Maritime Environmental and Technical Assistance (META) Program

The META program promotes the research, demonstration, and development of technologies and processes that improve maritime industry environmental sustainability.  Since its inception, META’s primary focus areas have been control of aquatic invasive species transported by vessels, and reduction in vessel and port air emissions.  These two areas present significant continuing challenges for ship owners and operators, the regulatory community and the public. As other maritime environmental issues emerge, additional areas of study may be included.  For example, one emerging issue is noise impacts from marine vessels and port activities.

Through the META Program, MARAD partners with Federal, state, and local agencies, the maritime industry and academia, to develop and carry out projects that provide all stakeholders with useful information and insight on maritime environmental issues.  Presented below is information on past and current projects with links to final reports, and information on how stakeholders can engage with MARAD in this enterprise.

Control of Aquatic Invasive Species

Invasive species are considered to be one of the greatest threats to marine and coastal biodiversity world-wide.  Aquatic invasions can destroy native ecosystems, overwhelm native species, reduce recreational opportunities, and adversely impact sport and commercial fisheries.  Although there are many pathways through which these invasions can occur, transportation in ships’ ballast water and in underwater hull biofouling are known contributors.

Since the early 2000s MARAD has worked with the maritime community to address issues related to the introduction of non-indigenous aquatic species through ballast water and hull biofouling. The Agency established its Ballast Water Initiative to assist industry and government agencies in moving treatment technologies from the laboratory to shipboard application as rapidly as possible.

Ballast Water Treatment

MARAD’s ballast water efforts have grown into a multi-state and multi-agency cooperative effort which supports the development of technical and scientific protocols for technology testing and verification, and operation of independent testing facilities to provide the needed data for ultimate certification of ballast water management systems (BWMS) to International Maritime Organization (IMO) and Coast Guard standards.  These facilities also conduct research and development into improved technology and processing to control invasive species.

Prior to 2010 MARAD contributed ship platforms for testing, scientific, technical, engineering, and marine architectural support and year-end funding to the ballast water effort.  MARAD also worked with academia and other stakeholders to coordinate the development of a network of U.S.-based facilities for testing and verification of Ballast Water Management Systems (BWMS). MARAD’s early ballast water efforts were also supported with funding from the National Oceanic and Atmospheric Administration (NOAA) in 2005 and 2006.

Beginning in 2010, MARAD provided funding under the META Program to support the creation and operation of three independent BWMS testing facilities. By 2012, all of the facilities were able to test technologies in accordance with International Maritime Organization (IMO) testing protocols, and by 2013 all were accepted by the U.S. Coast Guard as sub-laboratories for the evaluation and testing of these systems. For more information, click here.

Ballast Water Technology Testing – Chesapeake Bay Region – In 2008, MARAD partnered with the Maryland Department of Transportation and the University of Maryland’s Center for Environmental Science to establish the Maritime Environmental Resource Center (MERC) to evaluate the mechanical and biological efficacy, costs, and logistical aspects of BWMS, and to assess the economic impacts of ballast water regulations and management approaches.

In 2011 MERC created a mobile barge-based test platform which enables testing of ballast water control systems in a wide range of environmental conditions with differing biological communities and varying salinities.  Currently, MERC continues testing technology and conducting research related to the prevention of the introduction of non-indigenous aquatic species into ecosystems.To find out more about MERC and to view relevant reports and publications, click here.

Ballast Water Technology Testing In the Great Lakes –  MARAD is a sponsor of the Great Ships Initiative (GSI).  GSI is a collaborative effort to end ship-mediated introductions of invasive species in the Great Lakes-St. Lawrence Seaway system through independent research and demonstration of environmental technology, financial incentives, and consistent basin-wide harbor monitoring. With the help of MARAD, GSI established a land-based Research, Development and Technology Evaluation (RDTE) facility in Superior, Wisconsin, to provide intensive testing services to vendors of BWMS and bench-scale testing of promising treatments.

Researchers from the University of Wisconsin-Superior’s Lake Superior Research Institute and the University of Duluth – Minnesota’s Natural Resources Research Institute, among others, provide critical scientific and technical expertise and services for biological research activities and other activities at GSI.To find out more about the Great Ships Initiative and to view relevant reports and publications, click here.

