

Missouri River Mainstem Reservoir System Summary of Actual 2012 Regulation

Missouri River Mainstem Reservoir System

Summary of Actual 2012 Regulation

Table of Contents

Sect	<u>ion No.</u>	on No. <u>Title</u>			
I.	FORE	EWORD	1		
II.	REVI	EW OF REGULATION	1		
	A.	General	1		
	В.	 Precipitation and Water Supply Available 1. Plains Snowpack 2. Mountain Snowpack 3. Weather Conditions	2 5 8		
	C.	System Regulation			
	D.	 Non-Routine Regulation and Other Items Pertaining to System Regulati Lawsuits	40 40		
	E.	Reservoir Elevations and Storages	41		
	F.	Summary of Results1.Flood Control2.Irrigation3.Water Supply4.Water Quality Control5.Navigation6.Hydropower Generation7.Recreation8.Fish and Wildlife			
		9. Cultural Resources			

List of Tables	iii
List of Figures	iv
List of Plates	
List of Abbreviations and Acronyms	v
Definition of Terms	

LIST OF TABLES

<u>No.</u>

Title

Page

1	Missouri River Basin – Plains Snowfall (inches)	3
2	Mountain Snow Water Equivalent Accumulation	5
3	2012 Missouri River Basin Runoff above Sioux City, IA	.18
4	Missouri River Basin 2012 Runoff for Selected Reaches (kAF)	.19
5	Fort Peck – Inflows, Releases and Elevations	.24
6	Garrison – Inflows, Releases and Elevations	.27
7	Oahe – Inflows, Releases and Elevations	.30
8	Big Bend – Inflows, Releases and Elevations	.31
9	Fort Randall – Inflows, Releases and Elevations	.34
10	Gavins Point – Inflows, Releases and Elevations	.37
11	Reservoir Levels and Storages – July 31, 2012	.41
12	Reservoir Levels and Storages – December 31, 2012	.41
13	Water Quality Issues and Concerns	.49
14	Missouri River Tonnage by Commodity (1000 Tons)	.55
15	Navigation Season Target Flows (1,000 cfs)	.58
16	Missouri River Navigation Tonnage and Season Length	.59
17	Navigation Flow Support – Kansas River Projects	.60
18	Gross Federal Power System Generation – January 2012 through December 2012	.64
19	Historical Generation and Load Data – Peaks, Eastern Division, Pick-Sloan Missouri	
	Basin Program, Data at Plant-1,000 kW, January 1, 2012 through December 31, 2012	.66
20	Historical Generation and Load Data – Total, Eastern Division, Pick-Sloan Missouri	
	Basin Program Data at Plant-1,000 kW January 1, 2012 through December 31, 2012	.66
21	Visitation at System Reservoirs (Visitor Hours)	.68
22	Missouri River System Interior Least Tern Survey Data	.72
23	Missouri River System Piping Plover Survey Data	.73

LIST OF FIGURES

Title

1	March 1, 2012 plains snow water equivalent (inches) modeled by NOAA
1	NOHRSC
2	Missouri River Basin mountain snowpack water content 2011–2012
3	January-December 2012 statewide precipitation ranks
4	January-December 2012 statewide temperature ranks
5	Percent of normal precipitation maps for 2012 3-month periods: Jan-Mar, Apr-Jun,
5	Jul-Sep and Oct-Dec
6	Departure from normal temperature (F) for the 2012 3-month periods: Jan-Mar,
-	Apr-Jun, Jul-Sep and Oct-Dec
7	The National Drought Mitigation Center's drought maps for early January, April,
	July and October 2012
8	Missouri River annual runoff above Sioux City, IA
9	Missouri River Basin 2012 monthly runoff above Sioux City, IA
10A	End of July pool elevations for Fort Peck and Garrison
10B	End of July pool elevation for Oahe and total System storage
11A	Missouri River flood damages prevented by the System indexed to September 2012
	levels
11 B	Missouri River flood damages prevented by the System – original price levels
12	Actual and unregulated flows - Sioux City, IA, Nebraska City, NE and St. Joseph, MO 46
13A	Missouri River total navigation tonnage from 1960 to 2012 (estimated)
13B	Missouri River commercial navigation tonnage from 1960 to 2012 (estimated)
14A	Total navigation tonnage value using 2013 present worth computations
14 B	Commercial navigation tonnage value using 2013 present worth computations
15	Actual and navigation target flows – Sioux City, IA; Nebraska City, NE and
	Kansas City, MO (entire year)61
16	Actual and navigation target flows – Sioux City, IA; Nebraska City, NE and
	Kansas City, MO (navigation season)
17	System power generation by project from 1954 to 2012
18	System visitation by project from 1954 to 2012

