_vehicle/connected_vehicle.htm</u>
- Horrey, W. J., et al., "On-Board Safety Monitoring Systems for Driving: Review, Knowledge Gaps, and Framework." *Journal of Safety Research*, Volume 43 (1), February 2012, pp. 49–58.
- USDOT RITA, AASHTO Connected Vehicle Infrastructure Deployment Analysis Final Report, FHWA-JPO-11-090, Washington, DC, June 2011.
- International Energy Agency, "Technology Roadmap: Electric and plug-in hybrid electric vehicles." Organization for Economic Cooperation and Development, 2009.

Questions?

- What are the critical characteristics of traveler information systems?
- What are the impacts of multimodal information on mode choice?
- What are the benefits of carsharing?
- What are the key characteristics of PRT systems?
- What are the benefits of CV technology?

