Innovative Methods to Evaluate Minimizing Dredging Requirements using Three-Dimensional Spatial Data

Lauren Dunkin: US Army Engineer Research and Development Center, Coastal Hydraulics Laboratory (CHL)

October 23, 2012

Outline:

- Joint Airborne Lidar Bathymetry
 Technical Center of Expertise
 - New sensor developments
- National Coastal Mapping Program
 - Surveys and products
- Dredging Requirements

US Army Corps of Engineers BUILDING STRONG

Joint Airborne Lidar Bathymetry Technical Center of expertise

Coastal Zone Mapping and Imaging Lidar

- New sensor development
- faster area coverage
- operation in more turbid and deeper waters
- improved performance in breaking waves
- improved navigation hazard detection
- improved accuracy for depth measurement, water column properties, and bottom characterization
- higher-density topographic and shallow bathymetric measurements

Sturgeon Bay, WI Point Cloud

National Coastal Mapping Program

Develop regional, repetitive, highresolution, high-accuracy elevation and imagery data Build an understanding of how the coastal zone is changing

 Facilitate management of sediment and projects at a regional, or watershed scale

Hydro (1,000 m)

Captiva Island, FL, 2010

(500 m) Topo

National Coastal Mapping Progress

Products

- ASCII XYZ
- Aerial photos
 - Zero contour
 - Aerial photo mosaics
 - 1-meter bathy/topo DEM
 - LAS format topo
 - 1-meter bathy/topo bare earth DEM
 - Hyperspectral image mosaics
- Laser reflectance images
 Basic landcover classification
 - Volume change

Number of times surveyed since 2004

One Time Two Times Three Times Four Times Five Times Six Times

Bathymetry and Topography

Marquette Harbor, MI

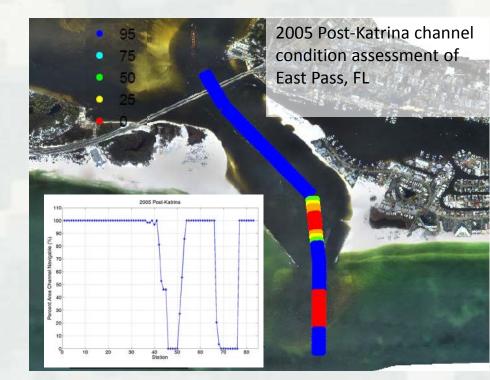
Aerial photography

Aerial photography

5cm Pixel size

cm

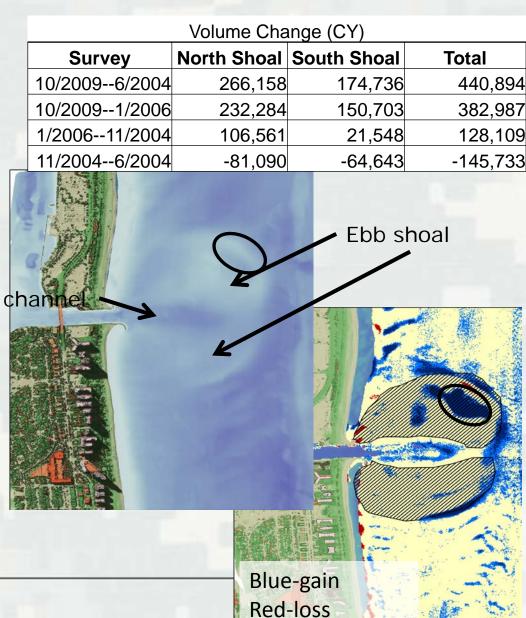
Site – Florida Coast


- Bakers Haulover Pass, FL
 - East Coast
 - Tide dominated
 - Survey data:
 - 2004, 2004 posthurricane, 2006, 2009
- New Pass, FL
 - West Coast
 - Mixed energy
 - Survey data:
 - 2004, 2006 posthurricane, and 2010



Methods

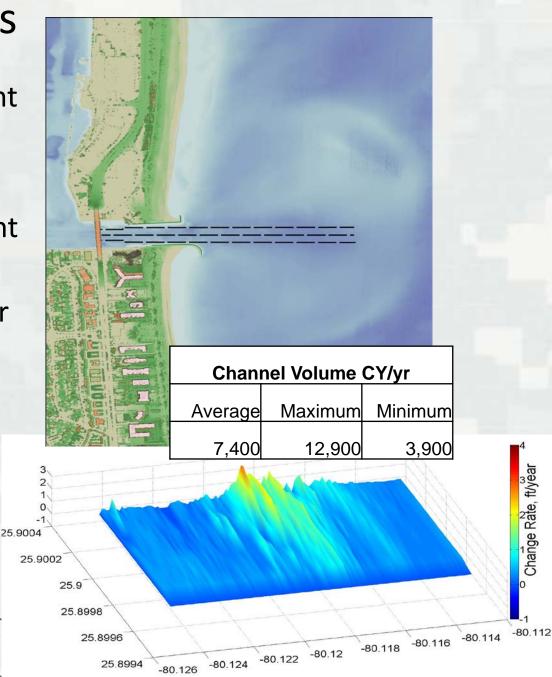
- Channel condition assessment using bathymetric data and channel framework
 - Channel availability
 - Identify shoaling hot-spot areas
 - Morphological trends to find ways to efficiently manage dredging requirements at shallow draft channels
- Statistical approach
 - Averages, maximum, and minimum
 - Linear regression analysis