LIST OF PLATES

<u>No.</u>

<u>No.</u>

Title

- 1 Missouri River Basin Map
- 2 Summary of Engineering Data Missouri River Mainstem System
- 3 Fort Peck Spillway Assessment Downstream Flows and Stages
- 4 Gavins Point Spillway Slab Assessment Downstream Flows and Stages
- 5 Garrison Reservoir estimated reservoir and coldwater habitat 2003 through 2012
- 6 Garrison Reservoir estimated reservoir and coldwater habitat 2003 through 2012 (exploded view)
- 7 Oahe Reservoir estimated reservoir and coldwater habitat 2005 through 2012

LIST OF ABBREVIATIONS AND ACRONYMS

AOP	annual operating plan
AF	acre-feet
cfs	cubic feet per second
CPC	National Oceanic and Atmospheric Administration Climate
	Prediction Center
CPFLP	coldwater permanent fish life propagation
CY	calendar year (January 1 to December 31)
DMS	Data Management System
С	degrees Celsius
F	degrees Fahrenheit
EA	Environmental Assessment
ENSO	El Nino Southern Oscillation
EOM	End of Month
FTT	Flow to Target
ft	feet
ft msl	feet above mean sea level
kW	kilowatt
kWh	kilowatt hour
М	million
MAF	million acre-feet
Master Manual	Master Water Control Manual
MGD	million gallons per day
μg/l	micrograms per liter
mg/l	milligrams per liter
MRNRC	Missouri River Natural Resources Committee
MRBWM	Missouri River Basin Water Management
msl	mean sea level
MV	motor vessel
MVD	Corps' Mississippi Valley Division
MW	megawatt
MWh	megawatt hour
M&I	municipal and industrial
NDEQ	Nebraska Department of Environmental Quality
NOAA-NWS	National Oceanic and Atmospheric Administration –
	National Weather Service
NOHRSC	National Operational and Hydrologic Remote Sensing
	Center
NRCS-SNOTEL	Natural Resources Conservation Service SNOwpack
	TELemtry
NWD	Corps' Northwestern Division
NWK	Corps' Kansas City District
NWO	Corps' Omaha District

LIST OF ABBREVIATIONS AND ACRONYMS (cont'd)

OPPD PA	Omaha Public Power District 2004 Programmatic Agreement
plover	piping plover
P-S MBP	Pick-Sloan Missouri Basin Program
RM	river mile
SHPO	State Historic Preservation Officer
SR	Steady Release
SWE	snow water equivalent
System	Missouri River Mainstem Reservoir System
tern	interior least tern
THPO	Tribal Historic Preservation Officer
TMDL	Total Maximum Daily Load
T&E	Threatened and Endangered
USBR	U.S. Bureau of Reclamation
USFWS	U.S. Fish and Wildlife Service
USGS	United States Geological Survey
VERS	Visitation Estimation Reporting System
WCSC	Waterborne Commerce Statistics Center
Western	Western Area Power Administration
WPFLP	warmwater permanent fish life propagation

DEFINITION OF TERMS

<u>Acre-foot (AF, ac-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot</u> and is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons. Conversely, 1.5 cfs for 24 hours is approximately 1 million gallons; therefore, 1.5 cfs is approximately 1 million gallons per day (MGD).

