

Highway Safety Improvement Program Data Driven Decisions

Pennsylvania Highway Safety Improvement Program 2015 Annual Report

Prepared by: PA

Disclaimer

Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data."

23 U.S.C. 409 states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data."

Table of Contents

Disclaimer	i
Executive Summary	L
Introduction	2
Program Structure	2
Program Administration	2
Program Methodology	5
Progress in Implementing Projects	3
Funds Programmed	3
General Listing of Projects	5
Progress in Achieving Safety Performance Targets54	1
Overview of General Safety Trends	1
Application of Special Rules)
Assessment of the Effectiveness of the Improvements (Program Evaluation)	L
SHSP Emphasis Areas	3
Groups of similar project types	3
Systemic Treatments	3
Project Evaluation)
Glossary	2

Executive Summary

The Pennsylvania Department of Transportation is pleased to present this Annual Report of our progress with the Highway Safety Improvement Program.

In 2014, 1,195 people lost their lives on Pennsylvania's roadways - a new low since record keeping began in the 1920s. But we have miles to go to reach our ultimate goal of zero deaths on our roads, and our journey includes ongoing work on both the behavioral side of crash causations as well as continuing to improve our highway infrastructure.

Since the last Annual Report, we have maintained our progress on several key initiatives. We have released updates to several publications that incorporate the concepts of the Highway Safety Manual into our policies and practices. We have also piloted a Highway Safety Manual training course and have begun sessions open to Department personnel at large. As shown later in this report, many of our engineering districts are planning and completing projects associated with the Intersection Safety Implementation and Roadway Departure Safety Implementation Plans. There has also been a significant improvement in the quality of applications for Highway Safety Improvement Program funding from the engineering districts as a result of our regional meetings in 2013.

While there remains much work required to reach our goal of reducing highway fatalities by half in the next two decades - a stepping stone on our way to zero deaths - we remain encouraged by the progress that has been made and the opportunities for the future.

Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

Central

District

Other Central and District

Describe how local roads are addressed as part of Highway Safety Improvement Program.

Previously, we had incorporated a new funding formula in response to the increased funding from the MAP-21 legislation:

1) \$500,000 base funding for each planning organization

2) \$35 million reserved for statewide initiatives, such as the Intersection Safety and Roadway Departure Safety Implementation Plans

3) The remaining amount - approximately \$45.5 million - is to be distributed to the planning organizations by a weighted formula. This formula places 50% weight on fatalities and serious injuries and 50% on reportable crashes.

The funds from all three of these categories are applicable to local road problems.

Local road issues are also directly addressed through our Local Technical Assistance Program (LTAP) reports. Upon a request from a municipality, LTAP engineers will perform an engineering study free of charge and recommend safety countermeasures based on their findings. The Walkable Communities Program focuses on pedestrian safety, while the Local Safe Roads Communities Program focuses on local road safety in general. The safety improvements suggested by these two program reports are eligible for HSIP funding. To encourage implementation of the countermeasures, we are advancing a State Transportation Innovation Council (STIC) initiative to combine some of these completed municipalities into regional groups and emplace the countermeasures in a single project. This initiative is currently on-going.

Finally, we will continue to incorporate local road locations onto our Statewide High Crash Location Lists. An updated list has been published for 2015 that includes state road locations; this list will be updated shortly after publication of this Annual Report to include local roads. These high crash locations are typically among the highest priorities for safety funding.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

Design
 Planning
 Maintenance
 Operations
 Governors Highway Safety Office
 Other: Other-Engineering Districts, Planning Organizations, Program Center

Briefly describe coordination with internal partners.

PennDOT Engineering Districts utilize a data-driven analysis process to identify eligible projects and collaborate with local Planning Organizations to develop a program of safety infrastructure projects. This process was designed to improve highway safety using data-driving project development methods and to fulfill the requirements of Section 148 of MAP-21. Each District, in coordination with area planning partners, is required to utilize the following three step selection process in programming Section 148 (HSIP) projects:

1. Select projects that contain locations listed on the Statewide High Crash Locations (SHCL) priority ranking. Low cost improvements at these locations can be considered.

2. Deployment of systematic implementation of proven low cost countermeasures.

- OR -

A project location listed in the Intersection Safety Implementation Plan (ISIP) or Roadway Departure Safety Implementation Plan (RDIP)

- OR -

A District may program locations identified on the Planning Organization lists. The Planning Organization Lists are developed from the same methodology as the Statewide High Crash Location Lists but with lower crash thresholds to allow for the identification of 25 locations overall in each Planning Organization.

3. Projects not meeting the above criteria may be programmed, but first must be approved by the Deputy Secretary for Highway Administration. Such approval requests must include the following information:

1) General Project Information, including scope, costs and estimated completion dates.

2) District strategy for exceeding its fatality goal, with the consideration of this project.

3) Justification and safety benefit of programming a non-SHCL/Systematic project, related to fatality goals.

Identify which external partners are involved with Highway Safety Improvement Program planning.

Metropolitan Planning Organizations

Governors Highway Safety Office

Local Government Association

Other: Other-MAST Team - See Question 8 for description

Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

Multi-disciplinary HSIP steering committee

Other: Other-MAST meets quarterly to track SHSP implementation and discuss highway safety related topics including the HSIP. MAST includes PennDOT, FHWA, State Police, Liquor Control Board, Dept of Health, Dept of Education and Dept of Drug-Alcohol Programs.

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

The HSIP Program fully aligns with the 2012 Pennsylvania Strategic Highway Safety Plan (SHSP). Within this Plan, Infrastructure Improvements are identified as the third of seven "Vital Safety Focus Areas". Key components of this effort are to:

- Reduce Head-On and Cross-Median Crashes
- Improve Intersection Safety
- Reduce Run-Off-Road Crashes
- Reduce the Severity and Frequency of Hit Fixed Object Crashes

Note that the SHSP is scheduled for a revision in 2016. The results of the planning process and the impacts of the revised document will be discussed in the 2016 Annual Report.

Program Methodology

Select the programs that are administered under the HSIP.

