Gulf Coast Study, Phase 2

Impacts of Climate Change and Variability on Transportation Systems & Infrastructure

Tools and Findings

U.S. Department of Transportation Climate Adaptation and Mitigation Workshop

February 25, 2015

U.S. Department of Transportation Federal Highway Administration

Comprehensive Assessment of Climate Impacts on Gulf Coast Transportation

- DOT Climate Center study
- Managed by FHWA
- Key component of DOT effort to promote climate resilience at system and project levels

Groundbreaking GC2 Processes

Addressed three of the main challenges facing climate adaptation in transportation:

- 1) Developing climate projections for assessing transportation vulnerability in the future
- 2) Screening and assessing vulnerability of a large number of key assets
- 3) Applying engineering principles to develop adaptation options for vulnerable assets

Projections: Challenges

Challenge:

Need data on future environmental conditions:

- Transportation assets have long service lives
- Historical data might not indicate future trends
- Projections from climate models may help inform future trends

Need design thresholds for a range of variables

- Temperature (high temperature, # days per year above 95F)
- Precip (future 24-hr precip levels for 100-year events)
- Coastal conditions (future sea levels, storm surge inundation levels)

Projections: GC2 Solution Temp, Precip; Storm Surge, Sea Level Rise

Hurricane Katrina, Natural Path Scenario

Hurricane Katrina, Shifted Path Scenario, 0.75 meter Sea-Level Rise

- Defined relevant climate variables
- Downscaled
 Temperature and
 Precipitation
 projections
- Storm scenarios based on historic hurricanes, with varying track, intensity, sea level rise
- Developed methods to bracket range of potential futures for vulnerability analysis

Projections: GC2 Products CMIP Tool (Temp, Precip)

Transferable too	I: CMIP	Tool	Proje	cted Change	es in Tempera	ature	Condit	ions		
					e.g. Mobile, AL					
				Hide Details						
Click to jump to derived variables related to										
Annual Averages Annual Extreme Heat S	easonal Extreme	Heat Ex	treme Cold							
	Baseline (1	961-2000)		Mid-Century (2046-2065)						
Click column headings for additional info	Observed Value	Modeled Value	Projected Value	Change from Baseline	% Change from Observed	Model C Lo	Uncertaii `onfidenco ow	nty Ran e Interv H	nge (95% val) ligh	Projected
Annual Averages										
Average Annual Mean Temperature	52.1 ° F	51.7 ° F	57.3 ° F	5.2 ° F	10%	56.6	٩F	58.0	٩F	59.5 °
Average Annual Maximum Temperature	62.2 ° F	62.0 ° F	67.5 ° F	5.3 ° F	8%	66.7	°F	68.2	°F	69.7 9
Average Annual Minimum Temperature	cel Spr	eadshe	et Tool							49.3
Annual Extreme Heat (click + signs along left to v	Downlo	ads Ter	mperatu	re and P	recipitation	on p	rojeo	ctio	ns	
Hottest Temperature of the Year	Process	ses dov	vnscaled	l climate	projectio	ons i	nto			104.0
"Very Hot" Day Temperature (Very Hot defin	TDVor	riables r	colovant	to transr	ortation	nroi	octe			
95th Percentile Temp)	I, F Val	lables i	elevalit	iu irans	Julialiun	proj	6015		_	97.1
"Extremely Hot" Day Temperature (Extremel	Overco	mes ma	ajor need	d for eas	y access	s to c	clima	ite c	data	
defined as 99th Percentile Temp)										101.9
August Alumbar of David and Very Alum David	_									
Average Number of Days per Year Above Baseline	19 days	19 days	64 days	45 days	248%	56	dave	72	dave	02.
Average Number of Days per Vear Above Baseline	10 04/5	10 Udys	04 days	45 days	24070	20	uays	12	uays	02 (
"Extremely Hot" Temperature (93.7°F)	4 days	4 days	33 davs	29 days	795%	24	days	42	days	ē0 (

Projections: GC2 Products Storm Surge, Sea Level Rise

- Highways in the Coastal Environment: Assessing Extreme Events (released 10.31.2014)
- How to incorporate extreme events and climate change into coastal highway designs
- Focus on sea level rise, storm surge, wave action
- 3 levels of effort approaches, case studies

Highways in the Coastal Environment: Assessing Extreme Events

Screening: Challenges

Challenges:

- Need way to prioritize which assets to study for vulnerability
- Need method to quickly determine sensitivity of diverse set of assets to particular climate stressors
- Need procedure to efficiently develop vulnerability "scores" for large number of assets

Using Indicators to Score Vulnerability

Exposure

- Temp-Days above 95°F
- 24-hour precipitation
- Storm surge height
- Wind speed exceeds threshold above which impacts may occur (yes/no)
- Inundated by sea level rise (yes/no)

Sensitivity

- **Temp** Pavement binder, traffic (roads)
- **Precip** FEMA flood zones, ponding, surface permeability (all modes)
- **Storm surge** Height & condition (bridges), electric signaling & soil type (rail), access (transit)
- Wind Building height, materials, roof type; road sign or signal density (road and rail)
- Sea level rise Drainage (air), protection (transit, roads)

Adaptive Capacity

- Speed to recover asset – cost of improvement (bridges), identified as a priority in emergency planning (rail, air, transit)
- **Redundancy** detour length (bridges, air), number of terminals/ runways (air), ability to reroute (transit and rail), rail yard interchange utility (rail)
- System disruption duration (climate variable-specific)

