Characterizing Bikeshare Usage with Network Modeling Techniques

Jeffrey Taylor and Cathy Liu

Presented April 13, 2016

Transportation Networks

Source: Google Maps

Simplified Representation

Networks/Graphs

- Components:
 - Nodes/Vertices
 - Links/Edges
- Network Structure
 - Connectivity
 - Density
 - Distance
 - Centrality

Source: Wikimedia Foundation

Centrality Measures

• Centrality can indicate importance in graphs

Measure	Definition
Degree centrality	Number of incoming links to a node
Eigenvector centrality	Like degree centrality, but weights incoming links based on the centrality of neighboring nodes
Closeness centrality	Measures the average distance to other nodes from each node
Betweenness centrality	Measures how many paths between nodes use each network node

Application to Bikeshare Usage

Methodology

- Inspired by Wang et al. (2012) and Toole et al. (2015)
 - Analyze usage with graph of network flows
 - Metrics: Degree & Betweenness Centrality

 Goal: Identify attractive routes, and what makes them attractive

Background

• GREENbike SLC opened in 2013

Automated rental kiosks located downtown

- Rapid system expansion
 - Open in 2013: 10 Stations, 55 Bikes
 - By Mid 2013: 12 Stations, 75 Bikes
 - Expanded capacity at 5 existing stations
 - 2014: 20 Stations, 150 Bikes
 - Expanded capacity at 4 existing stations

GREENbike Bikeshare Program

GreenBike GPS Data

- Approx. 9500 trips, 3400 travelers
- Time Period: July 1, 2014 to Sept. 30, 2014
- Passive GPS Data

- Locations along route, no time stamps

- Other Relevant Data:
 - Checkout/Return Kiosk, Checkout/Return Time
 - Trip Distance, Travel Time
 - User type (24-hour, Annual Memberships)

GPS Map Matching

Bikeshare Trip Densities

Bipartite Usage Graph

- Bipartite: 2 sets of nodes
- Convert links to nodes

Degree Centrality

- Count the number of incoming links at a node
 - In the bipartite usage graph, this counts the number of trip sources using a link in the street network

Degree Centrality

Betweenness Centrality

Betweenness Centrality

Application: Conceptual Understanding

Degree centrality indicates which routes are used by multiple trip sources

Higher values indicate wide-spread use

- Betweenness centrality indicates which routes we expect most trips to utilize
 - Where do we expect to see high traffic from multiple trip sources?

Application: Conceptual Understanding

- Combine Degree & Betweenness
 - Compare links with many diverse traffic sources to areas expected to have many diverse traffic sources
- Outcomes:

Betweenness	Degree	Interpretation
High	High	Important links connecting many trip sources
Low	High	Higher utilization than expected – Attractive links
High	Low	Lower utilization than expected – important links, but utilized by more local travelers
Low	Low	Lower importance links mostly used by local travelers

Route Classification Results

