

DMA Webinar Series

IDTO Bundle

Ron Boenau Senior Transportation Systems Manager Special Operations, FTA

February 17, 2015

TODAY'S AGENDA

- DMA Program Overview
- Prototype Design and Demonstration
 - IDTO Bundle Overview
 - Prototype Description and Current Project Status
- Impact Assessment
 - Current Project Status of Impact Assessment
 - Testing Results and Impacts/Benefits from IA
- Stakeholder Q&A
 - We can only answer the questions related to the DMA program.
 - We cannot answer any questions related to the CV Pilots.

DMA Program Overview

DYNAMIC MOBILITY APPLICATIONS PROGRAM

Vision

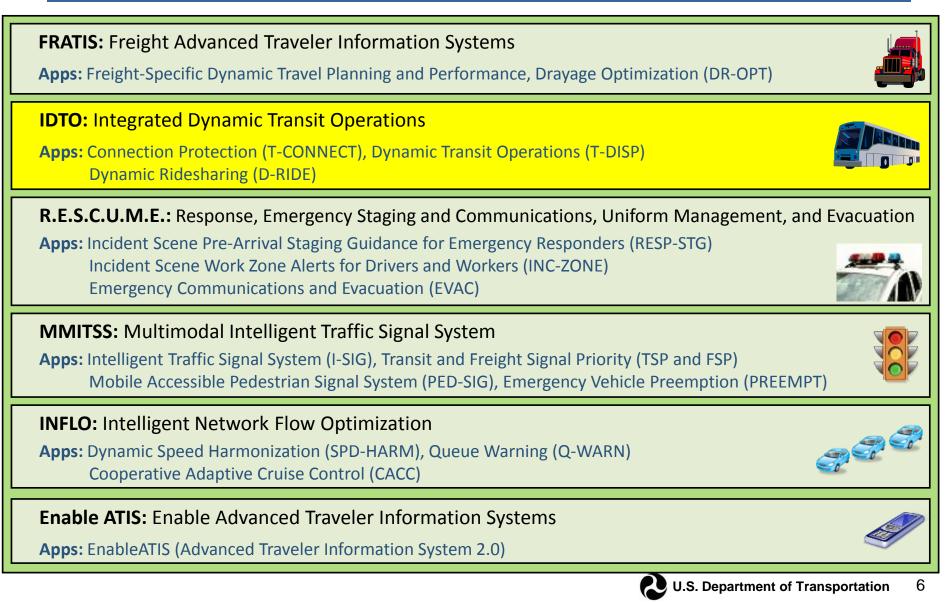
- Expedite development, testing, commercialization, and deployment of innovative mobility application
 - maximize system productivity
 - enhance mobility of individuals within the system

Objectives

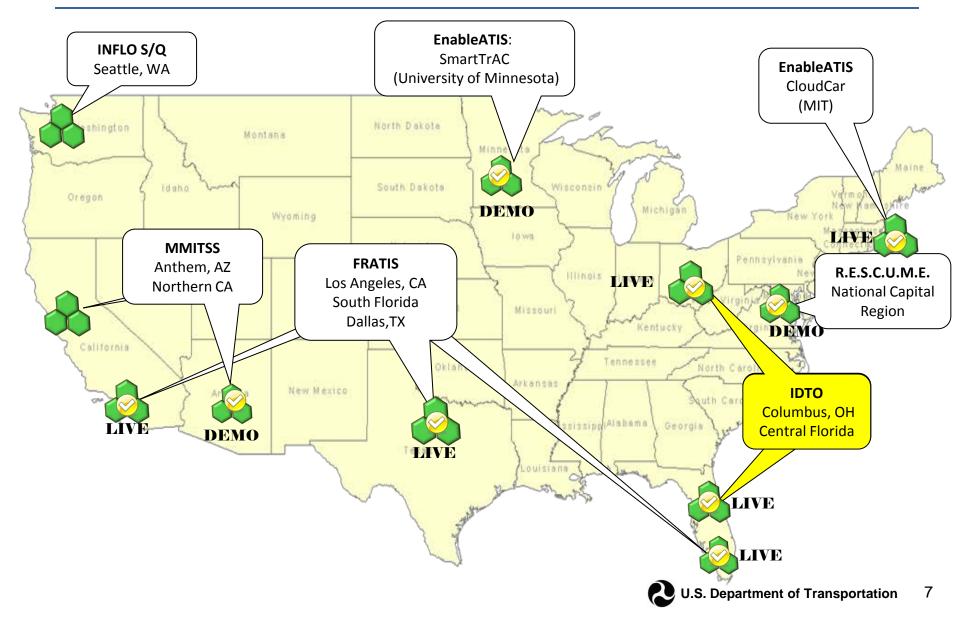
- Create applications using frequently collected and rapidly disseminated multisource data from connected travelers, vehicles (automobiles, transit, freight) and infrastructure
- Develop and assess applications showing potential to improve nature, accuracy, precision and/or speed of dynamic decision
- Demonstrate promising applications predicted to significantly improve capability of transportation system
- Determine required infrastructure for transformative applications implementation, along with associated costs and benefits

