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Since 2009, the U.S. Department of Transportation (DOT) has taken steps 
intended to reduce the number of lengthy tarmac delays—i.e., passengers 
remaining onboard an aircraft on the tarmac for extended periods of time. 
Following a series of high-profile instances of passengers held locked inside 
aircraft during lengthy tarmac delays, DOT developed the tarmac delay rule 
(TDR).2  Effective April 29, 2010, the rule renders airlines liable for fines of up to 
$27,500 per passenger for incidents of domestic flights spending longer than 
3 hours on the tarmac.3 

After the TDR’s implementation, tarmac delays longer than 3 hours fell sharply, 
but critics claimed that the rule would increase flight cancellations. More 
cancellations increase passenger costs through missed connections and time 
wasted. Since then, several studies have investigated the short-term effects of the 
TDR on cancellations, with somewhat varying results. For example, the 
Government Accountability Office (GAO) examined the TDR’s effects on flight 
cancellation rates in the summer of 2010, and found it strongly increased them.4 

                                              
1 The OIG economists who conducted this audit cover all modes of transportation and are situated in the Office of 
Surface Transportation Audits. 
2 U.S. Department of Transportation, “Enhancing Airline Passenger Protections,” 74 Fed. Reg. 68,983 (Dec. 30, 2009). 
3 The TDR included exceptions for aircraft with less than 30 seats and for all aircraft in cases of safety, security, or air 
traffic control advice. Initially, it applied only to domestic flights originating at large or medium hub airports. (Airport 
size designations are based on Federal Aviation Administration categories, which depend on the number of passengers 
boarded onto planes.) On April 25, 2011, OST announced an extension of the same provisions to domestic flights from 
small hub and non-hub airports, and of slightly different ones to international flights. Both took effect August 23, 2011.    
4 GAO, Airline Passenger Protections: More Data and Analysis Needed to Understand Effects of Flight Delays (GAO 
Report No. GAO-11-733), 2011.  
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Two other researchers, Hideki Fukui and Koki Nagata, investigated the TDR’s 
effects through 2012 and concluded that investigations of TDR violations were 
critical to the TDR increasing cancellations in 2010 through 2012.5 In addition, the 
Office of the Secretary of Transportation (OST) commissioned a study that found 
that the TDR increased cancellations in the summer of 2011, but had little to no 
impact on cancellations in the summer months of 2010 or 2012.6 None of these 
studies examined the rule’s impacts after 2012. 

In the Federal Aviation Administration (FAA) Modernization and Reform Act of 
2012,7 Congress directed our office to assess the impact of DOT’s rules on 
carriers’ decisions to delay or cancel flights. To meet this mandate, the House 
Aviation Subcommittee of the Transportation and Infrastructure Committee and 
the Senate Committee on Commerce, Science, and Transportation requested that 
we focus specifically on the TDR. In addition, they requested that we review the 
OST-commissioned analysis. Accordingly, our objectives were to: (1) assess the 
effect of the TDR on flight cancellations, (2) assess the effect of the TDR on flight 
delays,8 and (3) evaluate the OST-commissioned analysis of the TDR’s impacts.  

We conducted our audit in accordance with generally accepted Government 
auditing standards. To assess the impact of the TDR on cancellations, we 
employed regression and synthetic control (a type of simulation analysis) methods. 
Our implementation of both methods accounted for factors such as weather, 
airport congestion, air carrier characteristics, and route competition, helping us to 
isolate the TDR’s impacts. Our assessment of the TDR’s effects on delays, on the 
other hand, is comprised of descriptive data analyses, and so cannot identify 
causes. We conducted all our analyses using a dataset covering the fourth quarter 
of 2005 through the fourth quarter of 2014.9 We are making no recommendations, 
and our review is not intended to be—nor were we asked to do—a regulatory 
impact analysis.10 For more details on our scope and methodology, see exhibits A 
and B. 

                                              
5 Fukui, Hideki, and Koki Nagata. “Flight cancellation as a reaction to the tarmac delay rule: An unintended 
consequence of enhanced passenger protection.” Economics of Transportation 3 (2014): 29-44.  
6 Econometrica, Inc. “Independent Review and Analysis of the Impact of the Three-Hour Tarmac Delay Rule,” 
submitted to U.S. Department of Transportation January 9, 2014.  
7 Pub. L. No. 112-95 §406 (2012). 
8 We look at tarmac and gate delays for departing aircraft, under the assumption that these are the delays most likely to 
be influenced by the TDR. In this report, tarmac delays refer to time spent waiting on the tarmac after having left the 
gate and before taking off. Gate delays refer to the time between an aircraft’s expected departure time and its moving 
onto the tarmac. We do not account for aircraft returning to the gate and then taxiing out again, as data tracking such 
movements is not available for periods prior to 2008. 
9 For all of our analyses, we used data averaged by month for each carrier on each route. We did not use individual 
flight data because that would have made analysis of monthly data for several years computationally infeasible. When 
we use the term “flights” in discussion of our analyses, it should be understood that we are referring to route-carrier 
combinations.  
10 A regulatory impact analysis, as detailed in Office of Management and Budget Circular A-4, requires additional 
components such as a cost-benefit analysis. 
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RESULTS IN BRIEF 
The Tarmac Delay Rule (TDR) increased cancellation rates during the first 3 years 
following its implementation (May 2010–April 2013).11 After that, the TDR did 
not increase cancellation rates, and cancellation rates behaved as if the TDR had 
never been imposed—at least through December 2014, which was the end of our 
period of analysis. The results from both our analytical methods exhibit this 
pattern. Further, flights that most frequently experienced longer tarmac delays 
prior to the rule’s implementation had larger cancellation rate increases than other 
flights after the rule went into effect. For example, the rate increase for the 10 
percent of flights with the greatest frequency of 2-hour or longer tarmac delays 
pre-TDR translated into seven additional cancellations per day in the first 3 years 
post-TDR. We also found that cancellation rates during the summer months 
increased relative to those during other seasons, and cancellation rates of flights 
operated by low-cost carriers increased relative to those for other carrier types.12  

We examined two types of flight delays—tarmac and gate delays—and found that 
the TDR was associated with a reduction in tarmac delays, but displayed no 
obvious association with changes in gate delays. Lengthy tarmac delays underwent 
a marked decrease once OST announced the rule (December 2009), and have 
remained at substantially lower levels since. In addition, the frequency of longer 
tarmac delays fell in greater proportion than the frequency of shorter ones. For 
example, the percentage of flights with tarmac delays lasting at least an hour fell 
by 46.1 percent, while the percent of flights with tarmac delays lasting at least 
2 hours fell by 70.4 percent. In contrast, while average gate delays fell to lower 
levels in 2009, they rebounded in 2013–2014. This rebound occurred alongside a 
20 percent decline in air traffic from 2007 through 2014.  

The OST-commissioned analysis of tarmac delay effects contained a number of 
limitations that impact its reliability as a basis for making possible policy 
decisions. First, the analysis potentially introduces bias by only considering 
cancellation impacts on flights experiencing lengthy tarmac delays after the TDR’s 
implementation. Specifically, the analysis assumes that only cancellations 
occurring after post-rule tarmac delays of at least 2 hours are attributable to the 
TDR. This assumption rules out the possibility that air carriers may be avoiding 
long tarmac delays by proactively cancelling flights when facing conditions that 

                                              
11 We use April 29, 2010, as the date of the TDR’s implementation for all flights because it provides a clear division 
between pre- and post-rule periods. Only 3.24 percent of route-carrier combinations in our data were consequently 
included among those covered by the TDR when they were not. Our findings are unchanged when we re-estimate our 
regressions using the exact TDR implementation dates for flights from airports not included in the initial rule.  
12 According to the International Civil Aviation Organization, a low-cost carrier is an air carrier that has a relatively 
low-cost structure in comparison with other comparable carriers and offers low fares and rates. The other carrier types 
in our analysis included legacy carriers and those which largely did not market directly to passengers. In the United 
States, a legacy carrier is an airline that had established interstate routes by the time of the route liberalization permitted 
by the Airline Deregulation Act of 1978.  
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might later produce them—a behavior that could in part explain the marked 
decline in lengthy tarmac delays. By not allowing for this possibility, the analysis 
limits the reliability of its results. Second, the analysis fails to account for the 
impacts of factors other than the TDR, such as weather and congestion, in 
determining the TDR’s effects on cancellations. We have found such factors to be 
highly significant in explaining variations in airline cancellations. For example, we 
found that a 1 percent increase in heavy rain13 at a departure airport added 1.86 
percent to cancellation rates on average. As a result, the analysis cannot identify 
the specific impact of the TDR—separate from other factors—on cancellations.   

OUR ANALYTICAL APPROACHES 
Cancellation Rates  
Many factors, such as weather and airport congestion, affect airline cancellations. 
Determining the effects of the TDR on cancellation rates requires accounting for 
the impacts of such factors. For example, the last economic downturn has been 
credited with contributing to a decrease in air traffic. This decrease was associated 
with a reduction in airport congestion, which we have found affected cancellation 
rates.14 Indeed, average cancellation rates fell after the downturn. Consequently, 
failure to account for changes in economic activity or airport congestion while 
investigating changes in cancellation rates could lead to the erroneous conclusion 
that the TDR decreased cancellation rates.  

We sought to avoid such pitfalls by using methods that allowed us to account for 
numerous relevant factors when determining cancellation rates. These methods 
allow us to identify changes in cancellation rates relative to what would have 
occurred in the absence of the TDR. Consequently, the effects we isolate represent 
changes in cancellation rates attributable to or caused by the TDR.  

Our approach to identifying these effects could be thought of in the context of an 
experiment in which one group undergoes a treatment and another—a “control” 
group—does not. The treatment here would be the imposition of the TDR. The 
control group would track the changes that would have occurred in the absence of 
the rule. The difference in outcomes between the two groups would be attributable 
to the TDR. Since the rule applied to the vast majority of flights at the same time, 
there is no natural control group.  

Instead, we differentiate groups according to how likely they are to be affected by 
“a treatment.” Specifically, we expect that flights frequently experiencing long 

                                              
13 Heavy rain is defined here as precipitation in excess of the 95th percentile for an airport for the period covered by our 
data. 
14 Reductions in Competition Increase Airline Delays and Cancellations (OIG Report No. CR-2014-40), April 2014. 
OIG reports are available on our Web site: http://www.oig.dot.gov. 
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tarmac delays in the years prior to the TDR would be more likely to change their 
behavior following the rule’s imposition than flights that rarely experienced such 
delays. The impact of the TDR can then be identified as the difference in 
cancellations between groups experiencing more versus less frequent lengthy 
tarmac delays. This identification is the basis of our regression analysis and of 
constructing synthetic control groups for use in a simulation analysis. After 
examining the TDR’s effects using both the synthetic control group and regression 
analysis methods, we compared our results. As we will detail below, both methods 
produced comparable findings regarding cancellation rates.  

