Skip to content
DOT tab

Transportation and Climate Change Clearinghouse

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

A

Acid rain: Also called acid precipitation or acid deposition, acid rain is precipitation containing harmful amounts of nitric and sulfuric acids formed primarily by sulfur dioxide and nitrogen oxides released into the atmosphere when fossil fuels are burned. It can be wet precipitation (rain, snow, or fog) or dry precipitation (absorbed gaseous and particulate matter, aerosol particles or dust). Acid rain has a pH below 5.6. Normal rain has a pH of about 5.6, which is slightly acidic. The term pH is a measure of acidity or alkalinity and ranges from 0 to 14. A pH measurement of 7 is regarded as neutral. Measurements below 7 indicate increased acidity, while those above indicate increased alkalinity.1

Aerosol
A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 micrometers (µm) and residing in the atmosphere for at least several hours. Aerosols may be of either natural or anthropogenic origin. Aerosols may influence climate in two ways: directly through scattering and absorbing radiation, and indirectly through acting as condensation nuclei for cloud formation or modifying the optical properties and lifetime of clouds. The term has also come to be associated, erroneously, with the propellant used in "aerosol sprays." See climate, particulate matter, sulfate aerosols.3

Adaptation
Adjustment in natural or human systems to a new or changing environment. Adaptation to climate change refers to adjustment in natural or human systems in response to actual or expected climatic stimuli or their effects, which moderates harm or exploits beneficial opportunities. Various types of adaptation can be distinguished, including anticipatory and reactive adaptation, private and public adaptation, and autonomous and planned adaptation.5

Aftermarket converted vehicle
A standard conventionally fueled, factory-produced vehicle to which equipment has been added that enables the vehicle to operate on alternative fuel. 1

Aftermarket vehicle converter
An organization or individual that modifies OEM vehicles after first use or sale to operate on a different fuel (or fuels). 1

Alternative Energy
Energy derived from nontraditional sources (e.g., compressed natural gas, solar, hydroelectric, wind).5

Alternative Fuels
Methanol, denatured ethanol, and other alcohols, mixtures containing 85 percent or more (or such other percentage, but not less than 70 percent) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; and electricity, including electricity from solar energy.2

Alternative fuels, for transportation applications, include the following:

  • methanol
  • denatured ethanol, and other alcohols
  • fuel mixtures containing 85 percent or more by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels -- natural gas
  • liquefied petroleum gas (propane)
  • hydrogen
  • coal-derived liquid fuels
  • fuels (other than alcohol) derived from biological materials (biofuels such as soy diesel fuel)
  • electricity (including electricity from solar energy.)

    "... any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits." The term "alternative fuel" does not include alcohol or other blended portions of primarily petroleum-based fuels used as oxygenates or extenders, i.e. MTBE, ETBE, other ethers, and the 10-percent ethanol portion of gasohol. 1

Alternative-fuel vehicle (AFV)
A vehicle designed to operate on an alternative fuel (e.g., compressed natural gas, methane blend, electricity). The vehicle could be either a dedicated vehicle designed to operate exclusively on alternative fuel or a nondedicated vehicle designed to operate on alternative fuel and/or a traditional fuel. 1

Alternative fuel vehicle converter
An organization (including companies, government agencies and utilities), or individual that performs conversions involving alternative alternative fuel vehicles. An AFV converter can convert (1) conventionally fueled vehicles to AFVs, (2) AFVs to conventionally fueled vehicles, or (3) AFVs to use another alternative fuel. 1

Annex I Countries/Parties
Group of countries included in Annex I (as amended in 1998) to the United Nations Framework Convention on Climate Change, including all the developed countries in the Organization of Economic Co-operation and Development, and economies in transition. By default, the other countries are referred to as Non-Annex I countries. Under Articles 4.2 (a) and 4.2 (b) of the Convention, Annex I countries commit themselves specifically to the aim of returning individually or jointly to their 1990 levels of greenhouse gas emissions by the year 2000. 5

Anthropogenic
Made by people or resulting from human activities. Usually used in the context of emissions that are produced as a result of human activities. 6

Atmosphere
The gaseous envelope surrounding the Earth. The dry atmosphere consists almost entirely of nitrogen (78.1 percent volume mixing ratio) and oxygen (20.9 percent volume mixing ratio), together with a number of trace gases, such as argon (0.93 percent volume mixing ratio), helium, radiatively active greenhouse gases such as carbon dioxide (0.035 percent volume mixing ratio), and ozone. In addition the atmosphere contains water vapor, whose amount is highly variable but typically 1 percent volume mixing ratio. The atmosphere also contains clouds and aerosols.3

