

GlidePath

Connected Automated Eco-Driving using Wireless V2I Communications at Signalized Intersections

Marcia Pincus Program Manager, Environment (AERIS), Connected Cities and Evaluation

United States Department of Transportation (USDOT)

7 October 2015

2015 ITS World Congress

PR08: The Decarbonisation of Road Transport: How Can Eco-Driving Contribute?

AERIS Program Overview

Vision – Cleaner Air Through Smarter Transportation

 Encourage the development and deployment of technologies and applications that support a more sustainable relationship between surface transportation and the environment through fuel-use reductions and more efficient use of transportation services.

• Objectives – Investigate whether it is possible and feasible to:

- Identify connected vehicle applications that could provide environmental impact reduction benefits via reduced fuel use, improved vehicle efficiency, and reduced emissions.
- Facilitate and incentivize "green choices" by transportation service consumers (i.e., system users, system operators, policy decision makers, etc.).
- Identify vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicleto-grid (V2G) data (and other) exchanges via wireless technologies of various types.
- Model and analyze connected vehicle applications to estimate the potential environmental impact reduction benefits.
- Develop a prototype for one of the applications to test its efficacy and usefulness.

AERIS Operational Scenarios

ECO-SIGNAL OPERATIONS

- Eco-Approach and Departure at \cap Signalized Intersections (uses SPaT data)
- **Eco-Traffic Signal Timing** \cap (similar to adaptive traffic signal systems)
- Ο Eco-Traffic Signal Priority (similar to traffic signal priority)
- **Connected Eco-Driving** (similar to eco-driving strategies) \cap
- Wireless Inductive/Resonance Charging 0

ECO-LANES

- Eco-Lanes Management (similar to managed lanes) Ο
- Eco-Speed Harmonization (similar to variable speed limits)
- **Eco-Cooperative Adaptive Cruise** \bigcirc **Control** (similar to adaptive cruise control)
- Eco-Ramp Metering (similar to ramp metering) 0
- Connected Eco-Driving (similar to eco-driving) 0
- Wireless Inductive/Resonance Charging Ο
- Eco-Traveler Information Applications \circ

LOW EMISSIONS ZONES

- 0 Low Emissions Zone Management (similar to existing Low Emissions Zones)
- 0 **Connected Eco-Driving** (similar to eco-driving strategies)
- 0 Eco-Traveler Information Applications (similar to ATIS)

ECO-TRAVELER INFORMATION

- Connected Vehicle-Enabled Data Collection: Probe 0 and Environmental Data
- 0 Multimodal Traveler Information
- Eco-Smart Parking
- \bigcirc AFV Charging/Fueling Information, Reservations, and Payment
- **Dynamic Eco-Routing** 0
- Connected Eco-Driving Gamified / Incentives-0 based Apps
- Gamified / Incentives-based Multimodal Traveler \cap Information

ECO-INTEGRATED CORRIDOR MANAGEMENT

- Eco-ICM Decision Support System (similar to ICM) 0
- **Eco-Signal Operations Applications** \bigcirc
- **Eco-Lanes Applications** Ο
- Low Emissions Zone s Applications Ο
- Eco-Traveler Information Applications Ο
- Incident Management Applications Ο

AERIS Research Approach

Concept Exploration

Examine the State-of-the-Practice and explore ideas for AERIS Operational Scenarios

Conduct Preliminary Cost Benefit Analysis

Perform a preliminary cost benefit analysis to identify high priority applications and refine/refocus research

Prototype Application

Develop a prototype for one of the applications to test its efficacy and usefulness.

Development of Concepts of Operations for Operational Scenarios

Identify high-level user needs and desired capabilities for each AERIS scenario in terms that all project stakeholders can understand

Modeling and Analysis

Model, analyze, and evaluate candidate strategies, scenarios and applications that make sense for further development, evaluation and research

Eco-Approach and Departure at Signalized Intersections

Application Overview

 Collects signal phase and timing (SPaT) and Geographic Information Description (GID) messages using vehicle-toinfrastructure (V2I) communications

- Receives V2I and V2V (future) messages, the application performs calculations to determine the vehicle's optimal speed to pass the next traffic signal on a green light or to decelerate to a stop in the most ecofriendly manner
- Provides speed recommendations to the driver using a human-machine interface or sent directly to the vehicle's longitudinal control system to support partial automation

Eco-Approach and Departure at Signalized Intersections

Variations

- Signal timing scheme matters: fixed time signals, actuated signals, coordinated signals
- Single intersection analysis and corridor-level analysis
- Congestion level: how does effectiveness change with amount of surrounding traffic
- Single-vehicle benefits and total link-level benefits
- Simulation Modeling vs. Field Studies
- Vehicle Control: driver advice vs. partial automation
- Communications Method: short range vs. wide-area

AERIS Modeling Overview

- A traffic simulation models (e.g., Paramics) was combined with an emissions model (e.g., EPA's MOVES model) to estimate the potential environmental benefits
- Application algorithms were developed by the AERIS team and implemented as new software components in the traffic simulation models
- Modeling results indicate a possible outcome – results may vary depending on the baseline conditions, geographic characteristics of the corridor, etc.