Median Barrier	\boxtimes Intersection	Safe Corridor
Horizontal Curve	Bicycle Safety	Rural State Highways
Skid Hazard	Crash Data	Red Light Running Prevention
⊠Roadway Departure	Low-Cost Spot Improvements	Sign Replacement And Improvement
⊠Local Safety	Pedestrian Safety	Right Angle Crash
Left Turn Crash	Shoulder Improvement	Segments
Other:		

Program:	Median Barrier	
Date of Program Methodology:	2/1/2009	
What data types were used in th	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width

Population

Volume

Other

crashes only

Fatal crashes only

Fatal and serious injury

Lane miles

Other

Horizontal curvature

Functional classification

Roadside features

Other

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

2

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding

Incremental	В/	С
-------------	----	---

Ranking based on net benefit

Other

Potential for Improvement 1 based on Crash History

Program:	Intersection		
Date of Program Methodology:	9/1/2009		
What data types were used in the program methodology?			
Crashes	Exposure	Roadway	
⊠All crashes	Traffic	Median width	
Fatal crashes only	Volume	Horizontal curvature	
Fatal and serious injury crashes only	Population	Functional classification	

Other	Lane miles	Roadside features
	Other	Other
What project identification metho	odology was used for this program?	•
Crash frequency		
Expected crash frequency with	EB adjustment	
Equivalent property damage on	ly (EPDO Crash frequency)	
EPDO crash frequency with EB a	adjustment	
Relative severity index		
Crash rate		
Critical rate		
Level of service of safety (LOSS)		
Excess expected crash frequence	y using SPFs	
Excess expected crash frequence	ry with the EB adjustment	
Excess expected crash frequency using method of moments		
Probability of specific crash types		
Excess proportions of specific crash types		
Other		
Are local roads (non-state owned	and operated) included or address	ed in this program?

- ⊠Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding

Incremental B/C

Ranking based on net benefit

Other

Potential for Improvement 1 based on Crash History

Program:

Horizontal Curve

2

Date of Program Methodology: 2/1/2009

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	Other

What project identification methodology was used for this program?

- Crash frequency
- Expected crash frequency with EB adjustment
- Equivalent property damage only (EPDO Crash frequency)
- EPDO crash frequency with EB adjustment
- Relative severity index
- Crash rate
- Critical rate
- Level of service of safety (LOSS)
- Excess expected crash frequency using SPFs
- Excess expected crash frequency with the EB adjustment
- Excess expected crash frequency using method of moments
- Probability of specific crash types
- Excess proportions of specific crash types
- Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

⊠Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding 2

Incremental B/C

Ranking based on net benefit

Other

Potential for Improvement 1 based on Crash History

Program:	Bicycle Safety		
Date of Program Methodology:	2/1/2009		
What data types were used in th	e program methodology?		
Crashes	Exposure	Roadway	
All crashes	Traffic	Median width	
Fatal crashes only	Volume	Horizontal curvature	
Fatal and serious injury	Population	Functional classification	
crashes only			
Other	Lane miles	Roadside features	
	Other	Other	
What project identification methodology was used for this program?			
Crash frequency			
Expected crash frequency with EB adjustment			
Equivalent property damage only (EPDO Crash frequency)			
EPDO crash frequency with EB adjustment			

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

⊠Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding 2

Incremental B/C

 ☐Ranking based on net benefit ☐Other ☑Potential for Improvement 1 based on Crash History 			
Program:	Skid Hazard		
Date of Program Methodology:	2/1/2009		
What data types were used in the program methodology?			
Crashes	Exposure	Roadway	
All crashes	Traffic	Median width	
Fatal crashes only	Volume	Horizontal curvature	
Fatal and serious injury crashes only	Population	Functional classification	
Other	Lane miles	Roadside features	
	Other	Other	
What project identification methodology was used for this program?			

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

⊠Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding 2

Incremental B/C

Ranking based on net benefit

Other

Potential for Improvement 1 based on Crash History

Roadway Departure

Date of Program Methodology: 2/1/2009

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	Other

What project identification methodology was used for this program?

Crash frequency	
-----------------	--

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

2

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding

Incremental B/C

Ranking based on net benefit

Other

Potential for Improvement 1 based on Crash History

Program:	Low-Cost Spot Improvements	
Date of Program Methodology:	2/1/2009	
What data types were used in the program methodology?		
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature

Fatal and serious injury crashes only	Population	Functional classification	
Other	Lane miles	Roadside features	
	Other	Other	
What project identification metho	odology was used for this program?		
Crash frequency			
Expected crash frequency with	EB adjustment		
Equivalent property damage or	ly (EPDO Crash frequency)		
EPDO crash frequency with EB a	adjustment		
Relative severity index			
Crash rate			
Critical rate			
Level of service of safety (LOSS))		
Excess expected crash frequence	cy using SPFs		
Excess expected crash frequency with the EB adjustment			
Excess expected crash frequency using method of moments			
Probability of specific crash typ	es		
Excess proportions of specific c	rash types		
Other			

Are local roads (non-state owned and operated) included or addressed in this program?

⊠Yes

No

If yes, are local road projects identified using the same methodology as state roads?

⊠Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Incremental B/C

Ranking based on net benefit

Other

Potential for Improvement 1 based on Crash History

Program:

Local Safety

2

Date of Program Methodology: 2/1/2009

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	Other

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

2

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding

Incremental B/C

Ranking based on net benefit

Other

Potential for Improvement based on Crash History

Program:

Pedestrian Safety

1

Date of Program Methodology: 2/1/2009

What data types were used in the program methodology?

Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification
Other	Lane miles	Roadside features
	Other	Other

What project identification methodology was used for this program?

Crash frequency

Expected crash frequency with EB adjustment

Equivalent property damage only (EPDO Crash frequency)

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C	
Available funding	2
Incremental B/C	
Ranking based on net benefit	
Other	
Potential for Improvement based on Crash History	1

Program:	Left Turn Crash	
Date of Program Methodology:	2/1/2009	
What data types were used in th	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification

Roadside features

Other

What project identification methodology was used for this program?

Lane miles

Other

Crash frequency

Other

Expected crash frequency with EB adjustment

	Equivalent property	damage	only (EPDO	Crash frequency)	
--	---------------------	--------	------------	------------------	--

EPDO crash frequency with EB adjustment

Relative severity index

Crash rate

Critical rate

Level of service of safety (LOSS)

Excess expected crash frequency using SPFs

Excess expected crash frequency with the EB adjustment

Excess expected crash frequency using method of moments

Probability of specific crash types

Excess proportions of specific crash types

Other

Are local roads (non-state owned and operated) included or addressed in this program?