Delays 
In contrast to our analyses of cancellation rates, our analyses of delays are 
descriptive. They do not control for the effects of other factors. Consequently, they 
only permit us to discuss changes in delays associated with the TDR, as opposed 
to those that were caused by the rule.  

In both our cancellation and delay analyses, we used the timeline that GAO found 
characterized the decision-making process for cancelling a flight sitting on the 
tarmac (2011). According to GAO, an airline and airport control tower begin 
discussions about potentially cancelling a flight once a tarmac delay has reached 1 
hour. The discussions then continue intermittently until the tarmac delay has 
reached 2 hours. At that point, the flight either needs to take off or start the process 
of returning to the gate in order to avoid exceeding the 3-hour mark. Accordingly, 
we analyzed data using these two thresholds, along with an intermediate 90-
minute mark, to understand the impact of the TDR. 

THE TDR ELEVATED CANCELLATION RATES ONLY DURING ITS 
FIRST 3 YEARS 
The TDR increased cancellation rates during the first 3 years following its 
implementation. After that, the TDR did not increase cancellation rates, and 
cancellation rates behaved as if the TDR had never been imposed. This pattern 
appears consistently in the results from both our analytical approaches. Further, 
during those 3 years, flights that most frequently experienced longer tarmac delays 
prior to the rule’s implementation had larger cancellation rate increases than other 
flights after the rule went into effect. We also found that cancellation rates during 
the summer months increased relative to those during other seasons, and 
cancellation rates of flights operated by low-cost carriers increased relative to 
those for other carrier types.  
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The TDR Increased Cancellation Rates in Its First 3 Years, After 
Which Cancellation Rates Behaved as If the Rule Had Never Been 
Imposed 
We found that the TDR did increase cancellation rates, but only during the first 
3 years after it went into effect. Table 1 shows estimates of the TDR’s cancellation 
rate impacts over different time periods through 2014—along with rate changes 
preceding the rule’s implementation.15 The estimates shown represent the impact 
of events in each period on the cancellation rate for a carrier on a route having 
frequent tarmac delays prior to the rule’s implementation. We focus on these 
effects because of our assumption that flights with a history of lengthy tarmac 
delays would be those most likely affected by the TDR. The changes shown are 
measured relative to the average cancellation rate in our data prior to August 2009, 
which was 1.815 percent.  

Table 1.  Cancellation Rate Effects Over Time 

Time Period Estimated Average Percent  
Change  

August 2009 - December 2009 -0.0137** 

January 2010 - April 2010 -0.0351** 

May 2010 - April 2011   0.0154** 

May 2011 - April 2012   0.0163** 

May 2012 - April 2013   0.0128** 

May 2013 - April 2014  -0.0575** 

May 2014 - December 2014  -0.014** 
Source: OIG analysis 
Note: Estimates are relative to the average cancellation rate prior to August 2009. 
** Significant at the 5 percent level16 

As table 1 shows, only during the first 3 years following its implementation (May 
2010–April 2013) does the TDR elevate average cancellation rates over their pre-
August 2009 levels. The changes shown for each of those 3 years represent the 
increase in the cancellation rate that results from a marginal increase in the pre-
rule frequency of tarmac delays lasting 1 hour or more. For example, from May 
2010 to April 2011, a route flown by a given carrier would have seen its average 
cancellation rate increase to 1.830 for a 1 percent increase in the pre-rule 
frequency of tarmac delays lasting at least an hour. (1.815 + 0.0154 = 1.830.)  

                                              
15 The first period begins with extensive media coverage of instances of extreme tarmac delays. The second period 
extends from the announcement of the TDR to its implementation. 
16 A statistically significant outcome is one that is unlikely to have occurred by chance. The level of significance is the 
likelihood the outcome occurred by chance. A level of significance of 5 percent or less is considered indicative of a 
statistically meaningful relationship.    
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Table 1 also indicates that after 3 years (starting in May 2013), average 
cancellation rates for those same route-carrier combinations return to the levels 
they exhibited from August 2009 until the rule’s implementation. In other words, 
the cancellation rates behaved as if the rule had never come into effect. The 
negative rate changes shown for the periods preceding the rule’s implementation 
and after April 2013 may capture the impacts of a long-term trend. Throughout the 
study period, flights on routes with a high frequency of lengthy pre-rule tarmac 
delays decrease in number, while flights with low frequency of lengthy pre-rule 
tarmac delays showed a relative increase. Since the frequency of lengthy pre-rule 
tarmac delays correlates highly with cancellation rates both pre- and post-TDR, 
this change in the composition of flights would be expected to reduce average 
cancellation rates over time. 

Figure 1, developed using a different approach, supports the results in table 1. It 
compares the path of actual average cancellation rates for a group with sizeable 
pre-rule delays—the 10 percent of flights with the highest frequency of tarmac 
delays lasting at least 90 minutes pre-TDR—with that for its synthetic control 
group. We chose a group with sizeable pre-rule delays because we expected that it 
would be most likely to change its behavior post-TDR. 
 
The synthetic control group was constructed to mimic the selected group’s 
responses to factors affecting cancellations prior to implementation of the TDR, 
such as airport congestion and weather. We then simulated the control group’s 
response to the post-TDR values of those factors to get the path of its cancellation 
rate over the period following the TDR’s implementation. The selected group’s 
actual cancellation rates were affected by the TDR’s implementation, while the 
synthetic control group’s cancellation rates were not. 
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Figure 1. Cancellation Rates for Flights With the Greatest 
Frequency of Pre-Rule Tarmac Delays of at Least 90 Minutes 

 
Source: OIG analysis 

As figure 1 shows, after the TDR was in place, actual cancellation rates only 
exceed those of the control group during the first 3 years. In the figure, the 
synthetic cancellation rate (the dotted line) estimates the rate of cancellations if the 
TDR had never been imposed. The actual cancellation rate (the solid line) reflects 
the rate of cancellations in reality, including the TDR’s impacts. It is expected that 
there would be some fluctuation between the behavior of the synthetic control 
group and actual cancellation rates, due to the inability of the synthetic control 
group to exactly mimic actual cancellation rates. However, it is significant that the 
graph indicates that the actual cancellation rates exceed those of the synthetic 
control group only in the first 3 years following the rule’s implementation—
suggesting that the TDR no longer increased cancellations after 3 years. This same 
pattern also characterizes the 10 percent of flights with the highest frequency of 
delays lasting at least 60 and at least 120 minutes pre-TDR. 

Flights Frequently Subject to Longer Tarmac Delays Prior to the 
Rule’s Implementation Had Larger Cancellation Rate Increases  
Flights that most frequently experienced longer tarmac delays prior to the TDR 
had larger cancellation rate increases following the TDR’s implementation. For 
example, flights most frequently experiencing tarmac delays greater than 90 
minutes pre-TDR saw substantial and statistically significant cancellation rate 
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increases once the rule went into effect. Moreover, the flights most frequently 
experiencing delays of at least 120 minutes prior to the rule experienced even 
greater cancellation rate impacts from the rule.  
 
Table 2 shows the TDR’s average impacts on cancellation rates over the 3 years 
following its implementation for the 10 percent of flights experiencing the greatest 
frequency of tarmac delays lasting at least 60 minutes, 90 minutes, and 
120 minutes pre-rule. These impacts are larger than those shown in table 1 because 
table 2 reports effects for the groups having the highest frequency of pre-rule 
tarmac delays—which we expected to be more affected by the TDR. In contrast, 
table 1 averages effects across all groups. Prior to the TDR, the average 
cancellation rate for each group was approximately 3.4 percent, and was not 
statistically distinguishable from that of the other two groups.  

Table 2.  TDR Effects on Cancellation Rates of Flights With the 
Greatest Frequency of Lengthy Tarmac Delays Pre-Rule 

Tarmac Delay of at Least: Estimated Average Rate Impact 

60 minutes 0.39** 
90 minutes 0.49*** 
120 minutes 0.56*** 
Source: OIG analysis 
Note: Effects are relative to cancellation rates prior to implementation of the TDR. 
**Significant at the 5 percent level. ***Significant at the 1 percent level. 

For the flights most frequently experiencing delays of at least 120 minutes prior to 
the TDR, the 0.56 percent increase translates into seven additional cancellations 
daily over the 3 years following the rule’s implementation.  

The TDR Increased Cancellations for Summer and Low-Cost Carrier 
Flights Relative to Cancellations for Other Groups 
The TDR increased cancellations during the summer months relative to 
cancellations for other seasons. Table 3 shows the TDR’s impacts on cancellation 
rates for summer and winter flights relative to those for March, April and 
October.17 Summer flights were clearly affected more than flights in other seasons. 
(Summer months typically experience higher traffic levels.) Table 3 also shows 
that the impacts of the TDR on the cancellation rates of low-cost carriers are 
relatively much stronger and significant than those on the cancellation rates of 
other carrier types. 

                                              
17 Following GAO (2011), we define summer as extending from May through September, and winter as running from 
November through February. 
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Table 3.  TDR Effects on Cancellation Rates by Season and 
Carrier Type 

Season/Carrier Type Estimated Average Rate Impact 

Summer 0.0182** 

Winter -0.0261** 

Low-cost carriers 0.0209** 
Source: OIG analysis 
Note: Effects are relative to cancellation rates prior to implementation of the TDR. 
** Significant at the 5 percent level 

LENGTHY TARMAC DELAYS HAVE FALLEN MARKEDLY WHILE 
GATE DELAYS CHANGES HAVE SHOWN NO CLEAR PATTERN 
We examined two types of flight delays—tarmac and gate delays18—and found 
that the TDR was associated19 with tarmac delay reductions, but did not have a 
clear association with changes in gate delays. Lengthy tarmac delays underwent a 
marked decrease once OST announced the TDR (December 2009), and have 
remained at substantially lower levels since. In contrast, while average gate delays 
also declined in 2009, they rebounded in the period from 2013 through 2014.  

