

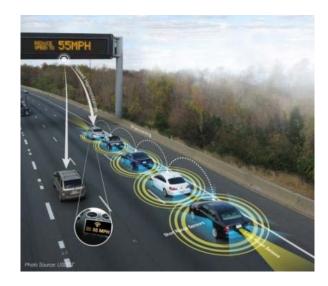
Connected Automation

ITS America 2016

June 12, 2016

Kevin Dopart, U.S. Department of Transportation

Automation Can Be a Tool for Solving Transportation Problems


- Improving safety
 - Reduce and mitigate crashes

Increasing mobility and accessibility

- Expand capacity of roadway infrastructure
- Enhance traffic flow dynamics
- More personal mobility options for disabled and aging population

Reducing energy use and emissions

- Aerodynamic "drafting"
- Improve traffic flow dynamics

...but connectivity is critical to achieving the greatest benefits

Connected Automation for Greatest Benefits

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle

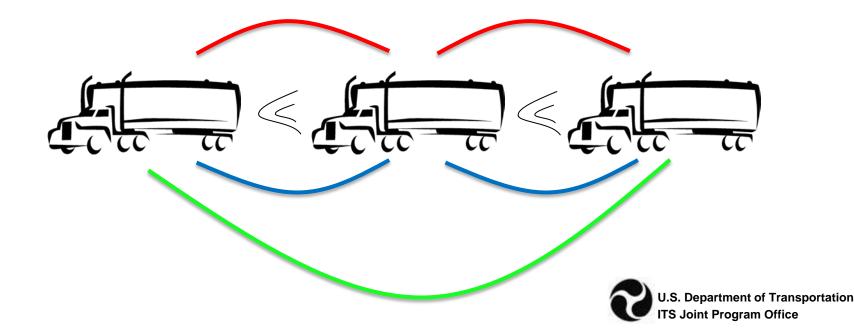
Communicates with nearby vehicles and infrastructure

Connected Automated Vehicle

Leverages autonomous and connected vehicle capabilities

Example Systems at Each Automation Level

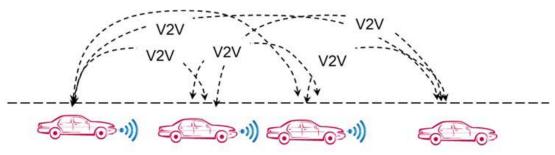
SAE Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> functions and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist	Must monitor driving environment (system nags driver to try to ensure it)
3	Traffic Jam Pilot Automated parking Highway Autopilot	May read a book, text, or web surf, but be prepared to intervene when needed
4	Closed campus driverless shuttle Valet parking in garage 'Fully automated' in certain conditions	May sleep, and system can revert to minimum risk condition if needed
5	Automated taxi Car-share repositioning system	No driver needed


Example Systems at Each Automation Level

SAE Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive <u>other</u> functions and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist	Must monitor driving environment (system nags driver to try to ensure it)
3	Traffic Jam Pilot Automated parking Highway Autopilot	May read a book, text, or web surf, but be prepared to intervene when needed
4	Closed campus driverless shuttle Valet parking in garage 'Fully automated' in certain conditions	May sleep, and system can revert to minimum risk condition if needed
5	Automated taxi Car-share repositioning system	No driver needed

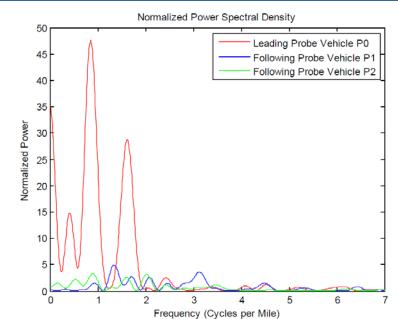
ITS Joint Program Office

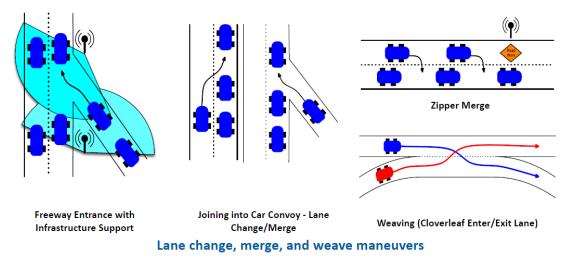
Current L1 Connected Automation R&D


- Cooperative Adaptive Cruise Control (CACC) development
- Traffic Operations Applications
- Eco-Approach and Departure from Signals
- Truck Platooning