Atmospheric Lifetime
The lifetime of a greenhouse gas refers to the approximate amount of time it would take for the anthropogenic increment to an atmospheric pollutant concentration to return to its natural level (assuming emissions cease) as a result of either being converted to another chemical compound or being taken out of the atmosphere via a sink. This time depends on the pollutant's sources and sinks as well as its reactivity. The lifetime of a pollutant is often considered in conjunction with the mixing of pollutants in the atmosphere; a long lifetime will allow the pollutant to mix throughout the atmosphere. Average lifetimes can vary from about a week (sulfate aerosols) to more than a century (chlorofluorocarbons (CFCs), carbon dioxide). 3

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

B

Bi-fuel vehicle
A motor vehicle that operates on two different fuels, but not on a mixture of the fuels. Each fuel is stored in a separate tank.1

Biodiesel
Any liquid biofuel suitable as a diesel fuel substitute or diesel fuel additive or extender. Biodiesel fuels are typically made from oils such as soybeans, rapeseed, or sunflowers, or from animal tallow. Biodiesel can also be made from hydrocarbons derived from agricultural products such as rice hulls.1

Biofuels
Liquid fuels and blending components produced from biomass (plant) feedstocks, used primarily for transportation.1

Biomass
Total dry weight of all living organisms that can be supported at each tropic level in a food chain. Also, materials that are biological in origin, including organic material (both living and dead) from above and below ground, for example, trees, crops, grasses, tree litter, roots, and animals and animal waste.7

Biosphere
The part of the Earth system comprising all ecosystems and living organisms, in the atmosphere, on land (terrestrial biosphere) or in the oceans (marine biosphere), including derived dead organic matter, such as litter, soil organic matter and oceanic detritus. 3

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

C

Carbon Cycle
All parts (reservoirs) and fluxes of carbon. The cycle is usually thought of as four main reservoirs of carbon interconnected by pathways of exchange. The reservoirs are the atmosphere, terrestrial biosphere (usually includes freshwater systems), oceans, and sediments (includes fossil fuels). The annual movements of carbon, the carbon exchanges between reservoirs, occur because of various chemical, physical, geological, and biological processes. The ocean contains the largest pool of carbon near the surface of the Earth, but most of that pool is not involved with rapid exchange with the atmosphere. 6

Carbon Dioxide
A naturally occurring gas, and also a by-product of burning fossil fuels and biomass, as well as land-use changes and other industrial processes. It is the principal anthropogenic greenhouse gas that affects the Earth's radiative balance. It is the reference gas against which other greenhouse gases are measured and therefore has a Global Warming Potential of 1. 5

Carbon Dioxide Fertilization
The enhancement of the growth of plants as a result of increased atmospheric CO2 concentration. Depending on their mechanism of photosynthesis, certain types of plants are more sensitive to changes in atmospheric CO2 concentration. 3

Carbon Dioxide Equivalent
A metric measure used to compare the emissions from various greenhouse gases based upon their global warming potential (GWP). Carbon dioxide equivalents are commonly expressed as "million metric tons of carbon dioxide equivalents (MMTCO2Eq)." The carbon dioxide equivalent for a gas is derived by multiplying the tons of the gas by the associated GWP. The use of carbon equivalents (MMTCE) is declining.

MMTCO2Eq = (million metric tons of a gas) * (GWP of the gas)

See greenhouse gas, global warming potential, metric ton. 9

Carbon Intensity
The amount of carbon by weight emitted per unit of energy consumed. A common measure of carbon intensity is weight of carbon per British thermal unit (Btu) of energy. When there is only one fossil fuel under consideration, the carbon intensity and the emissions coefficient are identical. When there are several fuels, carbon intensity is based on their combined emissions coefficients weighted by their energy consumption levels. 1

Carbon Sequestration
The uptake and storage of carbon. Trees and plants, for example, absorb carbon dioxide, release the oxygen and store the carbon. Fossil fuels were at one time biomass and continue to store the carbon until burned. See sink. 6

Carbon sink: A reservoir that absorbs or takes up released carbon from another part of the carbon cycle. The four sinks, which are regions of the Earth within which carbon behaves in a systematic manner, are the atmosphere, terrestrial biosphere (usually including freshwater systems), oceans, and sediments (including fossil fuels). 1

Chlorofluorocarbons
Greenhouse gases covered under the 1987 Montreal Protocol and used for refrigeration, air conditioning, packaging, insulation, solvents, or aerosol propellants. Since they are not destroyed in the lower atmosphere, CFCs drift into the upper atmosphere where, given suitable conditions, they break down ozone. These gases are being replaced by other compounds, including hydrochlorofluorocarbons and hydrofluorocarbons, which are greenhouse gases covered under the Kyoto Protocol. See hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbons. 5

Clean Air Act (CAA):
Law amended by Congress in 1990. Title VI of the CAA directs EPA to protect the ozone layer through several regulatory and voluntary programs. Sections within Title VI cover production of ozone-depleting substances (ODS), the recycling and handling of ODS, the evaluation of substitutes, and efforts to educate the public. 8

