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Executive Summary 

2009 crash data from the State of Michigan was combined with weather data from four Clarus weather 
stations in the Upper Peninsula of Michigan.  Crashes occurring within 50 miles of a weather station 
were identified and paired with the associated weather during that hour of time.  Additionally, weather 
conditions during hours in which there were no crashes were also recorded.  From this data, weather 
conditions which were significantly associated with increased crash risk were identified.  A series of 
regression models were then created based on critical tipping points of weather data, as well as 
continuous weather observations.  This provides an algorithm consisting of seven risk equations 
which are used under differing weather conditions.   
 
The crash risk algorithm was then combined with a time based algorithm in order to recommend a 
route.  The relative weighting of crash risk and time is established by the user.  Using an open source 
geospatial routing tool and open source road network software, a recommended route is defined.  The 
server framework is also open source and building a routing query for the database to execute is a 
thin convenience wrapper for the Crash Risk Aversion algorithm and largely consists of procedural 
data formatting, security, and abstraction. The database is still completely decoupled from the server 
and there are several alternative server frameworks that might be used to manage the database.  
Additionally, the development of the tool allows for use on a variety of web-browsing applications. 
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Identifying Crash Risk 

Data Set Development 

The first objective was the creation of a dataset which would contain data from both the Clarus 
weather stations in Michigan and Michigan crash data.  Crashes from 2009 occurring within 50 miles 
of each of the 13 Clarus weather stations were identified.  Simultaneously, the Clarus weather data 
was downloaded for 2009.  Since Clarus weather stations have come online gradually, only data for 
four of the Michigan stations were available for 2009.  This data was collected for every hour, on the 
hour.  Only data which passed Clarus quality checks were included in this data set.   
 
Once the crash and weather data were obtained, the two were merged based on time and location.  
Two of the Clarus stations were closer than 100 miles from each other, and as a result some crashes 
which occurred between the stations were within 50 miles of both.  In this case, crashes were 
associated with the station to which they were closest.  In the rare case of multiple crashes occurring 
within a one hour observation near a particular Clarus station, multiple observations were included in 
the data set for that hour at that station. 
 
Each of 15 weather variables was evaluated to determine the degree to which they were significantly 
correlated with crash likelihood.  This was done using a set of logistic regression models where crash 
outcome (yes or no) was the dependent variable and the weather variable under consideration was 
the lone independent variable.  Some of the weather variables were continuous (such as ambient 
temperature and atmospheric pressure), and others were categorical (such as precipitation type).  
Categorical variables were decomposed into a set of binary variables (such as snow, rain, etc for 
precipitation type).   
 
The final data set contains 25,568 observations, of which 4,832 include a crash which occurred during 
the hour.  Upon review of the crash data, only four of the Clarus weather stations were collecting data 
in 2009.  As a result, only these four locations were included.  Weather  variables in the data set 
include average wind speed, wind gust speed, road ice percentage, precipitation intensity, 
precipitation type, atmospheric pressure, dew point temperature, precipitation rate, visibility, air 
temperature, road surface conditions, ice or water depth, and surface freeze temperature.  Crash 
information includes variables related to crash time, weather, location, number of vehicles, lighting 
conditions, and injury levels.   
 

Regression Modeling 

 
Of the fifteen variables tested, thirteen were statistically significant.  These results are shown in Table 
1.  For the categorical variables, each level was tested independently.  For these variables, only some 
of the levels may have been significant predictors of crash likelihood.   
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Table 1:  Parameter estimates associated with Clarus reported weather conditions 