Project Partners

- Strong internal and external participation
 - ITS JPO, FTA, FHWA R&D, FHWA Office of Operations, FMCSA, NHTSA, FHWA Office of Safety



DMA PROGRAM APPROACH TO OVERCOMING TWO KEY CHALLENGES TO APPLICATION DEPLOYMENT


- Challenge 1 (Technical Soundness) Are the DMA bundles technically sound and deployment-ready?
 - Create a "trail" of systems engineering documents (e.g., ConOps, SyRs)
 - Share code from open source bundle prototype development (OSADP website: <u>http://www.itsforge.net/</u>)
 - Demonstrate bundle prototypes (in isolation)
 - Field test integrated deployment concepts from across CV programs
- Challenge 2 (Transformative Impact) Are DMA bundle-related benefits big enough to warrant deployment?
 - Engage stakeholders to set transformative impact measures and goals
 - Assess whether prototype show impact when demonstrated
 - Estimate benefits associated with broader deployment
 - Utilize analytic testbeds to identify synergistic bundle combinations

DMA BUNDLES AND APPLICATIONS

DMA PROTOTYPE DEVELOPMENT ACTIVITY

IDTO Bundle Overview

IDTO BUNDLE DESCRIPTION

- The Integrated Dynamic Transit Operations (IDTO) Bundle provides benefits to travelers and transportation service providers by:
 - Bringing together public and private-sector transportation provider information and operations
 - Leveraging the widespread and growing adoption of smartphones as a travel planning and in-trip notification tool.
 - Building on available standards and open-source tools
 - Integrating three travel-related apps that individually offer significant value, and when integrated, provide even greater benefits

T-CONNECT

(Connection Protection)

 Increases the likelihood of making successful transfers by monitoring inbound and outbound vehicles, as well as travelers, determining if/how a connection can be preserved, and initiating the necessary notifications to these parties to support

T-DISP

(Dynamic Transit Operations)

- For travelers, T-DISP provides an ability to access real-time information about available travel options in order to best manage their commutes.
- For an agency, T-DISP extends demand / response services to support dynamic routing and scheduling

D-RIDE

(Dynamic Rideshare)

 New, more efficient approach to rideshare concepts including real-time scheduling

IDTO DEVELOPMENT TEAM

Prototype Development Team

- Battelle Memorial Institute
- TranSystems (Transportation Consultants)
- Ohio State University Transit Lab

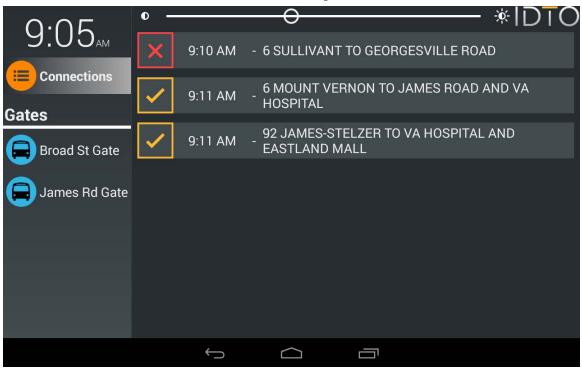
Demonstration Locations

 Columbus, Ohio & Central Florida (Orlando area)