Yes

No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

 □ Ranking based on B/C

 ☑ Available funding
 2

 □ Incremental B/C

 □ Ranking based on net benefit

 □ Other

 ☑ Potential for Improvement based on Crash History
 1

Program:	Shoulder Improvement	
Date of Program Methodology:	2/1/2009	
What data types were used in the	e program methodology?	
Crashes	Exposure	Roadway
All crashes	Traffic	Median width
Fatal crashes only	Volume	Horizontal curvature
Fatal and serious injury crashes only	Population	Functional classification

Other	Lane miles	Roadside features
	Other	Other
What project identification metho	odology was used for this program?	,
Crash frequency		
Expected crash frequency with	EB adjustment	
Equivalent property damage or	ly (EPDO Crash frequency)	
EPDO crash frequency with EB a	adjustment	
Relative severity index		
Crash rate		
Critical rate		
Level of service of safety (LOSS)		
Excess expected crash frequence	y using SPFs	
Excess expected crash frequence	ry with the EB adjustment	
Excess expected crash frequence	y using method of moments	
Probability of specific crash typ	es	
Excess proportions of specific c	rash types	
Other		
Are local roads (non-state owned	and operated) included or address	ed in this program?

- ⊠Yes
- No

If yes, are local road projects identified using the same methodology as state roads?

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C

Available funding 2

Incremental B/C

Ranking based on net benefit

Other

Potential for Improvement 1 based on Crash History

What proportion of highway safety improvement program funds address systemic improvements?

25

Highway safety improvement program funds are used to address which of the following systemic

improvements?

Cable Median Barriers	Rumble Strips
Traffic Control Device Rehabilitation	Pavement/Shoulder Widening
⊠Install/Improve Signing	⊠Install/Improve Pavement Marking and/or Delineation
Upgrade Guard Rails	Clear Zone Improvements
Safety Edge	Install/Improve Lighting
Add/Upgrade/Modify/Remove Traffic Signal	Other

What process is used to identify potential countermeasures?

Engineering Study

Road Safety Assessment

Other:

Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

Highway Safety Manual

Road Safety audits

Systemic Approach

Other:

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

Last year, we described the implementation efforts related to the Highway Safety Manual (HSM). All three of the initiatives have been advanced significantly:

1) Pennsylvania-specific SPFs were developed through a research contract with Penn State University. The next step of the process is to develop regionalized SPFs to account for the differences in driving habits and roadway characteristics across the Commonwealth - SPFs related to two lane rural roads in the farmlands of Lancaster County may not always be applicable to two lane rural roads in the mountains of Cameron County. The regionalized SPFs will therefore provide more accurate results. This project - also performed in conjunction with Penn State - has been initiated.

2) The Pennsylvania-specific HSM worksheet has been developed in draft format and has been introduced through the HSM training sessions. While not yet a formal requirement for projects, staff in the engineering districts have been using the worksheet and providing feedback.

3) Several publications have been revised to include language related to the HSM. The most important of these is our Publication 638, the *District Highway Safety Guidance Manual*.

While the HSM initiatives have not yet reached the level of implementation that will allow us to realize direct results, we are optimistic that in the coming years we will begin to see an improvement in safety numbers and the types and quality of safety projects coming through the programs.

Progress in Implementing Projects

Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

Calendar Year

State Fiscal Year

Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

Funding Category	Programmed*		Obligated	
HSIP (Section 148)	92485000	90 %	43091467	82 %
HRRRP (SAFETEA-LU)	0	0 %	115130	0 %
HRRR Special Rule				
Penalty Transfer - Section 154				
Penalty Transfer – Section 164				
Incentive Grants - Section 163				
Incentive Grants (Section 406)				
Other Federal-aid Funds (i.e. STP, NHPP)				
State and Local Funds	1000000	10 %	9070059.58	17 %
Totals	102485000	100%	52276656.58	100%
--------	-----------	------	-------------	------
--------	-----------	------	-------------	------

How much funding is programmed to local (non-state owned and maintained) safety projects?

0 %

How much funding is obligated to local safety projects?

0 %

How much funding is programmed to non-infrastructure safety projects?

0 %

How much funding is obligated to non-infrastructure safety projects?

0 %

How much funding was transferred in to the HSIP from other core program areas during the reporting period?

0 %

How much funding was transferred out of the HSIP to other core program areas during the reporting period?

0 %

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

A continuing concern from the previous HSIP Annual Reports is the difficulty ensuring that funds are being properly obligated towards safety projects with the greatest potential of improving safety conditions. As will be seen later in this report (in the section related to the benefit-cost ratio), there are many projects still coming through the project design and construction funnel that have been grandfathered into the HSIP program. These projects would not meet current selection criteria for a variety of reasons - limited numbers of fatal or serious injury crashes, countermeasures not directly related to crash history, maintenance-type improvements, etc - but due to historic obligations are still eligible for HSIP funds. We encourage our engineering districts to find other sources of funding for these projects, but this is a request rather than a requirement. It will take some time for the remaining projects to progress through to completion.

A continuing impediment is the distribution of funds to the Planning Organizations by formula without maintaining a centralized control over the monies. While approval to use HSIP funds on a project is retained at a high level, the projects and funding proposals are all generated from the Planning Organizations. We have recently adjusted the funding distribution formula (in response to the increased funding levels through the MAP-21 legislation) to reserve \$35 million for statewide initiatives, which will help provide additional high-level control of funding and project selection. Last year's HSIP meetings were used to thoroughly educate Planning Organization staff about the intent and priorities of the HSIP program and should lead to more effective project and funding choices.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

In the 2014 Annual Report, we mentioned that the engineering districts were beginning to release projects related to the FHWA Intersection Safety Implementation and Roadway Departure Safety Implementations Plans (ISIP and RDIP, respectively). As will be seen in the project listing later in this report, there are a large number of these projects being released for construction. We hope to continue this momentum and perhaps begin incorporating the countermeasures from these plans at other locations, as well.