Variable Units

Directionality 

Tested

Parameter 

Estimate p‐value

Odds of 

Crash LCL UCL

Avg Wind Speed m/s Higher Speed 0.0225 0.014 1.023 1.005 1.041

Ice Percent % Greater Percent 0.00279 0.0288 1.003 1 1.005

Precip Intensity 3 no prec 1 ‐0.1065 0.0052 0.808 0.696 0.938

Precip Intensity 6 heavy prec 1 0.2806 < 0.0001 1.753 1.335 2.301

Precip Type 3 None 1 ‐0.1108 0.0156 0.801 0.67 0.959

Precip Type 5 Snow 1 0.3884 < 0.0001 2.174 1.627 2.905

Atm Pressure mbar Higher Pressure ‐0.00658 < 0.0001 0.993 0.992 0.994

Dew Pt Temp deg C Higher Temp ‐0.0157 < 0.0001 0.984 0.981 0.987

Relative Humidity % Greater Percent ‐0.00431 < 0.0001 0.996 0.994 0.998

Precip Rate cm/hr Higher Rate 0.1114 0.0478 1.118 1.001 1.248

Visibility 1000m Greater Visability ‐0.04 < 0.0001 0.961 0.951 0.97

Air Tempurature deg C Higher Temp ‐0.0133 < 0.0001 0.987 0.984 0.99

Surface Status 2 Error 1 ‐0.3283 < 0.0001 0.519 0.448 0.601

Surface Status 3 Dry 1 0.0868 0.0004 1.19 1.081 1.309

Surface Status 7 Ice Warn 1 0.2791 0.0099 1.747 1.143 2.671

Surface Status 8 Ice Watch 1 0.1392 0.001 1.321 1.119 1.56

Surface Temp deg C Higher Temp ‐0.00547 < 0.0001 0.995 0.992 0.997

Wind Gust Speed m/s Higher Speed 0.041 < 0.0001 1.042 1.036 1.048  
  
With regard to the categorical variables, both no precipitation and heavy precipitation were statistically 
significant in affecting crash risk, with crashes being less likely when precipitation was absent, and 
greater under conditions of heavy participation.  Light and moderate precipitation did not significantly 
affect crash likelihood.  The type of precipitation was also significant.  No precipitation reduced crash 
likelihood, while snow increased crash likelihood.  Rain had no significant effect.  Some surface 
conditions were also associated with significant increases in crash risk.  These included ice warnings 
and ice watches.  Dry surfaces were also significantly associated with increased crash risk, although 
to a lesser degree.  The only code for road surface that was significantly associated with reduced 
crash risk was an “error” code.  Trace moisture, wet, chemically wet and frost were not associated with 
an increase in crash risk.   
 
Among continuous weather variables, higher wind speeds were correlated with higher crash likelihood 
as was wind gust speed.  Lower air temperatures, lower road surface temperatures and lower dew 
point temperatures were also associated with greater crash risk.  Lower atmospheric pressure was 
also associated with increased crash likelihood as was decreased visibility and decreased relative 
humidity.  Lastly, higher precipitation rate and greater percentage of ice on road were associated with 
higher crash likelihood.  The only two variables not significantly related to crash likelihood were 
surface freeze temperature and surface ice or water depth.   
 
Cost functions for binary variables follow directly from the test of statistical significance.  However, 
continuous variables may have non-linear relationships with regard to crash likelihood.  In order to 
understand these potentially complicated relationships, distributions of crashes over the range of 
these continuous variables were developed.  This will be used to determine how to evaluate the safety 
of road segments over the full range of weather measures.   
 
Histograms showing the distributions of observations with and without crashes for each of the 
significant continuous variables are shown in figure 1.  In some cases, as with Atmospheric Pressure 
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and wind speed, there seems to be a rather consistent relationship between changes in the weather 
variable and the change in the proportion of observations which have resulting crashes.  In other 
cases such as ice percentage, there seem to be points of interest at which crashes drop off 
substantially before beginning another progression of increased risk.  Other variables such as surface 
temperature and atmospheric pressure seem to show a particular narrow band of high crash likelihood 
that stands out from the rest of the data. 
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Figure 1:  Distibution of significant variables and associated proportion of hours during which 
a crash occured 

 

Decision Tree Structure  

Upon identifying the points at which critical variables resulted in higher than average crash risk (such 
as temperatures below zero degrees C) a decision tree was created to identify the crash risk 
associated with the presence of these conditions.  A series of logistic regression models were then 
created to determine how other weather factors influenced crash risk in these conditions.  The 
resulting structure is shown in Figure 2.   
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Figure 2:  Decision tree structure identifying the conditions under which particular crash risk 
equations apply 