Climate
Climate in a narrow sense is usually defined as the "average weather," or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands of years. The classical period is 3 decades, as defined by the World Meteorological Organization (WMO). These quantities are most often surface variables such as temperature, precipitation, and wind. Climate in a wider sense is the state, including a statistical description, of the climate system. 3

Climate Change
Climate change refers to any significant change in measures of climate (such as temperature, precipitation, or wind) lasting for an extended period (decades or longer). Climate change may result from:

  • natural factors, such as changes in the sun's intensity or slow changes in the Earth's orbit around the sun;
  • natural processes within the climate system (e.g. changes in ocean circulation);
  • human activities that change the atmosphere's composition (e.g. through burning fossil fuels) and the land surface (e.g. deforestation, reforestation, urbanization, desertification, etc.) 9

Climate Feedback
An interaction mechanism between processes in the climate system is called a climate feedback, when the result of an initial process triggers changes in a second process that in turn influences the initial one. A positive feedback intensifies the original process, and a negative feedback reduces it. See climate, climate change, radiative forcing. 3

Climate Lag
The delay that occurs in climate change as a result of some factor that changes only very slowly. For example, the effects of releasing more carbon dioxide into the atmosphere may not be known for some time because a large fraction is dissolved in the ocean and only released to the atmosphere many years later. See climate, climate change. 9

Climate Model
A quantitative way of representing the interactions of the atmosphere, oceans, land surface, and ice. Models can range from relatively simple to quite comprehensive. 6

Climate Sensitivity
In IPCC Reports, equilibrium climate sensitivity refers to the equilibrium change in global mean surface temperature following a doubling of the atmospheric (equivalent) CO2 concentration. More generally, equilibrium climate sensitivity refers to the equilibrium change in surface air temperature following a unit change in radiative forcing (degrees Celsius, per watts per square meter, °C/Wm-2). In practice, the evaluation of the equilibrium climate sensitivity requires very long simulations with Coupled General Circulation Models (Climate model). The effective climate sensitivity is a related measure that circumvents this requirement. It is evaluated from model output for evolving non-equilibrium conditions. It is a measure of the strengths of the feedbacks at a particular time and may vary with forcing history and climate state. See climate, radiative forcing. 3

Climate System (or Earth System)
The five physical components (atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere) that are responsible for the climate and its variations. 6

Concentration
Amount of a chemical in a particular volume or weight of air, water, soil, or other medium. See parts per billion, parts per million. 7

Conference of the Parties
The supreme body of the United Nations Framework Convention on Climate Change (UNFCCC). It comprises more than 180 nations that have ratified the Convention. Its first session was held in Berlin, Germany, in 1995 and it is expected to continue meeting on a yearly basis. The COP's role is to promote and review the implementation of the Convention. It will periodically review existing commitments in light of the Convention's objective, new scientific findings, and the effectiveness of national climate change programs. See United Nations Framework Convention on Climate Change. 9

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

D

Deforestation
Those practices or processes that result in the conversion of forested lands for non-forest uses.  This is often cited as one of the major causes of the enhanced greenhouse effect for two reasons: 1) the burning or decomposition of the wood releases carbon dioxide; and 2) trees that once removed carbon dioxide from the atmosphere in the process of photosynthesis are no longer present. 7

Diesel fuel: A fuel composed of distillates obtained in petroleum refining operation or blends of such distillates with residual oil used in motor vehicles. The boiling point and specific gravity are higher for diesel fuels than for gasoline. 1

DOE
Department of Energy. 1

Dual fuel vehicle (1)
A motor vehicle that is capable of operating on an alternative fuel and on gasoline or diesel fuel. These vehicles have at least two separate fuel systems which inject each fuel simultaneously into the engine combustion chamber. 1

Dual fuel vehicle (2)
A motor vehicle that is capable of operating on an alternative fuel and on gasoline or diesel fuel. This term is meant to represent all such vehicles whether they operate on the alternative fuel and gasoline/diesel simultaneously (e.g., flexible-fuel vehicles) or can be switched to operate on gasoline/diesel or an alternative fuel (e.g., bi-fuel vehicles). 1

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

E

E85
A fuel containing a mixture of 85 percent ethanol and 15 percent gasoline.1

E95
A fuel containing a mixture of 95 percent ethanol and 5 percent gasoline. 1

Ecosystem
Any natural unit or entity including living and non-living parts that interact to produce a stable system through cyclic exchange of materials. 6

Electric hybrid vehicle: An electric vehicle that either (1) operates solely on electricity, but contains an internal combustion motor that generates additional electricity (series hybrid); or (2) contains an electric system and an internal combustion system and is capable of operating on either system (parallel hybrid). 1