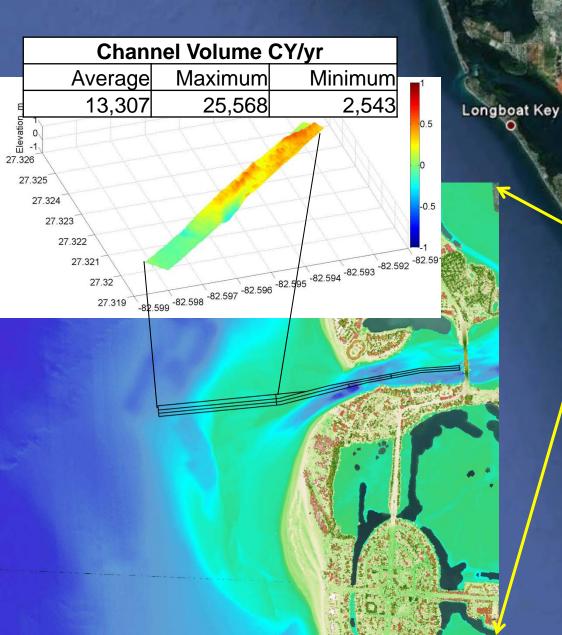


 Identify areas of concern after storm events and use multiple surveys to show migration of the channel

Bakers Haulover Pass

- East Coast of Florida
- Tide dominated
- Ebb shoal is symmetric about the channel
- Ebb shoal mined for beach nourishment
- Loss of sediment during 2004 hurricane
- North ebb shoal mined in 2005




Bakers Haulover Pass

- Straight channel alignment
- Jetties structures on both sides of the inlet
- Spur jetty to trap sediment in fillet on both sides
- Change rate consistent for majority of channel
- North center portion experiences the most change

New Pass, FL

Bradenton

	ALL A DATA AND A DATA A
Volume Change (CY)	
Survey	Total
6/20106/2004	6,932
6/20101/2006	-89,785
201011/2004	-65,302
1/20066/2004	147,968
1/200611/2004	292,443
11/20046/2004	-163,402

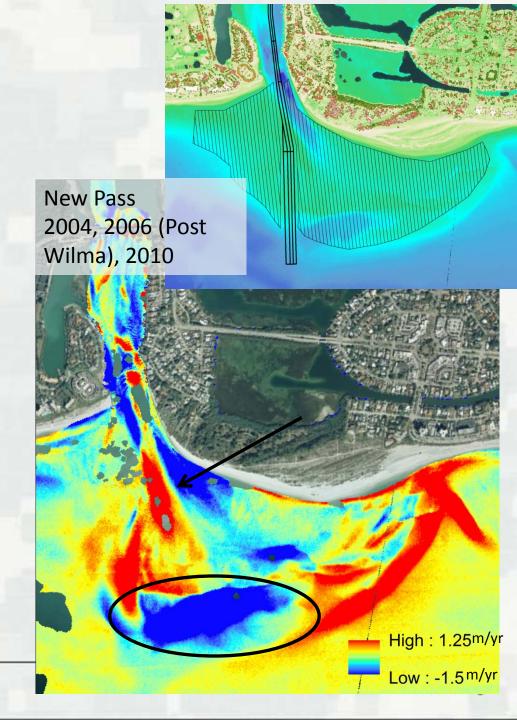
Change Rate

y = Mx + C

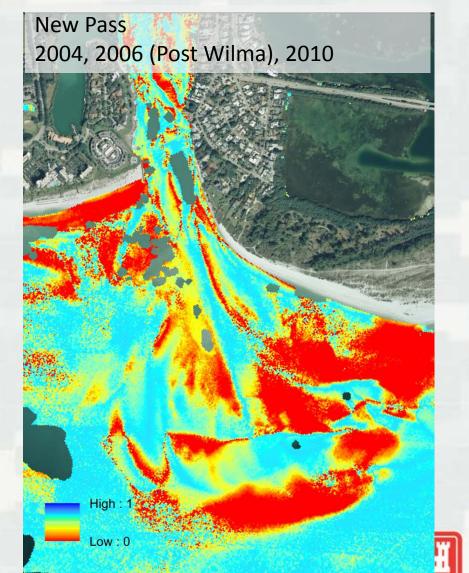
$$M = \frac{n\sum xy - \sum x\sum y}{n\sum x^2 - (\sum x)^2}$$

- Gaussian probability distribution assumed
- Changes due to storm events - waves
- Linear regression method
- M is the time trend
- $R^{2} = \frac{(n\sum xy \sum x\sum y)^{2}}{\left\{n\sum x^{2} (\sum x)^{2}\right\} \left\{n\sum y^{2} (\sum y)^{2}\right\}} e^{-\frac{R^{2}}{n} \sum y^{2}} e^{-\frac{R^{2}}{n} \sum y^{2}}$

X= time Y = dataset (DEM) N= number of surveys



Change Rate


- New Pass, FL mixed energy inlet
- 3 surveys 1 post Hurricane Wilma (2006)
- High shoaling rate within channel and around the southern portion of the terminal lobe of the ebb shoal (red)
- Sediment mining on the outer boundary of ebb shoal (blue)

Change Rate

- Correlation Coefficient ~ 0 for outer boundary of ebb shoal
 - Areas with significant changes do not show trend
- Large changes in ebb shoal due to storm event (2006 survey)

Conclusion

- JALBTCX performs operations, R&D in airborne bathymetric lidar and complementary technologies in support of navigation, coastal engineering and environmental monitoring requirements of USACE.
- Survey sandy shorelines of U.S. on recurring basis (~ 5 year cycle)
 - Data access: jalbtcx.org
- Shoaling rates using repeat surveys
 - Repeat surveys will improve trend analysis linear regression
 - Identify hot-spot areas
 - provide insight into improving channel performance to efficiently dredge and management sediment

Thank You!

Lauren.M.Dunkin@usace.army.mil

www.jalbtcx.org