 
The combination of a decision tree with the equations from the logistic regression model allow the 
algorithm to focus on the critical points beyond which crash risk increases and at the same time create 
equations which can predict crash risk over a continuous range of variables.  Equations 1-7 as 
referenced in the above figure are shown below.  Equations are relative to a baseline crash risk of 1, 
in which non of the critical air temperature, dew point temperature, precipitation rate or wind conditions 
are present.   
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Table 2:  Equations for crash risk based on weather condition specific logistic regression 
models 

Equation 1 Crash Risk = e (0.6025+0.1716+0.2189)

Equation 2 Crash Risk = e (0.6025+0.1716)

Equation 3 Crash Risk = e (0.6025+0.2189-1.6789(Air Temp)+1.4417(Dew Pt Temp)

Equation 4 Crash Risk = e (0.6025)

Equation 5 Crash Risk = e (0.1716+0.2189)

Equation 6 Crash Risk = e (0.1716-0.0245(Dew Pt Temp))

Equation 7 Crash Risk = e (0.2189-0.0130(Air Temp)+0.0438(Avg Wind Speed))
 

 
Temperatures are given in degrees Celsius.  Wind speed is given in meters per second.  The process 
by which crash risk is computed, is first to determine precipitation rate, wind speed, and air and dew 
point temperature.  From there, the appropriate equation can be found on the decision tree depending 
on which side of the threshold these three variables or sets of variables are.   It should be noted that 
air and dew point temperature must both satisfy the condition of less than 0 degrees Celsius in order 
for equations 1, 3, 5 and 7 to hold.    
 

Algorithm Limitations 

 
Typically, crash risk is in the context of the likelihood that an individual vehicle will be involved in a 
crash.  This study analyzes crash risk from the perspective that at a given time, a crash will occur to 
some vehicle.  The difference is subtle, but important.  The data used for this study does not contain 
any sort of exposure metric such as vehicle traffic.  This makes determining individual crash risk 
potentially problematic since traffic levels might drop off as road conditions worsen.  As a result, it is 
important to note that any measure of crash likelihood represented in this model already accounts for 
the traffic levels (although unknown), for the weather conditons analyzed.  In severe weather, the 
crash risk to an individual driver may actually be greater than shown in the model due to potential 
drops in exposure.  However, there are some contexts in which overall crash likelihood is of interest.  
For example, road maintenance organizations are primarily concerned with overall safety of 
roadways, as opposed to incremental risk to a particular vehicle, when making road maintenance 
decisions.   
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Crash Risk Aversion Algorithm 

Routing algorithms leverage network databases that internally segment roads into a discrete set of 
lines and nodes representing “streets” and “turns” (Figure 3).  Road segments represent the multiple 
possible links that together may comprise a route. In order to connect these links, a routing algorithm 
needs to know which road segments connect and which directions those segments may be traversed. 
Along with these descriptors, other attributes stored in a network database include segment length 
and recommended travel speed. Combining the network attributes into a single traversal cost provides 
the input used by routing algorithms to optimize a least-cost path. “Crash risk” is an attribute stored 
similarly to length and speed and is accessed when calculating the total route cost. This chapter will 
describe the key elements of the algorithm and document its implementation in a web-based decision 
support tool. 
 

 

Figure 3: Example road network and its representation in a database as a table where each 
record corresponds to a road segment with various attributes. 

 
The Crash Risk Aversion algorithm developed for this project is implemented as a collection of 
database objects that together are used to calculate a least-cost path between two coordinate pairs 
where the cost is a balance between travel time and crash risk. While typical routing algorithms use 
only the length or the travel time of a road segment to calculate the cost of a route, in this algorithm 
the cost depends on both travel time and crash risk, and allows users to adjust the significance of 
these two attributes in calculating a route. 
 
Figure 4 summarizes the Crash Risk Aversion algorithm developed for this project. In the next few 
sections, the components of this workflow will be discussed in detail but here they are first 
summarized so to provide a high-level overview. First, the origin and destination coordinates are used 
to define a rectangular bounding box, buffered by half of a degree, and the road segments intersecting 
the buffered bounding box are considered for routing. A specified date and time for travel are used to 
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look up the weather at each Clarus station. In turn, these weather observations are interpolated for 
each of the selected road segments . With the interpolated weather at each road segment, the logistic 
regression decision tree calculates crash risk for each road segment. The user-selected risk modifier 
or α—which calibrates the relative importance of travel time vs. crash risk—adjusts the cost 
calculation to the level of risk aversion desired by the user. With the cost calculation complete, the 
problem becomes one of optimization. PgRouting, an open source geospatial routing tool was chosen 
for route optimization due to its tight integration with the project’s database backend.  
 