Electric motor vehicle: A motor vehicle powered by an electric motor that draws current from rechargeable storage batteries, fuel cells, photovoltaic arrays, or other sources of electric current. 1

El Niño - Southern Oscillation (ENSO)
El Niño, in its original sense, is a warm water current that periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. This oceanic event is associated with a fluctuation of the intertropical surface pressure pattern and circulation in the Indian and Pacific Oceans, called the Southern Oscillation. This coupled atmosphere-ocean phenomenon is collectively known as El Niño-Southern Oscillation. During an El Niño event, the prevailing trade winds weaken and the equatorial countercurrent strengthens, causing warm surface waters in the Indonesian area to flow eastward to overlie the cold waters of the Peru current. This event has great impact on the wind, sea surface temperature, and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world. The opposite of an El Niño event is called La Niña. 4

Emissions
The release of a substance (usually a gas when referring to the subject of climate change) into the atmosphere. 9

Anthropogenic releases of gases to the atmosphere. In the context of global climate change, they consist of radiatively important greenhouse gases (e.g., the release of carbon dioxide during fuel combustion). 1

Emissions Factor
A unique value for scaling emissions to activity data in terms of a standard rate of emissions per unit of activity (e.g., grams of carbon dioxide emitted per barrel of fossil fuel consumed). 7

Energy Information Administration (EIA)
The Energy Information Administration. An independent agency within the U.S. Department of Energy that develops surveys, collects energy data, and analyzes and models energy issues. The Agency must meet the requests of Congress, other elements within the Department of Energy, Federal Energy Regulatory Commission, the Executive Branch, its own independent needs, and assist the general public, or other interest groups, without taking a policy position. 1 See more information about EIA at http://eia.doe.gov/

Energy Intensity
The ratio of energy consumption to a measure of the demand for services (e.g., number of buildings, total floorspace, floorspace-hours, number of employees, or constant dollar value of Gross Domestic Product for services). 2

Enhanced Greenhouse Effect
The concept that the natural greenhouse effect has been enhanced by anthropogenic emissions of greenhouse gases. Increased concentrations of carbon dioxide, methane, and nitrous oxide, chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3), and other photochemically important gases caused by human activities such as fossil fuel consumption, trap more infra-red radiation, thereby exerting a warming influence on the climate. See greenhouse gas, anthropogenic, greenhouse effect, climate, global warming. 7

Environmental Protection Agency (EPA)
U.S. agency that ensures: Federal environmental laws are implemented and enforced effectively; U.S. policy--both foreign and domestic--fosters the integration of economic development and environmental protection so that economic growth can be sustained over the long term; public and private decisions affecting energy, transportation, agriculture, industry, international trade, and natural resources fully integrate considerations of environmental quality; national efforts to reduce environmental risk are based on the best available scientific information communicated clearly to the public; everyone in our society recognizes the value of preventing pollution before it is created; people have the information and incentives they need to make environmentally-responsible choices in their daily lives; and schools and community institutions promote environmental stewardship as a national ethic. 6

Evapotranspiration
The combined process of evaporation from the Earth's surface and transpiration from vegetation. 3

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

F

Feedback Mechanisms
Factors which increase or amplify (positive feedback) or decrease (negative feedback) the rate of a process. An example of positive climatic feedback is the ice-albedo feedback. See climate feedback. 6

Fluorocarbons
Carbon-fluorine compounds that often contain other elements such as hydrogen, chlorine, or bromine. Common fluorocarbons include chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), and perfluorocarbons (PFCs). See chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbons. 6

Freight Modes
Includes truck, air, marine, rail, and pipeline freight modes. It does not include gas and water pipeline. 2

Flexible fuel vehicle
A vehicle that can operate on
(1) alternative fuels (such as M85 or E85)
(2) 100-percent petroleum-based fuels
(3) any mixture of an alternative fuel (or fuels) and a petroleum-based fuel.
Flexible fuel vehicles have a single fuel system to handle alternative and petroleum-based fuels. Flexible fuel vehicle and variable fuel vehicle are synonymous terms. 1

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

G

Glacier
A multi-year surplus accumulation of snowfall in excess of snowmelt on land and resulting in a mass of ice at least 0.1 km2 in area that shows some evidence of movement in response to gravity. A glacier may terminate on land or in water. Glacier ice is the largest reservoir of fresh water on Earth, and second only to the oceans as the largest reservoir of total water. Glaciers are found on every continent except Australia. 6

Global Warming
Global warming is an average increase in the temperature of the atmosphere near the Earth's surface and in the troposphere, which can contribute to changes in global climate patterns. Global warming can occur from a variety of causes, both natural and human induced. In common usage, "global warming" often refers to the warming that can occur as a result of increased emissions of greenhouse gases from human activities. See climate change, greenhouse effect, enhanced greenhouse effect, radiative forcing. 9

Global Warming Potential (GWP)
Global Warming Potential (GWP) is defined as the cumulative radiative forcing effects of a gas over a specified time horizon resulting from the emission of a unit mass of gas relative to a reference gas. The GWP-weighted emissions of direct greenhouse gases in the U.S. Inventory are presented in terms of equivalent emissions of carbon dioxide (CO2), using units of teragrams of carbon dioxide equivalents (Tg CO2 Eq.).

