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Executive Summary 

Adverse weather impacts on freeway traffic operations have become a growing concern for roadway 
management agencies. Dealing with adverse weather requires not only sensing of traffic conditions 
but also the ability to forecast the weather in real-time for operational purposes. FHWA and the 
research community have developed a series of weather-responsive traffic management (WRTM) 
models that make it possible to manage weather-related traffic events better. Weather-sensitive Traffic 
Estimation and Prediction System (TrEPS) has been developed in the previous studies, and has been 
proven to be capable of modeling the effects of weather on traffic more realistically.  A key driver of a 
TrEPS for weather-related management applications is the availability of real-time data on prevailing 
conditions, both weather data and traffic data. Traditionally model calibration and implementation rely 
on traffic data collected from fixed sensors with limited geographic coverage. The evolution of 
telecommunications and wireless technologies has brought in new sources of traffic data (particularly 
mobile data generated by vehicle probes), which could offer a breakthrough in the quality and extent 
of traffic data. It is believed that the combination of weather-sensitive TrEPS and mobile data will make 
it practical to improve the accuracy and relevance of WRTM models. 
 
This study reviews the WRTM models which are developed in previous FHWA funded weather-related 
projects, and identifies the components within WRTM framework that mobile data could be 
incorporated, mainly, (i) supply-side model calibration; (ii) demand-side calibration; (iii) model 
validation; and (iv) on-line implementation. It summarizes the unique properties of mobile data as 
contrast to traditional traffic data, particularly as having much wider geographic coverage and travel 
time information. The different types of mobile data which could be offered from major vendors are 
discussed. It is found that vehicle trajectory data serves the best for the purpose of improving WRTM 
models, from calibration of supply and demand side relations, model validation, to the case of the on-
line TrEPS implementation. A framework of how to implement the integration of mobile data and 
WRTM models is developed. In this project the process of following the framework and incorporating 
mobile data into WRTM models is demonstrated by a case study. DYNAMSART (DYnamic Network 
Assignment-Simulation Model for Advanced Road Telematics), a DTA simulation based TrEPS is 
selected for this study. Vehicle trajectory data provided by TomTom is used, which is collected by 
vehicles equipped with TomTom GPS devices circulating in New York City area during a two-week 
period.  
 
The principal procedures of off-line calibrating and validating supply and demand side WRTM models 
using mobile data are introduced and implemented by using TomTom vehicle trajectory data. It is 
found that in cases where the mobile data allow estimation of the same types of traffic variables and 
parameters as more conventional sensor data, the procedures already developed can be used with 
little modification, e.g., supply-side model calibration; while in some other cases, mobile data which 
contain richer information, especially in the form of vehicle trajectories, is particularly more useful for 
modeling drivers’ behavior in route choice, e.g., demand-side model calibration. It is also validated by 
observations from mobile data, that the TrEPS model calibrated using mobile data together with 
weather data and some traditional fixed sensor traffic data, is also capable of capturing the adverse 
impact on traffic flow, especially in terms of speed and travel time. 
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The work accomplished in this study advances the state of art and state of practice of incorporating 
mobile data in Weather-Responsive Traffic Management models. The procedures of using mobile 
data in calibrating and validating those models, presented in this study, provides a framework of 
combining weather-sensitive TrEPS and new sources of traffic data. Additional effort is necessary, 
when more types of mobile data become available, to show the applicability of mobile data in on-line 
implementation of TrEPS. 

 
 



 

 
U.S. Department of Transportation, Research and Innovative Technology Administration 

Intelligent Transportation System Joint Program Office 

Use of Mobile Data for Weather-Responsive Traffic Management Models  |  3 

Chapter 1. Introduction 

1.1 Background 
Weather events such as precipitation, fog, high winds and extreme temperatures cause low visibility, 
slick pavement, reduced roadway capacity and other hazardous conditions on roadways.  Research 
studies show that the disruptive effect of inclement weather on traffic has a direct impact on safety - 
about 28% of all highway crashes and 19% of all fatalities involve weather-related conditions as a 
factor. Additionally, adverse weather accounts for about 25% of delays on freeways due to reduced 
service capacity, diminished reliability, and greater risk of accidents. 
 
Weather events such as precipitation, fog, high winds and extreme temperatures cause low visibility, 
slick pavement, reduced roadway capacity and other hazardous conditions on roadways.  Research 
studies show that the disruptive effect of inclement weather on traffic has a direct impact on safety - 
about 28% of all highway crashes and 19% of all fatalities involve weather-related conditions as a 
factor. Additionally, adverse weather accounts for about 25% of delays on freeways due to reduced 
service capacity, diminished reliability, and greater risk of accidents. 
 
Adverse weather impacts on freeway traffic operations have become a growing concern for roadway 
management agencies. Dealing with adverse weather requires not only sensing of traffic conditions 
but also the ability to forecast the weather in real-time for operational purposes. To mitigate the 
impacts of adverse weather on highway travel, the Federal Highway Administration (FHWA) Road 
Weather Management Program (RWMP) has been involved in research, development and 
deployment of weather responsive traffic management (WRTM) strategies and tools. Figure 1-1 
presents the FHWA’s overall WRTM framework. In a project completed in 2006, the Road Weather 
Management Program used data from Seattle, Minneapolis and Baltimore to develop statistical 
models and adjustment factors to quantify the impacts of weather on traffic flow (Hranac et. al. 2006). 
One of the challenges remaining is to integrate those models into decision support systems to help 
improve the performance of the transportation system during inclement weather conditions. 
 
In order to reduce the impacts of inclement weather events and prevent congestion before it occurs, 
weather-related advisory and control measures could be determined for predicted traffic conditions 
consistent with the forecast weather, that is, anticipatory road weather information. This calls for 
integrated real-time WRTM and a Traffic Estimation and Prediction System (TrEPS). Because the 
dynamics of traffic systems are complex, many situations necessitate strategies that anticipate 
unfolding conditions instead of adopting a purely reactive approach. Real-time simulation of a traffic 
network can predict future conditions and thus help design and implement more effective traffic 
operations including various types of control measures (Jayakrishnan et al. 1994; Mahmassani 2001). 
Predicted future traffic states can be described in terms of flows, travel times, and other time-based 
performance characteristics. These are used in the on-line generation and real-time evaluation of a 
wide range of measures, including information to users, VMS displays, coordinated signal timing for 
diversion paths, as well as weather-related interventions (through variable speed limits, advisory 
information, signal timing adjustments and so on). 
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Figure 1-1. Framework for Weather Responsive Traffic Management (WRTM) Program (Source: 
Krechmer, et al., 2010) 

In a recently completed FHWA project, a methodology for incorporating weather impacts in Traffic 
Estimation and Prediction Systems (TrEPS) is developed (Mahmassani et al., 2009). The project 
addressed both supply and demand aspects of the traffic response to adverse weather, including user 
responses to various weather-specific interventions such as advisory information and control actions. 
The methodology was incorporated and tested in connection with the DYNASMART-P simulation-
based DTA system, thereby providing a tool for modeling the effect of adverse weather on traffic 
system properties and performance, and for supporting the analysis and design of traffic management 
strategies targeted at such conditions. In a follow-on FHWA project, work is advanced towards actual 
implementation through calibration, implementation and evaluation of weather-responsive traffic 
estimation and prediction systems (Mahmassani et al., 2012). In that project, the weather-sensitive 
TrEPS model (DYNASMART-X) is applied, calibrated and tested in several major US cities (Chicago, 
IL; Salt Lake City, UT; New York, NY; and Irvine, CA). The study findings confirmed that the proposed 
models successfully capture the weather effects on traffic. The study highlighted the important role 
network models and simulation methodologies can play in the further development and deployment of 
WRTM strategies, and the process through which such tools could be made more effective in helping 
agencies attain their objectives within available resources. 
 
A key driver of a TrEPS for weather-related management applications is the availability of real-time 
data on prevailing conditions, both weather data and traffic data. The former is addressed through the 
Road Weather Connected Vehicles Program, while the latter typically relies on sensors deployed by 
the operating agency. These sensors are tied to the infrastructure; while different technologies may be 
used for detection and communication, their deployment tends to be limited to a portion of the freeway 
system in a given area, with very limited to non-existent coverage for urban arterials and streets. In 
addition to their use as an essential input for the online implementation of the estimation and 
prediction system, traffic data are required for the off-line calibration of the network and related 
procedures. These include both demand-side quantities (e.g. origin-destination trip matrix) and supply-
side relations (e.g. speed-density relations). In all applications so far, these data issues have proven to 
be the main bottleneck and challenge that needs to be overcome in adoption and deployment of 
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advanced modeling and management tools. Mobile data obtained through GPS or cellular-assisted 
location information from smart phones and/or specialized devices, have long held considerable 
promise given their independence from infrastructure-based devices and because their information 
reflects travel by actual users. These systems offer the potential for consistent coverage of the entire 
network, including arterials, local streets and freeways. However, the availability of such data has 
remained elusive largely because of the structure of the industry (telecommunications) and the 
relatively low value or priority previously ascribed to traffic uses of those data. With the rapid spread of 
smart phones, the picture is changing dramatically. The purpose of the current project is to examine 
the potential value of mobile sources of data for WRTM and then demonstrate how these data might 
be integrated into WRTM models. 

1.2 Emergence of Mobile Data 
The transportation data marketplace became an actual ‘marketplace’ over the last ten years. This 
reflects a change in technology and a change in public versus private roles. Traditional sources of data 
for public sector applications – fixed sensors (primarily loop detectors and side view radar) – are well 
known and relatively low in cost since they are owned and operated by public entities. These 
installations provided accurate volume, occupancy, speed, and density data that have served 
metropolitan areas quite well for operations, planning, and traveler information. Many cities provide 
web-based traffic data archive systems that are freely available to public (e.g., PeMS in California).  
 
But, fixed sensors also are limited geographically, with few located along arterials and very few in rural 
areas. They also require maintenance meaning that some jurisdictions have spotty data. The evolution 
of telecommunications and wireless technologies has opened up a world of opportunity to collect 
traffic data. These technologies support probe-based systems that rely on GPS-based data or cellular 
location systems. These offer broader coverage, with the potential to cover major arterials. They also 
have the ability to measure traffic in nontraditional patterns – such as might occur before or during a 
major weather event. On the other hand, evaluation of these sources has not always been consistent 
and they do miss data elements such as occupancy that traditional fixed sensors can provide. 
Localized deployments of other technologies including Bluetooth and license plate readers provide 
additional resolution for specific geographic regions. These technologies also serve to validate probe 
data installations. 
 
The public sector has shown great interest in using these new data systems to expand coverage and 
particularly to offset the costs of installation and maintenance of fixed detection systems. Several 
states have contracted for both pilot programs and statewide data for evaluation and integration.  
In 2007, The Minnesota Department of Transportation carried out a field test around Minneapolis in 
collaboration with the telecom operator Sprint PCS network, to estimate travel times and travel speeds 
and compare against ground truth measures (Liu et al., 2008). In 2008, the California Department of 
Transportation, together with UC Berkeley, Nokia Research Center, and NAVTEQ, launched the 
Mobile Millennium project which aims to design, test and implement a state-of-the-art system to collect 
traffic data from GPS-equipped mobile phones and estimate traffic conditions in real-time (Herrera et 
al., 2010). Realistically, the questions of quality, accuracy, and confidence remain for the available 
data sources, particularly as applied to the public sector use.  
 
The pace of change continues rapidly with significant increases in the volume of probe data for 
individual firms (for example AirSage has announced adding a second wireless firm as an additional 
source of data) and new market entrants – TomTom is one example. Also networks built on Bluetooth 
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technologies have been proposed. Automobile companies are a potential source of these data, with 
GM’s OnStar system and Ford’s Sync providing examples. Similarly, firms such as Google, Apple, and 
Microsoft have shown an interest in collecting location and speed data from their customers. Google 
Maps has the functionalities to show both historical and real-time traffic conditions (with color coded 
speed categories) on every single street, and recently it has added the ability to estimate travel time of 
user specified journeys. The data that Google used to estimate traffic is gathered through third-party 
services and through information from cell phone (with Android OS) users who have opted in to the 
‘My Location’ feature on Google Maps. Google would then be able to tell, for instance, if there were 
several Android owners moving slowly on the freeway and determine that there was traffic slowing 
them down. The more people opting into the service in the area, the better the traffic information 
available will be. Similarly, Inrix (courtesy of Microsoft Corp.) collects trillions of bytes of information 
about roadway speeds from nearly 100 million anonymous mobile phones, trucks, delivery vans, and 
other fleet vehicles equipped with GPS locator devices. The data collected is processed in real-time 
using Bayesian statistical methods, creating traffic state estimation for major freeways, highways and 
arterials across the United States and many other countries around the world. 
 
Though different parties have demonstrated the wide application of mobile data in the transportation 
field, particularly in term of traffic state estimation and prediction, its application with newly developed 
WRTM models has never been studied. Realizing the great potential inside this area, this project is 
aimed at developing a systematic framework of incorporating mobile data into weather-sensitive 
TrEPS, from off-line calibration to on-line implementation. 

1.3 Structure of Final Report 
The remainder of this report is organized as follows.  Chapter 2 provides a thorough review of WRTM 
models that are developed in previous FHWA funded weather-related projects. An overview of Traffic 
Estimation and Prediction System (TrEPS) is presented in the first, followed by its capability of 
capturing weather effects on traffic. The review is focused on DYNASMART weather-sensitive TrEPS. 
Chapter 3 introduces the unique properties of mobile data as contrast to traditional traffic data. Then it 
identifies the potential areas where mobile data could be incorporated. It systematically maps the 
different components of WRTM models onto different data needs and sources – for calibration of 
different supply and demand side relations, and in the case of the on-line TrEPS. A framework of how 
to implement the integration of mobile data and WRTM models is also developed. Chapter 4 
describes the urban road network selected to conduct the calibration and validation of TrEPS models 
using mobile data. For that selected network, its configurations in the simulation-based DTA model 
(DYNASMART) format is presented. Chapter 5 describes the calibration and validation of weather-
sensitive TrEPS model using vehicle trajectory data. Detailed procedures and results for incorporating 
mobile data in calibrating the supply side parameters, i.e., traffic flow model parameters and weather 
adjustment factors, and the demand-side parameters, i.e., time dependent OD matrices for the 
simulation analysis, are presented. Chapter 6 presents the conclusions, including lessons learned and 
recommendations for next steps needed to advance the state of the art and of the practice of using 
mobile data for WRTM models. 
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Chapter 2. Review of WRTM 
Models 

2.1 Overview of Traffic Estimation and Prediction System 
The most critical component at the core of weather-sensitive TrEPS model is a real-time traffic 
estimation and prediction system which provides real-time estimates of traffic conditions, network flow 
patterns and routing information, and predicts future traffic conditions. DYNASMART-X (Mahmassani 
et al., 1998; Mahmassani and Zhou, 2005) and DynaMIT-R (Ben-Akiva et al., 2002), both developed 
largely under FHWA support, use a mesoscopic simulation-based dynamic traffic assignment (DTA) 
approach for real-time traffic estimation and prediction, in which individual particles (vehicles) move 
according to local speeds determined consistently with (macroscopic) relations among averages of 
speed and density. The TrEPS model selected in this study for demonstration purpose is 
DYNASMART. 
 
As an online TrEPS, DYNASMART-X interacts continuously with multiple sources of real-time 
information, such as loop detectors, roadside sensors, and vehicle probes, which it integrates with its 
own model-based representation of the network traffic state. The system combines advanced network 
algorithms and models of trip-maker behavior in response to information in an assignment-simulation-
based framework to provide: (1) estimates of current network traffic conditions; (2) predictions of 
network flow patterns over the near and medium terms, in response to various contemplated traffic 
control measures and information dissemination strategies; and (3) anticipatory traveler and routing 
information to guide trip-makers in their travel (Dong et al., 2006). The system includes several 
functional modules (for OD estimation, OD prediction, real-time network state simulation, consistency 
checking, updating and resetting functions, and network state prediction), integrated through a flexible 
distributed design that uses CORBA (Common Object Request Broker Architecture) standards, for 
real-time operation in a rolling horizon framework with multiple asynchronous horizons for the various 
modules (Mahmassani et al., 2004). 
 