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Drought</u> is three or more consecutive years of below-average calendar year runoff into the Missouri River above Sioux City, IA.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. This page intentionally left blank.

Missouri River Mainstem Reservoir System

Summary of Actual 2012 Regulation

I. FOREWORD

This document contains a summary of the actual regulation of the Missouri River Mainstem Reservoir System (System) for the 2012 Calendar Year (CY). Two other reports related to System regulation are also available, the *System Description and Regulation* and *Final 2011-2012 Annual Operating Plan*. All three reports can be obtained by contacting the Missouri River Basin Water Management Division (MRBWM), Northwestern Division, U.S. Army Corps of Engineers at 1616 Capitol Avenue, Suite 365, Omaha, Nebraska 68102-4909, phone (402) 996-3841. The reports are also available on the MRBWM website at <u>www.nwd-mr.usace.army.mil/rcc/</u>.

A basin map is presented on *Plate 1* and the pertinent data for the System are shown on *Plate 2*.

II. REVIEW OF REGULATION

A. General

This report summarizes the System regulation as it pertains to all eight Congressionallyauthorized purposes. During 2012 the System was regulated in accordance with the Master Water Control Manual (Master Manual) and the applicable provisions of the Final 2011-2012 Annual Operating Plan (AOP), which was made available for review and comment by representatives of State and Federal agencies, Tribes, the general public and specific interest groups. A summary of the significant events during 2012 follows.

B. Precipitation and Water Supply Available

Plains snowpack, mountain snowpack and general weather conditions during the 2012 calendar year are discussed in the following sections. The reference period for average conditions for plains and mountain snowpack, precipitation and temperature is 1971-2000.

1. Plains Snowpack

Plains snowpack is monitored and modeled by the NOAA National Operational Hydrologic Remote Sensing Center (NOHRSC). The NOHRSC measures snow water equivalent (SWE) and soil moisture using gamma radiation remote sensing. The NOHRSC uses that data, along with field measurements of snow depth, SWE and soil conditions, to develop a national snow analysis for the contiguous U.S.

At the beginning of 2012 nearly the entire Missouri River Basin, with the exception of central and eastern North Dakota, was devoid of any plains snowpack. National Weather Service (NWS) records indicated Bismarck, ND had no snow on the ground while the eastern half of the state was covered by about 2 inches of snow depth. During the month of January snowfall was generally below normal in most areas, though some notable snowfall accumulations included: 15.6 inches in Billings, MT; 9.0 inches in Huron, SD; and 8.2 inches in Sioux Falls, SD. Much of this snow occurred as a result of two large winter storms occurring January 19-20 and January 22-23 in Montana, North Dakota, South Dakota, northeast Nebraska and northwest Iowa. Snowfall accumulation depths resulting from these storms ranged from 4 to 10 inches; however, very warm temperatures in late January quickly melted much of this new snowpack. At the end of January very light snowpack covered eastern South Dakota and northern and eastern North Dakota.

During February precipitation was above normal in most regions of the plains including parts of eastern Montana and Wyoming, eastern South Dakota, Nebraska and western Iowa, yielding greater than average snowfall in these areas. Snowfall accumulations at major recording stations included: 11.6 inches at Omaha, NE; 16.4 inches at Huron, SD; 9.5 inches at Pierre, SD; and 9.3 inches at Sioux City, IA. The first significant winter storm on February 3-5 produced heavy snowfall ranging from 8 to 12 inches in northeast Colorado, Nebraska and southwest Iowa. Kansas and Missouri received 1 to 1.5 inches of rain. Plains snowpack following this storm contained 0.5 to 1.5 inches of snow water equivalent (SWE) over northeast Colorado, Nebraska and southwest Iowa; however, no plains snowpack existed in Montana, North Dakota and South Dakota. A series of moderately heavy snowfall events brought some additional snow to northeast Montana. North Dakota, South Dakota, northeast Nebraska and western Iowa February 21-24 followed by some additional snow in eastern South Dakota February 27-28. Accumulations depths from the February 21-24 and February 27-28 storms ranged from 2 to 12 inches near Huron, SD. Following this late February snow the plains snowpack was at its maximum extent just prior to the spring snowmelt season. The plains SWE on March 1 is shown in *Figure 1*.

