

ITS World Congress

Bordeaux, France 5 to 9 October 2015

USDOT Activities in Automation

Carl Andersen Federal Highway Administration, USDOT

SIS49: National Road Authorities Strategies to Support the Development towards Automation

TOWARDS INTELLIGENT MOBILITY

Better use of space

Organised by

Co-organised by

Hosted by

On behalf of

Supported by

ITS World Congress Bordeaux, France 5 to 9 October

2015

Federal Policy

- NHTSA released a *Preliminary Statement of Policy* **Concerning Automated Vehicles** representing recommended principles for states to consider in developing legislation and regulations pertaining to automated vehicles.
- In general, NHTSA advises states to avoid stifling innovation through premature regulations but urges restraint in authorizing the operation of self-driving vehicles for non-testing purposes until the technology reaches a higher level of sophistication.

TOWARDS INTELLIGENT MOBILITY Better use of space

Organised by

Co-organised by

On behalf of

Supported by

Automation Offers the Potential to Address Our Nation's Transportation Problems

Improving safety

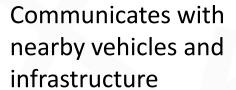
Reduce and mitigate crashes

Increasing mobility and accessibility

- Expand capacity of roadway infrastructure
- Enhance traffic flow dynamics
- More personal mobility options for disabled and aging population

Reducing energy use and emissions

- Aerodynamic "drafting"
- Improve traffic flow dynamics



...but connectivity is critical to achieving the greatest benefits

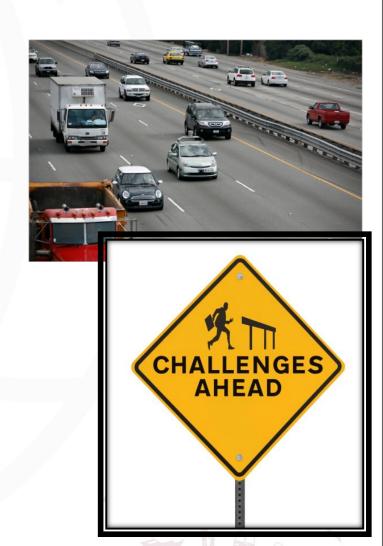
Connected Automation for Greatest Benefits

Autonomous Vehicle

Operates in isolation from other vehicles using internal sensors

Connected Vehicle

Connected Automated Vehicle



Leverages autonomous and connected vehicle capabilities

Emerging Technical and Policy Considerations

- Complexity of testing, certifying and assuring the safety of the technology
- Data privacy concerns and implications for public agencies
- Addressing role of road owners, operators and infrastructure providers to enable AVs
- Impacts of AVs on infrastructure, planning and the overall transportation system
- Challenges of varying state regulations and need for greater consistency
- Human factors issues and driver transitions

U.S. Department of Transportation Role in Vehicle Automation

Program Goal:

Enable safe, efficient, and equitable integration of automation into the transportation system

USDOT Automation Program is Led Through Multi-Modal Coordination

The ITS JPO is responsible for coordinating the ITS program and initiatives among the following DOT offices:

- Federal Highway Administration (FHWA)
- Federal Motor Carrier Safety Administration (FMCSA)
- Federal Transit Administration (FTA)
- Federal Railroad Administration (FRA)
- National Highway Traffic Safety Administration (NHTSA)
- Maritime Administration (MARAD)

U.S. DOT Automation Program Research Tracks

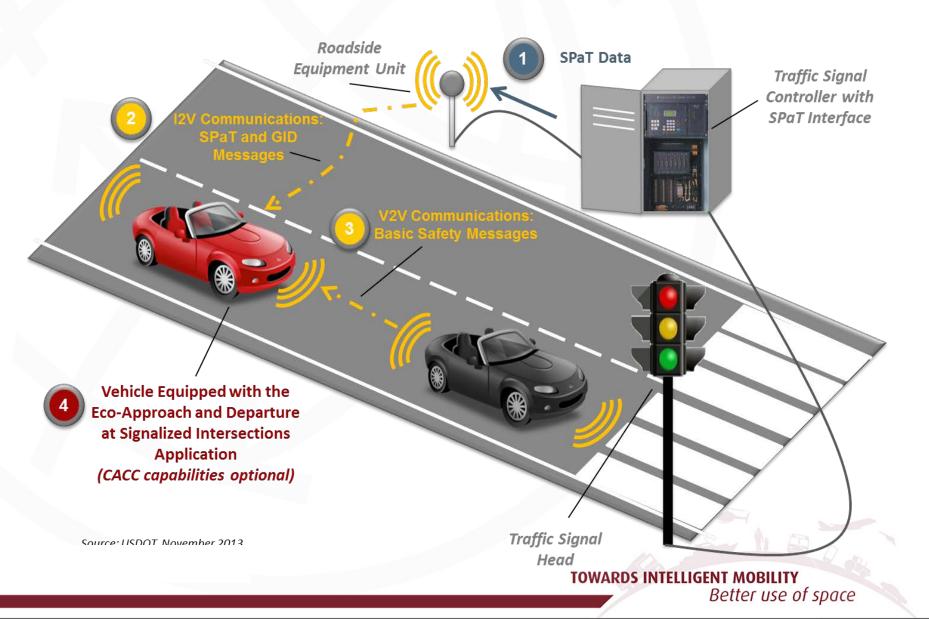
Enabling Technologies												
Digital Infrastructu	re	Commur	nications	Technology Research								
Safety Assurance												
Electronic Control Systems		onal Safety and onics Reliability	Cybersecur	ity	Human Factors							
Transportation System Performance												
CACC, Speed Harmonize and Platooning	Lateral	Control	First/Last Mile and Transit Operations									
Testing and Evaluation												
Interoperability		Testing I	Methods	Benefits Assessment								
Policy and Planning												
Standards	Federa	l Policy Analysis	Stakeholde Engageme		Transportation Planning							