The functionality of DYNASMART-X is achieved through judicious selection of modeling features that 
achieve a balance between representational detail, computational efficiency and input data 
requirements. These features include (Mahmassani et al., 2004): 
 

• A simulation-based dynamic traffic assignment system, with microsimulation of individual user 
decisions in response to information, and mesoscopic traffic flow simulation approach. 

• Multiple user classes in terms of (1) operational performance (e.g. trucks, buses, and 
passenger cars), (2) information availability and type, and (3) user behavior rules and 
response to information. 

• Representation of traffic processes at signalized junctions, under a variety of operational 
controls, including real-time adaptive signal policies and coordination schemes. 

• Consistency between predicted network states, supplied information, and user decisions. 
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• State prediction capabilities in a rolling horizon implementation with simultaneous multiple 
horizons. 

• Capability for optimal path assignment and integrated system management. 
• Compatibility with different ITS architectures (e.g. centralized vs. distributed) 
• Distributed software implementation using CORBA for flexible and scalable execution in a 

distributed environment. 
 
The DYNASMART TrEPS platform is comprised of four components: (1) the graphical user interface, 
or GUI, (2) the database, (3) the algorithmic modules that perform the DTA functional capabilities, and 
(4) the set of CORBA programs used to implement the scheduler and the data broker. The algorithmic 
component is the main entity in the system in terms of performing the TrEPS functions, and consists of 
the following modules: (a) state estimation, (b) state prediction, (c) OD estimation, (d) OD prediction, 
and (e) consistency checking and updating. The purpose of the state estimation module (RT-DYNA) is 
to estimate the current traffic state in the network. The state prediction module (P-DYNA) on the other 
hand provides future network traffic states for a pre-defined horizon. The OD estimation module 
(ODE) is responsible for estimating the coefficients of a time varying polynomial function that 
describes the OD demand in the current stage. The OD prediction module (ODP) utilizes these to 
calculate the demand that is generated from each origin to each destination at each departure time 
interval of the current and future stages. Finally, the consistency checking modules are responsible for 
minimizing the deviation or discrepancy between what is estimated by the system and what is 
occurring in the real world, in an effort to control error propagation. A schematic view of the 
DYNASMART-X system as implemented is shown below in Figure 2-1. The arrows represent the data 
flows between its modules and components. 
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Figure 2-1. DYNASMART-X TrEPS structure (Source: Mahmassani, et al., 2004) 

Note that RT-DYNA and P-DYNA are essentially near-identical copies of the same simulation 
assignment code, executed in a different manner and with different dynamic inputs. However, the core 
simulation logic is essentially identical, and is shared with the off-line DTA tool (DYNASMART-P) used 
primarily for analysis and evaluation to support operational planning decisions. In this study, efforts 
were focused on incorporating mobile data in the context of off-line calibration, validation, and 
evaluation of weather-sensitive DTA models (DYNASMART-P), while the conceptual framework of 
online implementation will also be addressed. Since the on-line and off-line tools share the same core 
simulation logic, the methodologies and functionalities made in DYNASMART-P to incorporate mobile 
data to capture the effect of adverse weather would then seamlessly be extended to the on-line 
DYNASMART-X TrEPS. 
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2.2 Modeling Weather Effects 

2.2.1 Overall Conceptual Framework 
A conceptual modeling framework has been proposed to explicitly incorporate the weather effect on 
demand and supply of transportation road network system into the analysis (Figure 2-2). In a previous 
FHWA project (Mahmassani et al., 2009), the principal supply-side and demand-side elements 
affected by adverse weather were systematically identified and modeled in the Traffic Estimation and 
Prediction System (TrEPS) framework. The models and relations developed were calibrated using 
available observations of traffic and user behavior in conjunction with prevailing weather events. The 
proposed weather-related features have been demonstrated through successful application to a real 
world network, focusing on two aspects: (1) assessing the impacts of adverse weather on 
transportation networks; and (2) evaluating effectiveness of weather-related advisory/control strategies 
in alleviating traffic congestion due to adverse weather conditions. 
 

 
Figure 2-2. Conceptual framework of integration of WRTM and TrEPS  

(Source: Mahmassani, et al., 2009) 

In a recent study titled “Implementation and Evaluation of Weather Responsive Traffic Estimation and 
Prediction System”, systematic procedure for calibrating and validating weather sensitive TrEPS 
model are proposed and implemented (Mahmassani et al., 2012). The supply-side parameter 
calibration includes the estimation of parameters in the traffic flow model (i.e., speed-density relation) 
and the weather adjustment factors (WAF). The demand-side parameter calibration for that study 
includes several considerations: the base-case OD matrix estimation, changes in dynamic OD trip 
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patterns due to weather conditions, user responses to information and various advisory/control 
operations schemes, and so on. In that study, four major U.S. cities, New York (Long Island), Salt 
Lake City, Chicago and Irvine, were selected for calibrating and validating weather related TrEPS. The 
application to those real world networks shows that the proposed model can be used to successfully 
evaluate weather impacts on transportation networks and the effectiveness of weather-related variable 
message signs and other strategies.  
 
In the following three sections, the weather impacts on supply-side relations and parameters and 
travel demand patterns, as well as on-line implementation of weather-sensitive TrEPS are discussed 
in details.  This will provide the required backdrop for discussing the role of mobile data in this 
process. 
 

2.2.2 Modeling Weather Effect on Supply Side 
Adverse weather conditions can significantly reduce the operating speed and thus the capacity in a 
given road segment (HCM 2000). According to the literature, most inclement conditions can be 
classified into one of three types: “rain”, “snow” and “other” (wind, fog etc.). These in their turn differ in 
intensity (light versus heavy). Specifically, light rain does not have noticeable impact on traffic flow 
compared to heavy rain (10% to 15% reduction in capacity). Similar to rain, heavy snow is reported to 
have a potentially large impact on the operating speed (Ibrahim and Hall, 1994). Studies also show 
that a 30% drop in capacity is attributed to heavy snow compared to a 10% reduction in the case of 
light snow. The main reason behind such drop is the search for a greater lateral clearance and longer 
headways since the lane markings are obscured by snow accumulation. In reviewing previous 
research efforts, Rakha et al. (2007) reported the influence of rain and snow conditions on travel 
speed as summarized in Table 2-1and Table 2-2. 
 

Table 2-1. Empirical evidence of rain effects on speed 

 
Speed Reduction 

Researcher Ibrahim and Hall Kyte et al. Smith et al. 

Location Toronto, Ontario Idaho Hampton Roads, Virginia 

Year 1994 2001 2004 

Light Rain 1.2-8 mph 5.9 mph 3-5% 

Heavy Rain 3-10 mph 5.9 mph 3-5% 
Source: Rakha et al., 2007 
 

Table 2-2. Empirical evidence of snow effects on speed  

 Speed Reduction 

 Freeway Arterial 
Researcher Ibrahim and Hall Kyte et al. Maki Perrin 

Location Toronto, Ontario Idaho Minneapolis, 
Minnesota Salt Lake City, Utah 

Year 1994 2001 1999 2001 
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 Speed Reduction 

 Freeway Arterial 
Light Snow 0.6 mph 10.19 mph N/A 13% 

Heavy Snow 23-26 mph 10.19 mph 40% 25-30% 
Source: Rakha et al., 2007 
 
Although the effect of adverse weather on traffic flow may appear evident and easy to perceive, it is 
still important to develop an accurate quantitative description of the effect for modeling purposes. Hall 
and Barrow (1988) studied the effect of adverse weather conditions on the flow-occupancy 
relationship using freeway traffic data in Ontario, Canada. They found that adverse weather affects the 
flow-occupancy function by reducing the slope of the curve corresponding to uncongested traffic state. 
Similar findings, that the maximum flow rates of highways are reduced by inclement weather, were 
obtained by Ibrahim and Hall (1994). They also observed that adverse weather causes a downward 
shift in the speed-flow function. These weather effects are modeled statistically using regression 
analysis, and the results are quantitatively documented for both rainy and snowy conditions. Rakha et 
al. (2008) studied the impacts of inclement weather on some key traffic stream parameters for several 
different metropolitan areas in the United States. They calibrated Van Aerde traffic flow model using 
loop detector data and concluded that the impacts of weather on traffic increases as the rain and snow 
intensities increase. In their study, they also proposed and developed so-called Weather Adjustment 
Factors (WAF), which are applied multiplicatively to the clear-condition parameters to reflect the 
weather impact. The WAF is closely related to three variables that characterize the severity of weather 
condition, namely, visibility, rain intensity, and snow intensity. Specifically, a linear functional form can 
be used to model and represent the WAF (Rakha et al., 2008). 
 
Mahmassani et al. (2009) identified seven principal model components on the supply side within the 
DYNASMART TrEPS framework that could be adjusted to capture weather effects on traffic patterns, 
if appropriate data is available for calibration. These components include: 
 

1. Speed-density model for freeway sections (and ramps) 
Both the functional form and the parameter values (free mean speed, jam density, 
breakpoints for multiple regime models) may be affected by weather, and may be 
affected differently by the characteristics of different weather instances. Hranac et al. 
(2006) summarized changes in the so-called fundamental diagram observed at a limited 
number of locations (e.g. Twin Cities, Minnesota). 

2. Speed-density model for signalized arterials and unsignalized approaches  
Empirical evidence collected through the calibration experience with DYNASMART in 
various cities strongly suggests different functional forms for the speed-density relations 
for arterials than for freeways. For instance, the latter exhibit distinct multi-regime features 
that are not present in arterial data. In addition, there is considerably more variation in 
both functional form and parameter values for arterials than for freeways. 

3. Service rates and section capacities for freeways and ramps 
It is not well understood in the traffic simulation community that service rates and 
capacities play at least as important a role as the speed-density relation parameters in 
governing traffic flow under highly congested conditions, when queuing phenomena 
become critical in determining traffic propagation. Hence specifying these parameters 
correctly is an essential aspect of calibrating these models. Such parameters will 
naturally be affected by weather of varying characteristics. Reductions ranging from 5% 
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to 35% have been reported in the literature, and provide a starting point for the 
modifications addressed in this study. 

4. Saturation flow rates, section capacities and turning service rates at signalized junctions 
Under normal weather condition, the default values of saturation flow rates are consistent 
with accepted highway capacity manual practices. Yet, these values will be dramatically 
affected by inclement weather conditions. 

5. Saturation flow rates and operational parameters at unsignalized junctions 
Controls at unsignalized junctions include yield signs, stop signs and roundabouts. 
Weather effects on these facilities are likely to be of greater magnitude than at signalized 
intersections given the reliance of unsignalized junctions on human interaction in sharing 
the right of way, which becomes more difficult under adverse weather. 

6. Operational characteristics associated with incidents and their impact 
Adverse weather magnifies the impact of traffic incidents, increasing their severity and 
possibly their duration as well. It is suggested that higher severity, longer duration, and 
possibly greater frequency of occurrence, be used in devising incident scenarios under 
adverse weather. 

7. Operational characteristics of work zones and other special events 
Work zones typically affect the maximum speed as well as the capacity of the directly 
affected sections, as well as those that carry traffic in the opposite direction for certain 
work zone geometries (see DYNASMART-P User’s Manual, Mahmassani et al., 2009). 
Given the significance of weather events that occur in conjunction with work zones in 
most parts of the country, it would be important to revisit the entire approach to modeling 
work zones in order to enable better representation of traffic flow in and around work 
zones under adverse weather conditions. 

 
In the recently completed project (Mahmassani et al., 2012), the above-mentioned Weather 
Adjustment Factor (WAF) approach is adopted and calibrated using field data collected from four 
different networks across the United States. The calibrated models are provided as input into TrEPS 
model, and the results show that the use of WAFs successfully captures the weather effects on both 
link speeds and flows. 
 

2.2.3 Modeling Weather Effect on Demand Side 
Inclement weather can affect the dynamics of demand on the transportation system directly. As drivers 
can reschedule or cancel their trips/activities according to the change of weather conditions, the 
demand level under adverse weather is usually reduced, while the demand before and immediately 
after adverse weather period can increase. In addition, the impact of weather on travel demand can 
be complex, as different types of trips can have different levels of exposure to weather impacts. Work 
commutes that occur during the morning and afternoon peak, for example, would only be affected by 
the most severe and extreme weather, while leisure trips are more likely to be rescheduled to a more 
favorable time of the day or even the week in order to avoid inclement weather.  
 
The impact of adverse weather on travel demand has been proved in the literatures. Ibrahim and 
Hall’s (1994) found that traffic flow is reduced by 10 to 20 percent as a result of heavy rain, and little or 
no effect on flow was observed under light rain conditions. Compared to rain, snow shows a more 
significant impact on traffic volume. Hranac et al. (2006) summarized the observations from different 
sources in the literature as shown in Table 3 below. 
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Table 2-3. Empirical evidence of snow effects on traffic volume 

  
Traffic Volume Reduction 
Freeway Arterial 

Author Hanbali and Kuemmel Knapp Maki 

Location Illinois, Minnesota, New York, Wisconsin Iowa Minnesota 

Year 1992 1995-1998 1999 

Light Snow 7-31% N/A N/A 

Heavy Snow 11-47% 16-47% 15-30% 
Source: Hranac et al., 2006 
 
According to Mahmassani et al. (2009), the demand side dimensions and parameters that determine 
how traffic patterns may be affected by adverse weather consist of two principal categories: (1) those 
that affect the dynamic OD pattern in the network, and (2) those that affect the distribution of flows in 
the network, especially in response to information and/or various traffic controls. Hence, changes in 
destination, departure time or trip cancellation (and, if dealing with a vehicle rather than person OD 
pattern, changes in mode choice as well) would be reflected in the dynamic OD pattern. On the other 
hand, route diversions in response to information, route choice decisions based on pre-trip or en-route 
information, response to various advisory messages and the like would be in the second category. 
While, of course, we can view the first category as resulting from individual decisions as well, 
modeling such mechanisms directly would be considerably more complicated (and require a much 
richer, and unfortunately lacking, empirical survey basis) than trying to capture their net result by 
inferring the dynamic OD pattern. 
 
One of the advantages of an on-line TrEPS system is its ability to adaptively estimate and predict OD 
and associated flow patterns as the latter are unfolding. The hybrid Kalman Filter approach with 
structural temporal effects developed for DYNASMART-X (Mahmassani and Zhou, 2005), along with 
the consistency checking and updating modules, are intended to capture changes in dynamic OD 
patterns resulting from weather-related adjustments in trip making. As such, both the overall levels of 
demand, their distribution across OD pairs as well as over time should be captured by the existing 
system. The main limitation is that the traffic models may not capture traffic propagation correctly 
under adverse weather, hence introducing a potentially important source of error in the overall 
estimation and prediction process (which will affect the OD predictions as well since the latter are 
linked to the observed measurements through the DTA model and resulting link proportion matrix). 
 

2.2.4 Conceptual Framework for On-line Implementation 
 
To effectively manage the flow of traffic during inclement weather conditions, many agencies 
implement a wide variety of WRTM strategies. In general, based on pre-defined operational 
procedures for different weather types and severities, corresponding strategies are employed in 
response to prevailing weather conditions. Because the dynamics of traffic systems are so complex, 
however, WRTM strategies selected based on such general rules may not always perform as 
expected. This calls for integration of WRTM and a real-time Traffic Estimation and Prediction System 
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(TrEPS), which allows incorporating predicted traffic conditions under different strategies into the 
selection of appropriate WRTM strategies. The real-time TrEPS model interacts continuously with loop 
detectors, roadside sensors and vehicle probes, providing real-time estimates of traffic conditions, 
network flow patterns and routing information.  Based on the current network state, a prediction is then 
generated for the traffic under future weather conditions and weather-related interventions providing 
the predicted effect of WRTM strategies on the real world network.  
 
An overall framework of the implementation of WRTM strategies using the weather-responsive TrEPS 
model is presented in Figure 2-3. The framework comprises three components: WRTM Strategy 
Repository, Scenario Manager and DYNASMART-X. The WRTM Strategy Repository contains a set 
of available WRTM strategies defined for different weather situations. Based on existing guidelines 
and practices adopted by local operating agencies, several alternatives could be identified and 
included in each weather category.  For example, when the rain intensity exceeds a certain threshold, 
different combinations of individual advisory/control method (e.g., VMS, VMS + speed limit, and VMS 
+ signal timing) might be considered as available implementation options. In case of a snowfall, 
decisions might involve choosing between different routing and scheduling options for snow plow 
operations. When the Scenario Manager receives the prevailing weather conditions and the future 
weather information, it firsts generates the weather scenario input file (i.e., weather.dat) for the next 
prediction horizon that will be simulated in DYNASMART-X. Next, it retrieves available WRTM 
strategies based on the specified weather condition from the WRTM Strategy Repository. Users might 
choose two or more strategies under consideration. The Scenario Manager then creates a set of input 
files for each strategy (e.g., VMS.dat, WorkZone.dat, control.dat, etc.) and supplies them to 
DYNASMART-X along with the weather scenario file. In DYNASMART-X, based on the estimated 
current traffic conditions using real-time traffic surveillance data, the future traffic conditions are 
predicted for different scenarios. The predicted network performance measures produced under 
different intervention scenarios will allow the traffic manager to evaluate effectiveness of each strategy 
and select the best WRTM strategy for the current situation. 
 