General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

Project	Improvement Category	Outp ut	HSIP Cost	Total Cost	Fundi ng	Function al	AAD T	Spe ed	Roadwa y Ownors	Relationship SHSP) to
					orv	tion			hip	Emphasis	Strate
					0.7					Area	gy
Dunmore Signal	Intersection traffic	1.22	18400	7394090	HSIP	Rural	182	35	State	Intersectio	
Network	control Modify traffic	Miles	62		(Sectio	Principal	86		Highwa	ns	
	signal timing - general				n 148)	Arterial -			у		
	retiming					Other			Agency		
Cashan @ Darky	Alignment Hevisentel	0.20	2000	1522577		Dural	602	25	Chata	Deedweet	
Gosnen @ Darby-	Alignment Horizontal	0.29	3000	1522577	HSIP	Rurai	093	25	State	Roadway	
Paoliku(r)	curve realignment	wines			(Sectio	Major Callector	ð		Highwa	Departure	
					n 148)	Collector			y Aganav		
									Agency		
PA 68/Dolby	Intersection geometry	0.81	45000	3750000	HSIP	Urban	106	35	State	Intersectio	
Street Inters	Auxiliary lanes - add left-	Miles	0		(Sectio	Principal	49		Highwa	ns	
	turn lane				n 148)	Arterial -			у		
						Other			Agency		
PA 28/US 322	Intersection geometry	0.66	33372	1500000	HSIP	Urban	423	35	State	Intersectio	
Intersection	Intersection geometrics	Miles	0		(Sectio	Minor	7		Highwa	ns	
	-				n 148)	Arterial			v		
	miscellaneous/other/un				,				Agency		
	specified								<i>°</i> ,		

West Carson St. Viaduct Clairton Blvd/Saw Mill Rn	Pedestrians and bicyclists Install sidewalk Intersection geometry Auxiliary lanes - add two-way left-turn lane	2.04 Miles 1.84 Miles	17565 2 53750 0	4671707 8 1756000 0	HSIP (Sectio n 148) HSIP (Sectio n 148)	Urban Principal Arterial - Other Urban Principal Arterial - Other	115 81 422 33	35 40	State Highwa y Agency State Highwa y Agency	Pedestrian s Intersectio ns	
I-376/179 - Fort Pitt Tun	Interchange design Acceleration / deceleration / merge lane	12.7 1 Miles	53691 5	8709100 0	HSIP (Sectio n 148)	Urban Principal Arterial - Interstate	794 00	50	State Highwa y Agency	Intersectio ns	
Torchlight Intersection	Intersection geometry Intersection geometrics - miscellaneous/other/un specified	0.48 Miles	47411 73	8084950	HSIP (Sectio n 148)	Rural Principal Arterial - Other	883 0	45	State Highwa y Agency	Intersectio ns	
PA 519/SR 1055 Intersect.	Intersection traffic control Modify control - all-way stop to roundabout	0.2 Miles	15040 85	5700000	HSIP (Sectio n 148)	Rural Minor Arterial	106 81	45	State Highwa y Agency	Intersectio ns	
US 30 Corridor Impvmts	Non-infrastructure Road safety audits	15.0 9 Miles	18000 0	1200000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	198 78	40	State Highwa y Agency	Safety Studies	

Nyes/Dvnshre Hts Safety N Pensyl Hollow Rd Intrsn	Intersection traffic control Modify traffic signal - modernization/replace ment Intersection geometry Auxiliary lanes - add left- turn lane	0.18 Miles 0.46 Miles	10000 0 70693	400000	HSIP (Sectio n 148) HSIP (Sectio n 148)	Urban Major Collector Rural Major Collector	116 71 463 2	35	State Highwa Y Agency State Highwa y Agency	Intersectio ns Intersectio ns	
SR 322/119 Intersection SR 183/4016 (Schaeffers)	Intersection geometry Auxiliary lanes - add left- turn lane Intersection geometry Intersection geometrics - miscellaneous/other/un specified	0.49 Miles 0.88 Miles	40951. 24 10404 46	1610952 3107160	HSIP (Sectio n 148) HSIP (Sectio n 148)	Rural Principal Arterial - Other Rural Minor Arterial	731 0 127 23	35	State Highwa y Agency State Highwa y Agency	Intersectio ns Intersectio ns	
Cape Horn Rd Improvements	Roadway Roadway widening - travel lanes	1.21 Miles	52000 0	6056268 .9	HSIP (Sectio n 148)	Urban Principal Arterial - Other	147 02	40	State Highwa Y Agency	Lane Departure	
Exit 7 Improvements	Intersection traffic control Intersection traffic control - other	0.61 Miles	70000	2228041	HSIP (Sectio n 148)	Rural Principal Arterial -	948 5	45	State Highwa Y	Intersectio ns	

						Other			Agency		
Hardies Road Intersection	Intersection geometry Auxiliary lanes - add left- turn lane	0.77 Miles	60000	3066028	HSIP (Sectio n 148)	Urban Principal Arterial - Other	253 90	40	State Highwa Y Agency	Intersectio ns	
Wrong Way Ramps	Roadway signs and traffic control Roadway signs and traffic control - other	21.8 1 Miles	48000	1089848	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Wrong Way Prevention	
CCIP Palmyra to Cleona	Intersection traffic control Modify traffic signal - modernization/replace ment	8.93 Miles	86284	3666171	HSIP (Sectio n 148)	Urban Principal Arterial - Other	156 47	35	State Highwa Y Agency	Intersectio ns	
SR 222 - 863 Early Action	Intersection traffic control Modify traffic signal - modernization/replace ment	1.15 Miles	30000 0	300000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	279 86	55	State Highwa Y Agency	Intersectio ns	
SR 322 Safety Improvement	Intersection geometry Auxiliary lanes - add left- turn lane	1.84 Miles	44000 0	6326490	HSIP (Sectio n 148)	Rural Principal Arterial - Other	106 52	55	State Highwa Y Agency	Intersectio ns	
Bigelow/Bloomfi eldBr-Baum	Intersection traffic control Modify traffic	1.81	99917	1457500	HSIP (Sectio	Urban Principal	160	35	State Highwa	Intersectio	

	signal - modernization/replace ment	Miles	0	0	n 148)	Arterial - Other	99		y Agency	ns	
222 & Shantz & 863 Improv	Intersection traffic control Intersection traffic control - other	1.15 Miles	16000 0	6000000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	279 86	55	State Highwa y Agency	Intersectio ns	
PA 100 Crdr Sfty Imprv	Intersection geometry Auxiliary lanes - add left- turn lane	9.34 Miles	62800 0	4500000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	151 82	45	State Highwa Y Agency	Intersectio ns	
Martins RdtoChristians Rd	Roadside Barrier - concrete	1.77 Miles	60000	1100000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	227 65	55	State Highwa Y Agency	Roadway Departure	
SR 118 & Idetown Rd.	Intersection geometry Auxiliary lanes - add left- turn lane	0.08 Miles	82818. 79	1139258	HSIP (Sectio n 148)	Rural Minor Arterial	648 1	45	State Highwa Y Agency	Intersectio ns	
Olney:Broad- Rising Sun(C)	Intersection traffic control Modify traffic signal - modernization/replace ment	1.61 Miles	34951 60	3842998	HSIP (Sectio n 148)	Urban Principal Arterial - Other	110 34	30	State Highwa y Agency	Intersectio ns	