Demonstration Partners

- Central Ohio Transit Authority (COTA)
- The Ohio State University Campus Area Bus Service (CABs)
- Capital Transportation (Private demand response provider)
- LYNX (Orlando transit provider)
- Zimride (Ridesharing service)

- Integrate Schedule and AVL Data from Transit / Transportation Service Providers
- Create interface to 'booking' tools for demand/response and ride share providers
- Integrate all providers into Smartphone-based travel planning tool
- Traveler enters to/from and time information
- System provides available routes / modes
- User selects and 'saves' trip
- System monitors traveler and providers to coordinate transfers
- If necessary, system notifies dispatch to request hold at a stop
- Dispatch accepts/declines
- Traveler is notified in real-time


User Interface Example

🚥 Verizon ᅙ	10:42 AM			
〈 Back (C ride			
P Trip Details				
Trip Summary				
Travel	4/23/2014 11:15 AM			
Total Time	95 min			
Total Walk	3 min			
Transfers	2			
5 min				
	COTA 005 5TH AVE & GRANDVIEW AVE			
	STITAVE & GRANDVIEW AVE			
0 min	WALK			
A GR	ANDVIEW AVE & W 5TH AVE			
20 min	COTA 082			
221 W 12TH AVE				
Cancel				

- Single user interface for traveler to plan trips, both recurring and one-time for all three applications.
- Provides option to use local transit, demand/response services, rideshare, or a combination of all of these modes as part of a trip
- Integrates multiple providers and modes
- Provides status indication of trip start, transfers, and T-Connects
- Available for Web, iOS or Android
- Traveler-Owned Device (downloadable application)

Mobile Data Terminal Example for Transit Driver

- Solution for transit providers lacking CAD/AVL
- Android-based LTE Tablet (Nexus 7) with custom IDTO application
- Provides AVL capabilities in low-cost manner
- Driver protects transfer on behalf of rider
- Interface allows for:
 - Viewing Current Bus Schedules and ETAs
 - Trip Planning: Can I pick up another customer?
 - Transfer Status

Dispatcher Interface Example

12:16			IDTO
New T-Connections			
🚍 6 Hold 1 Min	12:24	RUHL AVE & N JAMES RD	
Active T-Connections			

- Dispatcher Interface is step toward full CAD/AVL integration
- Implemented as webbased portal
- IDTO-specific iPad devices installed at provider
- Simple touch-screen interface displays:
 - Incoming Requests & Approved Transfers
 - Two Actions: Accept or Reject
 - Auto-reject if no response

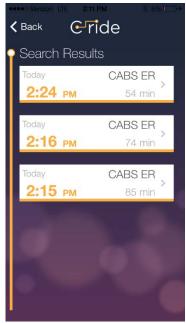
IDTO Prototype

IDTO PROTOTYPE OBJECTIVES

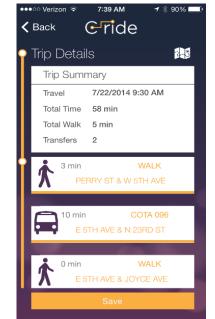
Objectives

- Provide dynamic scheduling, dispatching, and routing capabilities
- Enable and 'protect' multi-modal and multi-agency transfers
- Facilitate dynamic ridesharing
- Integrate all of these features into a single system, for the benefits of both travelers and operators

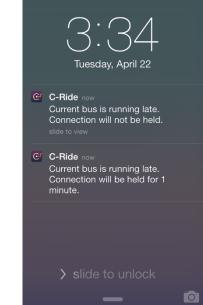
IDTO PROTOTYPE KEY HYPOTHESES


Hypotheses

- Multiple Agencies and multiple modes can be coordinated in a single mobile application
- Given necessary AVL data and policy agreements, connections can be protected