 

Figure 4: Flowchart summarizing the operations that make up the Crash Risk Aversion 
algorithm, where the final cost calculation is used by the routing library pgRouting to calculate 
a least-cost path. 

Road Network Data Source 

The road network for this study, for the state of Michigan, was downloaded by team from 
OpenStreetMap2.  OSM is a crowd-sourced, freely downloadable dataset that is often viewed as a 
viable alternative to paid solutions (Hakley and Webber 2008). The downloaded data was checked for 
topological correctedness, and cost-related attributes such as traversal speed were verified before 
loading into the project database.  Traversal speed was based on road type, with representative 
values for each major category, show below: 
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Table 3:  Traverse speeds by road type 

Road_Type 
Speed 
(mph) 

cycleway  1 

footway  1 

motorway  65 

motorway_link  65 

path  1 

primary  55 

primary_link  45 

private  20 

residential  25 

secondary  34 

secondary_link  34 

service  15 

steps  1 

tertiary  45 

track  1 

trunk  65 

unclassified  35 

road  35 

unsurfaced  0   

Spatial Buffering and Filtering 

As mentioned above, a buffer is applied to an origin-destination coordinate pair bounding box to limit 
the road segments comprising the set considered in the route calculation. Reducing road segment 
count lowers the computational overhead of the routing calculation. The spatial filter used to subset 
the road network data is a straightforward rectangular bounding box around the start and end points 
which is then buffered by half a degree. Buffering is necessary because road network geometry often 
demands travel in an initial direction away from the destination. Without buffering, this would take the 
route outside of the bounding box and violate the unbuffered spatial filter. Different buffer distances are 
available within the service. While the routing client at <http://geodjango.mtri.org/clarus/> uses a 
default buffer of 0.5 degrees, users can specify a different buffer on the interval 0.1 to 1.0 as a multiple 
of 0.1 by entering it into the URL. For example, to use the routing client with a buffer of 0.5 degrees, 
users can navigate to <http://geodjango.mtri.org/clarus/routing/0.5/>. 

Road Segment Weather 

The Crash Risk Aversion algorithm uses inverse distance weighting (IDW), given by Equation 1, as 
the weather data interpolation procedure. Weights are assigned for each road segment centroid (i.e. 
half the distance along a line segment) via IDW and later used in the cost function to estimate road 
segment-level weather conditions. While IDW is not the most rigorous spatial interpolation procedure, 
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the low sample count comprised of four weather stations is insufficient to calibrate more robust spatial 
covariance models required by methods such as kriging. The standard IDW equations to calculate an 
interpolated observation z are as follows: 

                                                    Equation 1 

where 

                                                                 Equation 2 

and 

                                               Equation 3 

A road segment center coordinate is represented by r, s is a weather station and corresponding spatial 
coordinates, p is the power parameter used to change the effect of distance (we use a power 
parameter of 2), wi is the weight applied to a station observation zi. The term ξ is introduced as a 
normalizing factor ensuring all weights sum to one. 
 
The database stores the weighting factors w for each road segment and station combination, 
generating the interpolated weather value z in real-time. We decided to store the weights as opposed 
to the actual interpolated weather values for three reasons: 

1. Storing values for each road segment and date-time combination results in an exponentially 
large number of records. 

2. Weights are static as the distance between stations and road segments does not change. 
Storing the weights allows the system to expand as weather data is appended to the station 
records. 

3. Adding additional stations requires only the re-calculation of weighting factors leaving the 
interpolation-to-estimated-weather relationship loosely coupled. 

Crash Risk and Cost Calculation 

The Crash Risk Aversion algorithm incorporates the concept of crash risk into the classical least cost 
problem, such that the optimal path is a balance of both travel time and safety (Equation 3). The user-
defined parameter α, the risk modifier, is a weighting factor on the interval from zero to one; it can be 
used to adjust the importance of driving time versus crash risk in a routing query. The crash risk is 
calculated using the regression equations from Task 2 with the interpolated weather data at each road 
segment (Equation 4). All four stations are considered for each road segment, not just the nearest 
stations, where the distance was calculated from the road segment’s midpoint to the weather station. 