CACC Development Projects

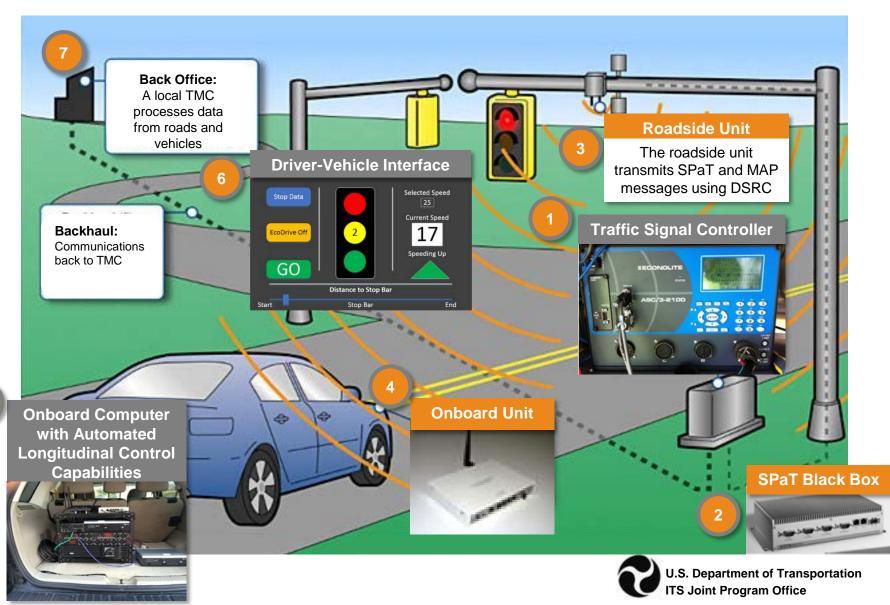
- Enabling CACC High Performance Vehicle Streams
- CACC Field Tests
- OEM Assessment of CACC concepts and prototype
- Driver Acceptance of L1 Applications



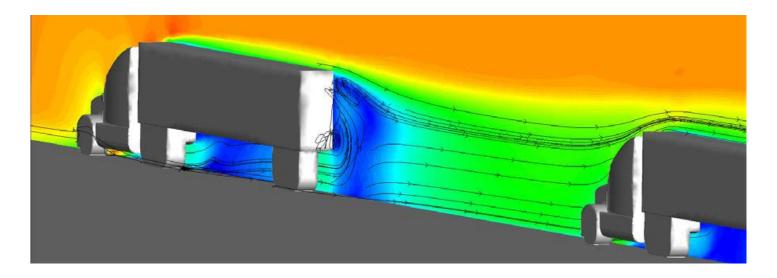


7

Freeway Traffic Operations Applications

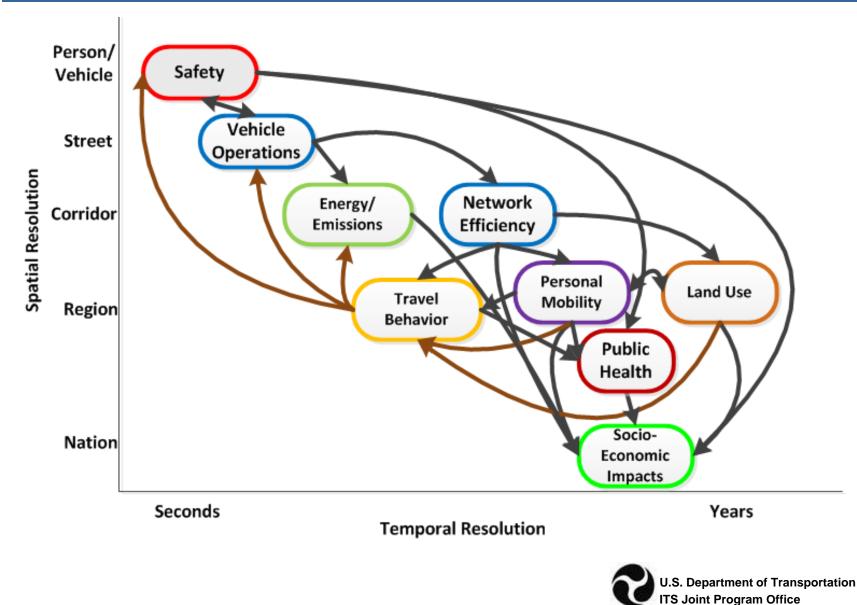

- Freeway Speed Harmonization
- Lane Change/Merge Operations

Eco GlidePath at Signalized Intersections



9

Truck Platooning


- Two projects underway
 - Auburn U/Peterbilt (2-truck platoons)
 - Caltrans/UC Berkeley/Volvo (3-truck platoons)

Concept: longitudinal control only; all drivers steer

Assessing the Impacts of Automation

Impact Mechanism Example

Vehicle operations and road capacity

- Car following
 - □ Affects lane capacity for an uninterrupted facility
 - Human driver: minimum safe headway, speed variation
 - Autonomous: reduced speed variation
 - Connected / automated: may enable reduced headways with real-time information from lead vehicle(s)
- Gap acceptance
 - Affects intersection capacity
 - Human driver: depends on perception and judgment
 - Autonomous: may have less variability than humans
 - Connected / automated: possibility of cooperation with other vehicles
- Interruptions to traffic flow
 - Affects link and intersection capacity
 - Connected / automated: possibility of cooperation with infrastructure (GlidePath), and with other vehicles to reduce interruptions

Plans for 2016-2017

- Identify data sources and automation applications for initial modeling
- Examine linkages between micro and regional mobility models
- Develop AV impact models
 - Start with Safety, Mobility and Environment
 - Continue to other areas
- Coordinate with U.S. and international evaluation efforts

13