The TDR Has Been Associated With Marked Reductions in Lengthy 
Tarmac Delays  
When OST announced the TDR in December 2009, lengthy tarmac delays fell 
significantly. For example, the percentage of flights with tarmac delay that 
exceeded 3 hours prior to the announcement was 0.0172 percent. As of December 
2009, the percentage had already declined to 0.0044 percent, and since then the 
average monthly rate has been 0.0003 percent.  
 
This was even true of tarmac delays that were well short of the 3 hour limit set by 
the rule. Figures 2 and 3 show the decline in tarmac delays lasting at least 120 and 
90 minutes, respectively. These reductions have been maintained through the end 
of the period covered by our data (December 2014). In addition, longer tarmac 
delays fell in greater proportion than shorter ones. For example, the percentage of 
flights delayed at least 60 minutes fell 46.1 percent on average. The comparable 
decline in flights with longer delays of at least 120 minutes was 70.4 percent.  

                                              
18 Gate delay is defined as the difference between scheduled and actual departure times from the gate.  
19 In statistics, association is any statistical relationship, whether causal or not, between two random variables or two 
sets of data. All of the figures and statistics related to delays in this report were developed using data weighted by 
number of flights.  
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Figure 2. Percentage of Flights With Tarmac Delays of at Least 
120 Minutes  

 
Source: OIG analysis of Bureau of Transportation Statistics (BTS) data 

Figure 3. Percentage of Flights With Tarmac Delays of at Least 
90 Minutes 

        Source: OIG analysis of BTS data 
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Changes in Average Gate Delays Did Not Have an Obvious 
Association With the TDR 
We found no obvious association between changes in average gate delays and the 
TDR. Figure 4 indicates that average gate delays were generally lower in 2009 
through 2012, but then returned to their former levels. Airports of all sizes 
exhibited this pattern.  

Figure 4. Annual Average Minutes of Gate Delays 

 
   Source: OIG analysis of BTS data 
 
At the same time, air traffic fell and remained at lower levels until the end of the 
study period. The number of annual flights declined 20 percent from 2007 to 2014. 
Medium-sized airports experienced the greatest reduction in flights (34 percent). 
Congestion also fell during this period. Figure 5 shows FAA’s measures of airport 
capacity utilization—which are indicators of airport congestion—by airport size.  
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Figure 5. Annual Average Capacity Utilization by Airport Size 

 
 Source: OIG analysis of FAA data 

THE OST-COMMISSIONED ANALYSIS HAS LIMITATIONS THAT 
IMPACT ITS RELIABILITY 
Several factors limit the reliability of OST’s commissioned analysis of the TDR’s 
effects on flight delays. First, the analysis introduces bias through its assumption 
that it is only necessary to consider cancellation impacts on flights experiencing 
lengthy tarmac delays after the TDR’s implementation. Second, the analysis fails 
to account for the impacts of factors other than the TDR, such as weather and 
congestion, in determining the TDR’s effects on cancellations. As a result of these 
limitations, the analysis does not provide reliable information on which to base 
potential policy decisions. 

The Primary Assumption Underlying the OST-Commissioned 
Analysis Biases the Results 
The OST-commissioned analysis assumes that only cancellations occurring after 
tarmac delays of at least 2 hours are attributable to the TDR in the post-rule 
period. However, this assumption is problematic because tarmac delays of this 
length have dropped dramatically post-TDR. The decrease in post-TDR lengthy 
tarmac delays raises the question of what air carriers have done to avoid these 
delays. One possibility is that air carriers proactively cancelled flights facing 
conditions that might later result in a lengthy tarmac delay.  
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The primary assumption of the OST-commissioned analysis rules out the 
possibility that the reductions in lengthy tarmac delays were related to the 
increased cancellations. In this way, it potentially biases results. In addition, post-
rule tarmac delays cannot serve as stable indicators of the potential for the rule to 
impact cancellations because the rule potentially affected both tarmac delays and 
cancellations at the same time. Consequently, the study’s impact calculations 
based on these delays are biased.20   

The OST-Commissioned Analysis Fails To Account for Factors Such 
as Weather and Congestion  
The OST-commissioned analysis does not account for other factors that play a 
significant role in cancellation rates, such as weather and congestion. We have 
found that factors such as these are highly significant in explaining variations in 
airline cancellations. For example, we found that each 1 percent increase in heavy 
rain at a departure airport increased cancellation rates 1.86 percent on average. 

Specifically, the OST-commissioned analysis determines the impact of the TDR 
by comparing cancellations across airports on groups of days with or without 
lengthy delays, year for year. However, that comparison does not account for 
various factors that could be contributing to those delays or cancellations on those 
particular days. For example, suppose summer 2009 experienced many delays and 
cancellations on days when there was heavy rain, but in summer 2010, there were 
many delays and cancellations on the same days, yet no rain. The OST analysis 
would claim the TDR had a minimal or no effect on cancellations because the 
number of the cancellations or delays appears the same between the 2 years—even 
though it is likely the rain in 2009 influenced many decisions to cancel flights. By 
omitting contributing factors such as weather or other causes of delays, the OST-
commissioned analysis cannot identify how many cancellations were due to the 
TDR.  

CONCLUSION 
Lengthy tarmac delays significantly inconvenience the flying public; however, 
flight cancellations are also costly in a number of ways for both passengers and the 
airline industry. Understanding the impact of DOT’s tarmac delay rule on flight 
cancellations is an important step in determining whether the rule has improved 
flying conditions for the public. The findings of this audit agreed with those of 
other analyses in identifying a short-term increase in cancellations following the 
TDR.21 However, our audit differed from those analyses in also being able to 
examine longer term effects—specifically over 4.5 years following the TDR’s 
                                              
20 This is called endogeneity bias. It occurs when an outcome of interest and a factor used to explain the outcome are 
determined simultaneously.  
21 Fukui and Nagata (2014), GAO (2011). 
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implementation. As a result, our analysis was able to show that the TDR decreased 
lengthy tarmac delays, and that it did increase cancellations—but its impact on 
cancellations only lasted 3 years. 

AGENCY COMMENTS AND OIG RESPONSE 
We provided a draft of this report to OST on September 22, 2016. On October 18, 
the Agency informed us that it did not intend to submit a written response to our 
report. During the review, we discussed our findings and methodology with OST 
representatives. Where appropriate, we incorporated OST’s comments and input 
received during our meetings with the Agency. As our report did not include any 
recommendations, we are not requesting further action from OST. 

We appreciate the courtesies and cooperation of representatives of the Office of 
the Secretary of Transportation during this audit. If you have any questions 
concerning this report, please call me at (202) 366-5630 or Betty Krier, Program 
Director, at (202) 366-1422. 

# 

cc: DOT Audit Liaison, M-1 
FAA Audit Liaison, AAE-100 
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Exhibit A. Scope and Methodology 

EXHIBIT A. SCOPE AND METHODOLOGY 
We conducted our work from February 2015 through September 2016 in 
accordance with generally accepted Government auditing standards. Those 
standards require that we plan and perform the audit to obtain sufficient, 
appropriate evidence to provide a reasonable basis for our findings and 
conclusions based on our audit objectives. We believe that the evidence obtained 
provides a reasonable basis for our findings and conclusions based on our audit 
objectives. 
 
The FAA Modernization and Reform Act of 2012 mandated that our office assess 
the effect of the rules and regulations of the Department of Transportation on the 
decisions of air carriers to delay or cancel flights. Staff from both the House 
Aviation Subcommittee of the Transportation and Infrastructure and the Senate 
committee on Commerce, Science, and Transportation directed our office to focus 
on the Tarmac Delay Rule (TDR) and also asked us to evaluate the Office of the 
Secretary of Transportation’s (OST) commissioned analysis of the rule. 
Accordingly, our objectives were to: (1) assess the effect of the TDR on flight 
cancellations, (2) assess the effect of the TDR on flight delays, and (3) evaluate 
the OST-commissioned analysis of the TDR’s impacts.  
 
We used two analytical methods to assess the TDR’s effects on cancellations. 
First, we performed an econometric analysis with four models, which allowed us 
to isolate the effect of the TDR from other factors affecting cancellation. In all 
models, the dependent variable was the percentage of cancelled flights. We also 
developed a list of factors, or control variables, to account or control for variation 
in the airline cancellation behavior that was not associated with the TDR 
(e.g., weather, congestion, etc.). We developed the list of control variables based 
on our previous audit addressing competition effects on airline flight delays and 
cancellations.22 We also drew from economics literature on factors significantly 
affecting airline cancellation behavior. The list of control variables was the same 
for all four models, except for controls designed to capture responses to the TDR 
by time period, season of the year, and carrier type.23 
 
Our second approach used a synthetic control group. This method simulates the 
behavior of a target group in the absence of a policy (e.g., the TDR). For this 
purpose, a synthetic control group is formed by combining pre-policy behavior 

                                              
22 Reductions in Competition Increase Airline Delays and Cancellations (OIG Report No. CR-2014-40), April 2014. 
23 The list of control variables included weather factors (e.g., heavy and freezing rain), profitability variables (e.g., load 
factor), market competition, labor actions, airport expansions and congestion levels, route and carrier characteristics 
(e.g., connections at origin and destination, departure schedule), and aircraft characteristics (e.g., capacity levels). All 
regression models also include dummy variables for each month in the dataset and for the number of observations per 
route-carrier combination. 
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and attributes (e.g., cancellation rates, weather statistics) of a donor pool of groups 
to mimic the same pre-policy behavior and attributes of the target group. Our 
target group was the top 10 percent of route-carrier combinations that had the 
highest percentage of excessive delays before TDR implementation.24 The donor 
pool consisted of nine groups of the remaining 90 percent of route-carrier 
combinations. We used pre-TDR cancellation rate data and the list of control 
variables common to all four econometric models to form the synthetic control 
group. Under this method, calculating the difference between actual and simulated 
cancellation rates for the post-TDR periods quantifies the effects of the TDR. 
 
