WORKSHEET FOR DETERMINING CORRECTION FOR COARSE PARTICLES IN THE SOIL COMPACTION TEST
 AASHTO T 224

Project: \qquad Sample of: \qquad
Where sampled: \qquad Quantity represented: \qquad Lot No. \qquad Sample No. \qquad
Sampled by: \qquad Date: \qquad Tested by: \qquad Date: \qquad

Identify Laboratory Moisture - Density Relations used:
M aximum Dry Density, $\mathrm{D}_{\mathrm{F}}=$ \qquad $\mathrm{lbs} / \mathrm{ft}^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
\square
\square $\square \mathrm{C}$ \square D

Compacted Laboratory-Dry Density Corrected to Field-Dry Density

Note: This method is limited to samples containing 40 percent or less material retained on the No. 4 (4.75 mm) for Methods A or B; or 30 percent or less material retained on the $3 / 4$ inch (19.0 mm) for Methods C or D.

Calculate the dry mass of the fine particles and oversized particles as follows:
$M_{D F}=M_{M F} /\left(1+M C_{F}\right) \quad$ and
$\boldsymbol{M}_{D C}=\boldsymbol{M}_{M C} /\left(\mathbf{1}+\boldsymbol{M C}_{C}\right) \quad$ where:
$\boldsymbol{M}_{\boldsymbol{D F}}=$ mass of dry material (fine particles), g ;
$\boldsymbol{M}_{\boldsymbol{D C}}=$ mass of dry material (oversized particles), g ;
$\boldsymbol{M}_{\boldsymbol{M F}}=$ mass of moist material (fine particles), g ; and
$\boldsymbol{M}_{M F}=$ \qquad
$\boldsymbol{M}_{\boldsymbol{M C}}=$ mass of moist material (oversized particles), g; and
$\boldsymbol{M}_{M C}=$ \qquad
$\boldsymbol{M C} \boldsymbol{F}_{\boldsymbol{F}}=$ moisture content ($\mathrm{T} 265, \mathrm{~T} 217$, or T 255) of fines particles, expressed as a decimal.
$M C_{F}=$ \qquad
$\boldsymbol{M C}_{\boldsymbol{C}}=$ moisture content (T 265, T 217, or T 255) of oversize particles, expressed as a decimal. Note: If $\boldsymbol{M C}_{\boldsymbol{C}}$ is unknown use 0.02 (2 percent).
$M C_{C}=$ \qquad

Calculate the percentage of the fine particles and oversized particles by dry mass of the total sample as follows:
$P_{F}=100 M_{D F} /\left(M_{D F}+M_{D C}\right) \quad$ and
$P_{C}=100 M_{D C} /\left(M_{D F}+M_{D C}\right) \quad$ where:
$\boldsymbol{P}_{\boldsymbol{F}} \quad=$ percent of fine particles of sieve used, by mass, \%;
$\boldsymbol{P}_{\boldsymbol{C}} \quad=$ percent of oversize particles of sieve used, by mass, \%;
$\boldsymbol{M}_{\boldsymbol{D F}}$ = mass of dry material (fine particles); g; and
$M_{D F}=$
$\boldsymbol{M}_{\boldsymbol{D C}} \quad=$ mass of dry material (oversize particles), g.
$\boldsymbol{M}_{D C}=$

$$
\begin{aligned}
& P_{F}=100 M_{D F} /\left(M_{D F}+M_{D C}\right)=\mathbf{1 0 0}(\square) /(\square)=\square \\
& P_{C}=100 M_{D C} /\left(M_{D F}+M_{D C}\right)=\mathbf{1 0 0}(\square) /(\square+\square)=\square
\end{aligned}
$$

Calculate the corrected moisture content of the total sample (combined fine and oversized particles) as follows:
$M C_{T}=\left(M_{F} \boldsymbol{P}_{F}+M C_{C} \boldsymbol{P}_{C}\right) / \mathbf{1 0 0} \quad$ where:
$M \boldsymbol{C}_{\boldsymbol{T}}=$ corrected moisture content of the combined fine and oversized particles, expressed as a decimal;
$\boldsymbol{P}_{\boldsymbol{F}}=$ percent of fine particles of sieve used, by mass, \%;
$\boldsymbol{P}_{F}=$ \square
$\boldsymbol{P}_{C}=$ percent of oversize particles of sieve used, by mass, \%;
$\boldsymbol{P}_{C}=$

$M \boldsymbol{C}_{\boldsymbol{F}}=$ moisture content of the fine particles, expressed as a decimal; and

$$
M C_{F}=
$$

\qquad
$\boldsymbol{M C}_{\boldsymbol{C}}=$ moisture content of the oversize particles, expressed as a decimal, Note: If MC C_{C} is unknown use 0.02 (2 percent).
$M C_{C}=$ \square

$$
M C_{T}=\left(M C_{F} P_{F}+M C_{C} P_{C}\right) / 100=[(\square)(\square)+(\square)(\square 100=\square
$$

Calculate the corrected dry density of the total sample (combined fine and oversized particles) as follows:
$D_{d}=100 D_{F} k /\left(D_{F} P_{C}+\boldsymbol{k} P_{F}\right) \quad$ where:
$\boldsymbol{D}_{\boldsymbol{d}}=$ corrected total dry density (combined fine and oversize particles), $\mathrm{lbs} / \mathrm{ft}^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$;
$\boldsymbol{D}_{\boldsymbol{F}}=$ dry density of the fine particles, $\mathrm{lbs} / \mathrm{ft}^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$;

$$
D_{F}=
$$

$\boldsymbol{P}_{C}=$ percent of oversize particles of sieve used, by mass, \%;
$\boldsymbol{P}_{C}=$

$\boldsymbol{P}_{\boldsymbol{F}}=$ percent of fine particles of sieve used, by mass, \%; and $\boldsymbol{P}_{\mathrm{F}}=$ \square
$\boldsymbol{k}=1000 \boldsymbol{G}_{\boldsymbol{m}}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ or $62.4 \boldsymbol{G}_{\boldsymbol{m}}\left(\mathrm{lbs} / \mathrm{ft}^{3}\right)$ where:
$\boldsymbol{G}_{\boldsymbol{m}}=$ Bulk Specific Gravity (oven-dry basis) of coarse particles (AASHTO T 85). Note: If $\boldsymbol{G}_{\boldsymbol{m}}$ is unknown use 2.60.

$D_{d}=100 D_{F} k /\left(D_{F} P_{C}+k P_{F}\right)=$