Average daily temperature departures ranging from 6 to 12 degrees Fahrenheit (F) above normal during the month of March quickly melted the plains snowpack in the upper Missouri River Basin by March 12. Very little snowfall occurred during the remainder of March and in April with the exception of some additional snowfall accumulations in western Montana. Great Falls, MT received 10.5 inches of snow in March and 7.2 inches of snow in April.

As shown on *Table 1*, seasonal snowfall totals in 2012 were well below normal in all areas of the upper Missouri River Basin. Snowfall departures in Billings and Great Falls, MT were 19.1

and 19.2 inches below normal, respectively, while Glasgow received 4.9 inches below normal. Williston and Bismarck, ND received 35.6 and 36.5 inches of snow below normal, respectively. Departures in South Dakota were 21.1 inches below normal in Aberdeen, 11.6 inches below normal in Watertown and 24.7 inches below normal in Sioux Falls. Sioux City, IA received 13.1 inches of snow below normal, while Omaha, NE received 6.7 inches below normal. In comparison, snowfall departures during 2011 were 7.8 inches above normal in Omaha, NE; 9.9 inches above normal in Sioux City, IA; 40.7 inches above normal in Aberdeen, SD; 35.3 inches above normal in Bismarck, ND; and 78.0 inches above normal in Glasgow, MT.

Location	2011 Total	2012 Total	Seasonal Average
Billings, MT	71.9	38.6	57.7
Glasgow, MT	108.6	25.7	30.6
Great Falls, MT	107.6	40.0	59.2
Bismarck, ND	85.4	13.6	50.1
Williston, ND	107.2	7.5	43.1
Aberdeen, SD	79.3	17.5	38.6
Sioux Falls, SD	45.6	15.9	40.6
Watertown, SD	79.4	19.6	31.2
Sioux City, IA	41.3	18.3	31.4
Omaha, NE	34.9	20.4	27.1

 Table 1

 Missouri River Basin - Plains Snowfall (inches)

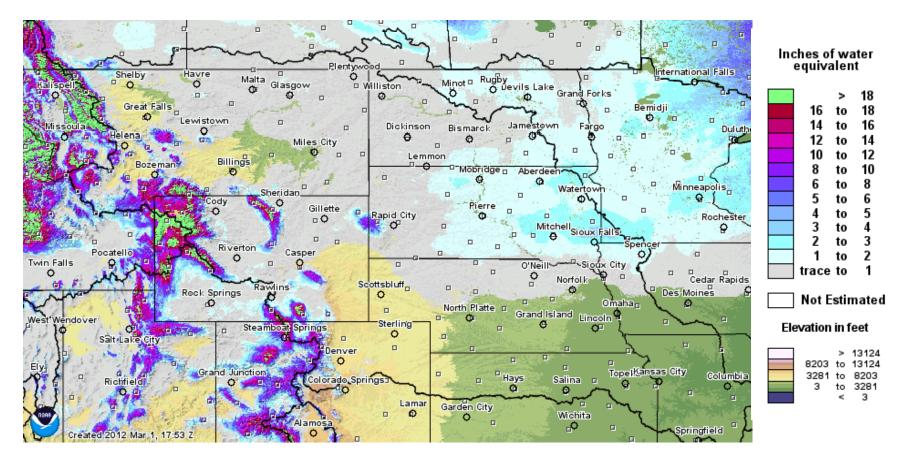


Figure 1. March 1, 2012 plains snow water equivalent (inches) modeled by NOAA NOHRSC.