Our analysis used airline data on 2,511 domestic directional airport-pairs25 from 
the fourth quarter of 2005 through the fourth quarter of 2014. This dataset was 
initially formed by combining on-time performance data from the Airline Service 
Quality Performance (ASQP) database, the airline tickets’ information from the 
Airline Origin and Destination survey (DB1B), and the route-carrier group 
statistics from the Air Carrier Statistics Database (T-100), all of which the Bureau 
of Transportation Statistics (BTS) maintains.26 We complemented these data with 
weather information from the National Center for Environmental Information and 
airport capacity utilization data from FAA’s Aviation System Performance 
Metrics (ASPM).27 Our dataset contained 20 airlines, 15 of which are major 
carriers.28 The remaining airlines are national carriers with annual revenues 
between $100 million and $1 billion.29  
 
To ensure sufficient time series variation, we omitted route-carrier groups with 
data spanning less than one year. For data reliability reasons, we excluded any 
route-carrier group reporting less than or equal to eight flights per month, and 
flights that arrived more than 1 hour early or over 6 hours late. We also excluded 
observations with either an origin or destination outside the continental U.S. 
Moreover, we limited our analysis to routes connecting to the 70 larger airports for 

                                              
24 In our study, each observation represents one route (i.e., a directional airport pair) operated by one carrier. We did all 
our analysis at this level. 
25 For example, Washington Dulles (IAD) to Raleigh-Durham International (RDU) is considered to be a different route 
than RDU to IAD. 
26 DB1B is a quarterly 10 percent sample of all airline tickets issued by reporting carriers. All airlines operating any 
aircraft having over 60 seats are required to report. We used the T-100 database to identify service type, aircraft 
characteristics and load factors, defined as the monthly average ratio of total passengers and seats.   
27 The capacity utilization data were based on FAA’s “called rates,” which are the maximum hourly number of arriving 
and departing flights an airport can safely handle as determined by air traffic control given existing operational 
conditions, such as wind direction and weather. See exhibit B for further information. 
28 The BTS defines a major carrier as a carrier having annual revenues in excess of $1 billion The major carriers are: 
ATA (TZ), AirTran (FL), Alaska (AS), American (AA), American Eagle (MQ), Comair (OH), Continental (CO), Delta 
(DL), Frontier (F9), JetBlue (B6), Northwest (NW), SkyWest (OO), Southwest (WN), US Airways (US), and 
United (UA). 
29 The national carriers are: Atlantic Southeast (EV), ExpressJet (XE), Mesa (YV), Pinnacle (9E), and Virgin 
America (VX). 
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which we obtained FAA airport capacity utilization data.30 Even though the 
number of routes covered in our final sample (333,447 monthly observations) only 
account for about 43 percent of those in our sample prior to the merger with the 
capacity utilization data, these routes encompass approximately 60.4 percent of the 
total number of flights in the larger sample. 

Our cancellation impact work was reviewed by academics with peer-reviewed 
publications related to this study: Jan Brueckner (University of California – 
Irvine), Hideki Fukui (Eihme University), and Koki Nagata (University of 
Maryland). We addressed their questions and comments. 
 
Our analysis of the impact of the TDR on flight delays was purely descriptive. 
Specifically, our analysis consisted primarily of calculating correlations and 
percentage changes, and constructing graphs, while breaking out the data along 
several different dimensions, such as airport size.  

                                              
30 FAA’s Aviation Performance Metrics Airport Efficiency System is not publically accessible. It covers 77 airports, 
but only 73 within the lower 48 states.  
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EXHIBIT B. ANALYSIS OF CANCELLATIONS IN TECHNICAL 
DETAIL 
This exhibit describes our scope and methodology for our analysis of cancellations 
in technical detail. It is organized as follows. First, we outline our approach. 
Second, we describe the sources, construction, and characteristics of our 
estimation dataset. Third, we detail our model specifications and estimation 
approaches. The last section discusses our results and sensitivity analyses.  

Our Approach  
We developed a measure of the historical incidence of lengthy tarmac delays on 
each route for each carrier. We refer to this measure as our “exposure” variable, 
under the assumption that increased likelihood of lengthy tarmac delays prior to 
implementation of the TDR increases a flight’s exposure to or probability of being 
affected by the rule.  
 
The exposure variable provided us with a means of sorting route-carrier 
combinations into what are effectively control groups. Our use of a continuous 
exposure variable to distinguish control groups draws upon the approaches 
documented in Angrist and Pischke (2009), who provide examples of 
differentiating between control groups using a measure of the fraction affected by 
a policy change. For example, Kiel and McClain (1995) used distance to an 
undesired facility as an exposure measure to assess the impact of installing a 
waste-to-energy incinerator on house prices. Mian and Sufi (2012) followed a 
similar approach in using ratios of “clunkers” to automobile stock to measure a 
city’s exposure to USDOT’s 2009 “Cash for Clunkers” program in order to 
quantify the impact of that program on auto purchases. Like these authors, we 
employed our exposure variable in Differences in Differences (DID) models, 
which we used to estimate the TDR’s effects on cancellation rates. 

We constructed the exposure variable as the percentage of flights subject to tarmac 
delays greater than a given threshold length in the period prior to the TDR’s 
implementation. We constructed this variable for each route-carrier combination, 
i.e., for each combination of a directionally-specific route and carrier servicing 
that route. The period over which the percentages are calculated runs from the 
beginning of our dataset through March 2010, the month prior to the TDR’s initial 
implementation. We also generated a version of the exposure variable based on 
2007 data alone.31   

                                              
31  Cancellation behavior by airlines during 2007 is not plausibly affected by a policy implemented in 2010, and 2007 is 
the pre-tarmac year with the worst record of lengthy flight delays in our dataset. Hence, using 2007 for exposure 
calculations provides a suitable worst-case scenario for a robustness assessment of the results obtained using the whole 
pre-rule period as a baseline. 
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We used a range of thresholds—60, 90, and 120 minutes—to develop exposure 
measure variants. GAO (2011) found that important points in the decision process 
for cancelling flights occurred at 60 and 120 minutes into a tarmac delay. 
Conversations between an airline and airport control tower about how they will 
handle the delay and a potential return to the gate begin at the 60 minute mark of a 
tarmac delay. Cancelling a flight on the tarmac before the 3-hour limit is breached 
requires that the pilot begin implementing procedures to return to the gate once the 
tarmac delay has reached approximately 2 hours. 

The exposure variable will only identify an effect well if: (a) there is variation 
across route-carrier combinations in the number of instances planes exceed a time 
threshold on the tarmac, and (b) the exposure variable produces a fairly consistent 
ranking of route-carrier combinations across the years preceding the TDR. If the 
first condition is not met, and all route-carriers evidence a uniform distribution of 
flights exceeding tarmac delay thresholds, then the exposure variable will not 
provide additional information. In our dataset, we found that the standard 
deviation of every exposure variable variant is much larger than its mean. If the 
second condition is not met, the exposure variable would not be able to distinguish 
meaningful control groups. A rank correlation test found substantial and 
statistically significant correlation in annual route-carrier rankings by exposure 
variable value from 2006 through 2009. 

We used April 2010 as the date of the TDR’s implementation, even though at that 
time the rule applied solely to flights from airports classified as large or medium 
hubs by the Federal Aviation Administration (FAA).32 This provided us with a 
clear division between pre- and post-policy periods. Route-carrier combinations 
originating at large or medium hub airports comprise about 78 percent of our 
regression dataset. Because DOT extended the rule’s provisions to all domestic 
flights as of August 2011, only 3.24 percent of the route-carrier combinations in 
our dataset were consequently included among those covered by the TDR before 
their coverage under the rule began.33  

Data and Statistics 

Dataset 
To form our baseline dataset, we merged the Bureau of Transportation 
Statistics (BTS) Airline Service Quality Performance Data (ASQP), Airline Origin 

                                              
32 FAA classifies airports according to passenger enplanements. All “primary” airports enplane at least 10,000 
passengers annually. FAA designates primary airports as large, medium, or small hubs, or as non-hubs. Of system-wide 
passengers, “large” hubs enplane at least 1 percent; “medium” hubs at least 0.25 percent, but less than 1 percent; 
“small” hubs at least 0.05 percent, but less than 0.25 percent; and “non-hub” less than 0.05 percent.  
33 Our findings are unchanged when we re-estimate our regressions using the correct TDR implementation date for 
route-carrier combinations originating from small hub and non-hub airports. These results are available upon request.   
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and Destination Survey (DB1B), and Air Carrier Statistics Database (T100).34 The 
ASQP database contains flight-level performance data for direct flights by air 
carriers who account for 1 percent or more of total domestic scheduled service 
passenger revenues, which we use to construct our exposure measures. The DB1B 
is a quarterly 10 percent sample of scheduled airline tickets from carriers operating 
any aircraft larger than 60 seats. The T100 details air service type and flight and 
aircraft characteristics.  

Our unit of observation is route-carrier-month. We define a route as a directional 
origin and destination airport-pair. For example, Washington Dulles (IAD) to 
Raleigh-Durham International (RDU) is considered to be a different route than 
RDU to IAD. Airport-pair, instead of city-pair, is used to define a route because 
different airports located in the same city can experience different cancellation 
rates.  

We converted all data into monthly averages except those based on the DB1B 
quarterly data, which we assume are constant across the months within a quarter. 
Our dataset covers the 4th quarter of 2005 through the 4th quarter of 2014 and 20 
airlines. Fifteen of these are major carriers, defined by BTS as having annual 
revenues in excess of $1 billion.35 The remaining airlines are national carriers with 
annual revenues between $100 million and $1 billion.36  

We limited our analysis to routes connecting the 70 larger airports for which we 
obtained FAA airport capacity utilization data.37 Those hourly data report the 
number of operations (e.g., arrivals and departures) an airport handles divided by 
the maximum number air traffic control determines it can handle safely given 
runway configuration and weather conditions. Our final dataset contains 
2,511 directional airport-pairs or routes, 4,935 route-carrier combinations, and 
333,447 monthly observations.38 Even though the number of routes covered in our 

                                              
34 The ASQP data is linked to the operating carrier, while each observation in the DB1B is tied to a combination of an 
operating carrier as well as a marketing carrier. It is possible that in the same month and on the same route, one 
operating carrier is working for multiple marketing carriers and vice versa; e.g., code-sharing. About 50 percent of the 
observations have an operating carrier that is different from the marketing carrier. We merged these two datasets by 
operating carrier, and assigned a unique marketing carrier based on the following rules: (1) For records with multiple 
operating carriers all linked to the same marketing carrier, we assigned that marketing carrier. (2) For records with 
multiple marketing carriers linked to the same operating carrier, we assigned the dominant marketing carrier, the one 
with greater than or equal to 50 percent of the origin and destination passenger share.  
35 The major carriers are: ATA (TZ), AirTran (FL), Alaska (AS), American (AA), American Eagle (MQ), Comair 
(OH), Continental (CO), Delta (DL), Frontier (F9), JetBlue (B6), Northwest (NW), SkyWest (OO), Southwest (WN), 
US Airways (US), and United (UA). 
36 The national carriers are: Atlantic Southeast (EV), ExpressJet (XE), Mesa (YV), Pinnacle (9E), and Virgin America 
(VX). 
37 We obtained airport capacity utilization data from FAA’s Aviation Performance Metrics Airport Efficiency System, 
which is not publically accessible. It covers 77 airports, but only 73 within the lower 48 states.  
38 To ensure sufficient time series variation for estimating each panel, we omit route-carrier groups with data spanning 
less than one year. For data reliability reasons we exclude any route-carrier combination reporting less than or equal to 
eight flights per month, and flights that arrived more than 1 hour early or over 6 hours late. We also exclude 
observations with either an origin or destination outside the continental U.S.  
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final dataset only account for about 43 percent of those in our dataset prior to the 
merger with the capacity utilization data, these routes encompass approximately 
60.4 percent of the total number of flights in the larger sample. 