The weather-responsive TrEPS model would also help decision-making in modifying plans for various 
roadside events such as road construction, pavement works and planned special street events. When 
such events encounter unexpected adverse weather conditions, the traffic manager can simulate 
different weather and traffic management scenarios to assess the impact of weather conditions on 
traffic and decide how to modify the current plan to minimize the congestion and risk of accident. 
 
Evaluating effectiveness of various WRTM strategies would require several instances of 
implementation and measurement. As we observe only the outcome associated with selected WRTM 
strategy, it would take time until we have a sufficient number of similar occasions for which different 
scenarios are tested and outcomes are collected. In this case, historical data and past experiences 
need to be used to assess the performance of the selected strategy. The evaluation procedure can 
also be facilitated by the use of the TrEPS model framework. Figure 2-4 presents the post-process of 
the real-time WRTM implementation in the context of the same framework shown in Figure 2-3. After 
applying the selected WRTM strategy, DYNASMART-X obtains the traffic surveillance data and 
estimates the resulting network state. This can be viewed as the network performance outcomes 
produced under the implemented WRTM strategy and used by the traffic manager to assess its 
effectiveness. If it is considered necessary to modify/discard the selected strategy or add a new 
strategy, the Scenario Manager will help update the WRTM Scenario Repository accordingly. The 
updated strategies for the experienced weather situation are stored in the repository and will be 
retrieved on demand next time the similar weather event occurs. 
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Figure 2-3. Framework for Implementing WRTM strategies using TrEPS models  

(Source: Mahmassani, et al., 2012) 
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Figure 2-4. Framework for Evaluating WRTM strategies using TrEPS models  

(Source: Mahmassani, et al., 2012) 
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Chapter 3. Incorporating Mobile 
Data to WRTM Models 

3.1 Properties of Mobile Data 
The development of Intelligent Transportation Systems (ITS) requires high quality traffic information in 
real-time. The use of traditional on-road sensors (e.g. inductive loops) for collecting data is necessary 
but not sufficient because of their limited coverage and expensive cost of implementation and 
maintenance. In the past few decades, the evolution of telecommunications and wireless technologies 
has opened up a world of opportunity to collect traffic data in alternative ways. These technologies 
support probe-based systems that rely on GPS-based data or cellular location systems. These offer 
broader coverage, with the potential to cover major arterials. 
 
Mobile data exists in different forms, with different contents, and can be collected in different ways. 
According to the data collection method, mobile data can be categorized into three major classes: 

1. Floating car data collected by electronic transponders. In this method, electronic transponders 
(tags) are placed on vehicles and electronic devices for reading those tags are placed along 
the roadway to determine when each vehicle passes those locations. The Automotive Vehicle 
Identification (AVI) technique is one such example which is covered widely in the literature 
(Travel Time Data Collection Handbook, 1998). Other examples include electronic toll data 
collected at toll booths, blue tooth data collected by roadside blue tooth receivers, etc. 

2. GPS based mobile data. In this case, probe vehicles are equipped with GPS receivers and 
two-way communication to receive signals from earth-orbiting satellites. The positional 
information determined from the GPS signals is transmitted to a control center to display real-
time position of the probe vehicles. Usually GPS mobile data mainly come from certain types 
of vehicles, particularly fleet management services, e.g. taxis and trucks. The Connected 
Vehicle program conducted by U.S. DOT is now offering a new opportunity for collecting GPS 
based mobile data. 

3. Cell phone based mobile data. Every switched-on mobile phone becomes a traffic probe in 
the network. The location of the mobile phone is usually determined by means of triangulation 
or by the hand-over data stored by the network operator, and then travel time speed data can 
be estimated over a series of road segments before being converted into useful information 
by traffic centers. As contrast to the first two categories, cell phone based mobile data 
requires no hardware in cars and no specific infrastructure needs to be built along the road. 

 
In terms of format, mobile data can be classified into two types: (1) aggregated data, and (2) individual 
trajectories. Aggregated mobile data is an outcome of data fusion process conducted by traffic 
information providers, which usually contains travel time and speed information in either historical or 
real-time format.  On the other hand, individual trajectory data is relatively raw, and is made up of a 
series of vehicle locations and corresponding arrival times. In this study, we focus our discussion on 
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trajectory data because of its richness in information and high degree of suitability for application to 
WRTM models, as explained in the rest of this report. 
 
A trajectory is the path followed by the moving entity through the spatial area over which it moves. 
Because a path requires a certain amount of time to traverse, time and position are the two essential 
aspects of a trajectory (Giannotti and Pedreschi, 2008). The information contained in trajectory data 
can be far beyond these two variables. The characteristics that can be extracted from trajectory data 
include the following: 

• Time, i.e. position of this moment on the timescale; 
• Position of the vehicle in space; 
• Trip origins and destinations ; 
• Direction of the vehicle’s movement; 
• Speed of the movement; 
• Dynamics of the speed; 

• Periods of constant speed, acceleration and deceleration 
• Characteristics of these periods: start and end times, duration, initial and final 

positions, initial and final speeds, etc. 

• Change of the direction (turn); 
• Accumulated travel time and distance. 

 
When groups of trajectory data are available on the same route, more information can be extracted, 
including: 

• Mean, median and maximal speed/travel time; 
• Variance of speed/travel time; 
• Inferred volumes / probe vehicle density. 

 
Overall, mobile data differ dramatically in nature from traditional fixed sensor data. The advantages 
and some shortcomings of mobile data are summarized in the Table 3-1. 

Table 3-1. Pro and Cons of Mobile Data 

Advantages Disadvantages 

• low or no cost in installation and 
maintenance; 

• wide geographic coverage 
(freeways and arterials); 

• finer resolution (individual vehicle 
and shorter measurement time 
interval); 

• contain travel time information; 
• not affected by traffic interruptions 

or bad weather conditions. 

•  fewer experience of analyzing data; 
• technology is not as mature as fixed 

sensors; 
• no occupancy or traffic density 

information. 
 

Source: Northwestern University, May 2012 
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These unique properties of mobile data make it practical to be incorporated into traffic analysis and 
help improve the accuracy and relevance of WRTM models. For example, 

• Mobile data can provide detail on roads not currently equipped with fixed sensors, thus 
improving the calibration of these models during severe weather events. 

• These data also can provide accurate real time information that reflects shifts in routes and 
origins and destinations during (or just prior) to weather events. These shifts in traffic patterns 
can support Traffic Estimation and Prediction (TrEPS) models that make it possible to use 
WRTM tools to support management decisions during major weather events such as 
hurricanes, tornadoes, or blizzards. 

• Mobile data also provide opportunities to assess the impacts of operational changes before 
and after certain actions. 

3.2 Mobile Data Sources 
The mobile traffic data market is now growing worldwide with a wide range of applications and 
benefits. This would not only improve traffic management but would also help satisfy the growing 
demand of drivers who are willing to pay service providers as long as they have access to relevant 
real-time information. Currently, several service providers have integrated mobile data from cellular 
phones within their raw traffic data sources. Most often, these companies also rely on multiple sources 
coming from fixed sensors and fleet companies (e.g. taxi fleets with GPS). One of the current 
limitations of mobile data for WRTM application is that most currently available mobile data sources 
have been tailored for production and distribution of real-time travel time data. While mobile data has 
the potential to provide much richer detail, e.g., locations and fine resolution timestamps, such 
detailed data is scarce in the current market. In this project, the mobile data products that are offered 
by four major vendors, namely AirSage, Inrix, Navteq and TomTom, are studied and summarized. The 
results are included in Appendix A. 

3.3 Selection of WRTM models for Incorporating Mobile 
Data 

The contents of mobile data vary widely in their characteristics – and thus vary in how they best fit the 
needs of weather related modeling. Models to support analysis and deployment of WRTM strategies 
fall in two categories: those intended for off-line analysis and design of such strategies and evaluation 
of their deployment effectiveness in particular areas; and those intended to support on-line application 
of these strategies for weather-related traffic management. Both off-line and on-line tools entail supply-
side and demand-side models; the former reflect performance relations that determine traffic 
dynamics under the influence of weather, while the latter capture user choices and behavior in 
response to weather-related control or management measures, as well as other behaviors both as 
travelers (e.g. route, mode and departure time choice) and drivers (e.g. car following). In cases where 
the mobile data allow estimation of the same types of traffic variables and parameters as more 
conventional sensor data, the procedures already developed can be used with little modification, while 
in some other cases, mobile data which contain richer information, especially in the form of vehicle 
trajectories, will be particularly useful for modeling drivers’ behavior in route choice or response to 
various WRTM measures. Table 3-2 presents a mapping of different types of mobile data on different 
WRTM model components. 
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Table 3-2. Use of mobile data in WRTM models 

Model Components 

Types of Mobile Data 

travel 
times speeds inferred 

volumes 

off-line 
calibration 

Supply 
Parameters 

(Meso) 

Traffic Flow Model: speed-density 
relations * *** *** 

Weather Adjustment Factors: traffic 
flow model parameters, maximum 
or service flow rates, speed limit 
margin, etc. 

* *** *** 

Behavior 
Parameters 

(Micro) 

Car-following Model ** *** * 

Gap-acceptance Model * *** *** 

Lane-changing Model * *** *** 

Demand 
Parameters 

(Meso & 
Micro) 

Time-dependent OD matrix ** ** *** 

Demand adjustment factors under 
different weather conditions ** ** *** 

Vehicle Class Composition ** *** *** 

On-line 
Traffic State 

Measurement 

Supply Side 
Consistency 

Checking 

Minimize discrepancy between 
observed and simulated travel time *** * * 

Minimize discrepancy between 
observed and simulated link speeds * *** * 

Demand 
Side 

Consistency 
Checking 

Minimize discrepancy between 
observed and simulated OD demand * * *** 

 
Evaluation of 
WRTM 
Strategies 

Performance 
Measures 

Link-level measures ** *** *** 

OD or Path Travel times *** *** *** 

Vehicle diversion rates or 
compliance rates *** *** *** 

Note: number of stars reflects greater suitibility of corresponding data type for particular model 
component. 
Source: Northwestern University, January 2012 
 
One of the tasks of this study is to select a suitable set of WRTM tools into which the mobile data 
could be incorporated, and demonstrate the process using available data sources. The major criterion 
for selection is for those tools likely to have the greatest impact on the effectiveness of WRTM 
strategies and programs through greater application and deployment. In addition, the considerations 
when selecting WRTM models include: 

1. Criticality to WRTM application;  
2. Readiness and ease of adaptation for use in connection with mobile data;  
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3. Magnitude of likely improvement in models and resulting WRTM due to mobile data 
availability;  

4. Obstacle-removing potential of mobile data in connection with use of those models; and  
5. Likely impact in terms of increased use of these tools and deployment of WRTM. 

 
Given the essential role of prediction in weather-related traffic management, the components of Traffic 
Estimation and Prediction System (TrEPS) models, which incorporate the effect of weather predictions 
on traffic congestion and thus form the basis for WRTM interventions to mitigate the effect of bad 
weather, would be a logical priority candidate for this demonstration. In the following three sub-
sections, the potential applications of mobile data in weather-sensitive TrEPS (DYNASMART) are 
introduced, from supply side model, demand side model, to on-line implementation. 
 

3.3.1 Supply Side Model 
Two supply side models in weather-sensitive DYNASMART are selected for mobile data application, 
namely the modified Greenshields traffic flow model and weather adjustment factor model. The former 
is used for traffic propagation, with parameters modified to reflect prevailing weather conditions using 
the latter model. Systematic procedures for calibrating these two models have been developed and 
tested in the previous studies (Mahmassani et al., 2009, 2012), using weather data and fixed sensor 
traffic data only. With supplementary information obtained from mobile data, that procedure could be 
refined in order to improve accuracy. 

Modified Greenshields Traffic Flow Model 

Two types of modified Greenshields models are used in DYNASMART for traffic propagation 
(Mahmassani and Sbayti, 2009). Type 1 is a dual-regime model in which constant free-flow speed is 
specified for the free-flow conditions (1st regime) and a modified Greenshields model is specified for 
congested-flow conditions (2nd regime) as shown in Figure 3-1.  
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Figure 3-1. Type 1 modified Greenshields model (dual-regime model)  

(Source: Mahmassani and Sbayti, 2009) 

 
In mathematical form, the Type 1 modified Greenshields model is expressed as follows: 
 










<<









−−+

<<

=
jamibreakpoint

jam

i
f

breakpointif

i
kkk

k
kvvv

kku

v a

1)(

0

00

   (3-1) 

 

where iv
 = speed on link i 

 fv
 = speed-intercept 

 uf = free-flow speed on link i 

 0v
 = minimum speed on link i 

 ik
 = density on link i 

 jamk
 = jam density on link i 

 α  = power term  
 kbreakpoint = breakpoint density 
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Type 2 model uses a single-regime to model traffic relations for both free- and congested-flow 
conditions as shown in Figure 3-2. 
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Figure 3-2. Type 2 modified Greenshields model (single-regime model)  

(Source: Mahmassani and Sbayti, 2009) 

 
In mathematical form, the type 2 modified Greenshields model is expressed as follows: 
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      (3-2) 

 
Dual-regime models are generally applicable to freeways, whereas single-regime models apply to 
arterials. The reason why a two-regime model is applicable for freeways in particular is that freeways 
have typically more capacity than arterials, and can accommodate dense traffic (up to 2300 pc/hr/ln) 
at near free-flow speeds. On the other hand, arterials have signalized intersections, meaning that such 
a phenomenon may be short-lived, if present at all. Hence, a slight increase in traffic would elicit more 
deterioration in prevailing speeds than in the case of freeways. Therefore, arterial traffic relations are 
better explained using a single-regime model. 

Weather Adjustment Factor 

In DYNASMART, supply-side parameters that are expected to be affected by the weather condition 
are identified as presented in Table 3-3. The inclement weather impact on each of these parameters is 
represented by a corresponding weather adjustment factor (WAF) such that 

Normal
ii

EventWeather
i fFf ⋅=        (3-3) 
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where EventWeather
if  denotes the value of parameter i under a certain weather event, Normal

if  denotes 

the value of parameter i under the normal condition and  iF  is the WAF for parameter i. 
 