2. Mountain Snowpack

Mountain snowpack is monitored by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service's (NRCS) network of SNOwpack TELemetry (SNOTEL) stations. For purposes of monitoring the mountain snowpack and forecasting spring and summer runoff from the Rocky Mountains, average mountain snowpack expressed as inches of SWE is computed from the SNOTEL stations in the reservoir reaches above Fort Peck and from Fort Peck to Garrison. The 2011-2012 mountain snowpack accumulation and melt pattern for each of the two reaches is illustrated in *Figure 2*. Mountain SWE is discussed in the following paragraphs as a percent of the 1971-2000 average SWE occurring on the first day of each month.

a. Accumulation and Melt

During the fall of 2011 weak to moderate La Niña conditions in the central Pacific Ocean were influencing the weather in the Pacific Northwest and the northern region of the Rocky Mountains in the Missouri River Basin. La Niña conditions usually cause greater-than-average mountain snow accumulations and lower-than-normal winter temperatures. Often during the second consecutive year of La Niña conditions, as was the case in 2011-2012, the probability of greater-than-average snow accumulation is lower than during the first year of La Niña conditions. By the second week of October 2011, low levels of snowpack were present in the Fort Peck and Garrison reservoir reaches. SWE accumulation as a percent of normal for the two reaches is summarized in *Table 2*.

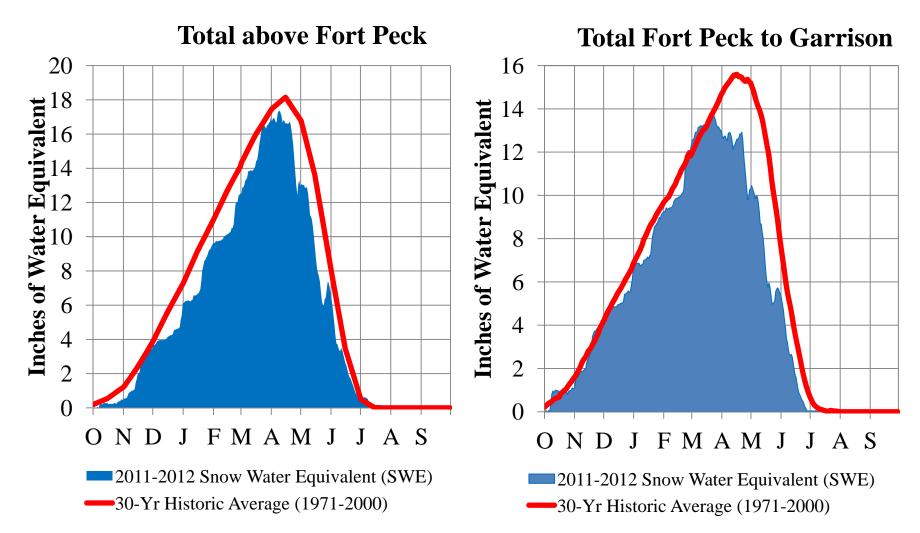
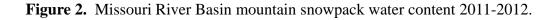

Date	Above Fort Peck (percent of normal)	Fort Peck to Garrison (percent of normal)
November 1	44	78
December 1	89	103
January 1	79	97
February 1	85	95
March 1	90	105
April 1	97	86
May 1	80	69
June 1	87	70
July 1	107	5

Table 2Mountain Snow Water Equivalent Accumulation


b. Summary

Over the course of the winter season the mountain snowpack began accumulating at a below average rate; however, accumulations increased by December to near normal snowpack levels overall. During the months of January, February and March, accumulations generally occurred at lower-than-normal rates. The peak accumulation above Fort Peck occurred on April 9 at 97 percent of the normal April 15 peak accumulation, while the peak accumulation in the Fort Peck to Garrison reach occurred on March 22 at 88 percent of the normal April 15 peak accumulation. The 2011-2012 mountain snow accumulation and melt for the reaches above Fort Peck and Fort Peck to Garrison is illustrated in *Figure 2*.

Missouri River Basin – Mountain Snowpack

The mountain snowpack in the reach above Fort Peck peaked at 97% of the normal peak accumulation on April 9. The mountain snowpack in the reach between Fort Peck and Garrison peaked at 88% of the normal peak accumulation on March 22. The Missouri River basin mountain snowpack normally peaks near April 15.