Control Variables 
Our choice of control variables for both the regression and synthetic control group 
methods builds on our previous statistical work on airline cancellation rates (DOT 
Office of Inspector General 2014). Most of our control variables fall into three 
groups: weather factors, profitability measures, and route-carrier specific 
covariates. Tables B1–B3 present summary statistics of our data.  

Our weather data came from the National Center for Environmental Information. 
We used heavy rain and freezing rain to capture the weather conditions that would 
most likely cause cancellations. 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗 is the percentage of days in 
month t at the origin airport of route j with precipitation in excess of the 95th 
percentile for that airport over the entire dataset period. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗 
is the percentage of days in month t with greater than 95th percentile precipitation 
and a temperature below 32 degrees at the origin airport of route j. Similarly, 
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗 and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗𝑗𝑗 capture extreme weather at the 
destination airport of route j.  

We used load factors to indicate airline profitability by route. A flight’s load factor 
is the total number of passengers divided by the total number of seats. 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 is airline i’s average load factor on route j in month t.  

Our route-specific covariates included measures of competition and controls for 
airport expansions. Our route-carrier-specific covariates included measures of 
airport congestion, airport hubbing, aircraft characteristics and labor actions. We 
used a Hirschman-Herfindahl index (HHI) based on airlines’ revenue market 
share, calculated using DB1B data, to gauge the level of competition in each 
market or route. Specifically, 𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗 is the index value for route j in month t. To 
determine the level of competition in each market, we included both direct flights 
and those requiring one connection when calculating  𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗𝑗𝑗.39  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 6 𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 12 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 12 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡 6 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖, and 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 6 𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 12 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 represent the monthly percentage of route-
carrier specific total departures occurring from midnight to 6 am, 6 am to 12 pm, 
12 pm to 6 pm, and 6 pm to midnight, respectively. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 is our 
reference group.   

                                              
39 Only 2 percent of the passengers in our sample take trips involving two or more connections, and we do not include 
these in our analysis. Note that the cancellation rate for each route-carrier is calculated using only data for direct flights 
on that route for that carrier.   
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We controlled for the impact on cancellations of airport congestion by controlling 
for airport capacity utilization adapted to the route-carrier level. Specifically, we 
multiplied the monthly average of each hourly airport capacity utilization rate by 
the monthly average number of flights for each route-carrier using the airport in 
that hour. The sum of these products across hours at the origination airport is 
captured in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖. Similarly, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 captures the 
route-carrier specific capacity utilization level at the destination airport.40 These 
measures allow two airlines serving the same route to experience different 
congestion levels at the same airport if one schedules more flights during the 
morning rush while the other predominantly schedules flights in the afternoon. 

We controlled for the effects of airline hubbing with variables constructed using 
DB1B data. As airline hubbing involves an airline scheduling multiple arrivals and 
departures to facilitate passenger connections, we included two variables 
controlling for origin and destination connections. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖 tracks 
the total number of locations to which there are direct flights flown by airline i 
from the origin airport of route j in the quarter containing month t. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 is the corresponding measure for the destination airport.  

We also included information on aircraft characteristics. We assembled 
information on aircraft model for each route-carrier combination from T100 data, 
and use aircraft manufacturer Web sites to identify each model’s seating capacity. 
We grouped the aircraft in our dataset into five categories based on number of 
seats. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 1𝑖𝑖𝑖𝑖𝑖𝑖 is the monthly percentage of all aircraft used by 
carrier i on route j comprised of turbo-prop aircraft and 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 2𝑖𝑖𝑖𝑖𝑖𝑖 is comprised of regional jets having up to 70 seats. 
𝐴𝐴𝐴𝐴𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 3𝑖𝑖𝑖𝑖𝑖𝑖 through 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 5𝑖𝑖𝑖𝑖𝑖𝑖 were generated in 
a similar fashion with seating increasing for higher group numbers.41  

Other controls include dummy variables for airport expansions and labor actions. 
Specifically, one set of dummies indicates the completion of airport runway 
projects in November 2008 at three major airports: Seattle-Tacoma (SEA), 
Chicago O’Hare (ORD), and Washington Dulles (IAD). For example, 
𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗 is set to one starting November 2008 if the origin airport 
on route j is the Seattle-Tacoma International Airport, and zero otherwise. The 
other set of dummies, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖, indicate periods of labor strikes and 
slowdowns.42 

                                              
40 These variables also capture slot control effects. Capacity utilization averaged 62 percent for the slot-controlled 
airports in our dataset, and 49 percent for all other airports. 
41 Group 3 contains regional jets with 70 to 100 seats. Group 4 is made up of narrow body planes having more than 100 
seats. Group 5 includes all wide body aircraft.  
42 We collected information on airline labor actions from: the Wall Street Journal, the Chicago Tribune, the Bureau of 
Labor Statistics, CNN, USA Today, NBC news, TribLive, and Highbeam. Four events were identified during our 
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Empirical Models 

Regression Models 
Similar to other regression analyses applying the DID approach with a continuous 
variable to distinguish control groups, we used the interaction between the 
exposure variable and a dummy variable for the post-policy implementation period 
to measure the impact of the TDR on flight cancellation rates. The structure of our 
regression model is  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛼𝛼𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑡𝑡 + 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 (1) 

where i indexes airline, j indexes route, and t indexes time. The dependent variable  
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 is the monthly percentage of airline i’s direct flights on route j that are 
cancelled. 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 represents the exposure measure, which is time-invariant and 
specific to each route-carrier. 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 is a dummy variable that equals one for post-
implementation observations and zero otherwise.  

The vector 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 contains explanatory variables that may vary by route-carrier and 
time. 𝜀𝜀𝑡𝑡 is a vector of time dummies, which in part serves to absorb shifts in 
macroeconomic variables, such as the unemployment rate. 𝑐𝑐𝑖𝑖𝑖𝑖 captures time 
invariant factors for each route-carrier combination, such as distance. 43 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 
represents the idiosyncratic error. The composite error is 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖, where 
the sequence {𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖: 𝑡𝑡 = 1, … , 𝑇𝑇} is allowed to be serially correlated. The composite 
errors are assumed to cluster over time within each route-carrier combination but 
be independent across different combinations.  

We allowed for time varying effects on cancellations, including prior to 
announcement of the TDR, by multiplying pre- and post-rule time periods by the 
exposure variable. The resulting dynamic version of our model is 

𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∙ 𝐷𝐷𝑡𝑡 + 𝛼𝛼𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑡𝑡 + 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 (2) 

where 𝐷𝐷𝑡𝑡 is a vector with dummy variables for the following pre- and post-policy 
periods: (i) August 2009 to December 2009, (ii) January 2010 to April 2010, 
(iii) May 2010 to April 2011, (iv) May 2011 to April 2012, (v) May 2012 to April 
2013, (vi) May 2013 to April 2014, and (vii) May 2014 to December 2014. The 
first interval captures the period just prior to DOT’s announcement of the TDR on 

                                                                                                                                       
dataset, affecting: (1) Northwest Airlines from October to November 2005; (2) Northwest Airlines in November 2006; 
(3) US Airways in April 2006; and (4) American Airlines from September to October 2012. 
43 We have omitted a stand-alone exposure variable because cij captures all time-invariant route-carriers effects. Since 
our exposure variable is constructed to be both time-invariant and specific to each route-carrier pair, cij absorbs all the 
variation that would be associated with it. 
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December 21, 2009.44 The second interval controls for the period from rule 
announcement to its implementation on April 29, 2010. The remaining intervals 
consist of 1-year periods following implementation, except for the last interval 
which covers the final 8 months of our dataset. 

We examined whether the TDR impact varies seasonally by extending model (1). 
Designating May through September as summer months, as in GAO (2011), we 
set the dummy variable 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 equal to one for the summer months and zero 
otherwise. Analogously, we coded the dummy variable 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 as equal to one 
from November through February, and zero otherwise. Our model extended for 
studying seasonal effects is  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 ∗ 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑡𝑡 + 𝜃𝜃𝑆𝑆𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 

+𝛼𝛼𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑡𝑡 + 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 (3) 

We note that model (3) measures effects relative to the months March, April, and 
October. For example, if 𝜃𝜃𝑆𝑆 were positive and significant, then the TDR would 
have caused an increase in summer cancellation rates compared to cancellation 
rates in March, April, and October. 

We studied the possibility that some carrier types (e.g., low-cost carriers) respond 
more aggressively to the possibility of violating the TDR by considering an 
additional extension of model (1). Letting 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 denote a dummy variable that 
equals one if airline i is a low-cost carrier and zero otherwise, our extension of 
model (1) to examine cancellation behavior by airline type is  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 𝜃𝜃𝐸𝐸𝐿𝐿𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 

+𝜃𝜃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 𝛼𝛼𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑡𝑡 + 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜇𝜇𝑖𝑖𝑖𝑖𝑖𝑖 (4) 

where 𝜃𝜃𝐿𝐿𝐿𝐿 controls for average cancellations of low-cost carriers relative to other 
carriers (e.g., legacy carriers) and 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸 measures the differentiated relevance of 
exposure for low-cost carriers relative to other carrier types. With these controls in 
place, 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is interpreted as the relative impact of the TDR on low-cost airline 
cancellation behavior, relative to all other carriers. 

The dependent variables in models (1) through (4) are bounded by zero and one. 
Thus, estimating these models using simple linear regression is not appropriate as 
they may yield predictions lying outside the [0,1] interval. Moreover, estimation 
using simple linear regression is not appropriate if the relationship between at least 

                                              
44 This interval intends to capture cancellation behavior reactions to an extreme tarmac delay incident highly publicized 
in the media, which occurred on August 8, 2009. The incident involved Continental Flight 2816 from Houston, TX, to 
Minneapolis, MN. After diversion to Rochester, MN, the airplane sat grounded on the tarmac for over 6 hours. 
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one covariate and the dependent variable is nonlinear.45 In addition, several route-
carrier combinations have no cancellations for many months in our dataset.  

