

PHMSA Risk Modeling Methodologies Public Workshop

A Framework for Probability Estimation

Mark Stephens C-FER Technologies Arlington, VA - September 9 and 10, 2015

Why Consider Risk?

- Can provide a consistent and objective basis for assessing, managing and demonstrating pipeline performance
- Actions based on risk assessment reflect both likelihood of failure and potential consequences
- Applicable to design and integrity management
 Focus here on application to integrity management

Available Approaches

Qualitative vs Quantitative

- Qualitative methods: characterize without quantifying risk
 - Suited to threat identification and risk ranking
- Quantitative methods: objective basis for decision making
 - Suited to determining what action is required (if any) and when

Quantitative options

- Statistical: estimates developed from historical data
 - Not very line specific, difficult to reflect impact of maintenance
 - Best suited to model validation
- Model based: estimated from pipeline & ROW attributes
 - Can be very line specific & reflective of maintenance actions
 - Preferred basis for decision making

C-FER Technologies

Model Based Approach

- Risk = Probability x Consequence
- Models available for both risk components
 - Probability estimation models have been developed based on structural reliability methods (an established approach applied in other industries)
 - This presentation focused on probability of failure (POF) estimation

Basis for Models - Consider the Integrity Management Process

- Management of progressive (time dependent) damage
 - Assess existing damage severity
 - Detect and size existing damage
 - Assess anticipated behavior over time
 - Estimate rate of growth and assess time for damage to become failure critical
 - Manage integrity
 - » Through periodic inspection and remediation

• Management of random (time independent) damage

- Assess likelihood of event occurrence
 - E.g. quantify third-party hit frequency or seismic event likelihood
- Assess anticipated pipe response to loading event
 - Quantify damage tolerance
- Manage integrity
 - Through control of event likelihood and/or failure potential given event

Uncertainties Inherent in the Integrity Management Process

- Random variations \rightarrow Loads imposed on the line
 - Internal pressure
 - Third party impact force
- Measurement uncertainty → Pipe properties & line condition
 - Joint-by-joint yield strength & fracture toughness
 - Number and size of defects
 - Defect growth rates
- Model uncertainty → Pipe behavior under loads
 - Model assumptions and approximations

Probability Estimation

Time-dependent damage

(e.g. corrosion, cracks, or progressive ground movement)

Failure rate (per mi-yr) = No. defects (per mi) x POF per defect (per yr)

- Considerations in developing failure rate estimate (e.g. corrosion)
 - Characterization of defect population
 - Assumed actual number of features and feature sizes reflects the probability of detection and sizing accuracy of inspection method
 - − Probability of failure over time ← structural reliability model
 - Failure projections reflects uncertainty in defect growth rates, variability in pipe properties, and accuracy of the failure prediction model
- Ability to reflect the impact of maintenance (e.g. corrosion)
 - Effects of defect remediation, re-inspection interval and/or modified operating pressure are directly reflected in probability estimates

Probability Estimation

Time-independent damage

(e.g. third-party damage or sudden ground movement)

Failure rate (per mi-yr) = No. events (per mi-yr) x POF per event

- Considerations in developing failure rate estimate (e.g. 3rd party dmg)
 - Event occurrence frequency ← fault tree model
 - Likelihood of excavation activity (given land use) and effectiveness of damage prevention measures (e.g. signage, ROW condition, one-call system, patrol frequency, burial depth, mechanical protection) are reflected in estimate
 - Failure given event ← structural reliability model
 - Failure given hit can reflect uncertainty on damage caused by event, variability in pipe properties, and accuracy of failure prediction model
- Ability to reflect impact of maintenance (e.g. 3rd party dmg)
 - Effect of changes in damage prevention measures and/or modified operating pressure are directly reflected in probability estimates

Probability Estimation Based on Structural Reliability Models

• Feasibility

- Structural reliability methods and models for specific pipeline integrity threats have been under development for more than 20 years (JIPs & PRCI → <u>R</u>eliability <u>Based Design</u> and <u>Assessment</u>, RBDA)
- Many models in public domain, some in Annex O of CSA Z662

Validity

 Model development activities have included calibration/validation exercises wherein a suite of models were used to hindcast historical failure rates for the existing North American transmission pipeline network – agreement shown to be good

Probability Estimation Based on Structural Reliability Models

Benefits

- Sound basis for line-specific, threat-specific probability estimates
- Framework for consideration of significant sources of uncertainty
- Can reflect maintenance actions & damage prevention measures
- Implementation considerations
 - Models require significant development effort
 - Incentive to leverage previous work and/or standardize
 - Data requirements not insignificant
 - This data is the basis for objective estimates of failure probability, worth the effort to collect and interpret