L

3. Weather Conditions

Dry and warm weather conditions were dominant factors influencing the upper Missouri River Basin during 2012. These conditions were a continuation of drier-than-normal and warmer-than-normal conditions that began to develop during July 2011. The winter of 2011-2012 was technically a La Niña year. For the Missouri River Basin, a typical La Niña year results in colder-than-normal winter temperatures accompanied by greater snowfall accumulations in the plains and mountains. However, the weather that actually occurred was quite opposite to a typical La Niña year. During the winter the basin observed warmer-thannormal temperatures during the winter as well as lower-than-normal snowfall accumulations. This warmer and drier pattern continued throughout the entire calendar year. For 2012 precipitation was well below normal throughout all of the Missouri River Basin. Precipitation rankings by state as shown in *Figure 3* indicate that precipitation was below normal in Montana (23rd driest), North Dakota (18th driest) and in South Dakota (13th driest) in 118 years of record. Precipitation was much below normal in Colorado (4th driest), Kansas and Missouri (7th driest) and Iowa (11th driest), while Wyoming and Nebraska experienced their driest years in 118 years of record. Annual temperatures were much above normal over the entire Missouri River Basin. Temperature rankings by state in *Figure 4* indicate that temperatures were much above normal in Montana (3rd warmest), North Dakota, Colorado and Iowa (2nd warmest). Wyoming, South Dakota, Nebraska and Missouri experienced their warmest years in 118 years of record.

Figure 5 depicts percent of normal precipitation for the 3-month periods of January through March, April through June, July through September and October through December 2012 in the central U.S. In general, precipitation was below normal for all 3-month periods. The prevailing features during each of the 3-month periods were the large areas that received less than 50 percent of normal precipitation. Low precipitation accumulations affected the Rocky Mountains and the plains centered over South Dakota, Nebraska and Kansas over the entire year. However, not the entire basin saw below normal precipitation during 2012. Areas in central Montana, southeast South Dakota, Kansas and Missouri received above normal precipitation during the January through March period. During the April-May period, northern Montana and a narrow region winding through North Dakota and South Dakota received above normal precipitation. Also, during the October through December period, precipitation was much greater than normal throughout northern Montana and much of North Dakota.

Figure 6 depicts much warmer-than-normal temperatures that persisted during 2012 throughout the entire Missouri River Basin. January through March temperatures ranged from 2 to 6 degrees F above normal from Montana to Wyoming, Colorado, western Nebraska and western Kansas. East of a line from northeast Montana through central Kansas, temperature departures ranged from 6 to 10 degrees F above normal. April through June departures ranged from 2 to 6 degrees F above normal throughout much of the basin, while in the July through September period departures ranged from 2 to 5 degrees F above normal. During the October through December period temperature departures ranged from 3 degrees F above normal in northern Montana and North Dakota to 3 degrees F above normal from southern South Dakota to Missouri.