Conversion: Tg = 109 kg = 106 metric tons = 1 million metric tons

The molecular weight of carbon is 12, and the molecular weight of oxygen is 16; therefore, the molecular weight of CO2 is 44 (i.e., 12+[16 x 2]), as compared to 12 for carbon alone. Thus, carbon comprises 12/44ths of carbon dioxide by weight.

See radiative forcing, carbon dioxide equivalent. 9

The GWP is the ratio of the warming caused by a substance to the warming caused by a similar mass of carbon dioxide. Thus, the GWP of CO2 is defined to be 1.0 . CFC-12 has a GWP of 8,500, while CFC-11 has a GWP of 5,000. Various HCFCs and HFCs have GWPs ranging from 93 to 12,100. Water, a substitute in numerous end-uses, has a GWP of 0. A table of all ozone-depleting substances shows their ODPs, GWPs, and CAS numbers, and another table shows the GWPs for many non-ozone-depleting substances. 8

An index used to compare the relative radiative forcing of different gases without directly calculating the changes in atmospheric concentrations. GWPs are calculated as the ratio of the radiative forcing that would result from the emission of one kilogram of a greenhouse gas to that from the emission of one kilogram of carbon dioxide over a fixed period of time, such as 100 years. 1

Greenhouse Effect
Trapping and build-up of heat in the atmosphere (troposphere) near the Earth's surface. Some of the heat flowing back toward space from the Earth's surface is absorbed by water vapor, carbon dioxide, ozone, and several other gases in the atmosphere and then reradiated back toward the Earth's surface. If the atmospheric concentrations of these greenhouse gases rise, the average temperature of the lower atmosphere will gradually increase. See greenhouse gas, anthropogenic, climate, global warming. 7

Greenhouse Gas (GHG)
Any gas that absorbs infrared radiation in the atmosphere. Greenhouse gases include, but are not limited to, water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), ozone (O3 ), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). See carbon dioxide, methane, nitrous oxide, ozone, chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride. 7

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

H

Halocarbons
Compounds containing either chlorine, bromine or fluorine and carbon. Such compounds can act as powerful greenhouse gases in the atmosphere. The chlorine and bromine containing halocarbons are also involved in the depletion of the ozone layer. 3

Heavy-Duty Vehicles
Combination of all high passenger occupancy modes of transportation, including buses, trains, general aviation, and air carriers. 2

Hydrocarbons
Substances containing only hydrogen and carbon. Fossil fuels are made up of hydrocarbons. 9

Hydrochlorofluorocarbons (HCFCs)
Compounds containing hydrogen, fluorine, chlorine, and carbon atoms. Although ozone depleting substances, they are less potent at destroying stratospheric ozone than chlorofluorocarbons (CFCs). They have been introduced as temporary replacements for CFCs and are also greenhouse gases. 9

Hydrofluorocarbons (HFCs)
Compounds containing only hydrogen, fluorine, and carbon atoms. They were introduced as alternatives to ozone depleting substances in serving many industrial, commercial, and personal needs. HFCs are emitted as by-products of industrial processes and are also used in manufacturing. They do not significantly deplete the stratospheric ozone layer, but they are powerful greenhouse gases with global warming potentials ranging from 140 (HFC-152a) to 11,700 (HFC-23). 9

Hydrologic Cycle
The process of evaporation, vertical and horizontal transport of vapor, condensation, precipitation, and the flow of water from continents to oceans. It is a major factor in determining climate through its influence on surface vegetation, the clouds, snow and ice, and soil moisture. The hydrologic cycle is responsible for 25 to 30 percent of the mid-latitudes' heat transport from the equatorial to polar regions. 6

Hydrosphere
The component of the climate system comprising liquid surface and subterranean water, such as: oceans, seas, rivers, fresh water lakes, underground water etc. 3

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

I

Ice Core
A cylindrical section of ice removed from a glacier or an ice sheet in order to study climate patterns of the past. By performing chemical analyses on the air trapped in the ice, scientists can estimate the percentage of carbon dioxide and other trace gases in the atmosphere at a given time. 9