Erie Av: Broad St. - K St PA 116 and Oxford Ave	Pedestrians and bicyclists Pedestrian signal Intersection geometry Auxiliary lanes - add left- turn lane	2.47 Miles 0.43 Miles	47500 0 22500 0	4500000 1000000	HSIP (Sectio n 148) HSIP (Sectio n 148)	Urban Principal Arterial - Other Urban Principal Arterial - Other	982 0 646 4	30 25	State Highwa Y Agency State Highwa Y Agency	Pedestrian s Intersectio ns	
RATS CableGuiderail Replc	Roadside Roadside - other	59.6 1 Miles	200.68	1493101 .47	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
US11 & PA997 Intersection	Roadway Roadway widening - travel lanes	2.08 Miles	15322 6	2255384	HSIP (Sectio n 148)	Rural Minor Arterial	993 6	45	State Highwa Y Agency	Lane Departure	
Weigh Scales to Paxinos	Intersection geometry Auxiliary lanes - add two-way left-turn lane	5.41 Miles	23600 0	1760000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	119 50	55	State Highwa Y Agency	Intersectio ns	
PA31 W Somrst Corridr Imp	Intersection geometry Auxiliary lanes - add two-way left-turn lane	0.86 Miles	15780 09	4320000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	756 7	40	State Highwa Y Agency	Intersectio ns	

US 6 Center Turn Lane	Intersection geometry Auxiliary lanes - add two-way left-turn lane	0.67 Miles	55000 0	2515860	HSIP (Sectio n 148)	Rural Principal Arterial - Other	108 21	45	State Highwa y Agency	Intersectio ns	
PA 68 Clarion Curve	Intersection geometry Auxiliary lanes - add two-way left-turn lane	0.63 Miles	37185 0	4360000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	106 49	35	State Highwa y Agency	Intersectio ns	
Post & Cable Guide Rail	Roadside Roadside - other	6.92 Miles	13700 0	1500000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
United High School Curve	Alignment Horizontal curve realignment	1.36 Miles	40033 30	8382001	HSIP (Sectio n 148)	Rural Minor Arterial	483 9	45	State Highwa Y Agency	Roadway Departure	
Yellow Crk Park Intersect	Intersection geometry Auxiliary lanes - add two-way left-turn lane	0.68 Miles	30861 00	3415000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	731 5	55	State Highwa Y Agency	Intersectio ns	
PA 272 Intersection Impvt	Intersection traffic control Modify control - all-way stop to roundabout	1.78 Miles	45000	2800000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	153 55	55	State Highwa y Agency	Intersectio ns	

SR54/3009 Int Improvement	Intersection geometry Intersection geometrics - miscellaneous/other/un specified	0.37 Miles	42320 0	423200	HSIP (Sectio n 148)	Rural Principal Arterial - Other	150 98	45	State Highwa Y Agency	Intersectio ns	
US22 Frankstown Intrsctns	Intersection geometry Intersection geometrics - realignment to align offset cross streets	0.93 Miles	30000	9160000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	599 3	55	State Highwa Y Agency	Intersectio ns	
SR 248/946 Intersctn Impr	Intersection traffic control Modify traffic signal - modernization/replace ment	0.15 Miles	35500 0	842920	HSIP (Sectio n 148)	Rural Principal Arterial - Other	860 2	40	State Highwa Y Agency	Intersectio ns	
Bridgeville Rd Shoulders	Shoulder treatments Widen shoulder - paved or other	0.84 Miles	13175 97	1317597	HSIP (Sectio n 148)	Rural Major Collector	167 4	40	State Highwa Y Agency	Roadway Departure	
Mount Zion Rd Improvement	Intersection traffic control Modify traffic signal - modernization/replace ment	2.48 Miles	17550 0	657392	HSIP (Sectio n 148)	Urban Principal Arterial - Other	224 80	35	State Highwa Y Agency	Intersectio ns	
Bull Road Improvement	Roadway Pavement surface - miscellaneous	0.37 Miles	21600 0	766467. 85	HSIP (Sectio	Rural Minor	896 6	40	State Highwa Y	Lane Departure	

					n 148)	Arterial			Agency		
Philipsburg Add Center Ln	Intersection geometry Auxiliary lanes - add two-way left-turn lane	1.43 Miles	50000	6421000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	110 34	55	State Highwa y Agency	Intersectio ns	
SR 66/948 Intchg Improve	Intersection geometry Intersection geometrics - miscellaneous/other/un specified	1.38 Miles	36879 4	2500000	HSIP (Sectio n 148)	Rural Minor Arterial	259 3	55	State Highwa Y Agency	Intersectio ns	
Wmspt. to Jersey Shore	Intersection geometry Intersection geometrics - miscellaneous/other/un specified	12.8 9 Miles	70000 0	1650000 0	HSIP (Sectio n 148)	Rural Principal Arterial - Other	227 65	55	State Highwa Y Agency	Intersectio ns	
US220/SR4018 Intersection	Intersection geometry Intersection geometrics - miscellaneous/other/un specified	0.26 Miles	52500 0	1241200	HSIP (Sectio n 148)	Rural Principal Arterial - Other	145 66	40	State Highwa y Agency	Intersectio ns	
Auction Road Phase II	Interchange design Convert at-grade intersection to interchange	1.56 Miles	27886 16	1441234 7	HSIP (Sectio n 148)	Rural Principal Arterial - Other	625 9	55	State Highwa Y Agency	Intersectio ns	