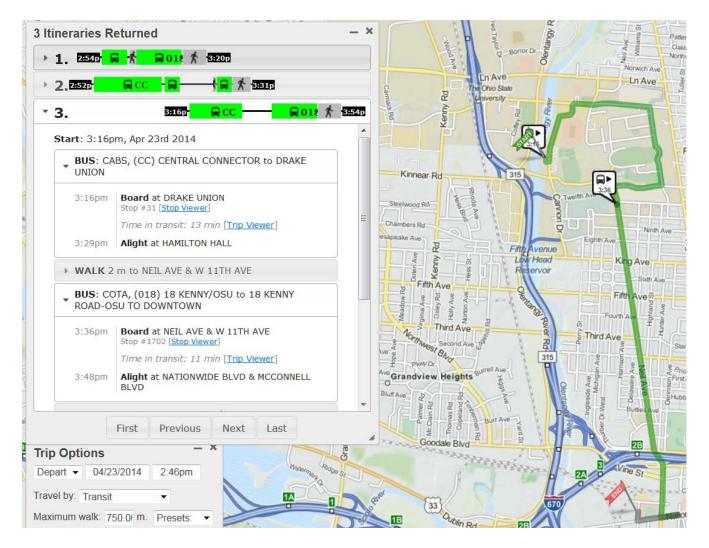

Enter Trip Start / End

••••∘ Verizon ຈີ ✔ Back	7:39 AM	┩∦ 90% 🛄	
📍 Plan a Tr	ip		
Start: Curr	rent Location		
1		\star	
End: 1 Capital Sq. Columbus OH			
1	1	\star	
Time:	7/22/20	14 9:30 AM	
	Departur	re Arrival	
Max Walk	Dist: 1/4 Mile		
	Search		


View and Select Route/Providers

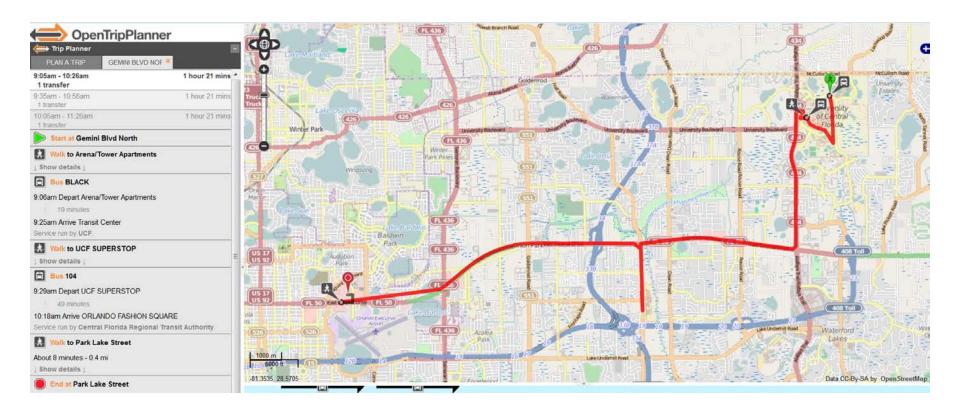
View T-CONNECT enabled trip details

Receive real-time status during trip



IDTO Demonstration

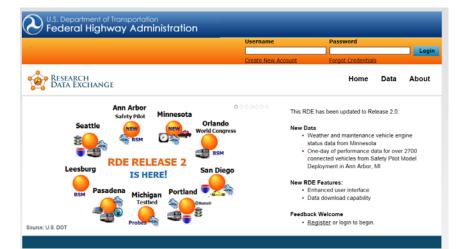
- Two demonstrations locations
 - Columbus demonstration: April 29, 2014
 - Central Florida demonstration: November 5, 2014
- Objectives
 - Show searching for and scheduling a multi-agency and/or multi-modal trip (T-DISP)
 - Show searching for trips using traveler's current location
 - Show notifications including a trip start notification and connection held notification (T-Connection request accepted)
- Scenarios tested
 - Trips that include T-connection
 - Trips without T connection
 - T-Connection requested on behalf of rider via incoming vehicle mobile data terminal (MDT)