Table 3-3. Supply Side Properties related with Weather Impact in DYNASMART 

Category i Parameter Description 

Traffic flow model1 

1 
2 
3 
4 
5 

Speed-intercept (mph)1 

Minimal speed (mph) 
Density break point (pcpmpl)1 

Jam density (pcpmpl) 
Shape term alpha 

Link performance 
6 
7 
8 

Maximum service flow rate (pcphpl or vphpl) 
Saturation flow rate (vphpl) 
Posted speed limit adjustment margin (mph) 

Left-turn capacity 9 g/c ratio 

2-way stop sign 
capacity 

10 
11 
12 

Saturation flow rate for left-turn vehicles (vphpl) 
Saturation flow rate for through vehicles (vphpl) 
Saturation flow rate for right-turn vehicles (vphpl) 

4-way stop sign 
capacity 

13 
14 
15 

Discharge rate for left-turn vehicles (vphpl) 
Discharge rate for through vehicles (vphpl) 
Discharge rate for right-turn vehicles (vphpl) 

Yield sign capacity 
16 
17 
18 

Saturation flow rate for left-turn vehicles (vphpl) 
Saturation flow rate for through vehicles (vphpl) 
Saturation flow rate for right-turn vehicles (vphpl) 

1) only available in dual-regime model 

 
The WAF is assumed to be a linear function of weather conditions, and is expressed in the following 
form 

svrvsrvF iiiiiii ⋅⋅+⋅⋅+⋅+⋅+⋅+= 543210 ββββββ    (3-4) 

where 

 iF
     weather adjustment factor for parameter i, 

 v      visibility (mile), 
 r      precipitation intensity of rain (inch/hr), 
 s      precipitation intensity of snow (inch/hr), and 
 543210 ,,,,, iiiiii ββββββ   coefficients to be estimated. 
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3.3.2 Demand Side Model 
Same as supply-side models, travel demand information is of crucial importance as an input for 
dynamic traffic assignment (DTA) models. On the demand side, DYNASMART is flexible in the way it 
accepts loading information (time-varying rates prevailing over specified intervals, numbers of vehicles 
in discretized time slices, individual vehicle schedules). There are two methods for DYNASMART to 
generate vehicles. The first method is to specify Origin-Destination (O-D) matrices among origin-
destination zones at different time intervals. This method considers the aggregated dynamic 
properties of demand level and demand distribution between different zones, for any loading period; 
however, it requires calibrating the time-varying O-D matrices. The second vehicle loading method is 
to specify the itineraries (origin and destination) of all vehicles with or without their corresponding 
travel plans. In this format, users can specify a trip plan (chain) for each traveler. The data required are 
the intermediate stops considered by each traveler, and the corresponding activity durations. In the 
other FHWA funded WRTM-related TrEPS project, a bi-level optimization method (Figure 3-3) is used 
to capture the time-dependent travel pattern (Verbas et al., 2011). It is a sensor-based OD estimation 
method which uses street sensors such as loop detectors together with traffic-assignment models. In 
the upper level of the bi-level framework, the sum of squared deviations of the simulated link flows 
from the corresponding observed values is minimized; in the lower level a dynamic traffic assignment 
problem is solved. The process is iterated until convergence in the reduction of root mean square 
errors (RMSE) of the estimated link-flows is achieved. 
 
Several approaches for estimating time-dependent OD trip tables using mobile data have been 
discussed in the literature and could be used in this project. One approach developed by Calabrese et 
al. (2011) relies on a reference OD table and mobile data only. The method consists of two separate 
steps, namely a trip determination step and an OD estimation step. Within the trip determination step, 
mobile data are filtered and analyzed to identify individual trips. Those trips are then aggregated 
according to their origin, destination, and departure time, in preparation for OD matrix estimation in the 
next step. In the OD estimation step, the total number of trips is obtained by scaling up the observed 
number of trips through a scaling factor K. The accuracy of this estimation approach relies heavily on 
the quality of sample mobile data and the value of the scaling factor K, which accounts for the share of 
trackable probes among the total number of trip makers. Calibration of the scaling factor requires an 
independent reference OD flow table source, for example, census data. Another approach proposed 
by Kim and Jayakrishnan (2010) maintains the bi-level optimization structure, and uses trajectory data 
as supplementary data to traditional link counts data, to enhance the accuracy of estimation results. 
The proposed methodology does not require a historical reference OD table and uses a path-based 
OD estimation approach. However, the sampling rate of vehicle trajectories needs to be estimated, if 
the penetration rate of probe data is not given explicitly. Zhou and Mahmassani (2006) utilized 
automatic vehicle identification (AVI) counts data and proposed a dynamic OD estimation method to 
extract point-to-point split fraction information from those data without estimating market penetration 
rates and identification rates of AVI tags. Depending on the availability of mobile data sources, the 
most appropriate methodology could be selected for implementing dynamic OD estimation using 
mobile data. 
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Figure 3-3. OD Estimation (bi-level optimization) framework  
(Source: Northwestern University, March 2012) 

 

3.3.3 On-line Implementation 
The on-line traffic demand estimation and prediction module within TrEPS provides time-dependent 
traffic demand matrices for dynamic traffic assignment and associated network traffic simulation.  
Within the module, it seeks to estimate time-dependent OD trip demand patterns at the current stage, 
and predict demand volumes over the near and medium terms in a general network, given historical 
demand information and real-time traffic measurements from various surveillance devices. A recursive 
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real-time OD demand estimation and prediction framework is developed by Zhou and Mahmassani 
(2007). The real-time traffic information is usually in the format of occupancy and volume observations 
collected from loop detectors on specific links. With the help of mobile data, the on-line implementation 
process could be enhanced, as more real-time traffic information becomes available. The advantages 
of incorporating mobile data in on-line TrEPS implementation arise in three areas: (1) wider 
geographic coverage of real-time information; (2) finer resolution of data; (3) availability of travel time 
information, which is absent in traditional data. 

3.4 Implementation Framework 
Demonstrating the use of mobile data in WRTM models involves a systematic procedure, from data 
collection, information extraction, to model calibration, DTA simulation, and model validation. This 
section introduces a detailed implementation plan for incorporating mobile data. Figure 3-4 illustrates a 
framework for using mobile data in weather-sensitive TrEPS models. The red blocks in the figure 
highlight the components where mobile data could contribute in addition to traditional traffic data, in 
terms of improving the accuracy of model calibration and evaluation. It should be noted that the 
detailed implementation procedure depends on the availability of mobile data, i.e., what types of data 
are available, and what information could be extracted from those data. 
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Figure 3-4. Framework for incorporating mobile data into WRTM models  

(Source: Northwestern University, March 2012) 
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Chapter 4. Study Network 

The first step in demonstrating the use of mobile data in the WRTM framework is selecting a site/area 
network that will provide the test bed for the demonstration.  The selection is the outcome of joint 
consideration of data availability as well as network development effort. As a result, the selection falls 
naturally into the four candidate networks that are prepared and tested in the recently completed 
project, i.e., Chicago, New York City, Salt Lake City, and Irvine. Notwithstanding the project team’s 
effort to obtain mobile data from different data vendors, the only available mobile data source that can 
be utilized in this project consists of vehicle trajectory data collected by TomTom GPS devices in the 
New York City area. Therefore, the study network selected consists of the portion of the New York City 
regional network that encompasses the geographic area covered by the TomTom trajectory data.  
 
Networks used in simulation-based DTA applications, including DYNASMART, are typically built on the 
basis of existing static networks, which often do not contain necessary information such as cycle and 
green times and allowed movements at each phase at signalized intersections, or definition of each 
movement at a node (e.g. left turn, right turn, U- turn, and through movement). Thus, in addition to 
data provided by static networks, information from many other external sources is necessary to 
achieve an accurate representation of the real-world network. Figure 4-1illustrates the overall process 
for building and converting networks for the DYNASMART application. The main tool for this 
conversion is software called DYNABUILDER, which is capable of converting many networks from 
different platforms into a DYNASMART-P network. As DYNABUILDER also requires input files in a 
certain format, the pre-processing steps are conducted using several different codes and macros to 
format the GIS or other sources of data. A snapshot of the New York City network in DYNASMART 
format is displayed in Figure 4-2, together with detailed descriptive information on nodes, links, zones, 
and demand. 
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Figure 4-1. Flowchart for the Conversion from the Static to the Dynamic Network Model 

(Source: Northwestern University, May 2012) 
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Network Description  

• 21,734 links,  
 1,531 freeways, 
 14 links with tolls, 
 31 highways, 
 139 HOV facilities,  
 2,087 ramps, 
 17,945 arterials, 

 

• 9,390 nodes,  
 1,722 signalized intersections, 

• 1,886 zones,  
 1,876 internal, 
 10 external,  

• Demand period, 
 6 am - 11 am, 
 43links with observations used 

in calibration. 
 

Figure 4-2. Network Configuration and Description for New York Network  
(Source: Northwestern University, July 2012) 
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Chapter 5. Calibration and 
Validation of Weather-sensitive 
TrEPS Model Using Mobile Data 

5.1 Data Collection 

5.1.1 Weather Data 
Currently, there are two major sources of historical weather data. The first is the National Weather 
Station archives collected at the National Climatic Data Center (NCDC), and the second is the 
roadway surface weather data archived by FHWA’s Clarus project. As a research initiative, the 
Clarus system will be ending and transitioning to an NOAA-based system in 2013. Both of these 
sources collect and archive weather data at fixed locations, either at regional airports (ASOS stations) 
or at roadsides. The content of weather data from NCDC includes visibility, temperature, precipitation 
intensity level, and wind speed, while Clarus data usually contains some additional information like 
humidity and road surface temperature. The resolution of the data from these two sources differs, with 
5-minute for NCDC data, and 20-minute for Clarus data. The distributions of weather stations (ASOS 
and Clarus) in the New York area are presented in Figure 5-1, showing a comprehensive geographic 
coverage. It is usually reasonable to assume, for the areas within 10 miles of a weather station, that 
the weather condition can be represented by the data recorded at that corresponding station. 

 
Figure 5-1. Distribution of Weather Stations in New York area (ASOS and Clarus (ESS)) 

(Source: Google Maps, accessed April 2012) 
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The historical weather data from Clarus are only available from 2009. In the contrast, ASOS data has 
a larger archived database, and the time coverage of data varies among different stations (Table 5-1). 
Moreover, ASOS data have a finer resolution (5 minute), which make them more suitable for use in 
conjunction with traffic detector data collected and aggregated over 5-minute intervals. 
 
In addition to data collected from fixed sensors, road side weather data is becoming available 
from vehicles equipped with mobile sensors. For example, Minnesota DOT is contributing mobile 
weather data from their maintenance vehicles to the Clarus system. Also, the scope of Connected 
Vehicles program conducted by U.S. DOT includes collecting real-time road weather information 
from mobile sensors. 

Table 5-1. Airports with ASOS Stations and Available Time Periods for Data (New York City)  

No Airport Location ICAO  
code 

ASOS  
data 

1 La Guardia Airport Queens, NY KLGA 2000 - present 

2 John F. Kennedy International Airport Queens, NY KJFK 2000 - present 

3 Republic Airport Farmingdale, NY KFRG 2005 - present 

4 Long Island MacArthur Airport Islip, NY KISP 2000 - present 

5 Brookhaven Airport Shirley, NY KHWV 2005 - present 

6 Francis S. Gabreski Airport Westhampton Beach, NY KFOK 2005 - present 

Source: Northwestern University,  April 2012 

5.1.2 Fixed Sensor Traffic Data 
Traffic data plays an important role in both supply-side and demand-side model calibration. Traditional 
traffic data are obtained from loop detectors at fixed locations, which contain speed, occupancy, and 
vehicle count information. Despite substantial efforts to obtain traffic data from the New York area, we 
were not able to identify a comprehensive data source for all desired items. Fortunately, the items 
missing are not unique to the New York region, as they pertain to the traffic flow aspects under certain 
weather adjustment factor (WAF) across similar areas. Accordingly, to advance the progress in 
estimating model parameters for the New York network, other sources of traffic data have been 
investigated focusing on adjacent states such as New Jersey, Pennsylvania, and Maryland, Based on 
the data availability and the general characteristics (e.g., social/geographical characteristics and 
weather pattern), data from the Baltimore area were retained for this purpose. We believe that these 
data can be a good representative of New York data as Baltimore is a large metropolitan area with a 
similar geography (i.e., located on the northeast coast). Furthermore the I-95 Corridor through 
Baltimore and Maryland is heavily traveled by drivers from New York and New Jersey. 
 
One advantage of mobile data is that it allows us to update the original parameters (in this case from 
the Maryland area) with local mobile data from New York even as the latter does not have suitable 
fixed sensor locations.  We develop and apply a Bayesian updating scheme for this purpose in the 
next section, whereby a priori estimates based on fixed sensors are updated using more recent local 
mobile data. 
 
The traffic data are collected from loop detectors installed on freeways along I-695 and the time period 
covers 2010 and 2011. Locations of the weather station and selected detectors are presented in 
Figure 5-2.  
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Figure 5-2. Locations for Selected Detectors and ASOS Station in Baltimore  

(Source: Google Maps, accessed May 2012) 

 
For the demand-side calibration, hourly traffic volume data are obtained from New York State 
Department of Transportation’s Traffic Data Viewer website (http://www.dot.ny.gov/tdv). Its web 
interface is displayed in Figure 5-3. The traffic volume data are collected by the count stations installed 
along selected road segments, and are available for the period of 2001 to 2009.  
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Figure 5-3. NYSDOT Traffic Data Viewer web interface (Source: NYSDOT, May 2012) 

 

5.1.3 Mobile Data 
Throughout this project, the project team was actively communicating with different data vendors to 
obtain trajectory data. Given that the project scope did not explicitly include dedicated mobile data 
collection, purchase or preparation, the focus was on illustrating what could be accomplished with 
mobile data, recognizing that a complete validation would require additional resources for data 
acquisition and network calibration and validation.  Fortunately, TomTom was willing to allow use of 
trajectory data purchased for another project to be used for this effort as well. The mobile data 
provided by TomTom was originally used as part of the SHRP2 L-04 work on travel time reliability 
(“Incorporating Reliability in Operations and Planning Models”). With TomTom’s permission, the same 
dataset was shared with this project for weather related traffic modeling research.  The data are 
recorded and stored in the format of vehicle trajectories. They are collected by vehicles equipped with 
TomTom GPS devices circulating in the New York City area during a two-week period (2010/05/02 – 
2010/05/17). Examples of trajectories in GIS map format are shown in Figure 5-4. The geographical 
coverage of the data is represented by the purple area. 
 
An average number of 10000 trips are collected each day within the study area in that two-week 
period. The information within each trajectory file includes: 

• A GIS format map of New York City area, including link length, speed limit information. 
• Trajectory ID and probe ID 
• Trip start time 
• All the links that are traversed in the trip, and times when entering each link 
• Travel time of each link, and total travel time of the trip 
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Figure 5-4. Examples of vehicle trajectories in New York network obtained from TomTom 

(Source: TomTom, June 2012) 

5.2 Supply-side Parameter Calibration 

5.2.1 Calibration using Fixed Sensor Traffic Data 

Weather Categorization 

When different sources of data are collected, the next step of the demonstration process is to integrate 
those input data, essentially to match weather data with traffic data. After that, for model calibration 
purpose, the integrated data will be divided into groups according to different weather categories. 
 
The weather categories were defined based on the precipitation type and the intensity. With a normal 
weather as the base case, in which no precipitation is observed, three levels of precipitation intensities 
(light, moderate and heavy) are used for both rain and snow.  
Table 5-2 shows these seven weather categories and the corresponding precipitation intensity ranges: 
normal (no precipitation), light rain (intensity less than 0.1 in./hr), moderate rain (0.1 to 0.3 in./hr), 
heavy rain (greater than 0.3 in./hr), light snow (less than 0.05 in./hr), moderate snow (0.05 to 0.1 
in./hr), and heavy snow (greater than 0.1 in./hr). The values for the intensity range are based on the 
literature (Hranac et al., 2006; Maze et al., 2006). 
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Table 5-2. Weather categorization 

Weather Condition (precipitation intensity (inch/hr)) 

normal 
 

(no 
precipitation) 

light rain 
 

(< 0.1) 

moderate 
rain 

(0.1 - 0.3) 

heavy rain 
 

(> 0.3) 

light snow 
 

(< 0.05) 

moderate 
snow 

 
(0.05 - 0.1) 

heavy snow 
 

(> 0.1) 

 

Traffic Flow Model Calibration using Fixed Sensor Data 

The two-regime traffic flow model for freeways can be calibrated extensively using fixed sensor data 
unless such data is not available. The calibration work can be done by nonlinear optimization 
approach. The detailed procedures are as follows: 
 

1. Plot the speed vs. density graph, and set initial values for all the parameters, i.e. breakpoint 
density (kbp), speed-intercept (vf), minimum speed (v0), jam density (kj), and the shape 
parameter (α), based on observations. 

2. For each observed density (ki), calculate the predicted speed value ( iv̂ ) using Eq. 
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and the parameters initialized in Step 1. 

3. Compute the squared difference between observed speed value (vi) and predicted speed 
value ( iv̂ ), for each data point, and sum the squared error over the entire data set. 

4. Minimize the sum of squared error obtained in Step 3, by changing the values of model 
parameters.  

 
The goodness-of-fit of the nonlinear regression model can be measured by the root mean square 

error (RMSE) as shown in Eq. (
( )∑ =

−=
N

i ii vv
N

RMSE
1

2ˆ1

     
   (5-1), where iv̂  is the predicted/modeled value and iv  is the observed value 
for the ith observation in the sample with the size of N. The smaller the RMSE is, the better the model 
represents the data.  
 