Ballast Water Technology Testing on MARAD’s  Training Ship Golden Bear – MARAD teamed with the California Maritime Academy, the University of Washington, and Glosten Associates to establish a ballast water testing capability on board the California Maritime Academy training ship Golden Bear. The ship was successfully modified in 2010 and now assists with BWMS research and verification by conducting tests of systems during the regular school year while the ship is moored at its dock in Vallejo, California, and during the summer sea-term when the ship is underway. This West Coast-based research platform facilitates BWMS research in a region highly populated with non-indigenous aquatic species.To find out more about the work aboard the Golden Bear Facility and to view relevant reports and publications, click here.

Hull Fouling

The Agency is also addressing issues related to the introduction of non-indigenous aquatic species through hull biofouling.  Hull biofouling is another significant ship vector for the introduction of non-indigenous aquatic species. The urgency of this issue is evidenced by the rapid development of the IMO’s Guidelines for the control and management of ships’ biofouling to minimize the transfer of invasive aquatic species (which was approved by the IMO MEPC 62 (July 2011)).  Hull husbandry was also briefly discussed in the U.S. Environmental Protection Agency’s (EPA) proposed 2013 Vessel General Permit (VGP).  Although no specific requirements were established, the EPA stated that vessel owner/operators must minimize the transport of attached living organisms when they travel into waters subject to the VGP from outside the U.S. exclusive economic zone, or when traveling between Coast Guard Captain of the Port zones.To learn more about the IMO Guidelines, hull fouling and husbandry efforts, please see a presentation developed by the Office of Environment, click here.

In-Water Hull Cleaning Pilot, Cape Orlando – In 2012 MARAD conducted an in-water hull cleaning pilot test under the oversight of the California San Francisco Bay Regional Water Quality Control Board (RWQCB) on the MARAD vessel CAPE ORLANDO in Alameda, California.

The test demonstrated the successful containment and capture of the removed biological material and small amounts of anti-fouling paint through the use of a suction line on the discharge of the scrubber unit and a seal between the scrubber and the hull.

As a result of the pilot test, the California San Francisco Bay RWQCB issued a fact sheet accepting the in-water hull cleaning test as an interim Best Management Practice (BMP) until such time as the State Water Quality Board completes further studies. MARAD has subsequently utilized this BMP in cleaning its vessels’ hulls. A copy of the fact sheet can be found  here.

Vessel and Port Air Emissions

Air pollution results in substantial economic, environmental, and human health costs. Criteria pollutant and greenhouse gases include emissions from mobile transportation sources. Air pollution from large marine diesel engines has the potential to affect not just coastal and port communities, but also to impact populations hundreds of miles away.

As with other modes of transportation, there are many potential methods for achieving reductions, such as cleaner burning fuels, emissions abatement equipment  on board vessels and more efficient design and operation of ships.  In order for clean emissions initiatives to advance, there must be a process for assisting stakeholders in making decisions on the most beneficial approaches.  Whether selecting alternative fuels or technology, the investment by industry is significant.  Therefore, an important component of MARAD’s META Program is to test, evaluate and demonstrate the viability and applicability of alternative technologies, in order to generate data and information useful to the marine community, regulatory agencies and the public.

To assist policy makers, there is also a need for research and multimodal modeling to aid in assessing maritime transportation alternatives, and to determine whether equipment or energy substitutions are cost effective and able to achieve anticipated outcomes.

Biofuels

MARAD’s biofuel initiative began in 2010 and since then has grown into a multi-agency cooperative effort for testing of hydro-treated renewable biodiesels (HRD) on board MARAD-owned training ships and other vessels. The objective of the biofuel initiative is to assess the feasibility of using alternative renewable fuels in operating vessels, and to understand from empirical data the differences between these fuels and conventional petroleum-based fuels.

MARAD-sponsored projects have included testing of blended and neat fuels (unblended fuel) compared with ultra-low sulfur diesel (ULSD) as baseline fuel on board the training ships both underway and pier-side.  The onboard tests included engine performance and endurance tests, exhaust emission analysis, vibration monitoring, and underwater sound transmission.  These tests were conducted in accordance with recognized standards, protocols and guidelines developed by the American Society for Testing and Materials (ASTM), the International Organization for Standardization (ISO), and the EPA.  Pre- and post-test engine and power plant conditions were also evaluated.