As a result, many observations of the dependent variable assume an extreme value 
(zero) while the remaining observations exhibit values in the middle of the [0,1] 
interval. The fractional probit model of Papke and Wooldridge (1996, 2008) 
successfully deals with these issues not addressed by common limited dependent 
variable methods (e.g., logit, probit) while allowing for nonlinearities in the 
relationship of cancellation rates with covariates. Therefore, models of the 
percentage of cancelled flights are appropriately estimated using the fractional 
response method. We also estimated (1) using linear regression as a comparison 
allowing us to assess the relevance of controlling for bounded dependent variables 
and allowing for nonlinearities in the relationship with covariates. 

Synthetic Control Group Method 
We used a variant of the DID approach—the synthetic control group method—to 
examine TDR effects on route-carrier combinations with a high probability of 
experiencing lengthy tarmac delays. If the TDR’s impact was concentrated in 
increased cancellations of route-carrier combinations previously prone to these 
longer delays, this effect could be overlooked when quantifying policy effects for 
the entire population of route-carrier combinations, as we do with the regression 
approach.  
 
The synthetic control group method allowed us to address this concern directly. To 
implement it, we combined groups of route-carrier combinations less likely to be 
affected by the TDR into a single, synthetic group having approximately the same 
statistics (e.g., cancellation rates and average weather conditions) as route-carrier 
combinations likely affected by the TDR in the pre-implementation period. We 
define the group of route-carrier combinations likely affected by the TDR as those 
in the top decile of the exposure measure for a particular delay threshold. The 
synthetic control group is created using route-carrier combinations in the 
remaining nine deciles. We measured the TDR effect by computing the average 
difference between cancellation rates in the post-rule period of route-carrier 
combinations in the top decile of the exposure measure and the simulated average 
cancellation rates of the synthetic control group. Our implementation of this 
method follows Abadie and Gardeazabal (2003) and Abadie, Diamond, and 
Hainmueller (2010). 

                                              
45 In previous work we found nonlinear relationships between cancellation rates and at least one of the covariates 
mentioned above. See Reductions in Competition Increase Airline Delays and Cancellations (OIG Report No. CR-
2014-40), April 2014.  
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Covariates 
The covariates used in our models are as follows. The explanatory variable vector 
𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 in all our regression models consists of the control variables previously 
discussed. Pre-TDR means of these variables are also used in the application of the 
synthetic control group method. We used somewhat different sets of alternative 
exposure measure specifications with the two different methods as described 
below. In addition, our regression models include three other covariate sets: 
(i) unbalanced panel adjustment terms, (ii) a control function, and (iii) correlated 
random effects terms. We provide further discussion of these measures below. 

For the sake of robustness, we checked whether the use of alternative exposure 
measure specifications impacts our results. Specifically, we compared results 
generated using 60 versus 90 minutes as the delay threshold in constructing the 
exposure variable, as well as those generated using the whole pre-TDR period of 
our dataset versus the year 2007. We also tried an exposure measure based on a 
delay threshold of 120 minutes in our regression models, but found it led to 
numerical instability. A similar problem was experienced with a 90-minute 
threshold when basing the exposure variable on data from the whole pre-TDR 
period.46 Consequently, we considered the 90- and 120-minute threshold exposure 
measures only when using the synthetic control group method. 

Some route-carrier pairs of our dataset were not observed in all periods, resulting 
in an unbalanced panel dataset. In order to control for this source of 
heteroscedasticity, we followed Wooldridge (2010b) by counting the number of 
time periods in the data for each route-carrier pair. We formed dummy variables 
for each count and added them as regressors. We also allowed the log of the 
variance to be a linear function of these variables.  

The endogeneity of HHI in empirical models of airline ticket prices is well 
documented, raising the concern that HHI is also endogenous in empirical models 
of airline flight cancellations. We addressed this concern using lagged HHI to 
instrument for HHI in the current period. We carried this out using the control 
function (CF) approach in both the fractional response and linear regressions 
because it offers advantages over alternative instrumental variable methods in 
nonlinear models.47   

The propensity for flight cancellation may vary due to route-carrier specific 
factors not directly observed in the data, but correlated with the error term. Using a 
modified Hausman-Taylor test, we found that this is indeed a concern in our 

                                              
46 We believe these instabilities stem from the large shares of zero value observations. Only 1 percent of pre-TDR 
observations had tarmac delays greater than or equal to 120 minutes. The comparable figure for 90-minute delays was 
3 percent. 
47 These advantages are discussed in Wooldridge (2010a), pp. 126 and 589. 



   28 

Exhibit B. Analysis of Cancellations in Technical Detail 

estimations. Because our regressions are nonlinear, we modeled route-carrier 
heterogeneity using correlated random effects (CRE). However, CRE requires 
specification of the form of the correlation (Wooldridge, 2010a). We modeled the 
term 𝑐𝑐𝑖𝑖𝑖𝑖 as a linear function of all exogenous variables’ time averages and a 
Gaussian error term.  

Results  

Regression Model Results 

DID Exposure Measure Results 

Table B4 details our results estimated using equation (1) for two fractional probit 
models and one linear specification. The fractional probit specifications include an 
exposure measure calculated using a 60-minute tarmac delay threshold. One 
variant of the exposure measure is based on 2007 data alone, while the other is 
based on the entire pre-TDR dataset. The linear specification uses the latter 
exposure measure.  

The estimated coefficient on the interaction between the exposure variable and the 
post-policy period dummy is positive in all three estimations, but in only two is it 
significant at even the 10 percent level. Notably, these results apply to the whole 
population of domestic flights averaged over the entire post-rule period. They do 
not differentiate impacts by time since the TDR’s implementation or by propensity 
for more extreme tarmac delays.  

Table B5 presents our results derived estimating equation (2), our dynamic 
regression model, using fractional probit and including two different exposure 
variable specifications. Both exposure variables are again calculated using a 
60-minute threshold; one based on 2007 data alone, and the other based on the 
entire pre-TDR dataset. In each estimation, the exposure measure is interacted 
with dummy variables for the pre- and post-policy periods.  

Except for those capturing effects in the first 3 years after the TDR 
implementation, all interactions of the exposure variable with time interval 
dummies have negative and statistically significant coefficients. Notably, the 
interaction terms pertaining to the 3 years immediately after the policy became 
effective are positive and significant at the 1 percent level. Therefore, compared 
with the period before August 2009, route-carrier combinations with greater 
frequency of tarmac delays lasting at least 60 minutes experienced relatively lower 
cancellation rates until the rule came into effect. Then, during the first 3 years after 
the rule was implemented, those same route-carrier combinations saw statistically 
significant cancellation increases. Afterwards, flight cancellations returned to their 
previous behavior. 
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A rationale for the negative coefficients is provided by the marked trend in the 
kinds of flights supplied over time. Figure B1 shows that a change in the 
composition of flights was ongoing throughout the period covered by our dataset. 
Specifically, flights with high frequency of lengthy pre-rule tarmac delays 
decreased in number while those with low frequency of lengthy pre-rule tarmac 
delays exhibited a relative increase. Since the frequency of lengthy pre-rule tarmac 
delays correlates highly with cancellation rates both pre- and post-TDR, this 
change in the composition of flights would be expected to reduce average 
cancellation rates over time. The cancellation rate averaged over the entire pre-
August 2009 period would then be expected to be higher than the cancellation rate 
in subsequent periods.   

The effects estimated using the fractional response estimates of model (2) are 
consistent with the results for model (1), where the positive but insignificant 
coefficient presumably arises from mixing the immediate post-policy positive 
effects with the negative effects in other periods. 

Model Specification Results 

In table B4, the two fractional response models display coefficient estimates 
similar in sign and statistical significance, but different in magnitude. So the 
choice of exposure variable affects the size of the estimated impacts. We consider 
using data from the entire pre-TDR period to calculate the exposure variable 
preferable to only using 2007 data. A priori, it is more representative, as 2007 
stands out as the worst year for tarmac delays in the pre-policy period. We focus 
our conclusions on the results based on the exposure measure using data from the 
entire pre-TDR period. In so doing we are choosing the results showing the largest 
effects. 

The fractional response models’ estimation results appear to be more reasonable 
than the linear regression’s. While most control variable coefficients were of the 
expected sign in all three specifications in table B4 (e.g., extreme weather events 
increased cancellations), there are discrepancies between the fractional response 
models and the linear regression in regards to statistical significance. For example, 
destination airport congestion is statistically significant at 1 percent in the 
fractional response models, yet it is statistically insignificant at 10 percent in the 
linear regression model. In addition, coefficient estimates for some controls differ 
in sign between the linear and fractional response models (e.g., morning flight 
indicator, origin airport congestion), taking counterintuitive signs in the linear 
model. Consequently, we focus on the fractional probit results.  

The results in table B4 also confirm our prior expectation of the HHI being 
endogenous. Specifically, the CF term is significant at the 1 percent level. As 
noted earlier, the CF approach corrects for this problem.  
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Control Variable Results 

As mentioned above, most control variable coefficients had the expected effect on 
cancellations, as shown in table B4. For example, labor strife substantially 
increased cancellations, while the completion of new runway projects reduced 
them. Departure time variables’ coefficients indicate that the probability of a flight 
being cancelled is greater the later in the day it is scheduled to depart. In addition, 
the negative coefficients on load factor and the larger airplane groups indicate that 
flights with more passengers are less likely to be cancelled.  

Several coefficients are not statistically significant, such as the coefficients 
on 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖, and  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖. However, the coefficient 
on 𝐶𝐶𝐶𝐶𝐶𝐶𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖  is significant and positive, indicating that airport 
congestion at the destination is more relevant than at the origin.   

Low-Cost and Seasonal Model Analysis 

Our results show that the TDR had a greater impact on cancellations during the 
summer months, relative to other seasons, and on low-cost carriers, relative to 
other carrier types. Tables B6 and B7 show results estimated using models (3) and 
(4). All exposure variables were constructed using a 60-minute delay threshold. As 
a robustness check, we again used both the whole pre-TDR dataset and the year 
2007 for exposure calculation.  

For model (3), we found that the coefficient for the interaction between the 
exposure variable and the product of the low-cost airline and post-rule period 
dummies is positive and statistically significant at the 1 percent level. Therefore, 
compared with other carrier types (e.g., legacy carriers), the TDR led low-cost 
carriers to have a relative increase in cancellation rates. 