( )∑ =
−=

N

i ii vv
N

RMSE
1

2ˆ1         (5-1) 
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Examples of calibrated speed-density curves for New York network are presented in Figure 5-5. It is 
observed that the overall speed for both uncongested and congested regimes decreases as the 
weather conditions become severe. The same procedure is carried out for several different locations 
on highways using Baltimore area loop detector data, and the calibration results are tabulated in 
Appendix B. 
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Figure 5-5. Type 1 modified Greenshields models calibrated using fixed sensor data under 

different weather conditions (Source: Northwestern University, May 2012) 
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Unlike freeways, very few arterials have loop detectors installed. No fixed sensor traffic data have 
been found on any arterials in the New York networks. Before the introduction of mobile data, the one-
regime traffic flow models on arterials are usually inferred from those of some other well-calibrated 
networks with similar characteristics, e.g., same speed limit, same number of lanes.  When mobile 
data becomes available, this problem can be partial solved, as travel speed information on arterials 
can be extracted from either aggregated mobile data or vehicle trajectories. However, the other 
important variable (density) required for calibrating the traffic flow model, is difficult to obtain directly, 
and needs to be inferred from other data sources. 

Weather Adjustment Factor Calibration 

Once traffic flow models for different weather conditions (i.e., normal, light rain, moderate rain, etc.) 
are obtained, a multiple linear regression analysis is performed to obtain the WAF for each parameter 
based on observed rain intensities, snow intensities and visibility levels. A detailed description of the 
calibration procedure is provided below. The procedures are same for both freeways and arterials. 
 

1. For each weather condition c, calculate the WAF for each parameter i such that 

cffF Base
i

c
ii ∀= / , where Base denotes the normal (no precipitation) weather.  

2. Assign iF  to corresponding traffic-weather data such that each observation has a structure 
similar to the following: {time, traffic data (volume, speed, density), weather data(v, r, 
s ), WAF(F1,···,Fi)}. 

3. For each parameter i, estimate coefficients 543210 ,,,,, iiiiii ββββββ by conducting the 

regression analysis using Eq. 

(
svrvsrvF iiiiiii ⋅⋅+⋅⋅+⋅+⋅+⋅+= 543210 ββββββ

  

 (3-4) given iF  as a dependent variable and weather data (v, r, s) for all 
observations as independent variables. 

 
The following table presents the calibration result of WAF for New York network using fixed sensor 
traffic data. 

Table 5-3. Calibration result of WAF  

Parameter β0 β1 β2 β3 β4 β5 R2 

qmax 0.9874 0.0015 -0.3753 -3.3884 -0.0243 -0.1267 0.6397 

vf 0.9570 0.0044 -0.0738 -1.8262 -0.0294 -0.1302 0.6987 

kb 1.0894 -0.0081 0.3924 -3.5266 0.1371 0.1888 0.2572 

uf 0.9303 0.0068 -0.1044 -1.1713 -0.0733 -0.1662 0.8466 
    Source: Mahmassani, et al., 2012 

5.2.2 Validation of Weather Effect on Speed 
Different from loop detector data, mobile data does not explicitly give density data; so direct calibration 
of traffic flow model using the same method cannot be accomplished. Instead, some initial validation 
for the existing models can be conducted. 
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The weather profile of the TomTom mobile data study period (2010/05/01 – 2010/05/17) is shown in  
Figure 5-6. The y-axis of the graph represents the rain intensity level, with 0 for clear weather, 1 for 
light rain, 2 for moderate rain, and 3 for heavy rain. It is observed that during that two-week time, there 
are two major periods when there was significant amount of rain precipitation, which are 2010/05/03 
00:00 – 2010/05/03 10:00 and 2010/05/11 23:00 – 2010/05/12 14:30.  

 
Figure 5-6. Weather Profile of NYC from 2010/05/01 00:00 to 2010/05/17 23:55 (0: no 

precipitation; 1: light rain; 2: moderate rain; 3: heavy rain) (Source: Northwestern University, 
May 2012) 

 
To calibrate the weather effects on traffic, several time periods (listed in Table 5-4), for both clear and 
rainy weather, are identified within the two-week period when TomTom mobile data is available. Two 
separate time periods within a day are chosen, 0:00-3:00am and 7:00-9:00am, to study the effect of 
weather under different traffic conditions. The first period is a mid-night period when density is low and 
traffic is in free flow regime, while the second period is a morning peak period when traffic density is 
high and roads become congested.  

Table 5-4. Selected Study Periods for WRTM calibration 

rainy periods 2010/05/03 (Monday) 0:00-3:00am and 7:00-9:00am 

2010/05/12 (Wednesday) 0:00-3:00am and 7:00-9:00am 

clear periods 2010/05/10 (Monday) 0:00-3:00am and 7:00-9:00am 

2010/05/13 (Thursday) 0:00-3:00am and 7:00-9:00am 
  Source: Northwestern University, May 2012 
 
To perform the validation, two highway segments are selected, with segment 1 on Grand Central 
Parkway, and segment 2 on I-278. Both two segments are of length around 1.2 miles. By extracting 
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trajectories recorded during those study periods, it is observed that the average speeds under rain 
condition drop significantly from clear weather condition. A summary of the observed statistics are 
presented in   
Table 5-5. The reductions of speed are consistent in range with the results calibrated using fixed 
sensor data.  
 

 
Figure 5-7. Selected highway segments for validating weather effect on travel time using 

mobile data (Source: Goole Maps, accessed July 2012) 
  

Table 5-5. Observed average speed on two highway segments during selected periods  

 

0:00-3:00am 7:00-0:00am 
clear rain clear rain 

segment 1 62.40 mph 57.09 mph 37.88 mph 26.19 mph 

segment 2 50.80 mph 41.56 mph 31.36 mph 21.12 mph 
 Source: Northwestern University, July 2012 
 
Figure 5-8 and Figure 5-9 show the variations of speed on the two highway segments with different 
departure times under different weather conditions. It shows that the rain effect on speed increases 
with precipitation intensity, as rainy day 1 (2010/05/03) has more speed drop than rainy day 2 
(2010/05/12). 
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Figure 5-8. Observed speed on highway segment 1 under different weather conditions 

(Source: Northwestern University, July 2012) 
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Figure 5-9. Observed speed on highway segment 2 under different weather conditions 

(Source: Northwestern University, July 2012) 
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5.2.3 Model Accuracy using Mobile Data 

Update Traffic Flow Model Parameters by Bayesian Method using Mobile Data 

Mobile data does not give density information directly; however, such information could be estimated 
using traffic flow theories. One of the simple approach to estimate traffic density is to apply the 

fundamental identity equation (Equation vkq ⋅=        
   (5-2) to speed and flow data under the assumption of stationary traffic. 

vkq ⋅=           (5-2) 

where  q = traffic flow (veh/hr); 
 k = traffic density (veh/mile/lane); 
 v = space mean speed (mile/hr). 
 

 
Figure 5-10. Fixed sensor calibrated traffic flow model with additional points from mobile data 

(Source: Northwestern University, August 2012) 

 
Figure 5-10 shows a calibrated speed-density relation in New York network from fixed sensor data, 
together with some points obtained from mobile data. It is observed that the points from mobile data 
are scattered along the calibrated curve, and deviations between these two different sources of data 
exist. Although the mobile data alone is not as sufficient as fixed sensor data in calibrating traffic flow 
models directly, it could be used to improve the accuracy of the existing models, in conjunction with 
these inferred density data. The Bayesian statistical method rises naturally here, when some prior 
knowledge of the model parameters is known and new information is coming from mobile data. In the 
Bayesian inference context, a particular form of prior distribution of model parameter is assumed, then 
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Bayes’ rule (Equation )(
)()|()|(

DP
PDPDP θθθ =

      
  (5-3) is used to update the probability estimate with additional information, and the 
posterior distribution of model parameter is obtained as a result. The whole procedure could be 
repeated as long as new information is available. 

)(
)()|()|(

DP
PDPDP θθθ =         (5-3) 

where 
P(θ ) = prior distribution of parameter θ ; 
P(D|θ ) = likelihood of data D given model parameter θ ; 
P(θ  |D) = posterior distribution of parameter θ . 
 

The denominator in Equation )(
)()|()|(

DP
PDPDP θθθ =

      
  (5-3 is a normalization constant, which ensure that the posterior  distribution on the 
left-hand side a valid probability density and integrates to one. Given these definitions, the posterior 
distribution of model parameters is actually proportional to the product of prior distribution and the 
likelihood of new data, i.e., )()|()|( θθθ PDPDP ∝ . It is known that if the prior distribution is 
Gaussian, the posterior is also Gaussian and the distribution parameters can be estimated 
analytically. In this study, for computational simplicity, we assume the prior distribution of model 
parameters is Gaussian. The detailed procedure of applying Bayesian method to traffic flow model 
calibration is described below. 
 

1. Transform the second regime of modified Greenshields model into a linear form by taking 
the natural logarithm on both sides: 

)1ln()ln()ln( 00
j

f k
kvvvv −+−=− α , which is equivalent to linear model 

εθθ ++= XY 21 , where )1ln(
jk

kX −= , )ln( 0vvY −= , )ln( 01 vv f −=θ , and 

αθ =2 , ε is random error. 
2. Obtain prior distribution of speed-intercept (vf) and shape parameter (α) from existing traffic 

flow models calibrated using loop detector data, and covert them to prior distributions of 1θ  

and 2θ , i.e., ),()( 00 Σ= θθ NP  

3. Convert speed and density data (vi, ki) obtained from mobile data to Xi, Yi, where 

)1ln(
j

i
i k

kX −= , )ln( 0vvY ii −= . 

4. Find the posterior distributions of 1θ  and 2θ , i.e., ),()|( NNNDP Σ= θθ  where 
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)1( 20
1

0 YX T
NN

εσ
θθ +ΣΣ= − , 1

2
1

0 )1( −− +Σ=Σ XX T
N

εσ
, and εσ  is the standard 

deviation of the random error term which can be estimated from existing model. 
 
Following the above listed steps, the speed intercept parameter (vf) and shape factor (α) of modified 
Greenshields model from loop detector data are updated using Bayesian method. The other three 
parameters in the model, i.e., jam density (kj), minimum speed (v0), and breakpoint density (kbp), are 
assumed unchanged. The estimation results are presented in Table 5-6. The comparisons of the prior 
and posterior distributions of the two parameters are shown in Figure 5-11. It is observed that there is 
little change in the mean value of model parameters after Bayesian treatment; however, the 
dispersions of the distributions get smaller, which indicates mobile data brings more confidence in the 
estimation process. Same methodology can be applied in updating weather adjustment factors 
(WAFs), as long as additional mobile data is available for different weather conditions. 
 
 

Table 5-6. Traffic flow model parameter estimation results 

model parameter 
before adding mobile data after adding mobile data 

mean std dev mean std dev 

transformed 
parameter 

θ1 4.3293 0.0699 4.3158 0.0565 

θ2 4.0811 0.7104 4.9528 0.3373 

modified 
Greenshields model 

parameter 

vf 86.0787 5.3263 84.9958 4.2443 

α 4.0811 0.7104 4.9528 0.3373 
Source: Northwestern University, July 2012 
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Figure 5-11. Comparison of prior and posterior distributions of (a) speed intercept parameter 

(b) shape factor (Source: Northwestern University, August 2012) 
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5.3 Demand-side Parameter Calibration 

5.3.1 Estimation Methodology 
Same as supply-side models, time-dependent (or dynamic) origin-destination (TDOD) matrices are of 
crucial importance as an input for dynamic traffic assignment (DTA) models. In the other FHWA 
funded WRTM-related TrEPS project, a bi-level optimization method that uses traffic counts data from 
loop detectors is adopted to estimate the time-dependent travel pattern (Verbas et al., 2011). In this 
study, an analogous method is used to accomodate new information extracted from mobile data. The 
method was originally developed using probe vehicles, in which automatic vehicle identification (AVI) 
counts serve as data sources (Zhou and Mahmassani, 2006). The approach is also proceeded in a bi-
level framework. In the upper level of framework, in addition to minimize the sum of squared 
deviations of the simulated link flows from the corresponding observed values, it also seeks to 
minimize the deviation between simulated flow split fraction and observed flow split fraction at certain 
locations within the network; in the lower level a dynamic traffic assignment problem is solved. The 
process is iterated until convergence in the reduction of root mean square errors (RMSE) of the 
estimated link-flows is achieved. 
 
The inputs to this framework are: 

• Static/historical OD matrix for the planning time horizon, 
• Time-dependent traffic counts on selected observation links. 
• Time-dependent flow split fractions at certain locations. 

 
The output is: 

• Time-dependent OD matrices over the time horizon with a chosen time interval (usually 5 or 
15 minutes). 

 
The objective function is presented in the following equation. The first objective is to minimize the 
squared deviations between the simulated flows and observed flows on certain links. The second 
objective minimize the squared deviations between estimated dynamic OD pattern and historical static 
OD table. The third objective minimize the squared deviations between simulated and observed flow 
split fraction at selected locations. 
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Where 
 
Llc : The set of links with link-count observations, 
l : The index for observation links; lcLl∈ , 
Lm : The set of links with flow split observations, 
s1 : The index for the first link within a link pair which has flow split observation; mLs ∈1 , 

s2 : The index for the second link within a link pair which has flow split observation; mLs ∈2 , 
cl,t : Observed link flow on link l at simulation/observation time t, 
cs1,t

m : Observed number of trajectories that traversed link s1 at simulation/observation time t, 
cs1,s2,t

m :Observed number of trajectories that traversed link s1 and s2 at simulation/observation time t, 
T : The set of simulation time intervals, 
t : The index for simulation time intervals; Tt∈ , 
h : The set of departure time intervals, 
H : The index for departure time intervals; Hh∈ , 
I : The set of origins, 
i : The index for origins; Ii∈ , 
J : The set of destinations, 
j : The index for destinations; Jj∈ , 

di,j,h : Time-dependent OD flow from origin Ii∈  to destination Jj∈  at the time interval Hh∈  

gi,j : The static OD flow from origin Ii∈  to destination Jj∈  
pl,t,i,j,h : The proportion of demand for origin i, destination j, at departure time h, observed on link l, at 

simulation/observation time t. 
ps1,t,i,j,h : The proportion of demand for origin i, destination j, at departure time h, traversed link s1, at  

simulation/observation time t. 
ps1,s2,t,i,j,h : The proportion of demand for origin i, destination j, at departure time h, traversed link s1 and 

s2, at  simulation/observation time t. 
 
w1, w2, and w3 are positive weights associated with, respectively, the deviations with respect to link 
counts, historical static demand, and observed split fractions. 
 
The proposed problem can be solved by the following iterative solution algorithm: 

1. Select locations to obtain flow split fraction observations ( m
tsc ,1
 and m

tssc ,, 21
) from mobile 

trajectory data. 
2. (Initialization). Start from an initial guess of the demand matrix, obtain flow propositions 

( hjitlp ,,,, , hjitsp ,,,,1
 and hjitssp ,,,,, 21

) from the DTA simulator. 

3. (Optimization). Substitute simulated flow propositions into objective function to solve the 
upper level optimization problem. 

4. (Simulation). Use estimated demand ( hjid ,, ) to run DTA simulation so as to generate new 

flow propositions. 
5. (Evaluation). Calculate the deviation between simulated link flows and observed link counts, 

the deviation between estimated demand and target demand, as well as the deviation 
between estimated flow split fractions and observed flow split fractions. 

6. (Convergence test). If the convergence criterion is satisfied, stop; otherwise, go to Step 3.  
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The three stopping criteria used in this methodology are the root mean squared errors for demand, 
link count observations, and flow split fraction observations: 
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RMSEDemand is the measure of error for the deviation between the new time-dependent demand matrix 
and the original static demand matrix. 
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RMSEFlows is the measure of error for the deviation between the simulated and the observed link flows. 
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RMSESplit is the measure of error for the deviation between the simulated and the observed flow split 
fractions. 
 

5.3.2 Estimation Results 
In this study, five locations in the New York network that have flow split observations from trajectory 
data are selected. They are all intersections for major highways, as shown in Figure 5-12, (a) split 
between I-95 and I-87; (b) split between I-495 and Grand Central Parkway; (c) split between I-278 and 
Brooklyn Battery Tunnel; (d) split between I-678 and Belt Parkway; (e) split between Brooklyn Queens 
Expressway W and Brooklyn Queens Expressway E. The iterative estimation procedure discussed in 
the previous section is then followed. 
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(a)

(b) (c)

(d) (e)
 

Figure 5-12. Selected locations with flow split  
(Source: Google Maps, accessed August 2012) 
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The remaining materials in this section discuss the estimation results for the time-dependent OD 
matrix. Here we present the convergence pattern of the optimization process for obtaining the final OD 
matrix and the resulting time-dependent demand profile. For validation purposes, we compare the 
simulated link flows obtained from the estimated OD matrix to the observed link count data for 
selected links. 
 