IDTO DEMONSTRATION - COLUMBUS

- Scheduled
 OSU CABS
 to COTA
 route
- Departure / Arrival Times and Walk distance included

IDTO DEMONSTRATION – CENTRAL FLORIDA

- Scheduled UCF Shuttle to LYNX route
- Also demonstrated (not shown), SunRail train to LYNX route
- Departure / Arrival Times and Walk distance included


IDTO CODE/DATA AVAILABILITY

IDTO Source Code

- Available on Open Source Application Development Portal (OSADP)
 - <u>http://osadp.fhwa.dot.gov/</u>
 - FHWA/DOT software repository and collaboration environment
- In the process of being approved
- Projected date: March 2015

IDTO Data

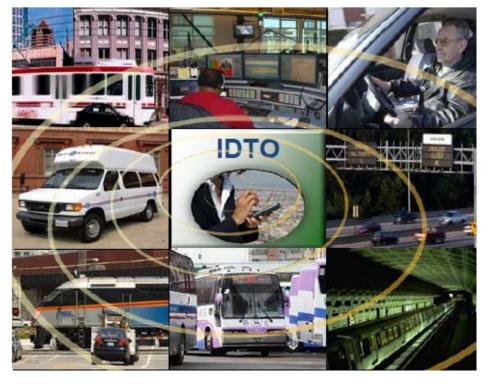
- Available via the Research Data Exchange (RDE)
 - https://www.its-rde.net/home
 - FHWA/DOT transportation data sharing system
- IDTO is in the process of being prepared and packaged for publication
- Projected date: Spring 2015

WELCOME TO THE RESEARCH DATA EXCHANGE

The Research Data Exchange (RDE) is developed as a transportation data sharing system that promotes sharing of both archived and real-time data from multiple sources (including vehicle probes) and multiple modes. This new data sharing capability will better support the needs of ITS researchers and developers while reducing costs and encouraging innovation.

The primary purpose of the DCM (Data Capture and Management) Research Data Exchange is to provide a variety of data-related services that support the development, testing, and demonstration of multi-modal transportation mobility applications being pursued under the USDOT ITS Dynamic Mobility Applications (DMA) Program and other connected vehicle research activities. Data accessible through the Research Data Exchange will be well-documented and freely available to the public. The vision of the DCM Program is to enhance current operational practices and transform future transportation systems management through the active acquisition and systematic provision of integrated data from infrastructure, vehicles, and travelers. This data is available to researchers, application developers, and others.

Basic information, including the list of data environments, is available to all site visitors. Registered users may also • Download data files


which durations and collaborate with other users

IDTO FUTURE ENHANCEMENTS

- Use Bluetooth LE sensors on vehicles to determine when a traveler gets on and off
- Sensor technology will give app real-time knowledge of when passengers board-- no longer need to make assumptions for connections
- Link technology with Farebox systems

One integrated vision of IDTO

IDTO Impact Assessment

IDTO IMPACT ASSESSMENT DESCRIPTION

- Assessment Team (Volpe Center)
- Objectives:
 - Assess impacts of IDTO on:
 - Service quality for transit riders (travel time, waiting time, transfer time, access to transit vehicles and destinations)
 - Transit service effectiveness (moving passengers through the system, utilizing vehicles and staff)
 - Cooperation among transit agencies (planning, information sharing, optimizing services)
 - Estimate benefits linked to impacts within the demonstration (travel time savings, reliability gains, changes to operating costs)
 - Project region-wide benefits for full-scale IDTO use

Key Hypotheses, Performance Measures and Transformative Targets

Key Hypotheses:

- □ IDTO reduces average transit travel times through improved connections
- IDTO improves the reliability of transit trips
- IDTO increases passenger throughput

Performance Measures:

- □ Travel time for IDTO users
- Travel time for passengers affected by IDTO usage
- Range of travel times for trips taken by IDTO users
- Passengers per vehicle per hour

Transformative Targets:

- Reduced passenger waiting times
- 90% of feasible protected connections completed
- Reduced transaction times from request to confirmation of trip status

METHODOLOGY

Planned Approach:

- Evaluate vehicle and transaction data by location for demand, effectiveness, usage patterns
- Conduct interviews with participating organizations to gauge effectiveness and inter-organizational cooperation/collaboration
- □ Estimate differences in travel times and reliability for IDTO users versus non-users
- Project impacts across regions by scaling observations from the demonstration to a hypothetical full-scale use of IDTO

Limitations to Planned Approach

- □ Most hypotheses cannot be measured with existing data.
- Critically, we cannot isolate circumstances under which IDTO offers strong value (e.g., when T-CONNECT reduces transfer time and net travel time relative to alternative strategies).