Alternative Biodiesel Testing 2011 – MARAD partnered with the Navy, Army Corps of Engineers, the Coast Guard, NOAA and other stakeholders to conduct performance and endurance testing of HRD produced from algal feed stock.  The fuel was provided by the Navy.  The project included performance and endurance tests both underway and pier-side, pre- and post-test power plant evaluation, and fuel and lube oil analysis. MARAD also conducted exhaust emission and long-term fuel stability tests. Alternative Fuel For Marine Application Final Report

Alternative Biodiesel Testing 2012 – MARAD conducted performance and endurance testing of HRD produced from the fermentation of sugar in sorghum/sugar cane. Like the tests conducted in 2011, the tests also included exhaust emission monitoring, pre- and post-test power plant evaluation, and fuel and lube oil analysis.  During this test MARAD also conducted onboard machinery vibration and underwater sound transmission tests to collect and analyze data. Renewable Diesel For Marine Application Final Report

Alternative Biodiesel Testing 2013/14 Based upon the earlier tests, MARAD entered into a cooperative agreement with Scrips Institute of Oceanography (SIO) to conduct long-term tests of HRD fuels on board research vessels operated by SIO.

SIO constructed a portable test laboratory; procured neat HRD fuel produced from waste oils, conducted underway tests of the fuel, sampled engine exhaust emissions, and performed post-test engine evaluation.  These tests have just been concluded. The final report is now available at renewable-diesel-fuel-oil-tests-by-scripps-institution-of-oceonography

Fuel Cells

In 2014 MARAD began working with the Department of Energy (DOE) to investigate marine applications of fuel cells.  The objective of this research is to identify new power plant technology that uses alternative energy, improves energy efficiency of the applications and produces no harmful emissions at the point of use.  One goal is to design, construct, and test prototype fuel cell generators (FCG) for port and shipboard applications in coordination with the classification societies, regulatory entities, and industry.  A second goal is to provide basic research to be used to assist with the development of standards, rules, regulations, and protocols for marine applications of fuel cells.

Hydrogen Fuel Cell for Port and shipboard Marine Applications – In 2014 MARAD and DOE jointly funded a project to design, develop, construct and test a containerized movable 100kW hydrogen FCG to provide electrical power in port and shipboard operations.  The 100kW FCG was optimized to provide electrical power to ten refrigerated containers.  The project has been closely coordinated with the regulatory and classification societies, applicable R&D groups and industries, and shipping companies.  The prototype FCG was tested during 2015 and 2016 in interisland barge service in Hawaii.  A report will be posted here when available.

SF BREEZE Feasibility Study – In 2015 MARAD funded a feasibility study for the design of a high-power (4.8MW) zero emission hydrogen fuel cell ferry, and the establishment of a hydrogen refueling capability in San Francisco Bay.  The San Francisco Bay area Renewable Energy Electric Zero Emission (SF-BREEZE) ferry would carry 150 passengers at 35 knots along a regular 24 mile long route in San Francisco Bay.  The design would comply with the existing international code for low-flash point fuels, and the project would help advance development of Federal and state standards and codes for such applications.  The study will also evaluate the feasibility of installing a large hydrogen supply station for multi-modal use – cars, busses, trucks and marine vessels, and examine other issues such as vessel bunkering, fire protection, hazardous area determination, and cost considerations.  The design group for the project is working with the regulatory entities, classification societies and the marine industry.  The feasibility study has been completed and is available here.

Liquefied Natural Gas (LNG)

LNG is a promising alternative marine fuel that can result in significant criteria pollutant reductions.  Over the past five years MARAD has partnered with a number of organizations to assess and, as appropriate, demonstrate the use of LNG for vessels.  The objective of MARAD’s natural gas research is to address the numerous issues associated with use of natural gas as marine fuel.  Although several US flag vessel owners have announced plans to convert or have converted to dual fuel or LNG engines, there are many questions and challenges to the wide-spread use of LNG in maritime transportation.  Among them are the feasibility of natural gas supply, liquefaction capacity, bunkering procedures, LNG storage aboard vessels, and methane slip and release, to name a few.  MARAD, through the META Program, has been looking into a number of these issues as highlighted below:

Great Lakes Natural Gas Feasibility and Conceptual Engineering Design Study – MARAD partnered with the Great Lakes Maritime Research Institute (GLMRI) to study the feasibility of using natural on the Great Lakes.  The study investigated shore-side and vessel infrastructure requirements, transportation and safety issues, and conceptual vessel engineering requirements.  The study found that the use of LNG as a propulsion fuel is feasible but there are still barriers that need to be addressed such as infrastructure and a reasonable return on investment for vessel conversions.  Multi-sector, regional use of LNG can help reduce overall costs of infrastructure development. Clean Air Guide for Ports & Terminals

LNG Inland Waterway Study (Phase II) – MARAD partnered with GLMRI to expand the Great Lakes Feasibility study to include the inland waterway system, focusing mainly on the Ohio River.  The study provides regulatory analysis and a case study for LNG use along the Ohio River. MARAD/Great Lake LNG/Repowering Study

Natural Gas for Waterborne Freight Transport: A Life Cycle Emissions Assessment with Case Studies – MARAD partnered with the University of Delaware (UDEL) and the Rochester Institute of Technology (RIT) to complete a “well-to-hull” or “total fuel cycle” air emissions analysis for natural gas use versus conventional fuels for three shipping scenarios.   Using a total fuel cycle model provides users with a more complete quantitative analysis of upstream emissions, not just downstream at the point of combustion, and allows for more descriptive comparisons.Total Fuel Cycle Analysis for LNG.

Methane Emissions From Natural Gas Bunkering Operations in the Marine Sector:  A Total Fuel Cycle Approach – MARAD partnered with UDEL and RIT to expand the total fuel cycle analysis study to focus more on methane slip and fugitive emission associated with bunkering operations and combustion in vessel engines.  Methane, like CO2, is a greenhouse gas.  Although methane is shorter lived than CO2, it is a more potent greenhouse gas.  Thus, while NG substantially reduces criteria pollutants (SOx, NOx, and particulate matter), the total greenhouse gas contribution must be considered.  This study helps to identify pathways through which methane may be lost during the bunkering (fueling) process and through combustion.  Click here to see study:

Liquefied Natural Gas Bunkering Study – MARAD partnered with DNV-GL to study issues associated with LNG bunkering, infrastructure, and training.  The study identifies regulatory gaps and provides risk assessment recommendations for future decisions related to LNG bunkering locations and infrastructure. Liquefied Natural Gas (LNG) Bunkering Study

LNG Demonstration Projects – In 2015 MARAD funded two demonstration projects involving use of LNG as vessel fuel.  One project involves the conversion of an oceangoing roll-on/roll-off vessel and the other involves the conversion of an inland regional tug.  These projects will assist in identifying issues associated with LNG use, factoring in the different operations profiles and environments between oceangoing and inland vessels.  The scope of both projects includes pre- and post-conversion emissions testing and reporting of any lessons-learned.  Both projects are long term, 3-year projects.  Results will be publicly available at upon completion of the projects.

Emission Reduction Technology

In addition to alternative fuels to reduce emissions, there are several technologies that can be applied directly to vessels or situated at ports to reduce air emissions.  Technologies such as exhaust gas cleaning systems for vessels, shore power at ports, and the use of fuel cells all show promising emission reduction benefits.  However, they can pose significant challenges for vessel and portside installation and operation.

Scrubber Guide – MARAD has worked with the Ship Operator’s Cooperative Program (SOCP) to update the Exhaust Gas Cleaning Systems Selection Guide (Guide).  The Guide was developed to assist operators with determining what scrubbers are available, practical, and cost effective to meet existing North American Emission Control Area requirements. SOCP Products

Exhaust Gas Treatment System Demonstration – MARAD is partnering with the Interlake Steamship Company on a scrubber demonstration project.  The goals of the project are to measure emissions pre- and post-installation and identify lessons learned.  The project is scheduled to be completed in 2017.

Energy Efficiency White PaperMARAD partnered with the Ship Operators Cooperative Program to produce a paper for ship owners and operators on energy efficiency measures for marine vessels.  The report discusses how the various technologies work, potential fuel savings, applicability to various vessel types, and lifecycle costs and provides a basis upon which owners and operators can evaluate potential investments in efficiency measures and technologies.  The White Paper is available here.

Multimodal Modeling

Understanding how marine vessels operate is critical to determining emission profiles.  As part of the freight transportation system, marine vessels are only one component of regional mobile source emissions.  Until recently, delineating what emissions marine vessels contribute regionally was a challenge.