Table 5-7 shows the estimation results for the New York City network. The first two columns represent 
the number of single and high-occupancy passenger car trips after each iteration. The last three 
columns show the RMSE values that are discussed in the previous section (i.e., RMSEDemand, 
RMSEFlows and RMSESplit). In the first row, the results associated with the historical OD matrix is also 
presented for comparison. After the first iteration, RMSEDemand increases from zero because the new 
time-dependent OD matrix (in the second row), which is created based on the historical OD matrix, is 
the result of the optimization process that is not only minimizing RMSEDemand but also minimizing 
RMSEFlows and RMSESplit. However, after iteration 2, the error does not increase dramatically and 
always stays below 0.55. RMSEFlows has decreased 21% after the first iteration and has been trending 
downward for the remaining iterations. Also, RMSESplit continues to decrease from initial value of 0.36, 
although some fluctuation exists. The rate of decrease is decreasing, which implies convergence. This 
means that the real-world link count and flow split observations are matched better with the simulation 
results produced by the new time-dependent OD matrix than with the historical OD matrix. 
 
As a link-level validation, the simulated and observed link counts are compared for several selected 
links. Simulated results based on the estimated time-dependent OD matrix are compared with the 
actual observations, which are collected during the time period (6am – 10 am) that corresponds to the 
demand horizon used for the OD matrix estimation. Figure 5-13 displays the cumulative number of 
vehicle counts (left column) and the 15-minute aggregated vehicle counts (right column) for two 
selected links, respectively. Overall, link-level comparisons show good agreements. As a network-wide 
validation, the overall OD demand pattern is also compared. Figure 5-14 presents the temporal 
distributions of SOV trips of the historical OD matrix (denoted by “Old SOVs”) and the most up-to-date 
time-dependent OD matrix (denoted by “New SOVs”). Similarly, Figure 5-15 shows the temporal 
distributions of HOV trips for the historical OD matrix (denoted by “Old HOVs”) and the most up-to-
date time-dependent OD matrix (denoted by “New HOVs”). 
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Table 5-7. RMSE Values for the New York Network 
  Number of Trips RMSE Values 

  SOV* HOV* RMSEDemand RMSEFlows RMSESplit 

Original Static OD matrix 1,561,111 634,848 0** 999.322 0.360 

New time-dependent OD matrix 
after Iteration 1 1,545,857 627,533 0.626 785.802 0.341 

New time-dependent OD matrix 
after Iteration 2 1,552,380 629,948 0.537 806.652 0.344 

New time-dependent OD matrix 
after Iteration3 1,548,736 628,438 0.551 767.011 0.336 

New time-dependent OD matrix 
after Iteration4 1,550,906 629,097 0.527 789.119 0.338 

New time-dependent OD matrix 
after Iteration5 1,548,597 628,155 0.544 760.560 0.327 

New time-dependent OD matrix 
after Iteration6 1,550,794 628,843 0.525 780.140 0.336 

New time-dependent OD matrix 
after Iteration7 1,548,419 628,002 0.542 756.528 0.324 

New time-dependent OD matrix 
after Iteration 8 1,550,007 628,414 0.525 774.139 0.337 

New time-dependent OD matrix 
after Iteration 9 1,548,129 627,908 0.541 755.223 0.323 

New time-dependent OD matrix 
after Iteration 10 1,549,531 628,465 0.527 772.799 0.337 

New time-dependent OD matrix 
after Iteration 11 1,549,175 628,171 0.544 752.768 0.323 

*   SOV: Single-occupancy vehicle, HOV: High-occupancy vehicle   
** Deviation is zero because RMSEDemand in this case represents the deviation between the 
static OD matrix and itself. 
Source: Northwestern University, September  2012  
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Figure 5-13. Observed and Simulated Counts on Selected Links  
(Source: Northwestern University, September 2012) 
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Figure 5-14. Temporal Distribution of SOV trips for the New York Sub-network 

(Source: Northwestern University, September 2012) 
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Figure 5-15. Temporal Distribution of HOV trips for the New York Sub-network  

(Source: Northwestern University, September 2012) 
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5.4 Model Validation 
After the supply-side and demand-side parameters are obtained, the capability of capturing weather 
effects on the traffic flows is tested by performing simulations with specific weather scenarios. For the 
selected test network (New York), days with rain or snow events during the morning peak hours 
(between 6AM and 11AM) are identified and the traffic observations are collected for each identified 
day. The corresponding weather conditions are specified in the DYNASMART weather.dat input files. 
Each weather scenario is simulated with the calibrated OD matrix with and without using weather 
adjustment factors (WAF) in DYNASMART. Then the simulated results are compared with the actual 
observations under the weather condition the weather.dat input file is representing. The main focus is 
to see whether the mobile data calibrated TrEPS model produces realistic traffic states, that is, 
resemble real-traffic conditions under different weather conditions. 
 
Traditionally, with fixed sensor traffic data, TrEPS models are validated by comparing simulated speed 
and flow data with observations from detectors at link level. By incorporating mobile data, the model 
validation work can be enhanced in the following ways: 

• Validation can be extended from link level to path level as observations along different paths 
are available from trajectory data; 

• The variable to be validated will not be limited to traffic flow and speed, but can also be travel 
time, which is an important property obtained from mobile data; 

• Validation will not be restricted on highway segments where loop detector data are available, 
but will be extended to arterials as mobile data provides a much broader geographic 
coverage than fixed sensor data. 

 
Two sets of validations are conducted, with one using link-level speed information and the other using 
path-level travel time information, both of which are extracted from mobile data. 
 

5.4.1 Validation by Speed 
For a link-level comparison, Figure 5-16 presents simulated speeds under clear and rainy conditions 
on a selected link. Figure 5-17 presents the speed values extracted from mobile data on the 
corresponding road segment. In the link-level comparisons, it is observed that both simulated data and 
mobile data give lower speed values under rainy condition than clear weather condition. The 
fluctuation of speed from mobile data is much greater than that of simulated data, probably due to a 
much smaller sample size. 
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Figure 5-16.  Comparison of simulated speeds on a selected link under clear and rainy 

conditions (Source: Northwestern University, September 2012) 
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Figure 5-17. Comparison of mobile data inferred speeds on a selected link under clear and 

rainy conditions (Source: Northwestern University, September 2012) 

 
 

5.4.2 Validation by Travel Time 
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Besides speed data, vehicle trajectory data also can be used to generate travel time information, and 
thus be used to validate simulated path travel times. To illustrate this, a road segment in New York 
network (I-495/ Long Island Expressway, Figure 5-18) is selected where trajectory data are available. 
The travel time that a vehicle spent traversing this segment is then extracted from vehicle trajectory 
data. Figure 5-19 shows the comparison of travel time histograms obtained from the mobile trajectory 
data and simulated trajectory data. It is observed that the mean travel time of that path obtained from 
simulated data is a bit smaller than that from TomTom trajectory data. Moreover, the cumulative 
distributions of travel times are compared in Figure 5-20, and similarities exist between observed and 
simulated travel time distributions. 
  

 
Figure 5-18. A selected path in New York network for travel time validation  

(Source: Google Maps, August 2012) 
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Figure 5-19. Comparison of travel time histograms from mobile data and simulated data 

(Source: Northwestern University, September 2012) 
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Figure 5-20. Comparison of travel time cumulative distribution from mobile data and simulated 

data (Source: Northwestern University, September 2012) 
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Chapter 6. Conclusions and 
Recommendations 

The study has provided a systematic review and assessment of how mobile data, such as that 
available from GPS-equipped vehicles, can improve the performance of Weather-Responsive Traffic 
Management (WRTM) Traffic Estimation and Prediction (TrEPS) models. Focusing on the suite of 
models that have been developed in previous FHWA funded projects, the study has identified a set 
components within the WRTM framework to which new sources of traffic data, from mobile vehicle 
sources, could be incorporated.  
 
The components identified in the study fall within both the supply and demand sides of the model 
system. On the supply side, mobile data can contribute to the calibration of the various relations of 
interest, particularly those that govern link propagation and flows through nodes. On the demand side, 
the most immediate application is the estimation of time-dependent origin-destination trip information. 
Mobile data can also be used to improve the validation process of these models. The potential 
application of mobile data in on-line implementation of Traffic Estimation and Prediction System 
(TrEPS) is also discussed. 
 
Different types of mobile data that could become available from different sources and from major 
potential vendors are identified and compared with each other. It is found that vehicle trajectory data 
provides the best opportunities for the purpose of improving WRTM models and their application. A 
framework for how to implement the integration of mobile data and WRTM models is developed, from 
data fusion, model calibration, to model validation. 
 
The New York City network is selected as the test bed in which to demonstrate the implementation of 
the framework for incorporating mobile data. Vehicle trajectory data provided by TomTom is used as 
the mobile data source. The study used DYNASMART, modified for weather-responsiveness in the 
previous FHWA projects, as the TrEPS model to perform the demonstration work. The detailed 
procedures for calibrating supply-side and demand-side weather-sensitive TrEPS models using 
mobile data are developed. The results are validated by speed and travel time data extracted from 
mobile data source. The results demonstrate that mobile data could be successfully incorporated into 
those models and improve the model accuracy especially by providing broader geographic coverage 
and additional travel time information than traditional fixed sensor traffic data. Such uses are 
especially valuable when sensor information is lacking, providing a local source of information to 
complement a priori model parameter estimates that may have been based on data from other 
locations. 
 
Methodologically, this study has developed a procedure for updating flow model parameters, and 
weather adjustment factors using mobile data as a complement to available sensor information, or in 
some cases as a substitute for such information when it is not locally available. The study has also 
devised a new approach to combine three sources of information, historical, fixed sensor and mobile 
in estimating the origin-destination trip patterns for a given network. 



Chapter 6 Conclusion and Recommendations 

 

U.S. Department of Transportation, Research and Innovative Technology Administration 
Intelligent Transportation System Joint Program Office 

 

Use of Mobile Data for Weather-Responsive Traffic Management Models  |  61 

 
While the work accomplished as a result of this research project advances the state of practice in 
using mobile data for WRTM models, additional efforts are needed to study the application of mobile 
data in on-line TrEPS implementation. Essentially, to achieve the full benefit of using mobile data in the 
intelligent management of traffic systems under weather-related events, development of the real-time 
components of traffic estimation and prediction tools, and their interface with real-time data sources is 
required. Actual field testing, monitoring, and collection of real-time mobile data, can provide essential 
data to calibrate and refine these mechanisms.  
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Introduction and Summary 

General Purpose 
Weather events have a significant role in traffic operations, road safety and in travel time reliability.  
This project demonstrates how mobile data can enhance the flexibility and performance of traffic 
models that are used to evaluate weather-responsive traffic management (WRTM) strategies.  A lot of 
research has already been completed in this area, so the goal of this project is not to add to that 
research, but rather to evaluate the available mobile data and its applicability to existing WRTM 
models.  
 
This Appendix identifies and evaluates current sources of mobile data.  This contains a summary of 
our findings, as well as an inventory of current mobile data sets and their key characteristics.  The 
report contains an inventory of existing data and an analysis of each potential source of data.  This 
evaluation includes a determination of possible sources of data that could be integrated with one or 
more WRTM models.   
 
During our data collection for this task we have identified possible future sources of mobile data to 
pursue, including new technologies and data sources that are currently not available to the public or 
for research.  
 
Private firms provide the best sources of mobile data (Inrix; NAVTEQ; TomTom; and AirSage are most 
active in the US1).  Several of these firms met directly with FHWA staff or via a webinar.   
 
We evaluated the database details the firms were willing to provide.  All firms indicated an interest is 
supporting future commercial sales for transportation planning models in general and WRTM models 
in particular. 

Summary and Initial Recommendations 
At present, Inrix appears to have the largest base of mobile data in the US.  A large portion of these 
data come from commercial vehicles (mostly large trucks) however, which raises questions about their 
suitability for WRTM models.  TomTom and AirSage have nationwide data as well, but with a focus on 
data from passenger vehicles.  Their geographic coverage appears comparable or even better than 
Inrix.  NAVTEQ and TrafficCast also provide nationwide data, but mix mobile data with fixed sensor 
information. 
 
Both TomTom and AirSage have systems capable of providing origin-destination information and 
individual vehicle traces, but both firms are at early stages in converting these data into commercial 
products; so, while the prospects of such offerings are very promising, their practicality is still under 
investigation.  TomTom derive data from GPS devices, making their technology easier to understand 
                                                      
 
1 Outside the US Intellione has a cell phone based mobile data system in operation in Canada with data provided 
by Rogers Telecom and ITIS Holdings (now owned by Inrix) has cell phone and GPS-based systems in Europe, 
Israel, Australia and elsewhere in Asia and Cellint has cell-based systems in Israel and places in Europe.  To 
date, none of these firms have been successful in generating mobile data systems in the US. 
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and evaluate.  AirSage depends on data provided by wireless carriers and some technical details 
remain unclear.  TrafficCast can provide origin-destination data between Bluetooth sensors, but their 
installed base is scattered and focused on major roads.  Information is only available between 
Bluetooth devices located at fixed points. 
 
None of the firms can provide volume counts across their full network.  NAVTEQ does provide volume 
data for locations that have their proprietary sensors – mostly for selected Interstate routes in about 
two dozen major metropolitan areas.   
 
Evaluation results are scattered.  Inrix, AirSage and NAVTEQ have received positive results, with I-95 
Corridor Coalition providing a detailed, independent evaluation of Inrix.  TomTom has yet to be 
evaluated in the US – evaluations in Europe have been positive, but the TomTom system in Europe is 
not exactly comparable to that in the US (more GPS units in Europe and supplemented by cell probe 
data).  Several years ago AirSage received some very negative evaluations from Virginia and other 
states.  Since then they have signed up a second wireless carrier (Verizon), modified some of their 
algorithms, and have carried out additional data validation using their own floating car studies.  All of 
these evaluations, however, have focused on estimates of speed along a given link.  None have 
examined the potential value of these data for WRTM or other planning models.  

Types of Data Needed For WRTM 
Models  
To date the main sources of data for modeling purposes have included travel and traffic surveys (O-D / 
travel patterns, traffic volumes, travel times, etc.) and fixed sensors (flows, speeds, traffic occupancy / 
density).  But practitioners and researchers in the transportation modeling field have long sought more 
detailed and robust data sets than what is typically used in current modeling applications, whether for 
transportation planning or traffic operations purposes.  The emergence of mobile data availability over 
the past few years opens these horizons with regard to geographic and temporal coverage, level of 
detail / resolution, and also new types and complexity of modeling.   
 
The data types available from mobile data providers to date (travel time and speed by road section) 
have primarily been geared towards traffic / traveler information and navigation applications.  As the 
understanding and importance of such data for other applications have risen over time amongst 
transportation agencies and professionals, we have seen significant efforts (much of it supported by 
FHWA) to incorporate mobile data into traffic operations and performance measurement.   
 
A complementary piece of information typically used in operations and performance applications 
involves the knowledge of traffic volumes in the network to match (to the extent possible) the coverage 
and detail available for travel times and speeds derived from mobile data.  This has led to further 
efforts in the mobile data industry to provide inferred or imputed volumes of traffic, as the mechanism / 
installations of mobile data collection do not lend themselves to direct measurement of traffic volumes.  
Yet, the generation of inferred / imputed traffic volumes from mobile data is still in its infancy and the 
industry is trying to develop appropriate techniques and algorithms to derive this type of data. 
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So far mobile data has found their way first into traffic simulation models focusing primarily on 
transportation / traffic supply modeling applications (whether microscopic or mesoscopic models).  
Moving beyond traffic supply modeling, mobile data hold significant promise in enhancing the demand 
side of modeling applications as well.  The underlying premise of mobile data collection (i.e., gathering 
data from GPS or cell phone based probes within a transportation network) provides the opportunity to 
gather information about trip origins and destinations as well as the paths / trajectories that such 
probes followed in their trips.  This provides much more powerful information about traffic / travel 
experience at individual trip level of detail and the associated decisions with regard to route choice, trip 
end patterns, etc.  This type of data can consequently be applied to the full spectrum of traffic 
demand-supply models, enhancing modeling components that range from demand estimation to route 
/ path choice and other trip making decisions and operational behaviors, and which may be captured 
at any level of modeling detail (i.e., from macroscopic / planning applications, through mesoscopic 
planning and operations, to detailed microscopic operations applications).  A major concern with the 
origin-destination / trajectory type of data is the need to protect personal privacy. 
 