Intergovernmental Panel on Climate Change (IPCC)
The IPCC was established jointly by the United Nations Environment Programme and the World Meteorological Organization in 1988. The purpose of the IPCC is to assess information in the scientific and technical literature related to all significant components of the issue of climate change. The IPCC draws upon hundreds of the world's expert scientists as authors and thousands as expert reviewers. Leading experts on climate change and environmental, social, and economic sciences from some 60 nations have helped the IPCC to prepare periodic assessments of the scientific underpinnings for understanding global climate change and its consequences. With its capacity for reporting on climate change, its consequences, and the viability of adaptation and mitigation measures, the IPCC is also looked to as the official advisory body to the world's governments on the state of the science of the climate change issue. For example, the IPCC organized the development of internationally accepted methods for conducting national greenhouse gas emission inventories. 9

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

L

Light-Duty Vehicles
Include automobiles, motorcycles, and light trucks. 2

Light rail
An electric railway with a "light volume" traffic capacity compared to "heavy rail." Light rail may use exclusive or shared rights-of-way, high or low platform loading, and multi-car trains or single cars. Also known as "street car," "trolley car," and "tramway." 1

Light Trucks
All single unit two-axle, four-tire trucks, including pickup trucks, sports utility vehicles, vans, motor homes, etc. This is the Department of Transportation definition. The Energy Information defined light truck as all trucks weighing 8,500 pounds or less. 2

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

M

Methane (CH4)
A hydrocarbon that is a greenhouse gas with a global warming potential most recently estimated at 23 times that of carbon dioxide (CO2). Methane is produced through anaerobic (without oxygen) decomposition of waste in landfills, animal digestion, decomposition of animal wastes, production and distribution of natural gas and petroleum, coal production, and incomplete fossil fuel combustion. The GWP is from the IPCC's Third Assessment Report (TAR). For more information visit EPA's Methane site. 9

Metric Ton
Common international measurement for the quantity of greenhouse gas emissions. A metric ton is equal to 2205 lbs or 1.1 short tons. 7

Montreal Protocol
The Montreal Protocol on Substances That Deplete the Ozone Layer and its amendments control the phaseout of ODS production and use. Under the Montreal Protocol, several international organizations report on the science of ozone depletion, implement projects to help move away from ODS, and provide a forum for policy discussions. In addition, the Multilateral Fund provides resources to developing nations to promote the transition to ozone-safe technologies. The full text of the Montreal Protocol is available from the United Nations Environmental Programme (UNEP). 8

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

N

National Center for Atmoshperic Research
Located in Boulder, Colorado, NCAR's mission is to plan, organize, and conduct atmospheric and related research programs in collaboration with universities, to provide state-of-the-art research tools and facilities to the entire atmospheric sciences community, to support and enhance university atmospheric research education, and to facilitate the transfer of technology to both the public and private sectors. 6

See NCAR website

National Centers for Environmental Prediction (NCEP)
The NCEP was established in 1958 as the National Meteorological Center. As a critical part of the National Oceanic and Atmospheric Administration's National Weather Service, NCEP is the starting point for nearly all weather forecasts in the United States.

NCEP is comprised of nine centers. Each center has a specific responsibility for a portion of the NCEP products and services suite, yet they all work together toward the common goals of saving lives, protecting property, and creating economic opportunity. Seven of the centers provide direct products to users, while two of the centers provide essential support through developing and running complex computer models of the atmosphere. 6

See NCEP website

Natioanl Oceanic and Atmospheric Administration (NOAA)
NOAA was established in 1970 within the U.S. Department of Commerce to ensure the safety of the general public from atmospheric phenomena and to provide the public with an understanding of the Earth's environment and resources. NOAA includes: the National Ocean Service which charts the oceans and waters of the U.S. and manages 265,000 acres of estuarine reserves; the National Marine Fisheries Service which maintains the world's largest and most complex marine fisheries management system; the NOAA Corps which operates 18 NOAA research and survey ships and flies 15 NOAA aircraft; and the Office of Oceanic and Atmospheric Research which supports experiments, laboratories, and the National Sea Grant College Program, among other efforts. NOAA has two main components: the National Weather Service (NWS), and the National Environmental Satellite, Data, and Information Service (NESDIS). NOAA organizations perform numerous services in addition to monitoring weather conditions. They assess crop growth and other agricultural conditions, sense shifting ocean currents, and measure surface temperatures of oceans and land. They relay data from surface instruments that sense tide conditions, Earth tremors, river levels, and precipitation. 6

Natural Gas
Underground deposits of gases consisting of 50 to 90 percent methane (CH4) and small amounts of heavier gaseous hydrocarbon compounds such as propane (C3H8) and butane (C4H10). 9

Nitrogen Oxides (NOx)
Gases consisting of one molecule of nitrogen and varying numbers of oxygen molecules. Nitrogen oxides are produced in the emissions of vehicle exhausts and from power stations. In the atmosphere, nitrogen oxides can contribute to formation of photochemical ozone (smog), can impair visibility, and have health consequences; they are thus considered pollutants. 6