For many years MARAD has worked to develop emissions modeling tools to assist policy and transportation analysts in determining multimodal emissions.  Partnering with the UDEL and the RIT, MARAD has made available tools such as the Total Emissions Analysis of Marine Emissions (TEAMS), the web-based Geospatial Intermodal Freight Transport (WebGIFT) tool, and EmissionsCalc.

TEAMS – TEAMS is a well-to-hull emissions assessment tool, based on the Greenhouse Gases, Regulated Emissions, and Energy Use (GREET) algorithm that allows users to quantify lifecycle emissions for marine vessels in comparison with land-side transportation.  http://www.rit.edu/~w-teams/

GIFT – The Geospatial Intermodal Freight Transport (GIFT) tool is a Geographic Information System (GIS)-based, multimodal freight routing tool that allows users to quantify energy use and emissions between origin and destination pairs.  MARAD supported development of GIFT primarily for multimodal emissions analyses and congestion case studies.  GIFT is operated through a partnership between the University of Delaware and the Rochester Institute of Technology.

WebGIFT  – WebGIFT was developed for government agencies, transportation planners, and policy analysts to have easy access to a simplified version of the GIFT tool through the internet.  WebGIFT provides basic optimization analyses and can be customized. www.webgift.rit.edu

EmissionsCalc  – EmissionsCalc is a single point emissions calculation tool for multimodal uses. EmissionsCalc uses the latest emission factors and allows for high customization of vehicle preferences.  www.emissionscalc.rit.edu

Engine Upgrades/Repowering

In recent years MARAD advertised RFPs for vessel emissions reduction demonstration projects in an effort to obtain in-situ emissions data and determine public and private cost/benefits.  Since 2012, MARAD has funded several engine repower projects and alternative technology demonstration projects.

Inland Tug Repower – MARAD worked with the Southeast Missouri Regional Planning Commission to repower an inland tugboat, replacing unregulated engines with Tier 3 engines.  Results of the project showed significant reduction of criteria pollutants. For the final report, click here

Harbor Tug Repower – MARAD partnered with the Puget Sound Clean Air Agency (PSCAA) to repower a harbor tug from unregulated engines to Tier 2 engines.  Results showed a significant reduction of emissions and a quick return on investment.  That rapid return on investment allowed the operator to invest in additional repowers.  Other highlights of this project included broad partnerships with the Washington Department of Ecology and a local community college.  In addition, because of the success of the project a separate harbor craft repower grant fund was set up by the PSCAA. Puget Sound Clean Air Agency Project Report 2015

Hybrid Tug Battery Risk Assessment

MARAD partnered with Foss Maritime to conduct a battery risk assessment study for their hybrid tugs.  The results of that assessment can be found here. Final Report On Battery Re-Installation

AEP Hybrid

MARAD partnered with AEP River Operations, renamed as ACBL River Operations LLC, to design, fabricate, laboratory test and install a power take-off (PTO) unit for one of the main engines. This PTO will  provide auxiliary power to the vessel while underway, thereby obviating the need to operate the auxiliary diesel generator.  This is expected to result in fuel savings and reduced aggregate air emissions from the vessel. The project is on-going.

How META Works  

Under META, MARAD engages in the environmental study, research, development, assessment, and demonstration of emerging marine technologies and practices related to the marine transportation system through partnerships and cooperative efforts with academic, public, private, and nongovernmental entities and facilities.  META authority allows MARAD to use various acquisition tools to pursue maritime environmental research, development, and demonstration projects.  Depending on the research requirement, at times MARAD posts competitive requests for applications/proposals (RFA/RFPs) to investigate or demonstrate particular issues or areas.  RFA/RFPs are typically posted on the www.grants.gov website and are generally open for a 30-day period.  In addition to RFA/RFPs, MARAD also enters into Interagency Agreements with sister Federal agencies to explore areas of mutual interest.

MARAD is particularly interested in collaborative cost- sharing efforts in partnership with government agencies, academia, and non-governmental organizations. These efforts seek to provide vital information to government stakeholders and the maritime industry regarding effective and affordable environmental regulation, and cost effective means to achieve compliance.

For more information about opportunities, please contact META@DOT.GOV