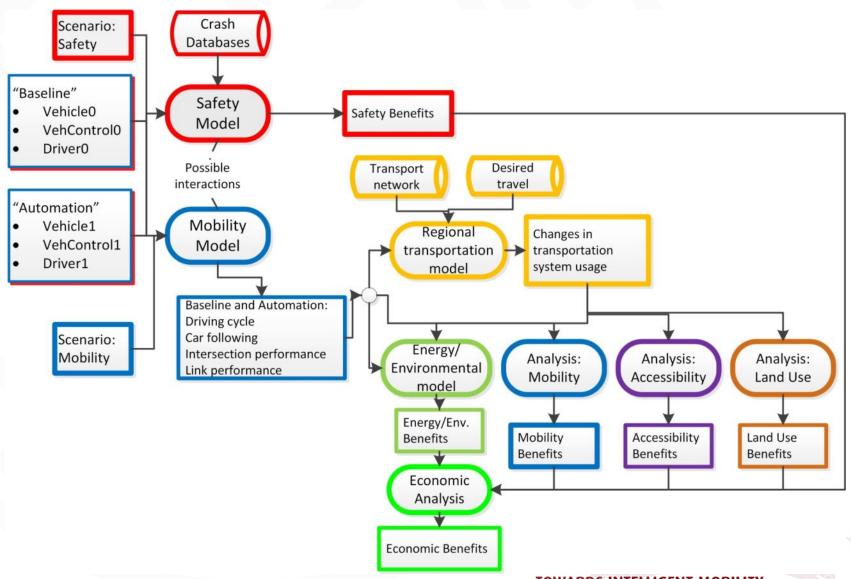
Enabling Technologies

POSITION, NAV & TIMING

MAPPING

SENSORS


COMMUNICATIONS


HUMAN FACTORS

Eco-Signal Operations

Benefits Evaluation Framework

TOWARDS INTELLIGENT MOBILITY

Better use of space

Review of Federal Motor Vehicle Safety Standards

How could highly automated vehicles impact or change the nature of existing Federal Motor Vehicle Safety Standards (FMVSS)?

- Identifying where current FMVSS pose challenges to introduction of AVs – particularly as they move into concepts of 'human out of the loop' or 'driverless'
- Ensuring that existing Federal regulations do not stifle innovation and that AVs are performing their functions safely
- NHTSA and ITS JPO coordinated research

DRAFT Automation Policy Research Roadmap

		Near Term					Long Tern		
Regulatory Environment	Implications of AV on Federal Standards and Regulations	+	+	+					
	Evaluating Safety Standards and Certification Processes for AV	+	+	+					
	ITS and AV State Legislative Scan and Analysis	+	+	+					
	Analyzing Impacts of AV on FMCSA Regulations and Enforcement	+	+	+					
Data Privacy and Management	Impacts of AV on Transportation Data Collection and Management	+	+	+					
	Evaluating AV Data Privacy Policies and Management	+	+	+					
Liability	Assessing Liability and Insurance Models for AV	+	+	+					
Consumer/ Societal Issues	Understanding AV Consumer Acceptance and Education Challenges		+	+	+				
	Identifying Societal/Market Impacts and Policies for AV			+	+	+			
Infrastructure and Planning	Implications of AV on Infrastructure Planning and Investment			+	+	+			
	Impacts of AV on the Long Range Transportation Planning Process					+	+	+	
	Impacts of AV on Land Use and its Policies						+	+	+

Stakeholder Outreach

U.S. DOT Stakeholder Engagement

DRIVERS, VEHICLES, INFRASTRUCTURE

- Automated Vehicle Symposium
- U.S. DOT State Roundtable on Automated Vehicles
 - State DOTs and DMVs
- Webinars
 - ITS JPO and ITS America Webinar:
 Fundamental Issues for Road Transport
 Automation
- Coordinating research efforts
 - Tri-lateral Working Group on Automation in Road Transport

Looking Ahead

- Collaboration and information sharing will be key
- Stakeholder engagement is critical for understanding research needs
- Looking to better understand benefits and implications of technology
- Guidance and policies will be important in achieving highest possible benefits