  
Equation 4 
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Equation 5 

pgRouting 

With the addition of crash risk as a cost variable, total traversal costs for road segments are available. 
Selecting the least-cost path is an optimization problem for which multiple routing algorithms exist. The 
open source routing library pgRouting1 extends PostGIS, an open source, spatially-enabled relational 
database builton top of PostgreSQL. In the database, tables containing geometric representations of 
the road network along with attributes describing traversal costs are stored and indexed for retrieval by 
SQL route-finding commands. The Crash Risk Aversion algorithm augments the built-in pgRouting 
Shortest Path Dijkstra2 algorithm3 by incorporating an additional cost metric in the function call.  Other 
built-in routing algorithms could be similarly augmented. 
 
The following subsections describe the database objects that are used to implement the crash risk 
algorithm. 

Database Tables 

Database tables store the raw information used to perform routing calculations. 
 
ways - This table contains records that correspond to road segments.  Relevant attributes include the 
geometry, length, start and end nodes, and road class.  This table was modified by adding columns for 
weights used to interpolate CLARUS station weather data to the road segment, which were populated 
by Equation 1. 

 
classes - This table contains records of distinct road classes.  Relevant attributes include the nominal 
speed for driving on the segment.  This tables was modified by adding a “speed” column, that stores 
the typical speed at which vehicles travel for this road class. 

 
weather_station – This table contains records that correspond to CLARUS weather stations.  
Relevant attributes include the station code and point geometry (i.e. location). 
weather_observation - This table contains records of CLARUS weather data measurements (air 
temperature, dewpoint temperature, average windspeed, precipition rate) for a single station at a 
single time. 
 

                                                      
 
1 www.pgrouting.org 
2 http://www.pgrouting.org/docs/foss4g2008/ch07.html 
3 Other pgRouting algorithms are available in the software. 
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Database Functions 

The database functions operate on the data in the database tables. 
 
f_crash_risk(air_temp, dewpt_temp, avg_windsp, precip_rate) 
This function calculates the crash risk index value for a given set of weather parameters.  The function 
implements the logistic regression algorithm developed in Task 2. 
 
f_routing_set(utc_time, alpha, x_min, y_min, x_max, y_max) 
This function creates a set of road network segments that the routing algorithm operates on.  To 
decrease computational cost, only a road segments that are fully or partially within the specified 
bounding box are considered.  The routing set contains a cost attribute that  incorporates both 
drivetime distance and crash risk, depending on the specified importance value (alpha).  The crash 
risk is dependent on the time (and corresponding weather). 
 
dijkstra_sp_delta_crashrisk() 
dijkstra_sp_delta_directed_crashrisk() 
These two functions generate an optimal route based on the Shortest Path Dijkstra routing algorithm, 
modified so that the cost of traversing network segments incorporates crash risk. The 'directed' 
version adds the ability to estimate optimal routes from directed networks (i.e. networks that include 
one way streets). 
 

Discussion 

The database functions were designed such that crash risk based routing can be done for any point in 
time for which weather data is loaded into the database.  This allows a user to explore how routing 
changes over time, due to changes in weather.  However, if routing calculations were only needed for 
a single point in time (such as the current time) much of the computation that is currently done in 
realtime could be precalculated in advance, resulting is dramatically faster routing calculations. 
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Decision Support Tool Development 

This section describes how the database crash risk routing algorithms were made to be accessible 
over the web.  As the Crash Risk Aversion algorithm was implemented in a PostgreSQL/PostGIS 
database, the server framework chosen for the web-based decision support would need an API 
consistent with the database server. The next few sections will detail the elements of this software 
stack and justification for the inclusion of each will be made. Throughout this chapter, the term "routing 
service" will be used to refer to the collection of server-side libraries and resources that respond to 
routing requests. 