AERIS Modeling Overview

- A traffic simulation models (Paramics) was combined with an emissions model (EPA's MOVES model) to estimate the potential environmental benefits
- Application algorithms were developed by the AERIS team and implemented as new software components in the traffic simulation models
- Modeling results indicate a possible outcome – results may vary depending on the baseline conditions, geographic characteristics of the corridor, etc.

Modeling Network

El Camino Real Network

- Signalized, urban arterial (27 intersections) in northern California
- 6.5 mile segment between
 Churchill Avenue in Palo Alto and
 Grant Road in Mountain View
- For the majority of the corridor, there are three lanes in each direction
- Intersection spacing varies between 650 feet to 1,600 feet
- 40 mph speed limit
- Vehicle demands and OD patterns were calibrated for a typical weekday in summer 2005 (high volumes on the mainline)
- Vehicle mix (98.8% light vehicles; 1.2% heavy vehicles)

Summary of Modeling Results

Summary of Modeling Results

- 5-10% fuel reduction benefits for an uncoordinated corridor
- Up to 13% fuel reduction benefits for a coordinated corridor
 - 8% of the benefit is attributable to signal coordination
 - 5% attributable to the application

Key Findings and Takeaways

- The application is less effective with increased congestion
- Close spacing of intersections resulted in spillback at intersections.
 As a result, fuel reduction benefits were decreased somewhat dramatically
- Preliminary analysis indicates significant improvements with partial automation
- Results showed that non-equipped vehicles also receive a benefit a vehicle can only travel as fast as the car in front of it

2012 Proof of Concept

- A field test was conducted at Turner Fairbank Highway Research Center (TFHRC) with a single vehicle at a single intersection with no traffic
- Drivers were provided with speed recommendations using a Driver Vehicle Interface (DVI) incorporated into the speedometer (driver advisory feedback)
- The field experiment resulted in up to 18% reductions in fuel consumption
- It was difficult for drivers to follow the recommended speed on the "speed advice speedometer"
- Having drivers follow speed recommendations also creates driver distraction

Speed (mph)	Avg. Fuel Savings (ml)	Avg. % Improvement				
20	13.0	2.5%				
25	111	18.1%				
30	76.0	11.2%				
35	73.8	6.3%				
40	107	9.5%				

GlidePath Prototype Application

Project Objectives

- Develop a working prototype GlidePath application with automated longitudinal control for demonstration and future research;
- Evaluate the performance of the algorithm and automated prototype (specifically, the energy savings and environmental benefits);
- Conduct testing and demonstrations of the application at TFHRC

Period of Performance

May 2014 through December 2015

The GlidePath prototype is state of the art and the first of its kind

GlidePath High-Level System Architecture

Component Systems

- Roadside Infrastructure
 - Signal Controller
 - SPaT Black Box
 - DSRC RSU
- Automated Vehicle
 - Existing Capabilities
 - Additional Functionality
- Algorithm
 - Objective
 - Input
 - Output

Roadside Infrastructure

'Automated' Vehicle

Ford Escape Hybrid developed by TORC with ByWire XGV System

- Existing Capabilities
 - Full-Range Longitudinal Speed Control
 - Emergency Stop and Manual Override
- Additional Functionality
 - Computing Platform with EAD Algorithm
 - DSRC OBU
 - High-Accuracy Positioning Solution
 - Driver Indicators/ Information Display
 - User-Activated System Resume
 - Data Logging

GlidePath Field Experiment

The field experimentation was organized into three stages

Preliminary GlidePath Results

Table 2. Relative savings in fuel consumption (%) between different driving modes

Phase	Green					Red						On		
Time in Phase (s)	2	7	12	17	22	27	2	7	12	17	22	27		Average
D vs. U	▼-11.80	▼-11.75	A 7.59	4 5.20	本 7.56	1 2.05	2 5.08	4 37.80	▼-18.34	4 21.71	▼-0.55	△ 13.5	3 -	4 7.34
A vs. U 🖌	4 .67	a 7.55	▲35.25	2 0.94	2 0.28	▲31.71	a 32.65	4 7.91	▼-3.95	2 6.48	2 0.05	2 22.8)	2 2.20
A vs. D 🖌	▲ 14.73	▲ 17.27	2 9.93	▲ 16.60	▲ 13.76	2 2.36	△ 10.11	1 6.25	1 2.16	4 6.10	2 0.48	1 0.8	3	1 5.88

Summary of Preliminary Results

DVI-based driving provided a 7% fuel economy benefit
 Partially automated driving provided a 22% benefit

Lessons Learned

- Minimizing controller lag is important
- Precise positioning is important near the intersection stop bar

Next Steps

- Opportunities for Future Research with the GlidePath Prototype
 - Multiple Equipped Vehicles
 - Multiple Intersections / Corridor
 - Controlled Environment
 - Real-World Corridor with Traffic
 - Actuated Traffic Signal Timing Plans
 - Integration of Cooperative Adaptive Cruise Control (CACC) capabilities with the prototype

Continue to Engage the Automotive Industry

 AERIS initiated a project for CAMP to assess the Eco-Approach and Departure at Signalized Intersections application

Marcia Pincus

Program Manager, Environment (AERIS), Connected Cities, and Evaluation

United States Department of Transportation (USDOT) Intelligent Transportation Systems (ITS) Joint Program Office (JPO)

Email: marcia.pincus@dot.gov