For model (4), we found that the coefficient on the product between the exposure 
measure, summer, and post-rule dummies is positive and statistically significant at 
the 1 percent level. Thus, the TDR effect on summer cancellation rates was greater 
than its effect on airline behavior in March, April, and October. We also observed 
that the coefficient on the product between the exposure measure, winter, and 
post-rule dummies is negative and statistically significant at the 1 percent level. 
That is, for the post-rule period, winter months had a negative variation in average 
cancellation rate compared to March, April, and October. The marginal effect 
results for both models are presented in tables B6 and B7. Since these results 
benchmark against other carriers or months, the absolute magnitude of these 
impacts cannot be identified without imposing additional assumptions. 

Synthetic Control Group Results 
Using the synthetic control group approach, we confirmed that airlines at higher 
risk of extended flight delays prior to the TDR implementation were more likely to 
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experience cancellations in the post-implementation period. We considered three 
exposure measures based on the tarmac delay information of each route-carrier 
pair for the whole pre-policy period. The exposure measures vary by the threshold 
above which a flight is tagged as being excessively delayed on the tarmac. 
Specifically, we used thresholds of 60, 90, and 120 minutes. Use of the 60-minute 
threshold exposure variable facilitates comparisons with our regression results. 
The remaining thresholds progressively approach the 3-hour limit delineated in the 
TDR and serve the purpose of checking whether the policy’s effects vary in 
magnitude and significance as the extremity of the delays increases. 

In common with other applications of this method (e.g., Abadie et al 2010, Abadie 
and Gardeazabal 2003), the optimal weight for most groups is zero and weight is 
concentrated on a few members of the donor pool. In all cases, the 9th decile was 
the group receiving the most weight. Intuitively, route-carrier pairs with exposure 
levels in this decile are closer in their characteristics to the 10th decile route-carrier 
combinations.  

Figures B2, B3, and B4 exhibit average cancellation rates over time of route-
carrier combinations in the top 10 percent (i.e., 10th decile) of each exposure 
measure along with those for the synthetic control group. All three figures show 
that the synthetic group replicates reasonably well the actual cancellation rates 
prior to the TDR implementation. However, the synthetic and actual series diverge 
subsequently, particularly when the actual cancellation rates peak.  

The results produced by this method are consistent with those from the regression 
analysis. First, the actual series only exceeds the synthetic series in the first 3 years 
post-rule in all three graphs. Second, table B8 shows that, for the all the exposure 
variables, the average difference between the actual and synthetic cancellation rate 
is positive and statistically significant in the first 3 years post-rule  

Both the magnitude and statistical significance of the average difference between 
the two series increase for higher excessive delay thresholds in the first 3 years 
post-rule. For the exposure measure calculated using a 60-minute threshold the 
estimated average difference is 0.39 percent and significant at the 5 percent level. 
This estimate implies that, in the first 3 years post-rule, these routes experienced 
approximately five extra cancellations per day in addition to cancellations that 
would happen in the absence of the rule (out of the top 10 percent route-carrier 
pairs prone to delays above 90 minutes, which accounted for 1,393,449 flights for 
that time interval).48 For the exposure measure calculated using a 90-minute 

                                              
48 The differences in flights and implied additional cancellations are due to both flight frequency per route-carrier and 
decile composition for each exposure measure. For example, consider two route-carrier pairs, A and B, with 50 and 100 
scheduled flights per month, respectively. A has 5 percent delays beyond 2 hours on record while B has 10 percent 
delays beyond 90 minutes (but all below the 2-hour mark). Then B has a higher percentage of delays beyond 90 
minutes than A, yet A has a higher percentage of delays beyond 120 minutes than B (which has zero percent by 
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threshold the estimated average difference is higher, 0.49 percent, and more 
significant (now at the 1 percent level). From the 3 years following May 2010, 
these routes experienced approximately six extra cancellations per day in addition 
to cancellations that would happen in the absence of the rule (out of the top 10 
percent route-carrier pairs prone to delays above 90 minutes, which accounted for 
1,360,282 flights for that time interval). The magnitude of average difference is 
even larger, 0.56 percent, and significant at the 1 percent level for the 120-minute 
threshold. This estimate implies that, in the first 3 years following the TDR’s 
implementation, approximately seven additional flights were cancelled per day 
(out of the 10th decile of flights more prone to delays in excess of 2 hours, which 
consisted of 1,387,644 flights). 
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Table B1.  Summary Statistics: Entire Analysis Period 

Variables Mean 
Std. 
Dev Min Max 

Percentage of Delays >=60 min in 2007 0.013 0.030 0 0.466 
Percentage of Delays >=90 min in 2007 0.004 0.009 0 0.130 
Percentage of Delays >=120 min in 2007 0.001 0.004 0 0.057 
Percentage of Delays >=60 min in all pre-TDR periods 0.011 0.021 0 0.307 
Percentage of Delays >=90 min  in all pre-TDR periods 0.003 0.006 0 0.091 
Percentage of Delays >=120 min in all pre-TDR periods 0.001 0.002 0 0.036 
Percent of Cancelled Flights 0.014 0.027 0 0.667 
Revenue Based HHI 0.547 0.209 0.144 1 
Heavy Rain Origin 0.043 0.048 0 0.355 
Heavy Rain Dest 0.024 0.053 0 0.483 
Freezing Rain Origin 0.043 0.048 0 0.355 
Freezing Rain Dest 0.024 0.053 0 0.483 
Load Factor 0.795 0.112 0.052 1 
Labor Strikes 0.004 0.065 0 1 
Departure 6 am to 12 noon 0.403 0.256 0 1 
Departure 12 noon to 6 pm 0.376 0.262 0 1 
Departure 6 pm to 12 midnight 0.199 0.226 0 1 
Connections Origin 104.718 34.584 1 188 
Connections Dest 104.455 34.635 1 187 
Congestion Origin 0.482 0.201 0.005 1.058 
Congestion Dest 0.477 0.207 0.004 1.079 
SEA Runway Origin 0.009 0.094 0 1 
ORD Runway Origin 0.020 0.139 0 1 
IAD Runway Origin 0.008 0.089 0 1 
SEA Runway Dest 0.009 0.093 0 1 
ORD Runway Dest 0.020 0.140 0 1 
IAD Runway Dest 0.008 0.090 0 1 
Aircraft Type Group 1 0.003 0.058 0 1 
Aircraft Type Group 2 0.187 0.390 0 1 
Aircraft Type Group 3 0.171 0.376 0 1 
Aircraft Type Group 4 0.635 0.482 0 1 
Aircraft Type Group 5 0.005 0.067 0 1 
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Table B2.  Summary Statistics: Pre-TDR Period 

Variables Mean 
Std. 
Dev Min Max 

Percentage of Delays >=60 min in 2007 0.014 0.029 0 0.466 
Percentage of Delays >=90 min in 2007 0.001 0.003 0 0.057 
Percentage of Delays >=120 min in 2007 0.004 0.009 0 0.130 
Percentage of Delays >=60 min in all pre-TDR periods 0.011 0.022 0 0.307 
Percentage of Delays >=90 min  in all pre-TDR periods 0.003 0.006 0 0.091 
Percentage of Delays >=120 min in all pre-TDR periods 0.001 0.002 0 0.036 
Percent of Cancelled Flights 0.015 0.027 0 0.563 
Revenue Based HHI 0.549 0.208 0.144 1 
Heavy Rain Origin 0.042 0.047 0 0.290 
Heavy Rain Dest 0.026 0.055 0 0.483 
Freezing Rain Origin 0.042 0.047 0 0.290 
Freezing Rain Dest 0.026 0.055 0 0.483 
Load Factor 0.776 0.118 0.052 1 
Labor Strikes 0.005 0.072 0 1 
Departure 6 am to 12 noon 0.405 0.260 0 1 
Departure 12 noon to 6 pm 0.380 0.267 0 1 
Departure 6 pm to 12 midnight 0.197 0.228 0 1 
Connections Origin 105.709 33.712 1 185 
Connections Dest 105.421 33.717 1 186 
Congestion Origin 0.499 0.200 0.008 1.058 
Congestion Dest 0.494 0.207 0.004 1.079 
SEA Runway Origin 0.006 0.077 0 1 
ORD Runway Origin 0.014 0.117 0 1 
IAD Runway Origin 0.006 0.076 0 1 
SEA Runway Dest 0.006 0.076 0 1 
ORD Runway Dest 0.014 0.117 0 1 
IAD Runway Dest 0.006 0.076 0 1 
Aircraft Type Group 1 0.004 0.062 0 1 
Aircraft Type Group 2 0.214 0.410 0 1 
Aircraft Type Group 3 0.173 0.378 0 1 
Aircraft Type Group 4 0.604 0.489 0 1 
Aircraft Type Group 5 0.005 0.074 0 1 
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Table B3.  Summary Statistics: Post-TDR Period 

Variables Mean 
Std. 
Dev Min Max 

Percentage of Delays >=60 min in 2007 0.013 0.030 0 0.466 
Percentage of Delays >=90 min in 2007 0.001 0.004 0 0.057 
Percentage of Delays >=120 min in 2007 0.004 0.009 0 0.130 
Percentage of Delays >=60 min in all pre-TDR periods 0.010 0.021 0 0.296 
Percentage of Delays >=90 min  in all pre-TDR 
periods 0.003 0.006 0 0.091 
Percentage of Delays >=120 min in all pre-TDR 
periods 0.001 0.002 0 0.034 
Percent of Cancelled Flights 0.013 0.026 0 0.667 
Revenue Based HHI 0.545 0.210 0.167 1 
Heavy Rain Origin 0.044 0.048 0 0.355 
Heavy Rain Dest 0.022 0.051 0 0.345 
Freezing Rain Origin 0.044 0.048 0 0.355 
Freezing Rain Dest 0.022 0.051 0 0.345 
Load Factor 0.818 0.100 0.237 1 
Labor Strikes 0.003 0.056 0 1 
Departure 6 am to 12 noon 0.400 0.250 0 1 
Departure 12 noon to 6 pm 0.372 0.256 0 1 
Departure 6 pm to 12 midnight 0.203 0.222 0 1 
Connections Origin 103.525 35.570 1 188 
Connections Dest 103.292 35.675 1 187 
Congestion Origin 0.462 0.201 0.005 1.049 
Congestion Dest 0.456 0.205 0.017 1.058 
SEA Runway Origin 0.012 0.110 0 1 
ORD Runway Origin 0.027 0.162 0 1 
IAD Runway Origin 0.011 0.103 0 1 
SEA Runway Dest 0.012 0.109 0 1 
ORD Runway Dest 0.027 0.163 0 1 
IAD Runway Dest 0.011 0.104 0 1 
Aircraft Type Group 1 0.003 0.053 0 1 
Aircraft Type Group 2 0.153 0.360 0 1 
Aircraft Type Group 3 0.168 0.374 0 1 
Aircraft Type Group 4 0.672 0.470 0 1 
Aircraft Type Group 5 0.003 0.058 0 1 