Addition of Statistical Tool

- Volpe will expand the analysis by developing and implementing a statistical analysis tool.
- The statistical analysis tool is designed to address unmeasurable hypotheses by:
 - Linking known factors in the demonstration to plausible assumptions for missing data and components
 - □ Evaluating system performance and user outcomes under a range of scenarios

KEY IMPACT ASSESSMENT FINDINGS

All current findings are limited due to data constraints

• T-CONNECT:

- Some users indicated that there is high value added by knowing when connecting vehicles will arrive, and whether a connection is feasible
- The value of information on connections led to new travel patterns (travel quality dependent upon information via T-CONNECT), repeat usage, and a limited number of protected connections

T-DISP:

There was demand for the trip-planning features of T-DISP

No demand-response service in the demonstration

D-RIDE:

No rideshare service in the demonstration

KEY IMPACT ASSESSMENT FINDINGS

- Conditions where IDTO offers value:
 - □ Hypothesis: under peak demand, during system disruptions
 - Observed: data limited to qualitative information on adjusted travel patterns that optimize based on information about connecting vehicles
- How IDTO is used:
 - Most frequently: trip planning
 - Most advanced: persistent (limited) demand for T-CONNECT during trips from work to home

Key Impact Assessment Findings

- Institutional Observations:
 - Data access can be more difficult than expected
 - Elements of data may diverge from plans due to institutional concerns
 - Risk of participating organizations withdrawing from demonstration/operation
- Other Observations:
 - T-CONNECT can offer value; the challenge is finding circumstances where a benefit can be provided beyond what the system is already producing
 - Information can matter to users
 - Agencies see a benefit, and are willing to work with outside groups and to share information to realize the benefit
 - Agencies desire increased collaboration to increase efficiency

IDTO LESSONS LEARNED

- IDTO can serve as a single-source for accessing available transportation options in a region
- IDTO utilizes information that most agencies/providers already publish to the internet, some 'standard', most not.
- However, it requires flexibility / changes in policy to support T-CONNECT
- Also needs to consider user privacy concerns
- Full integration with CAD/AVL systems a necessary next step
- As is truly creating standards for the data exchange

IMPLICATIONS FOR DEPLOYMENT

- Agency / Partner Cooperation
 - Requires commitment to share data and to interact with the 3rd party IDTO "provider"
- Traveler Participation
 - Passenger apprehension sharing location data
- Availability of Key Information
 - IDTO is dependent of having both "static" Schedule Information as well as current 'Arrival Time'/AVL data
- Standardization of the Information
 - Industry initiatives such as the General Transit Feed Specification (GTFS) allow for a common format to enable agencies to share information, however..
 - GTFS is not a 'standard' and as such, may not be a long term solution
 - GTFS-Realtime is a step towards obtaining current Arrival Time information, but is not optimal for this purpose
- Transferability / Scalability
 - IDTO was designed with the requirement that it support deployment in more than one region and with varying types of transportation modes and operators.

Stakeholder Q&A

DMA Program

Kate Hartman, DMA Program Manager, ITS Joint Program Office (202) 366-2742, Kate.Hartman@dot.gov

Webinar Speaker

Ron Boenau, (202) 366-0195, Ronald.Boenau@dot.gov

DMA Website

http://www.its.dot.gov/dma/

Battelle Memorial Institute: Tom Timcho (Project Manager)

Volpe Center: Lee Biernbaum (Project Manager), Sean Puckett (Primary Investigator), Greg Bucci (Economist)