Nitrous Oxide (N2O)
A powerful greenhouse gas with a global warming potential of 296 times that of carbon dioxide (CO2). Major sources of nitrous oxide include soil cultivation practices, especially the use of commercial and organic fertilizers, fossil fuel combustion, nitric acid production, and biomass burning. The GWP is from the IPCC's Third Assessment Report (TAR). 6

Non-Methane Volatile Organic Compounds (NMVOCs)
Organic compounds, other than methane, that participate in atmospheric photochemical reactions. 9

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

O

Oxidize
To chemically transform a substance by combining it with oxygen. 7

Ozone (O3)
Ozone, the triatomic form of oxygen (O3), is a gaseous atmospheric constituent. In the troposphere, it is created both naturally and by photochemical reactions involving gases resulting from human activities (photochemical smog). In high concentrations, tropospheric ozone can be harmful to a wide range of living organisms. Tropospheric ozone acts as a greenhouse gas. In the stratosphere, ozone is created by the interaction between solar ultraviolet radiation and molecular oxygen (O2). Stratospheric ozone plays a decisive role in the stratospheric radiative balance. Depletion of stratospheric ozone, due to chemical reactions that may be enhanced by climate change, results in an increased ground-level flux of ultraviolet (UV-) B radiation. See atmosphere, ultraviolet radiation. 4

Ozone Depleting Substance (ODS)
A family of man-made compounds that includes, but are not limited to, chlorofluorocarbons (CFCs), bromofluorocarbons (halons), methyl chloroform, carbon tetrachloride, methyl bromide, and hydrochlorofluorocarbons (HCFCs). These compounds have been shown to deplete stratospheric ozone, and therefore are typically referred to as ODSs. See ozone. 7

Ozone Layer
The layer of ozone that begins approximately 15 km above Earth and thins to an almost negligible amount at about 50 km, shields the Earth from harmful ultraviolet radiation from the sun. The highest natural concentration of ozone (approximately 10 parts per million by volume) occurs in the stratosphere at approximately 25 km above Earth. The stratospheric ozone concentration changes throughout the year as stratospheric circulation changes with the seasons. Natural events such as volcanoes and solar flares can produce changes in ozone concentration, but man-made changes are of the greatest concern. See stratosphere, ultraviolet radiation. 6

Ozone Precursors
Chemical compounds, such as carbon monoxide, methane, non-methane hydrocarbons, and nitrogen oxides, which in the presence of solar radiation react with other chemical compounds to form ozone, mainly in the troposphere. See troposphere. 7

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

P

Particulate Matter (PM)
Very small pieces of solid or liquid matter such as particles of soot, dust, fumes, mists or aerosols. The physical characteristics of particles, and how they combine with other particles, are part of the feedback mechanisms of the atmosphere. See aerosol. 6

Passenger Modes
Includes Light-Duty Vehicles and Heavy-Duty Vehicles. See Light-Duty Vehicles and Heavy-Duty Vehicles. 2

Passenger Rail
Includes short- and long-distance passenger rail, commuter rail, and light and heavy rail. Heavy rail is electric transit vehicle with capacity for heavy "volume" traffic. It is more generically referred to as subway. Light rail is a type of electric transit railway with a light-volume capacity, with generic names like "streetcars," "trolley cars," and "tramways." 2

Perfluorocarbons (PFCs)
A group of human-made chemicals composed of carbon and fluorine only. These chemicals (predominantly CF4 and C2F6) were introduced as alternatives, along with hydrofluorocarbons, to the ozone depleting substances. In addition, PFCs are emitted as by-products of industrial processes and are also used in manufacturing. PFCs do not harm the stratospheric ozone layer, but they are powerful greenhouse gases: CF4 has a global warming potential (GWP) of 5,700 and C2F6 has a GWP of 11,900. The GWP is from the IPCC's Third Assessment Report (TAR). 9

Photosynthesis
The process by which plants take CO2 from the air (or bicarbonate in water) to build carbohydrates, releasing O2 in the process. There are several pathways of photosynthesis with different responses to atmospheric CO2 concentrations. See carbon sequestration, carbon dioxide fertilization. 3

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

R

Radiative Forcing
Radiative forcing is the change in the net vertical irradiance (expressed in Watts per square metre: Wm-2) at the tropopause due to an internal change or a change in the external forcing of the climate system, such as, for example, a change in the concentration of carbon dioxide or the output of the Sun. Usually radiative forcing is computed after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with all tropospheric properties held fixed at their unperturbed values. Radiative forcing is called instantaneous if no change in stratospheric temperature is accounted for. Practical problems with this definition, in particular with respect to radiative forcing associated with changes, by aerosols, of the precipitation formation by clouds, are discussed in Chapter 6 of the IPCC Third Assessment Report Working Group I: The Scientific Basis. 3

Rail Freight
Refers to intercity freight movement by trains. 2

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

S

Sink
Any process, activity or mechanism which removes a greenhouse gas, an aerosol or a precursor of a greenhouse gas or aerosol from the atmosphere. 3

Stratosphere
Region of the atmosphere between the troposphere and mesosphere, having a lower boundary of approximately 8 km at the poles to 15 km at the equator and an upper boundary of approximately 50 km. Depending upon latitude and season, the temperature in the lower stratosphere can increase, be isothermal, or even decrease with altitude, but the temperature in the upper stratosphere generally increases with height due to absorption of solar radiation by ozone. 6

Stratospheric Ozone

See ozone layer.