For WRTM modeling purposes in general though, mobile data can assist in the development / 
calibration of such models as well as in both offline and online application of such models for 
analyzing, designing and evaluating the performance and deployment effectiveness of WRTM 
strategies.  Table 1 outlines which types of data attributes would be beneficial to each model 
component by level of suitability. 
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Table A-1 

 

Model Components 
Types of Mobile Data 

Travel 
times Speeds Inferred 

Volumes 
Trip Origin-
Destination 

Vehicle 
Trajectories 

Off-line 
Calibration 

Supply 
Parameters 

(Meso) 

Traffic flow Model: speed-
density relations * *** *** - * 

Weather Adjustment 
Factors: traffic flow model 
parameters, maximum or 
service flow raters, speed 
limit margin etc. 

* *** *** - * 

Behavior 
Parameters 

(Micro) 

Car following Model ** *** * - - 

Gap acceptance model * *** *** - - 

Lane changing model * *** *** - - 

Demand 
Parameters 

(Meso & 
Micro) 

Time dependent O-D 
matrix ** ** *** *** *** 

Demand adjustment 
factors under different 
weather conditions 

** ** *** *** *** 

Vehicle Class Composition ** *** *** * * 

On-line 
Traffic State 

Measurement 

Supply Side 
Consistency 

Checking 

Minimize discrepancy 
between observed and 
simulated travel time 

*** * * ** ** 

Minimize discrepancy 
between observed and 
simulated link speeds 

* *** * * ** 

Demand Side 
Consistency 

Checking 

Minimize discrepancy 
between observed and 
simulated O-D demand 

* * *** *** *** 

Evaluation of 
WRTM 

Strategies 

Performance 
Measures 

Link travel measures ** *** *** * *** 

O-D or Path Travel times *** *** *** *** *** 

Vehicle diversion rates or 
compliance rates *** *** *** ** *** 

Note: Number of stars reflects greater suitability of corresponding data type for particular model 
components. 

Current Sources of Mobile Data 
This section provides summary information on the five largest providers of mobile traffic data currently 
active in the United States that claim to have traffic data on a national scale: Inrix; TomTom; 
TrafficCast; AirSage and NAVTEQ.  Despite considerable progress, many parts of this market are still 
at an early stage of development.  This means that certain key variables (price, for example) are not 
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standard and vary based on market conditions.  This is particularly true regarding data key to traffic 
models.  To date, most mobile data firms have focused on traffic information that supports navigation 
systems or 511 systems. Some (AirSage, for example) have only recently begun to support traffic 
models. 
 
We have identified all current private sector players with deployments that extend beyond one local 
deployment, including instances where we can pinpoint a technology as readily applicable to 
nationwide availability.  The providers were willing to provide varying degrees of detailed 
information.   

Vendor Overview 
Available Data Types 

All vendors focus on travel times and speeds since that reflects the current marketplace.  The only 
vendor that offered volume data was NAVTEQ.  These data, however, appear to be provided by 
NAVTEQ’s own sensors located on certain major roads in large cities.    

Data Coverage 

National coverage is provided by the following vendors: 
• AirSage 
• NAVTEQ 
• Inrix 
• TomTom 

TrafficCast was the only sampled vendor that did not offer complete national coverage; although they 
do offer urban coverage in most metropolitan areas. 
All vendors utilize Traffic Message Channels (TMC) codes within their respected coverage ranges.   
NAVTEQ and TomTom offer the ability to provide data for more detailed segments than possible with 
TMC codes and can cover the full roadway network.  

Pricing 

All vendors customize pricing based upon specific client-tailored solutions.  This is particularly true for 
data needed for traffic and planning applications since this market is largely under developed.  Each 
vendor uses a number of factors to determine cost, including but not limited to: 

• Total Number of Discrete Attributes 
• Total Sample Area 
• Total Time Period 
• Intended Client Data Usage 
• Number of Intended Client Users (e.g. single-use, multiple-user internal, external use) 

The only vendor who provided specific pricing information when requested was AirSage. 
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Vendor Specific Information 
Inrix  

Information 
www.inrix.com 
10210 NE Points Dr., Suite 300 Kirkland, WA 98033 
Contact: Pete Costello pete@inrix.com 202-550-5795 

Pricing 
All solutions are custom tailored.  

Data Validation 
I-95 Corridor Coalition - http://www.i95coalition.org/i95/Default.aspx 
The four month I-95 Corridor Coalition study analyzed traffic on 111 miles of highways across 
Delaware, Maryland, New Jersey and Virginia. Using Bluetooth reader technology, the study 
compared 19,000 observations of ground-truth vehicle speeds for over 1,500 hours on 54 
road segments against real-time speed information for those road segments that INRIX 
provides as part of its contract to the Coalition. In October, the I-95 Corridor agreed to extend 
the Inrix contract – although actual purchases are up to individual states. 
Inrix Traffic Quality Benchmarking PDF document is available with more details. 

Real-time and Historical data available  
Real-time –yes 
Historical - yes 

Sources used in generating data 
Commercial GPS data (large trucks), DOT sensor data, and other proprietary data sources 
including automobile and light truck GPS from fleets. Data from large trucks still seems to be 
the largest single source of data. 

TomTom 

Information 
http://www.tomtom.com/traffic_solutions 
11 Lafayette St 
Lebanon, NH 03766 
Contact : Kenneth Clay Kenneth.clay@tomtom.com 800 331 7881 ext. 11337 

Pricing 
All solutions are custom tailored with multiple licensing options available.  

Data Validation 
None in the US to date 

Real-time and Historical data available  
Historical data – yes  
Real-time data - yes 

Sources used in generating data 
• Data from connected TomTom devices (GPS)  
• Data from smartphone applications 
• Data purchased from other vendors 
• Data from connected TomTom Work devices – trucks (GPS)  

http://www.inrix.com/
mailto:pete@inrix.com
http://www.i95coalition.org/i95/Default.aspx
http://www.tomtom.com/landing_pages/traffic_solutions/web/index.php#tab1_
mailto:Kenneth.clay@tomtom.com
callto:+1800%20331%207881
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• Data from the Vodafone mobile phone network (GSM) – but not yet in the US 
• Data from governments and traffic control centers  
• Historical databases (validation only) 

TrafficCast 

Information 
http://trafficcast.com/ 
2801 Coho Street, Suite 100 
Madison, WI 53713, USA 
Tel: +1-608-268-3946 
Contact: Paul Misticawi, pmisticawi@trafficcast.com, tel. 678-575-0958 

Pricing 
All solutions are custom tailored with multiple licensing options available.  

Data Validation 
Not provided, but available for Bluetooth sensors 

Real-time and Historical data available  
Historical data – yes  
Real-time data - yes 

Sources used in generating data 
• Information derived from GPS tracking data (purchased from fleets), public sensors and 

reports of accidents, road works and weather reports.  
• Bluetooth devices are being deployed in quite a few states.  These can provide local data 

on travel times between devices.   

AirSage 

Information 
http://www.airsage.com 
400 Embassy Row, Atlanta GA 30328 
Contact: Bob Pauley rpauley@airsage.com 404-906-1740 

Pricing: 
AirSage provided a document with Pricing for their Data Products 

Data Validation 
Independent testing firm Geostats - See geostatsreport.pdf for study details 
Most recent tests involve AirSage’s own floating car studies in Maryland/Virginia/Washington 
DC for data validation purpose indicating 95% accuracy in travel time measurements – 
Report has not yet been received 
Reports from previous years were quite negative. 

Real-Time Historical Data Available  
Real-time data – yes 
Historical Data – yes 

Attributes Collected  
Date and timestamp, market, TMC code, actual speed and historical mode value. 

Sources used in generating data 
Wireless signaling data provided by Sprint and Verizon; cell phone GPS, and other carrier 
data. 

http://trafficcast.com/
http://www.airsage.com/
mailto:rpauley@airsage.com
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NAVTEQ 

Information 
425 West Randolph Street  
Chicago, Illinois 60606 
Contact: Skip Parker skip.parker@navteq.com 972-467-6086 
T 312 894 7000 

Pricing 
Licensing dependent upon multiple factors. 
http://www.nn4d.com/site/global/market/licensing/p_navteqlicensing.jsp 

Data Validation 
Not provided 

Real-time and Historical data available  
Real-time - Yes 
Historical - Yes 

Attributes Collected  
http://www.nn4d.com/site/global/learn/basics_of_map_data/attributes/p_attributes.jsp 

Sources used in generating data 
Proprietary roadway sensors; fleet GPS purchased; and public sector sensors 

Data Formats Available 
http://www.nn4d.com/site/global/learn/documentation/nt_map_data_formats/p_map_data_for
mats.jsp 

mailto:skip.parker@navteq.com
http://www.nn4d.com/site/global/market/licensing/p_navteqlicensing.jsp
http://www.nn4d.com/site/global/learn/basics_of_map_data/attributes/p_attributes.jsp
http://www.nn4d.com/site/global/learn/documentation/nt_map_data_formats/p_map_data_formats.jsp
http://www.nn4d.com/site/global/learn/documentation/nt_map_data_formats/p_map_data_formats.jsp


Appendix A. Mobile Data Products Offered by Different Vendors 

 

U.S. Department of Transportation, Research and Innovative Technology Administration 
Intelligent Transportation System Joint Program Office 

 

Use of Mobile Data for Weather-Responsive Traffic Management Models  |  75 

Table A-2: Data Vendor Overview without Data Validation Column 

Mobile 
Traffic Data 

Sources 
Technology Used Traffic Data 

Elements Collected 

O-D / Trajectory Data 
and Point Data 

Availability 
 

Real Time 
and 

Historical 
Data 

Availability 

Location-Codes 
Used Other information 

       

Inrix Commercial GPS data, DOT 
sensor data, and other 

proprietary data sources. GPS-
enabled vehicles 

Speed 
Travel Time 

 

Point 
 
 

R, H TMC Codes 

Data available for TMC road 
functional classes FC1, FC2, 

FC3, and some FC4; 
Flexibility in data format / 

levels of aggregation for up to 
latest 90 days 

TomTom TomTom devices (GPS) 
Data from the Vodafone mobile 

phone network (GSM) 
Data from governments and 

traffic control centers 

Speed 
Travel Time 

 

Point, 
Trajectory 

Origin-Destination R, H 
TMC Codes, 
Proprietary 

Segment Tables 
 

NAVTEQ State of the art probe data 
processing including both point 
and route-based observations 

(Cellular) Data from NAVTEQ’s 
proprietary sensor network 

Speed 
Travel Time 

Volume from own 
sensors 

 

Point 
 R, H 

TMC Codes, 
Proprietary 

Segment Tables 
 

AirSage 

Wireless signaling data, Cell 
phone GPS, Other Carrier 

Data 

Date and timestamp, 
Mode, Speed, Travel 

Time, Location ID, Alert 
 

Point, 
Origin-Destination 

 
R, H TMC Codes 

Data available for TMC FC1-
FC4; 

O-D data available in blocks 
as small as 1,000 sq. [fast 

becoming their most popular 
product, latest application an 
O-D study for LA-Las Vegas 

hi speed rail]; 

 



Appendix A. Mobile Data Products Offered by Different Vendors 

 

U.S. Department of Transportation, Research and Innovative Technology Administration 
Intelligent Transportation System Joint Program Office 

 

Use of Mobile Data for Weather-Responsive Traffic Management Models  |  76 

Mobile 
Traffic Data 

Sources 
Technology Used Traffic Data 

Elements Collected 

O-D / Trajectory Data 
and Point Data 

Availability 
 

Real Time 
and 

Historical 
Data 

Availability 

Location-Codes 
Used Other information 

TrafficCast Information derived from GPS 
tracking data, public sensors 

and reports of accidents, road 
works and weather reports. 

Bluetooth Travel-time 
Origination and Destination 

devices. 

Speed 
Travel Time 

Point, 
Limited trajectory data 

depending on Bluetooth 
deployment configuration 

Origin-Destination 

R, H TMC Codes  

Table A-3: Public Agency Consumers of Private Sector Data 

 
 Wisconsin DOT HGAC Michigan DOT Texas DOT(d) Phoenix MPO 

(MAG) 

Status Request for Information  Purchased  Purchased  Purchased  Purchased  

Service Purchased (a)  H  H  H  H  H  

Aggregation Level  Hourly day-of-week 
averages  15 min  5 min  Hourly day-of-week 

averages  Weekday  

Data Purchased(b)  S/TT, PM  S/TT  S/TT  S/TT, PM  PM  

Applications(c)  PM, TM  PM, TM, OD  PM  PM  PM  

Coverage  All arterials  Houston region  MI Freeways  Statewide TMC network  Region  

Timeframe  1-2 years  1 year  5 years  2009  1 year  

Validation Criteria  Not yet established  Not yet established  Avail >99.5% Act less than 
+/- 10mph  None  Not yet established  

Validation techniques  N/A  N/A  Probe, fixed point , re-id  None  Probe, fixed point.  
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 Wisconsin DOT HGAC Michigan DOT Texas DOT(d) Phoenix MPO 
(MAG) 

Pricing (in thousands)  $80,000 (Est.)  $77,000  $200,000 per year  $28,000  Negotiating  

Licensing  Multiple Use  Multiple Use  Single Use  Single Use  Multiple Use  

Multi-Agency  Yes    Yes 

NOTES:  
(a) Service Purchased: “H”=Historical, “RT”=Real-time  
(b) Data Purchased: “S/TT”=Speed or Travel Time”, “PM”=Performance Measures  
(c) Applications: “PM”-Performance or Congestion Monitoring, “TM”=Traffic Model Validation or Calibration, “OD”=Origin-Destination Studies  
(d) See http://apps.dot.state.tx.us/apps/rider56/list.htm for published study results.  
 
Source: http://ops.fhwa.dot.gov/publications/fhwahop11029/index.htm 

http://ops.fhwa.dot.gov/publications/fhwahop11029/index.htm
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FUTURE SOURCES OF MOBILE DATA 

Mobile Data Generation 
Technology has become ubiquitous with the advent of personal devices such as smart phones and mobile 
tablets (“iPod” like devices). Equally important is the advent of the “app” stores where specialized software 
applications can be quickly added to these personal devices enabling almost any function imaginable. So it 
would not be difficult to create and deploy an application for these devices to generate the mobile data desired 
by the transportation community. In fact, there is precedent with the tracking cookies used by web sites to track 
visitors on the internet. An open question is whether these smart devices need to communicate with the 
conveyance – automobile, truck, bus, commuter train, etc. Another question is whether the communications 
needs to be real-time, collected later or some combination thereof. 
 
This technology perspective naturally leads to the cellular phone and personal computing vertical markets. 
Apple Computer is an excellent example where they provide these devices and created an “app” marketplace. 
Google, initially an internet company, is quickly expanding into Apple’s markets as a device and application 
provider. There are indications Google is working to combine their internet services to create new service 
offerings. Another approach is the embedding of such devices into the car or truck. Ford in Synch or GM 
OnStar are excellent examples where the personal smart devices and connectivity is being adapted to the car. 

Mobile Data Collection 
Collecting mobile data from these devices, both personal and embedded, while technically feasible, may have 
more to do with economic incentives and associated business models. The communications protocols such as 
Wi-Fi or Bluetooth communications are already present in these technology devices so localized data transfer 
would not be an issue. The mobile data “app” would provide the user the ability to authorize the data transfer to 
an entity in exchange for economic consideration. A real time mobile data model would require the use of 
existing commercial communications such as cellular or broadband. The individual would bear the upfront cost 
through their existing service plans. However, depending on who the data aggregator is, an economic 
incentive may also be viable to offset the consumer data transmission costs. There are examples of mobile 
data being collected today through standalone GPS device providers such as TomTom. 
 