Screening: GC2 Results

- All modes except airports have assets highly vulnerable to sea level rise, storm surge
- Airports and rail vulnerable to extreme heat. Brownouts could affect ports
- Transit has low vulnerability due to flexibility of bus system; pipelines have low vulnerability as most are buried

Example: The Causeway (R10)

- 17-29 ft of storm surge/waves
- Damaged in past, unprotected, low approach, low embankment
- High replacement cost

Screening: GC2 Products Vulnerability Assessment Scoring Tool (VAST)

Engineering: Challenges

Problems:

- Need analytical process for assessing vulnerability of assets and developing solutions
- Need method for using climate projections to inform traditional engineering design processes

Engineering: GC2 Solution Engineering Case Studies

Engineering: GC2 Solution Case Studies Covered Multiple Modes

Climate Stressor	Asset Type	Damage Mechanism	Asset Location
Precipitation	Culvert	Overtopping	Airport Blvd @ Montlimar Creek
Sea Level Rise	Bridge	Clearance	Cochrane Africatown USA Bridge
Sea Level Rise	Slope	Slope erosion	US 90/98 Tensaw Bridge
Storm Surge	Pier	Waves	McDuffie Coal Terminal, Dock 1
Storm Surge	Bridge	Waves/Scour	US 90/98 Tensaw Bridge
Storm Surge	Bridge	Wave forces	Exit 30, EB Ramp I-10 Bayway Brdg
Storm Surge	Roadway	Flood/erosion	I-10, Between Mileposts 24 and 25
Storm Surge	Tunnel	Flood	Wallace Tunnel
Temperature	Pavement	Ruts, Heaves	Generic
Temperature	Rail	Buckling	Generic
All	0&M	Wear/tear	Generic

Engineering: GC2 Products 11 Step "Process"

Eleven-Step Adaptation Process

- 1. Describe the site context
- 2. Describe the existing or proposed facility
- 3. Identify environmental factors that may impact infrastructure components
- 4. Decide on climate scenarios and determine magnitude of changes
- 5. Assess performance of the existing or proposed facility
- 6. Develop adaptation option(s)
- 7. Assess performance of the adaptation options
- 8. Conduct an economic analysis
- 9. Evaluate additional decision-making considerations
- 10. Select a course of action
- 11. Plan and conduct on-going activities

I-10 – Mileposts 24 to 25 Road Alignment Exposure to Storm Surge

I-10 – Mileposts 24 to 25 Road Alignment Exposure to Storm Surge

Step 4: Climate scenario – Coastal storm surge with sea level rise added to most extreme scenario

Step 5: Assess Facility Performance

Surge Scenario	Overtop I- 10?	Inland Flooding Acre-Feet (Cu.Meters)	Flow Velocities at Tenn. St. &Rail Underpass fps (m/s)
Hurricane Katrina Base	NO	40	3.4
Case Scenario	NO	(51,700)	(1.0)
Hurricane Katrina Shifted	VES	1,300	6.6
Scenario	TES	(1,581,000)	(2.0)
Hurricane Katrina Shifted + Intensified + Sea Level Rise (SLR) Scenario	YES	2,800 (3,412,000)	6.8 (2.1)

Permissible velocities: Grass: 2 to 4 fps; RR ballast: 3 to 6 fps; Concrete: 18 fps

I-10 – Mileposts 24 to 25 Road Alignment Exposure to Storm Surge

Step 6: Develop Adaptation Options

- Harden one or more of the underpasses
- Armor I-10 roadway embankment
- Raise the roadway

Lessons Learned

- Roadway embankment breaching is an area with little research data on prediction methods.
- Additional erosion protection should be considered when designing roadway crossings that could be subjected to reverse flow from storm surges.

Gulf Coast Phase 2 Project Products

GC2 Products: Where Do I Start?

Ongoing & Current Research

Mitigation Adaptation Sustainability

and a second second

FHWA -> Environment -> Climate Change

Virtuel Premework for Vulnerebility Assessment

- Promework Overview
- Articulate Objectives
- Identify Key Climete Veriebles
- Characterize and Select Assets
- Assess Vulnerabilities
- Integrate Vulnerabilities into Decision-Making
- Monitor and Revisit
- Resources

Resources & Publications

Policy & Guidence

Webinera

Workshops & Peer Exchanges

Newsletter

Contects

Feedback

For more information, please contact:

- Robert Kafalenos
- Robert Hyman
- Rebecca Lupes
- Heather Holsinger
- Tina Hodges

Virtual Framework for Vulnerability Assessment

Energy

This section of FHWA's Climate Change Adaptation website provides resources, tools, and guidance to help local and regional transportation agencies implement the Federal Highway Administration's (FHWA's) <u>Climate Change and Extreme Weather Vulnerability Assessment Framework</u>, a guide to assessing the vulnerability of transportation assets to climate change and extreme weather events.

12 12

The section's structure follows that of the framework as shown in the graphic below. Click on any area of the graphic to go to its corresponding module in the Virtual Framework site, or use the page list in the navigation bar at left to navigate through the modules. Each module includes an overview, a summary of key steps, an introductory video, and links to case studies, tools, and other resources. Several of the modules include tools developed by FHWA to help transportation agencies implement their assessments.

For More Information

Webinar Series Building a Climate Resilient Transportation System

Tuesdays starting February 10th

fhwa.dot.gov/environment/climate_change/adaptation/webinars/

Virtual Adaptation Framework

fhwa.dot.gov/environment/adaptationframework

fhwa.dot.gov/environment/climate_change/adaptation/