Union Deposit Road Safety	Intersection traffic control Modify traffic signal - modernization/replace	1.53 Miles	10980 27	1098026 .1	HSIP (Sectio n 148)	Urban Principal Arterial - Other	279 43	35	State Highwa y Agency	Intersectio ns	
Basin Street Safety Imprv	ment Non-infrastructure Road safety audits	0	1399	753494	HSIP (Sectio n 148)	Urban Local Road or Street	0	35	City of Municip al Highwa y Agency	Safety Studies	
422 & Ramona Rd Intersect	Non-infrastructure Road safety audits	1.07 Miles	29000 0	1035000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	146 02	55	State Highwa Y Agency	Safety Studies	
51 Safety/Midwood- Edgebro	Intersection geometry Auxiliary lanes - add two-way left-turn lane	1.84 Miles	13600 00	1360000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	422 33	35	State Highwa y Agency	Intersectio ns	
Colebrook Road Improvemt	Non-infrastructure Road safety audits	3.55 Miles	50000	3000000	HSIP (Sectio n 148)	Rural Major Collector	767 0	45	State Highwa y Agency	Safety Studies	
Cameron St Low Cost Safe	Intersection traffic control Systemic improvements - signal-	6.1 Miles	35000 0	722001. 97	HSIP (Sectio	Urban Principal Arterial -	813 5	35	State Highwa Y	Intersectio ns	

	controlled				n 148)	Other			Agency		
US220 & PA199 Int	Intersection geometry Intersection geometrics - miscellaneous/other/un specified	0.22 Miles	25000 0	1196600	HSIP (Sectio n 148)	Rural Principal Arterial - Other	145 66	40	State Highwa y Agency	Intersectio ns	
SR220/SR2027 Intersection	Shoulder treatments Widen shoulder - paved or other	1.1 Miles	15000 0	1500000	HSIP (Sectio n 148)	Rural Minor Arterial	935 7	55	State Highwa Y Agency	Intersectio ns	
SR 5: Grngarden- Chestnut	Roadway Pavement surface - miscellaneous	3.59 Miles	55500 0	1355000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	138 80	40	State Highwa Y Agency	Lane Departure	
SR 5: Chestnut- Bayfront	Roadway Pavement surface - miscellaneous	2.47 Miles	50000 0	1103000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	192 58	40	State Highwa Y Agency	Lane Departure	
Rock Fall Barrier	Roadside Fencing	0.16 Miles	18965 2	240000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	140 74	55	State Highwa Y Agency	Roadside Safety	
D10 Systemic Safety	Miscellaneous	0	28800 0	1941113 .18	HSIP (Sectio		0	0	State Highwa y	Systemic Improvem	

					n 148)				Agency	ents	
District Wide Rumbles	Roadway Rumble strips - unspecified or other	12.8 6 Miles	10018 92	997254. 59	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
Lycoming Median Guiderail	Roadside Barrier - cable	43.8 5 Miles	67900 0	679000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	129 00	0	State Highwa Y Agency	Roadway Departure	
D9 HSIP CMB	Roadside Barrier - cable	18.3 4 Miles	46003 2	750000	HSIP (Sectio n 148)	Rural Principal Arterial - Interstate	207 62	55	State Highwa Y Agency	Roadway Departure	
Erie ISIP/RDIP Systematic	Roadside Roadside - other	0	10000 0	500000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
Mercer ISIP/RDIP System	Roadside Roadside - other	0	10000 0	500000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
NW ISIP/RDIP Systematic	Roadside Roadside - other	0	10000 0	500000	HSIP (Sectio n 148)		0	0	State Highwa Y	Roadway Departure	

									Agency		
Intersectn Safety Imp.(C)	Intersection traffic control Systemic improvements - stop- controlled	0	24038 40	2403840	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Intersectio ns	
Wrong Way Entry Signs (C)	Roadway signs and traffic control Roadway signs and traffic control - other	0	22516 0	300000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Wrong Way Prevention	
2013-14 Centre Reg ISIP	Intersection traffic control Systemic improvements - stop- controlled	0	10000	15000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Intersectio ns	
Roadway Depart. Safety(C)	Roadside Roadside - other	0	15000 0	1700000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
SR2016 at RiverAve Signal	Intersection traffic control Modify traffic signal - modernization/replace ment	0.09 Miles	80000	250000	HSIP (Sectio n 148)	Urban Minor Arterial	836 6	35	State Highwa y Agency	Intersectio ns	
ISIP SYSTEMATIC	Intersection traffic control Systemic improvements - stop-	0	64400	169400	HSIP (Sectio		0	0	State Highwa Y	Intersectio ns	

	controlled				n 148)				Agency		
RDIP SYSTEMATIC	Roadside Roadside - other	0	50600 0	889950	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
15th Street Corridor	Intersection traffic control Modify traffic signal - modernization/replace ment	0.7 Miles	55600	1175000	HSIP (Sectio n 148)	Urban Minor Arterial	174 03	30	State Highwa y Agency	Intersectio ns	
US322/Murray Rd/VoTech Rd	Intersection geometry Intersection geometrics - miscellaneous/other/un specified	0.09 Miles	31800 0	353334	HSIP (Sectio n 148)	Rural Minor Arterial	253 1	55	State Highwa y Agency	Intersectio ns	
W Phila Intrsc Upgrdes(C)	Intersection traffic control Modify traffic signal - modernization/replace ment	5.21 Miles	19733 90	1973390	HSIP (Sectio n 148)	Urban Principal Arterial - Other	149 10	30	State Highwa y Agency	Intersectio ns	
Brewery Hill to Clfd Crk	Roadway Pavement surface - miscellaneous	4.33 Miles	31500 0	2400000	HSIP (Sectio n 148)	Urban Principal Arterial - Other	738 3	35	State Highwa y Agency	Lane Departure	

Lycoming Cable Guiderail	Roadside Barrier - cable	0	60000	400000	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Roadway Departure	
NTIER Cable Guiderail	Roadside Barrier - cable	0	61550	400000	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Roadway Departure	
SR 54 Corridor Study	Non-infrastructure Road safety audits	2.43 Miles	25000 0	250000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	195 46	55	State Highwa Y Agency	Safety Studies	
D9 2015 HSIP HFS	Roadway Pavement surface - high friction surface	0	53864 2	658642	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Roadway Departure	
D10-2015 Systematic RDIP	Roadside Roadside - other	0	50000 0	716159	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Roadway Departure	
Wrong Way Ramp Updates	Roadway signs and traffic control Roadway signs and traffic control - other	0	10000	490000	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Wrong Way Prevention	

2015 Systematic Sig Safe	Intersection traffic control Systemic improvements - signal- controlled	0	25000 0	250000	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Intersectio ns	
RDIP-2015 GuideRail Upg	Roadside Barrier - other	0	10000 00	1591559	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
Tioga US15 MCGR	Roadside Barrier - cable	21.2 8 Miles	10000	1200000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	842 5	65	State Highwa Y Agency	Roadway Departure	
D3 CGR Replacement	Roadside Roadside - other	0	40000	529000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
Lyco US15 MCGR	Roadside Barrier - cable	28.3 3 Miles	30000	650000	HSIP (Sectio n 148)	Rural Principal Arterial - Other	683 7	65	State Highwa Y Agency	Roadway Departure	
US15 Wrong Way Ramps	Roadway signs and traffic control Roadway signs and traffic control - other	0	30000	205000	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Wrong Way Prevention	