A localized, non-real time mobile data example would be gas stations providing per gallon discounts when the 
consumer downloads a finite quantity of mobile data while pumping gas. The gas station in turn could have 
service agreements with a data aggregator who would purchase the mobile data from them. In essence, a new 
business model utilizes technology and infrastructure already in place today. This business model could be 
extended to almost any public location frequented by the traveling public today – gas stations, food stores, 
coffee shops or even public transportation. The oil companies who either own or franchise the gas stations 
could enter this market as well. This could even be extended to social media sites such as Facebook or 
LinkedIn where a large network is already in place. In the extreme, a company such as Groupon could offer its 
services in exchange for the mobile data.  

Mobile Data Aggregation 
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Mobile data volume and transmission would require a company with significant data warehousing and mining 
capabilities. Again internet-centric companies such as Google or Facebook have the requisite data centers, 
server farms and associated infrastructure to effectively aggregate, process and use such vast amounts of 
mobile data. More traditional information technology companies such as IBM and Cisco would be capable as 
well. Knowledgeable transportation focused companies such as Intelligent Transportation System (ITS), A&E 
or outsourced services firms may have the requisite subject matter expertise but lack the information 
technology scale. Mergers and acquisitions may yet provide a winning combination. The recent acquisition of 
ACS by Xerox is a good example of combining IT expertise and scale with subject matter expertise.  
 
The military market has numerous companies, Lockheed Martin, Boeing, Northrup Grumman, BAE and others 
who have the requisite IT expertise and scale to be successful in mobile data aggregation. In fact these 
companies may bring disruptive technologies such as unmanned aerial vehicles (UAV) to address elements of 
the mobile data problem. 

Specific Issues that Will Shape Future Mobile Data 
Existing mobile devices, particularly the smartphone market, has connected over 82 million users in the United 
States to the internet. The overwhelming majority of these devices include one or more GPS services that 
support real-time location information between the device and the service provider. This penetration rate of 
nearly 25% provides for the capability to have robust traffic information for most of the country. 
 
For example, mobile users of Google Maps with the GPS enabled currently feed anonymous data back to 
Google that provides a speed profile. Google combines that information with other users to produce the traffic 
layers on their maps. 
 
Effectively, every GPS enabled device including handheld navigation systems, and vehicles themselves 
through services such as GM’s On-Star and Ford’s SYNC can all collect detailed speed and location data to 
support a variety of mobility applications. 
Looking beyond standard GPS utilities, the Bluetooth travel time collection market has proven to be a very cost 
effective source of mobile data for DOTs in evaluating congestion and travel characteristics, often with relative 
small penetration rates, sometimes less than 5 percent. 
 
Insurance companies like Progressive have implemented Pay As You Drive (PAYD) insurance plans with 
associated measuring devices to allow users to pay based on per mile activity. 
 
There are two key constraints to accessing mobile data sets. 

1. Privacy – Despite the fact that people are no longer truly moving anonymously through the streets, in 
stores, and at home. 

2. Private Sector Market Data – Although users of mobile devices are often willing to opt-in and share 
their private data, the collectors often have a competitive reason to not sharing details that reveal 
information about the numbers of customers, location densities of the customer base, and on/off 
status type of data.  

 
Just as importantly the true utility and applicability of the information can be cloudy with the ability to effectively 
characterize the answers to the following questions. 

• Can the frequency of collected location, speed and other movement data be effectively defined per 
data source? 

• Can any penetration rate or volume data be gathered from the sources? 
• What is the native accuracy of the data collected? 
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• Is the collected data available in sufficient intervals to support Applications X, Y, Z? 
• What is the cost move that data and who will bear that cost? 
• What is the cost to aggregate and integrate the data into safety and mobility applications? 

 
Independent of the technological considerations, the willingness of the users and the simplicity with which they 
share their information, be it on a smart phone, at a point-of-sale handoff at the gas station, intersection, or 
store via a debit/credit transaction, or download from the vehicle, will depend on the handoff being unobtrusive 
and with some value provided back to the users. That value could be in many forms ranging from cash back 
payments to discounted services and goods to free applications or services.  
 
While the connected vehicle initiatives will bring a level of coordination and standardization to the data 
collection process for very specific transportation analysis data, the reality is the private sector market place 
will move forward without standards, particularly where the value in sharing the information may support more 
private business strategic analysis and marketing uses. For example, if a company can more effectively 
market goods and services, by better targeting consumers, then those companies may be willing to pay the 
bills that support the collection of location information. For example, with the prevalence of electronic 
billboards, particularly in urban environments, the near real-time understanding of the density of potential 
customers and even potentially demographic information may provide those advertisers with a better return in 
terms of where, when and how to utilize the billboards, and potentially how to modify and target other 
marketing methods. 
 
Looking at an even more anonymous methods of obtaining traffic information, the potential for high resolution 
satellite imagery and high resolution video analytics at least has the potential to serve as a massive CCTV 
network without requiring any user buy-in. For example, scaling up the powers of video analytics systems such 
as those provided by Citilog, Abacus, and other video technologies may be feasible. The ability to pay for that 
type of deployment is unclear. 

Mobile Data Summary 
In the final analysis, it would be difficult for any one company to have the core competencies for providing an 
end-to-end solution with sufficient market share to generate the volume and geographic footprint needed. 
While the technology has been present, four key success factors are: 

• Reaching the mass market with minimal infrastructure, time to deploy and cost 
• Applying the technology in a new or different way  
• Creating new and beneficial business model(s) 
• Strategic partnership(s) combining disparate core competencies.  
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Appendix B. Calibration Results for 
Traffic Flow Model Using Fixed 
Sensor Data in Baltimore Area 
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Location 
Weather 
Condition 

qmax  
(veh/ 
5-min) 

vf 
(mph) alpha 

kbp 
(vpmpl) 

uf 
(mph) 

v0 
(mph) 

kj 
(vpmpl) 

# of observations 

RMSE R2 

WAF 
regime 

1 
regime 

2 F_qmax F_vf F_alpha F_kbp 

I-695 @ 
Joppa Rd 

normal 584 84.70 3.12 12.18 71.51 2 225 383 3.89 0.94 0.94 1.00 1.00 1.00 1.00 
light rain 594 85.13 3.12 15.22 68.81 2 225 17 4.31 0.96 0.96 1.02 1.01 1.00 1.25 

moderate rain 514 81.41 3.12 16.07 65.01 2 225 8 5.17 0.93 0.93 0.88 0.96 1.00 1.32 
heavy rain 542 84.58 3.12 30.19 54.67 2 225 22 4.88 0.90 0.90 0.93 1.00 1.00 2.48 
light snow 356 63.98 3.12 3.52 61.00 2 225 140 8.08 0.17 0.17 0.61 0.76 1.00 0.29 

moderate snow 260 61.12 3.12 2.96 58.72 2 225 112 6.64 0.34 0.34 0.45 0.72 1.00 0.24 
heavy snow 258 60.08 3.12 0.00 60.08 2 225 2 5.40 0.29 0.29 0.44 0.71 1.00 0.00 

I-695 @ 
Providence 

Rd 

normal 550 85.15 3.46 19.04 65.34 10 225 462 4.47 0.79 0.79 1.00 1.00 1.00 1.00 
light rain 477 80.53 3.46 22.15 59.28 10 225 265 4.06 0.83 0.83 0.87 0.95 1.00 1.16 

moderate rain 429 79.78 3.46 24.66 56.70 10 225 87 4.39 0.08 0.08 0.78 0.94 1.00 1.29 
heavy rain 400 N/A N/A N/A 55.11 10 225 N/A N/A N/A N/A 0.73 N/A N/A N/A 
light snow 557 74.95 3.46 17.20 59.33 10 225 807 7.37 0.36 0.36 1.01 0.88 1.00 0.90 

moderate snow 504 64.77 3.46 16.04 52.41 10 225 278 8.21 0.36 0.36 0.92 0.76 1.00 0.84 
heavy snow 332 50.77 3.46 2.31 49.34 10 225 22 6.06 0.72 0.72 0.60 0.60 1.00 0.12 

I-695 @ 
Stevenson 

Rd 

normal 676 85.34 4.81 12.84 66.80 10 225 743 5.52 0.58 0.58 1.00 1.00 1.00 1.00 
light rain 653 84.79 4.81 13.79 65.18 10 225 163 4.06 0.94 0.94 0.97 0.99 1.00 1.07 

moderate rain 559 81.20 4.81 15.54 60.47 10 225 21 3.37 0.93 0.93 0.83 0.95 1.00 1.21 
heavy rain 589 81.67 4.81 16.72 59.45 10 225 77 3.94 0.90 0.90 0.87 0.96 1.00 1.30 
light snow 608 82.86 4.81 15.16 62.10 10 225 209 5.54 0.57 0.57 0.90 0.97 1.00 1.18 

moderate snow 489 68.50 4.81 12.68 54.27 10 225 389 7.43 0.16 0.16 0.72 0.80 1.00 0.99 
heavy snow 425 65.96 4.81 13.43 51.63 10 225 125 6.22 0.27 0.27 0.63 0.77 1.00 1.05 

I-695 
between 

Stevenson 
Rd and 

Greenspring 
Ave 

normal 609 79.11 3.73 10.65 67.68 10 225 423 5.20 0.66 0.66 1.00 1.00 1.00 1.00 
light rain 570 76.76 3.73 10.38 65.98 10 225 100 3.72 0.93 0.93 0.94 0.97 1.00 0.97 

moderate rain 526 74.93 3.73 10.30 64.51 10 225 16 3.01 0.94 0.94 0.86 0.95 1.00 0.97 
heavy rain 515 72.88 3.73 12.37 60.92 10 225 73 3.86 0.86 0.86 0.85 0.92 1.00 1.16 
light snow 369 65.90 3.73 6.06 60.49 10 225 72 5.38 0.10 0.10 0.61 0.83 1.00 0.57 

moderate snow 366 66.67 3.73 7.73 59.74 10 225 329 7.32 0.04 0.04 0.60 0.84 1.00 0.73 
heavy snow 394 66.66 3.73 10.87 57.11 10 225 133 8.94 0.04 0.04 0.65 0.84 1.00 1.02 

 I-695 @ US 
1 Outer 

Loop 

normal 471 88.22 3.92 15.36 67.34 2 225 269 3.52 0.86 0.86 1.00 1.00 1.00 1.00 
light rain 484 84.29 3.92 18.36 60.93 2 225 174 4.78 0.95 0.95 1.03 0.96 1.00 1.20 

moderate rain 379 71.71 3.92 7.61 62.91 2 225 7 5.01 0.95 0.95 0.80 0.81 1.00 0.50 
heavy rain 306 69.59 3.92 13.86 54.67 2 225 81 5.34 0.83 0.83 0.65 0.79 1.00 0.90 
light snow 393 81.59 3.92 15.22 62.48 2 225 122 7.68 0.83 0.83 0.83 0.92 1.00 0.99 

moderate snow 195 N/A N/A N/A 50.70 N/A N/A N/A N/A N/A N/A 0.41 N/A N/A N/A 
heavy snow 279 N/A N/A N/A 49.72 N/A N/A N/A N/A N/A N/A 0.59 N/A N/A N/A 
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Location 
Weather 
Condition 

qmax  
(veh/5-min) 

vf 
(mph) alpha 

kbp 
(vpmpl) 

uf 
(mph) 

v0 
(mph) 

kj 
(vpmpl) 

# of observations 

RMSE R2 

WAF 
regime 

1 
regime 

2 F_qmax F_vf F_alpha F_kbp F_uf 

 I-695 @ I-70 

normal 543 83.11 4.53 16.36 61.95 10 225 230 174 3.88 0.91 1.00 1.00 1.00 1.00 1.00 

light rain 585 84.27 4.53 21.29 57.36 10 225 350 244 3.31 0.95 1.08 1.01 1.00 1.30 0.93 

moderate rain 514 83.40 4.53 22.70 55.35 10 225 58 18 3.01 0.89 0.95 1.00 1.00 1.39 0.89 

heavy rain 488 81.87 4.53 22.26 54.85 10 225 88 12 3.92 0.79 0.90 0.99 1.00 1.36 0.89 

light snow 521 88.28 4.53 19.51 61.92 10 225 81 33 4.06 0.86 0.96 1.06 1.00 1.19 1.00 
moderate 

snow 494 81.75 4.53 26.31 50.87 10 225 163 5 7.22 0.04 0.91 0.98 1.00 1.61 0.82 

heavy snow 360 54.12 4.53 8.58 47.00 10 225 37 17 6.43 0.19 0.66 0.65 1.00 0.52 0.76 

 I-695 
approaching 

US 40 W 

normal 650 96.75 5.00 16.81 68.83 10 225 407 140 3.61 0.80 1.00 1.00 1.00 1.00 1.00 

light rain 617 90.57 5.00 19.18 61.61 10 225 72 344 3.69 0.95 0.95 0.94 1.00 1.14 0.90 

moderate rain 560 85.45 5.00 18.63 58.97 10 225 52 58 4.41 0.93 0.86 0.88 1.00 1.11 0.86 

heavy rain 578 82.88 5.00 20.59 55.10 10 225 70 30 3.15 0.96 0.89 0.86 1.00 1.23 0.80 

light snow 538 90.69 5.00 17.29 64.10 10 225 124 82 7.54 0.56 0.83 0.94 1.00 1.03 0.93 
moderate 

snow 402 89.70 5.00 23.02 56.46 10 225 222 22 6.77 0.40 0.62 0.93 1.00 1.37 0.82 

heavy snow 191 N/A N/A N/A 43.94 N/A N/A N/A N/A N/A N/A 0.29 N/A N/A N/A 0.64 



 

 

 
 
 
 
 
 
 
 
 
 

U.S. Department of Transportation 
ITS Joint Program Office-HOIT 
1200 New Jersey Avenue, SE 

Washington, DC 20590 
 

Toll-Free “Help Line” 866-367-7487 
www.its.dot.gov 

 
FHWA-JPO-13-003 

 
 

http://www.its.dot.gov/

	Chapter 1. Introduction
	1.1 Background
	1.2 Emergence of Mobile Data
	1.3 Structure of Final Report

	Chapter 2. Review of WRTM Models
	2.
	2.1 Overview of Traffic Estimation and Prediction System
	2.2 Modeling Weather Effects
	2.2.1 Overall Conceptual Framework
	2.2.2 Modeling Weather Effect on Supply Side
	2.2.3 Modeling Weather Effect on Demand Side
	2.2.4 Conceptual Framework for On-line Implementation


	Chapter 3. Incorporating Mobile Data to WRTM Models
	3.
	3.1 Properties of Mobile Data
	3.2 Mobile Data Sources
	3.3 Selection of WRTM models for Incorporating Mobile Data
	3.3.1 Supply Side Model
	Modified Greenshields Traffic Flow Model
	Weather Adjustment Factor

	3.3.2 Demand Side Model
	3.3.3 On-line Implementation

	3.4 Implementation Framework

	Chapter 4. Study Network
	Chapter 5. Calibration and Validation of Weather-sensitive TrEPS Model Using Mobile Data
	4.
	5.
	5.1 Data Collection
	5.1.1 Weather Data
	5.1.2 Fixed Sensor Traffic Data
	5.1.3 Mobile Data

	5.2 Supply-side Parameter Calibration
	5.2.1 Calibration using Fixed Sensor Traffic Data
	Weather Categorization
	Traffic Flow Model Calibration using Fixed Sensor Data
	Weather Adjustment Factor Calibration

	5.2.2 Validation of Weather Effect on Speed
	5.2.3 Model Accuracy using Mobile Data
	Update Traffic Flow Model Parameters by Bayesian Method using Mobile Data


	5.3 Demand-side Parameter Calibration
	5.3.1 Estimation Methodology
	5.3.2 Estimation Results

	5.4 Model Validation
	5.4.1 Validation by Speed
	5.4.2 Validation by Travel Time


	Chapter 6. Conclusions and Recommendations
	Available Data Types
	Data Coverage
	Pricing
	Inrix
	Information
	Pricing
	Data Validation
	Real-time and Historical data available
	Sources used in generating data

	TomTom
	Information
	Pricing
	Data Validation
	Real-time and Historical data available
	Sources used in generating data

	TrafficCast
	Information
	Pricing
	Data Validation
	Real-time and Historical data available
	Sources used in generating data

	AirSage
	Information
	Pricing:
	Data Validation
	Real-Time Historical Data Available
	Attributes Collected
	Sources used in generating data

	NAVTEQ
	Information
	Pricing
	Data Validation
	Real-time and Historical data available
	Attributes Collected
	Sources used in generating data
	Data Formats Available