Server Framework 

The chosen server framework, Django4, is an open-source web framework written in the Python5 
programming language. It offers several salient features needed for this project including: 

 A dynamic database API providing full abstraction of database objects and SQL commands in 
Python but still allowing complex raw SQL to be used where necessary 

 Extensible template system 

 Automatic and low-level caching 
 
In the routing service, Django is running on top of the Apache HTTP web server, a popular web server 
framework (Netcraft, 2011). Apache relays HTTP requests and responses through the Web Server 
Gateway Interface (WSGI), a communications protocol for Python web applications. Apache is run on 
an Ubuntu Linux 10.04 LTS server for the purposes of this application. 
 
Django's database API enables all objects in the database to be manipulated in Python including 
objects that weren't created through the API. This means that each database object has a Python 
representation. Tables are special Python classes called Models where each record in the table is an 
instance of the respective Model class. In the Django web framework, data models are exposed as 
resources on the web through a REST API. In summary, this means that all communication between 
the client and the server is stateless, cacheable, and HTTP-compliant. A RESTful service exposes 
internet resources to GET, POST (not acronyms) and other requests which can be made from any 
web browser. In the "routing service" created for this project, requests are initiated as HTTP GET 
requests for read-only resources. Such a request looks like like: 
 
http://geodjango.mtri.org/clarus/route?method=CRA&startpoint=42.302 -83.689... 
 
GET requests like the example above identify a resource (in this case the clarus/route resource) 
located in a specific domain (in this case, geodjango.mtri.org) and sometimes pass query parameters 
as key=value pairs which are listed after the question mark and separated by ampersands. 
 

                                                      
 
4 www.djangoproject.com 
5 www.python.org 
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The RESTful interface used in the routing service allows us to define which HTTP request methods 
are permitted and what to do in each case, always giving an HTTP-compliant response. For this 
project, the routing service only responds to GET requests which customarily are for read-only 
resources. There is no reason to allow database content to be changed over the web for this project 
and so all other requests (i.e. POST, PUT, or DELETE) are ignored. This is a lightweight and reliable 
security measure that prevents any deletion, insertion or modification of database content through the 
web interface. 
 
The routing service is represented by the workflow depicted in Figure 5. User data is transmitted by 
the client application as an HTTP GET request, received by the Apache server through a RESTful 
interface. These data are used to build a routing query which the server will execute the Crash Risk 
Aversion algorithm at the database level. Technically, the Apache server is making a request to the 
database server and returning the result to the client as an HTTP response. Building a routing query 
for the database to execute is a thin convenience wrapper for the Crash Risk Aversion algorithm and 
largely consists of procedural data formatting, security, and abstraction. The database is still 
completely decoupled from the server and there are several alternative server frameworks that might 
be used to manage the database. The bulk of this wrapper consists of finding the nearest "edges" or 
road segements to the user-specified start and end points. This is required as the coordinates of the 
start and end points do not necessarily fall directly on road segments. This database transaction, 
which returns the nearest road segments to the given coordinates, is a standard element of routing 
just as it is common practice to give directions from a person's house that start at the street, not the 
front door. 
 

 

Figure 5: Client-server communication in the routing service is RESTful. There are two server-
side procedures that operate on user data before the Crash Risk Aversion algorithm is run. 
They are part of a thin wrapper for database operations and implemented as part of the Django 
database API. 
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Client Application 

Following the development practice of decoupling components, any client application capable of 
communicating through with the server through a RESTful API could have been selected for the user 
interface. The developers in this project again selected software libraries they are most familiar with 
and, in this case, were encouraged to do so as the pgRouting library included an extensible 
application already written in GeoExt, the library of choice. GeoExt6 is an extension of the popular 
open-source user-interface library ExtJS7. With support for OpenLayers8, the de facto standard for 
client-side web mapping interfaces, GeoExt enables rapid developing of web mapping applications. 
 
GeoExt, ExtJS, and OpenLayers are all open-source libraries written in Javascript, the language of 
the web browser. As such, they offer cross-browser compatibility, consistent in both appearance and 
functionality. Javascript applications, unlike Java applets, Adobe Flash/Flex or Microsoft Silverlight 
applications do not require client-side libraries to be installed or updated. This makes Javascript the 
ideal choice for application development where the end users are primarily on government computers 
or other computing environments where the ability to install and update software libraries is 
compromised by IT security protocols. 
 