D3 RDIP	Roadside Roadside - other	0	80000	270000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
DW ISIP Signal Impr-2015	Intersection traffic control Systemic improvements - signal- controlled	0	45000	1200000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Intersectio ns	
DW Systematic Impr 2015	Roadside Roadside - other	0	11000 0	2325000	HSIP (Sectio n 148)		0	0	State Highwa Y Agency	Roadway Departure	
I-80 Median Barrier	Roadside Barrier - cable	6 Miles	16714 0	1000000	HSIP (Sectio n 148)	Rural Principal Arterial - Interstate	292 52	55	State Highwa Y Agency	Roadway Departure	
I-380 Median Barrier	Roadside Barrier - cable	7 Miles	11143 0	1350000	HSIP (Sectio n 148)	Rural Principal Arterial - Interstate	247 14	55	State Highwa Y Agency	Roadway Departure	
District Signal Upgrades	Intersection traffic control Modify traffic signal - modernization/replace ment	0	50000	700000	HSIP (Sectio n 148)		0	0	State Highwa y Agency	Intersectio ns	

SR 10-Reading-	Intersection traffic	0.24	39100	74750	HSIP	Urban	970	35	State	Intersectio	
FlashingWrn	control Intersection	Miles			(Sectio	Minor	0		Highwa	ns	
	flashers - add overhead				n 148)	Arterial			у		
	(continuous)								Agency		

Progress in Achieving Safety Performance Targets

Overview of General Safety Trends

Present data showing the general highway safety trends in the state for the past five years.

Performance Measures*	2010	2011	2012	2013	2014
Number of fatalities	1413	1365	1329	1277	1265
Number of serious injuries	3858	3693	3556	3432	3340
Fatality rate (per HMVMT)	1.34	1.31	1.3	1.27	1.27
Serious injury rate (per HMVMT)	3.65	3.55	3.48	3.4	3.35

*Performance measure data is presented using a five-year rolling average.

To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2014

Function Classification	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
RURAL PRINCIPAL ARTERIAL - INTERSTATE	56	110	0.06	0.11
RURAL PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS	0	0	0	0
RURAL PRINCIPAL ARTERIAL - OTHER	101	192	0.1	0.19
RURAL MINOR ARTERIAL	166	332	0.17	0.33
RURAL MINOR COLLECTOR	54	144	0.05	0.14
RURAL MAJOR COLLECTOR	124	279	0.12	0.28
RURAL LOCAL ROAD OR STREET	26	75	0.03	0.08
URBAN PRINCIPAL	70	152	0.07	0.15

ARTERIAL - INTERSTATE				
URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS	36	83	0.04	0.08
URBAN PRINCIPAL ARTERIAL - OTHER	211	592	0.21	0.59
URBAN MINOR ARTERIAL	139	391	0.14	0.39
URBAN MINOR COLLECTOR	65	189	0.07	0.19
URBAN MAJOR COLLECTOR	0	0	0	0
URBAN LOCAL ROAD OR STREET	7	31	0.01	0.03
OTHER	211	780	0.21	0.78
RAMP	0	1	0	0

Fatalities by Roadway Functional Classification

Serious Injuries by Roadway Functional Classification

Fatality Rate by Roadway Functional Classification

Serious Injury Rate by Roadway Functional Classification

Year - 2014

Roadway Ownership	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
STATE HIGHWAY AGENCY	1045	2555	1.05	2.56
COUNTY HIGHWAY AGENCY	6	17	0.01	0.02
TOWN OR TOWNSHIP HIGHWAY AGENCY	0	0	0	0
CITY OF MUNICIPAL HIGHWAY AGENCY	196	719	0.2	0.72
STATE PARK, FOREST, OR RESERVATION AGENCY	0	0	0	0
LOCAL PARK, FOREST OR RESERVATION AGENCY	0	0	0	0
OTHER STATE AGENCY	0	0	0	0
OTHER LOCAL AGENCY	0	0	0	0
PRIVATE (OTHER THAN RAILROAD)	0	7	0	0.07
RAILROAD	0	0	0	0
STATE TOLL AUTHORITY	17	49	0.02	0.05
LOCAL TOLL AUTHORITY	0	0	0	0
OTHER PUBLIC INSTRUMENTALITY (E.G. AIRPORT, SCHOOL, UNIVERSITY)	0	0	0	0
INDIAN TRIBE NATION	0	0	0	0

OTHER	0	0	0	0

Number of Fatalities by Roadway Ownership

Number of Serious Injuries by Roadway Ownership

Fatality Rate by Roadway Ownership

Serious Injury Rate by Roadway Ownership

Describe any other aspects of the general highway safety trends on which you would like to elaborate.

Please note that the 2014 Vehicle Miles Traveled data is not available at the time of publishing this report. The 2014 values have been estimated using the 2013 values.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

Older Driver	2009	2010	2011	2012	2013
Performance Measures					
Fatality rate (per capita)	1.434	1.386	1.306	1.268	1.258
Serious injury rate (per capita)	1.722	1.624	1.54	1.552	1.572
Fatality and serious injury rate (per capita)	3.162	3.012	2.846	2.82	2.832

*Performance measure data is presented using a five-year rolling average.

The methodology used is based upon the guidance provided by on the FHWA website under the heading Section 148: Older Drivers and Pedestrians Special Rule Interim Guidance

Older driver fatalities and older pedestrian fatalities were gathered from the NHTSA FARS database. Serious injury data was taken from our state records. The number of older persons per 1000 population was taken from the same FHWA website.

Fatality rate per capita was taken as the sum of older driver and older pedestrian fatalities divided by the number of older persons per 1000 population. Serious injury rate was calculated in a parallel operation. The fatality and serious injury rate was performed as a third calculation rather than a simple sum of the components; rounding therefore accounts for the 0.01 differences in the data presented.

Five year averages were calculated from the annual data.
Rate of Fatalities and Serious injuries for the Last Five Years

Does the older driver special rule apply to your state?

No

Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

None

Benefit/cost

Policy change

Other:

What significant programmatic changes have occurred since the last reporting period?

Shift Focus to Fatalities and Serious Injuries

Include Local Roads in Highway Safety Improvement Program

Organizational Changes

None

Other:

Briefly describe significant program changes that have occurred since the last reporting period.

There have been no significant program changes since the last reporting period. Much of our work has been focused on advancing the initiatives and changes reported in the 2014 Annual Report. There was

also a small turnover in staffing in the Safety Section during the 2015 reporting period; we are hopeful that the experiences of the new personnel will lead to new ideas and new focus areas.