Sulfur Hexafluoride (SF6)
A colorless gas soluble in alcohol and ether, slightly soluble in water. A very powerful greenhouse gas used primarily in electrical transmission and distribution systems and as a dielectric in electronics. The global warming potential of SF6 is 22,200. This GWP is from the IPCC's Third Assessment Report (TAR). See Global Warming Potential. 7

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

T

Teragram (TG)
One teragram is equal to 1 million metric tons. One metric ton is equal to 2,205 pounds or 1.1 short tons. For more information, click here.

Transportation sector
An energy-consuming sector that consists of all vehicles whose primary purpose is transporting people and/or goods from one physical location to another. Included are automobiles; trucks; buses; motorcycles; trains, subways, and other rail vehicles; aircraft; and ships, barges, and other waterborne vehicles. Vehicles whose primary purpose is not transportation (e.g., construction cranes and bulldozers, farming vehicles, and warehouse tractors and forklifts) are classified in the sector of their primary use. Note: Various EIA programs differ in sectoral coverage. Click here for an explanation of the variations of the transportation sector used by EIA system(s). 1

Troposphere
The lowest part of the atmosphere from the surface to about 10 km in altitude in mid-latitudes (ranging from 9 km in high latitudes to 16 km in the tropics on average) where clouds and "weather" phenomena occur. In the troposphere temperatures generally decrease with height. See ozone precursors, stratosphere, atmosphere. 3

Tropospheric Ozone (O3)
See ozone.

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

U

Ultra-low sulfur diesel (ULSD) fuel
Diesel fuel containing a maximum 15 parts per million (ppm) sulfur.1
Ultraviolet Radiation (UV)

The energy range just beyond the violet end of the visible spectrum. Although ultraviolet radiation constitutes only about 5 percent of the total energy emitted from the sun, it is the major energy source for the stratosphere and mesosphere, playing a dominant role in both energy balance and chemical composition.

Most ultraviolet radiation is blocked by Earth's atmosphere, but some solar ultraviolet penetrates and aids in plant photosynthesis and helps produce vitamin D in humans. Too much ultraviolet radiation can burn the skin, cause skin cancer and cataracts, and damage vegetation. 6

United Nations Framework Convention on Climate Change (UNFCCC)
The Convention on Climate Change sets an overall framework for intergovernmental efforts to tackle the challenge posed by climate change. It recognizes that the climate system is a shared resource whose stability can be affected by industrial and other emissions of carbon dioxide and other greenhouse gases. The Convention enjoys near universal membership, with 189 countries having ratified.

Under the Convention, governments:

  • gather and share information on greenhouse gas emissions, national policies and best practices
  • launch national strategies for addressing greenhouse gas emissions and adapting to expected impacts, including the provision of financial and technological support to developing countries
  • cooperate in preparing for adaptation to the impacts of climate change

The Convention entered into force on 21 March 1994. 7

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

W

Weather
Atmospheric condition at any given time or place. It is measured in terms of such things as wind, temperature, humidity, atmospheric pressure, cloudiness, and precipitation. In most places, weather can change from hour-to-hour, day-to-day, and season-to-season. Climate in a narrow sense is usually defined as the "average weather", or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period is 30 years, as defined by the World Meteorological Organization (WMO). These quantities are most often surface variables such as temperature, precipitation, and wind. Climate in a wider sense is the state, including a statistical description, of the climate system. A simple way of remembering the difference is that climate is what you expect (e.g. cold winters) and 'weather' is what you get (e.g. a blizzard). See climate. 9

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - Q - R - S - T - U - V - W - X - Y - Z

Sources

1 Energy Information Administration's Energy Glossary
2 Energy Information Administration's Energy Efficiency Glossary
3 IPCC Third Assessment Report Working Group I: The Scientific Basis
4 IPCC Third Assessment Report Working Group II: Impacts, Adaptation and Vulnerability
5 IPCC Third Assessment Report Working Group III: Mitigation
6 NASA's Earth Observatory library
7 UNFCCC glossaries
8 EPA's Ozone Depletion Glossary
9 EPA's Climate Change Glossary

Top of page