The "components" of a Javascript application, at least where the term is used here, are the elements 
of the application which receive user focus and independently handle user interaction. They are 
enumerated differently depending on the level of granularity used in speaking about them. In the client 
application for the routing service (Figure 6), for example, we might say there are only two 
components: a top toolbar and a map panel. The top toolbar, however, might be described as a 
collection of six user input fields and buttons. However the components are defined, it is important to 
note that each of them has event listeners which describe behavior executed when certain events are 
fired and it is in this way the client application responds to user input. 
 

                                                      
 
6 www.geoext.org 
7 www.sencha.com/products/extjs/ 
8 www.openlayers.org 
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Figure 6: A screenshot of the routing web service's client application as it initially loads. 
Various components are displayed including the top toolbar, the map panel, a "date picker" 
calendar and two windows.  

 
In the routing service's client application, the GeoExt library provides the components found in the top 
toolbar—a collection of user interface widgets that receive focus from the user, responding to single 
clicks, double clicks, dragging the mouse or other inputs. The date picker, the field containing the date 
selected for a routing query, responds to a user's click in the text field by receiving keyboard input and 
responds to a user's click on the icon to the right by showing a calendar from which the user can 
select a date. These events and the behavior they initiate are all contained within the date picker 
component and no other component is called or triggered. Contrary to that example, when a selection 
is made from the drop-down menu of routing algorithms (left-hand side of the top toolbar), the drop-
down menu component fires events that affect other components. The map panel becomes masked 
(to intimate to the user that data are being loaded) and in the background a request to the server is 
made for the results of a routing query. When the routing data store (a client-side object in memory 
representing routes loaded from the server at any time) fires a "load" event to indicate it has 
successfully received a route from the server this event propagates throughout the application 
triggering other components. This is a short example of just one event chain in the web application. 
 
The OpenLayers library provides the "slippy" map similar to the user-friendly feel of modern mapping 
web mapping services. It is analogous to the Google Maps API and uses the same technology to 
provide an experience similar to Google's popular mapping application. These applications provide the 
ability to map geospatial coordinates to pixel coordinates in a web browser. This enables a wide range 
of geospatial data to be displayed in virtually any (2D projection of a) coordinate system. Essentially, 
these libraries enable a 2D graph in any projection to be displayed but they are most commonly 
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employed for mapping the Earth's surface. In the routing service's client application, OpenLayers is 
used to capture user click events and the corresponding geographic coordinates. After the start and 
end coordinates for a route, along with other information captured in other components, is passed to 
the server and a response is received the part of that response that corresponds to the least-cost path 
between start and end points is plotted by the OpenLayers library. The path is stored as a vector layer 
object which means that later user input can modify this object and its corresponding representation 
on a map as in the case of moving the start or end coordinates. 
 
The final piece of the client software stack is actually a remote service. The route layer displayed on 
the map, while a complete representation of the least-cost path provided by the algorithm, is not ideal 
for driving execution. In order to provide turn-by-turn directions, however, many services are needed 
to operate on route data. These services primarily include geocoding (translating spatial coordinates to 
addresses)  and the translation of topology and directionality to English text. These services require 
large and complex database structures and algorithms which are outside of the scope of this project. 
There are currently no mature, complete open-source implementations of such a service. 
Consequently, the Google Maps API's directions service was leveraged for this purpose. The primary 
drawback of the Google Maps directions service is that it automatically calculates a route using 
Google's own algorithm, one where the only cost, presumably, is travel time. Such a route can be 
constrained, however, by user-defined waypoints (just as in the Google Maps application itself). While 
only 8 waypoints can be used to fit the route provided by Google to the route provided by the Crash 
Risk Aversion algorithm this seems to be adequate for most routes of short length or low crash-risk 
aversion (greater weight to the shortest path). 
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APPENDIX A.   List of Acronyms 

 
 

API Application Programming Interface 

AJAX Asynchronous Javascript and XML 

HTTP HyperText Transfer Protocol 

IDW Inverse Distance Weighting 

JSON Javascript Object Notation 

REST Representational State Transfer 

OSM OpenStreetMap 

SQL Structured Query Language 

WSGI Web Server Gateway Interface 

XHR XML HTTP Request 

XML Extensible Markup Language 
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