 
 
 



   37 

Exhibit B. Analysis of Cancellations in Technical Detail 

Table B4.  Model of Percentage of Cancelled Flights 

Model Fractional Probit  Linear 
Regression 

Exposure variable Delay (>=60min) rel. freq. 
in 2007 

Delay (>=60min) rel. freq., all pre-TDR 
periods 

Estimates Model 
Coefficients 

Marginal 
Effects 

Model 
Coefficients 

Marginal 
Effects 

Model 
Coefs/ 

Marginal 
Effects 

CF -0.0808***   -0.111***   -0.00746*** 
  (0.0168)   (0.0218)   (0.00128) 
Exposure*TDR 0.0337 0.0031 0.103* 0.0067* 0.00447 
  (0.0285) (0.0025) (0.0560) (0.0035) (0.00651) 
HHI 0.0177* 0.0017* 0.0327** 0.0023** 0.00148 
  (0.00960) (0.0009) (0.0133) (0.0009) (0.00103) 
Heavy_Rain_Origin 0.189*** 0.0186*** 0.264*** 0.0186*** 0.0180*** 
  (0.0281) (0.0009) (0.0363) (0.0009) (0.000964) 
Frozen_Rain_Origin 0.435*** 0.0428*** 0.601*** 0.0423*** 0.101*** 
  (0.0622) (0.0011) (0.0798) (0.0011) (0.00187) 
Heavy_Rain_Dest 0.176*** 0.0173*** 0.247*** 0.0174*** 0.0172*** 
  (0.0263) (0.0009) (0.0343) (0.0009) (0.000958) 
Frozen_Rain_Dest 0.399*** 0.0392*** 0.554*** 0.039*** 0.0966*** 
  (0.0572) (0.0011) (0.0738) (0.0011) (0.00188) 
Load Factor -0.197*** -0.0194*** -0.259*** -0.0183*** -0.0191*** 
  (0.0289) (0.0008) (0.0353) (0.0007) (0.000799) 
Labor Strikes 0.0315*** 0.0034*** 0.0506*** 0.004*** 0.00371*** 
  (0.00762) (0.0007) (0.0107) (0.0007) (0.000821) 
Depart_6am_to_12_noon 0.000852 0.0001 -0.00110 -0.0001 0.000848 
  (0.00848) (0.0008) (0.0109) (0.0008) (0.000899) 
Depart_12_noon_to_6pm 0.0290*** 0.0029*** 0.0384*** 0.0027*** 0.00360*** 
  (0.0100) (0.0009) (0.0128) (0.0008) (0.000955) 
Depart_6pm_to_12_midnight 0.0388*** 0.0038*** 0.0508*** 0.0036*** 0.00401*** 
  (0.0113) (0.001) (0.0143) (0.0009) (0.00105) 
Connections_Origin -0.000202** -1.98E-05** -0.000151 -1.06E-05 -1.22e-05 
  (9.18e-05) (8.53E-06) (0.000117) (8.10E-06) (8.66e-06) 
Connections_Dest 5.09e-06 5.01E-07 0.000131 9.20E-06 1.44e-05* 
  (8.62e-05) (8.49E-06) (0.000117) (8.20E-06) (8.73e-06) 
Congestion_Origin 0.0142 0.0014* 0.0216* 0.0015* -0.000606 
  (0.00882) (0.0008) (0.0117) (0.0008) (0.000789) 
Congestion_Dest 0.0345*** 0.0034*** 0.0451*** 0.0032*** 0.000892 
  (0.0101) (0.0009) (0.0132) (0.0008) (0.000798) 
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Model Fractional Probit  Linear 
Regression 

Exposure variable Delay (>=60min) rel. freq. 
in 2007 

Delay (>=60min) rel. freq., all pre-TDR 
periods 

Estimates Model 
Coefficients 

Marginal 
Effects 

Model 
Coefficients 

Marginal 
Effects 

Model 
Coefs/ 

Marginal 
Effects 

SEA_Runway_Origin 0.0126 0.0013 0.0122 0.0009 4.49e-05 
  (0.00841) (0.0009) (0.0115) (0.0008) (0.000499) 
ORD_Runway_Origin -0.0578*** -0.0048*** -0.0825*** -0.0049*** -0.0112*** 
  (0.00943) (0.0003) (0.0125) (0.0003) (0.000860) 
IAD_Runway_Origin -0.00377 -0.0004 -0.00935 -0.0006 -0.00101 
  (0.00820) (0.0008) (0.0108) (0.0007) (0.00124) 
SEA_Runway_Dest -0.00536 -0.0005 -0.00796 -0.0006 -0.000659 
  (0.00964) (0.0009) (0.0130) (0.0009) (0.000521) 
ORD_Runway_Dest -0.0529*** -0.0045*** -0.0762*** -0.0046*** -0.0115*** 
  (0.00853) (0.0003) (0.0114) (0.0003) (0.000911) 
IAD_Runway_Dest -0.00809 -0.0008 -0.0174* -0.0012* -0.00245* 
  (0.00778) (0.0007) (0.0102) (0.0007) (0.00127) 
Aircraft Type Group 3 -0.0348*** -0.0032*** -0.0428*** -0.0029*** -0.00449*** 
  (0.00692) (0.0004) (0.00864) (0.0004) (0.000650) 
Aircraft Type Group 4 -0.0598*** -0.006*** -0.0713*** -0.0051*** -0.00649*** 
  (0.0100) (0.0006) (0.0119) (0.0005) (0.000698) 
Aircraft Type Group 5 -0.0558*** -0.0046*** -0.0698*** -0.0042*** -0.00629*** 
  (0.0121) (0.0006) (0.0155) (0.0006) (0.00103) 
Constant -2.450***   -2.841***   -0.0146 
  (0.392)   (0.467)   (0.0387) 
            
Observations 298,993   333,447   333,447 
Robust standard errors in parentheses.    
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level. 
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Table B5. Dynamic Model of Percentage of Cancelled Flights 

Exposure variable Percentage of delays 
(>=60min) in 2007 

Percentage of delays 
(>=60min) in all pre-TDR 

periods 

Estimates Coefficients Marginal 
Effects Coefficients Marginal 

Effects 

Exposure*1(Aug2009 to Dec 2009) -0.0725* -0.005* -0.279*** -0.0137*** 

  (0.0429) (0.0028) (0.0901) (0.0041) 

Exposure*1(Jan2010 to Apr 2010) -0.131*** -0.0192*** -0.342*** -0.0351*** 

  (0.0452) (0.0056) (0.0856) (0.0078) 

Exposure*1(May2010 to Apr2011) 0.110*** 0.0118*** 0.195*** 0.0154*** 

  (0.0395) (0.0035) (0.0684) (0.0049) 

Exposure*1(May2011 to Apr2012) 0.121** 0.0091*** 0.310*** 0.0163*** 

  (0.0474) (0.0031) (0.0911) (0.0042) 

Exposure*1(May2012 to Apr2013) 0.107** 0.0095*** 0.204*** 0.0128*** 

  (0.0427) (0.0033) (0.0775) (0.0045) 

Exposure*1(May2013 to Apr2014) -0.376*** -0.039*** -0.790*** -0.0575*** 

  (0.0897) (0.0055) (0.150) (0.0079) 

Exposure*1(May2014 to Dec2014) -0.173** -0.0122** -0.285** -0.014** 

  (0.0804) (0.0052) (0.143) (0.0068) 

Observations 298,993   333,447   
Robust standard errors in parentheses. 
Includes same control variables as the model shown in Table B4. 

  *** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level. 
           .  
             .  
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Table B6. Model of Percentage of Cancelled Flights by Season 

Model Fractional Probit, Seasonal 

Exposure variable Delay (>=60min) rel. freq in 2007 Delay (>=60min) rel. freq., all pre-
TDR periods 

Estimates Coefficients Marginal eff. Coefficients Marginal eff. 

Exposure*Summer*TDR 0.116*** 0.0091*** 0.324*** 0.0182*** 
  (0.0408) (0.0026) (0.0811) (0.0036) 
Exposure*Winter*TDR -0.120*** -0.0146*** -0.301*** -0.0261*** 
  (0.0410) (0.0041) (0.0799) (0.0058) 
Observations 298,993   333,447   
Robust standard errors in parentheses. 
Includes same control variables as the model shown in Table B4.     
*** Significant at the 1% level. ** Significant at the 5% level. *Significant at the 10% level 

 

Table B7. Model of Percentage of Cancelled Flights by Carrier 
Type 

Model Fractional Probit, Low Cost 

Exposure variable Delay (>=60min) rel. freq in 2007 Delay (>=60min) rel. freq., all pre-
TDR periods 

Estimates Coefficients Marginal eff. Coefficients Marginal eff. 

Exposure*lowcost*TDR 0.319*** 0.0146*** 0.539*** 0.0209*** 
  (0.119) (0.004) (0.155) (0.0055) 
Observations 298,993   333,447   
Robust standard errors in parentheses. 
Includes same control variables as the model shown in Table B4.   
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level. 
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Table B8. Estimated Real-Synthetic Cancellation Rate 
Differences (in the First 3 Post-TDR Years) 

Exposure* Mean difference t-statistic p-value 95% confidence interval 

Delay>=60min 0.00394 2.15651 0.037996 0.0002317520 0.007676085 

Delay>=90min 0.00490 3.04392 0.004413 0.0016310110 0.008163042 

Delay>=120min 0.00561 3.22609 0.002722 0.0020800650 0.009141647 
    Includes same control variables as the model shown in Table B4. 
    *All exposure measures based on the entire pre-TDR sample. 
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Figure B1. High- and Low-exposure Flights per Route-carrier  
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Figure B2. Synthetic Group Results (Exposure: Delay >=60 min) 
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Figure B3. Synthetic Group Results (Exposure: Delay >=90 min) 
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Figure B4. Synthetic Group Results (Exposure: Delay >=120 min) 
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