SHSP Emphasis Areas

For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year -	2014
--------	------

HSIP-related SHSP Emphasis Areas	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
Roadway Departure	Run-off-road	612	1493	0.61	1.5	0	0	0
Intersections	Intersections	270	998	0.27	1	0	0	0
Pedestrians	Vehicle/pedestrian	156	329	0.16	0.33	0	0	0
Bicyclists	Vehicle/bicycle	16	60	0.02	0.06	0	0	0
Older Drivers	Older Driver	273	476	0.27	0.48	0	0	0
Motorcyclists	Motorcycle	200	535	0.2	0.54	0	0	0
Work Zones	Work Zone	21	45	0.02	0.05	0	0	0

Groups of similar project types

Present the overall effectiveness of groups of similar types of projects.

Year - 2014

HSIP Sub-program Types	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
Intersection	Intersections	270	998	0.27	1	0	0	0
Median Barrier	Cross median	44	67	0.04	0.07	0	0	0
Shoulder Improvement	Run-off-road	612	1493	0.61	1.5	0	0	0
Low-Cost Spot Improvements	All	1265	3340	1.27	3.35	0	0	0
Horizontal Curve	Curve Driver Error	170	306	0.17	0.31	0	0	0
Local Safety	Local Road (Only)	204	749	0.2	0.75	0	0	0
Roadway Departure	Run-off-road	612	1493	0.61	1.5	0	0	0
Bicycle Safety	Vehicle/bicycle	16	60	0.02	0.06	0	0	0
Pedestrian Safety	Vehicle/pedestrian	156	329	0.16	0.33	0	0	0

Systemic Treatments

Present the overall effectiveness of systemic treatments.

Year - 2014

Systemic improvement	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
Pavement/Shoulder Widening	Run-off-road	612	1493	0.61	1.5	0	0	0
Traffic Control Device Rehabilitation	Intersections	270	998	0.27	1	0	0	0
Install/Improve Signing	All	1265	3340	1.27	3.35	0	0	0
Rumble Strips	All	1265	3340	1.27	3.35	0	0	0
Add/Upgrade/Modify/Remove Traffic Signal	Intersections	270	998	0.27	1	0	0	0
Cable Median Barriers	Cross median	44	67	0.04	0.07	0	0	0
Upgrade Guard Rails	Hit Guide Rail	132	244	0.13	0.24	0	0	0
Install/Improve Pavement Marking and/or Delineation	All	1265	3340	1.27	3.35	0	0	0

Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

Please note that the 2014 Vehicle Miles Traveled data is unavailable at this time; 2013 data has been used for this reporting.

The overall HSIP benefit cost ratio for projects completed in 2011 – the most recent set for which we have three years of complete before and after data – is -0.96:1. This indicates that for each dollar we invested in the HSIP program, we lost that dollar and an additional \$0.96. Our overall HSIP benefit-cost ratio has been reduced to 0.73:1.

While these results are outwardly negative, they are not entirely in line with our overall statewide fatality statistics. 2011 lies in the middle of a recent decline in fatalities; the 25% decline since 2005 has resulted in record lows in highway deaths not seen since the 1920s.

Similar to the previous annual report, a closer examination of the data was performed to identify the cause for the negative ratio. Several key examples were identified:

Project 70367 was a corridor safety improvement project near Sunbury. A \$861,000 HSIP investment went towards signal upgrades, ADA-compliant ramps and sidewalks, and pedestrian signals. There was a 7% reduction in crashes the after project was completed, but the fatalities and serious injuries both increased from 0 to 2. An analysis of the individual crashes revealed that 2 fatalities occurred in a head-on crash on a bridge, 1 serious injury was a pedestrian running into the street mid-block and being struck by a slow-moving vehicle, and 1 serious injury was a pedestrian struck by an ambulance making a careless turn. None of these events were impacted by the HSIP-funded improvements in the corridor.

Project 84566 was a signing replacement project along various interstates and arterials in Lackawanna and Luzerne counties. \$190,000 on HSIP funds were spent. Fatalities did not change (from 1 to 1) but there was an increase in serious injuries from 0 to 3. All of the fatalities and major injuries after construction were the result of vehicles operating on slippery roads in winter conditions and hitting fixed objects, and would not have been prevented by the signing replacements.

Project 80103 was a roadway betterment project in Philadelphia. \$4.4 million in HSIP funds were expended for pavement overlays, barrier reconstruction, guide rail upgrades, and crashworthy end treatments. Shoulder rumble strips and new pavement markings were also included. In the three years after completion, there was a small reduction in crashes, but an increase in fatalities from 1 to 3 and an increase in serious injuries from 2 to 5. Two of the fatalities were from a motorcycle losing control at high speed; the third was similarly the result of a driver losing control of their vehicle at an excessive speed. The serious injury crashes had a variety of causations including wrong way and rear end events. The vast majority of the fatalities and injuries would have occurred regardless of the project's improvements.

Project 73468 was a bridge replacement and intersection improvement project in Columbia County. \$4.6 million in HSIP funds were used on the project, but there were no fatal, serious, or moderate injuries in the three years before the completion date. This project would not meet our current selection criteria for HSIP projects and was likely grandfathered through a previous approval.

If these four projects were eliminated from the calculation, the HSIP benefit-cost ratio for the projects completed in 2011 would be 1:1. It is likely that further analysis of the crash histories would yield further adjustments to the final result. However, a thorough examination of all 3,400 crashes that occurred in the project areas would be a difficult proposition for the annual report given the current timeframes for analysis and submittal. We are further limited by some of the location data provided: our engineering districts often provide locations in entire roadway segments (typically 2000-3000 feet long) rather than the actual locations of improvements. Therefore, it is possible that we are providing analysis on sections of roadway that are not impacted by our HSIP projects. Correcting this issue will require coordination with our district personnel and implementation of more standardized reporting.

Project Evaluation

Provide project evaluation data for completed projects (optional).

Location	Functional	Improvement	Improvement	Bef-	Bef-	Bef-All	Bef-	Bef-	Aft-	Aft-	Aft-All	Aft-	Aft-	Evaluation
	Class	Category	Туре	Fatal	Serious	Injuries	PDO	Total	Fatal	Serious	Injuries	PDO	Total	Results
					Injury					Injury				(Benefit/
														Cost Ratio)

Optional Attachments

Sections

Files Attached

Glossary

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State's SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of noninfrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.