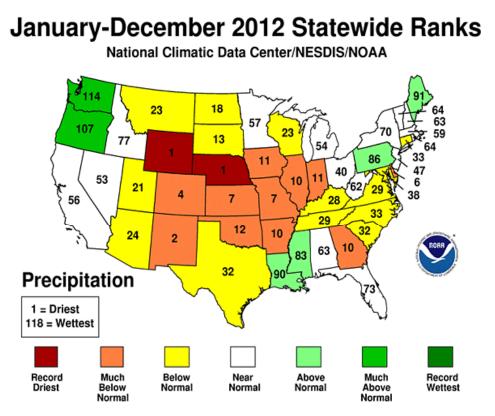


Figure 3. January-December 2012 statewide precipitation ranks. Source

Source: NOAA NCDC

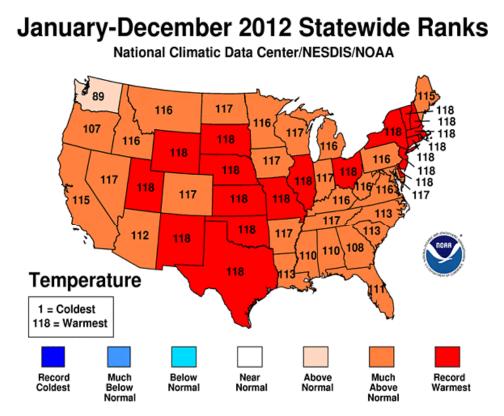
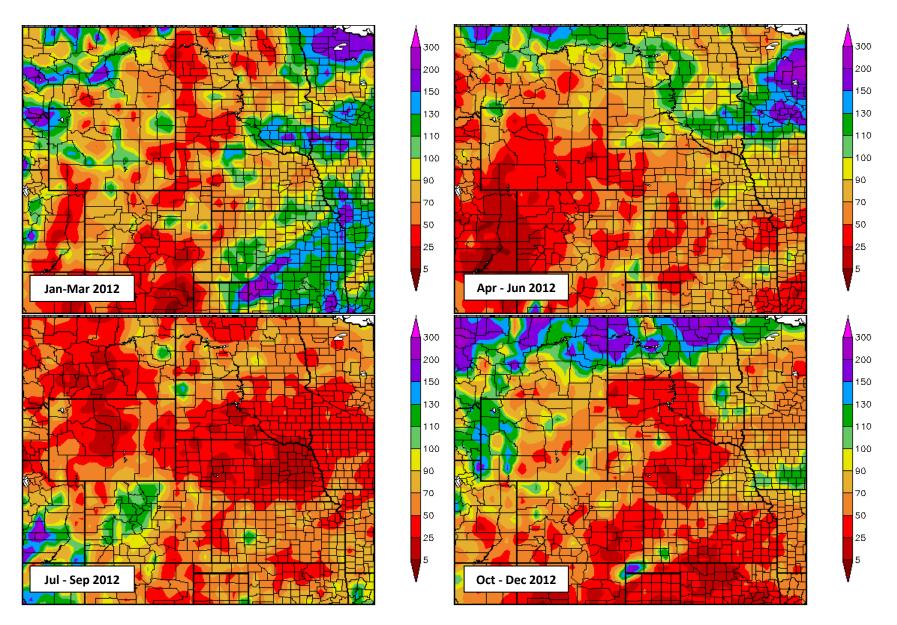
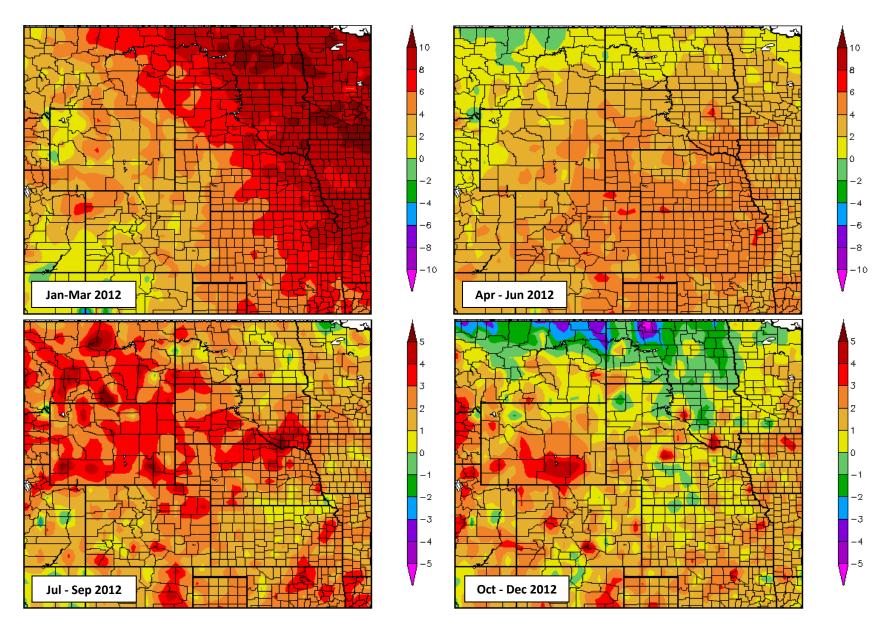
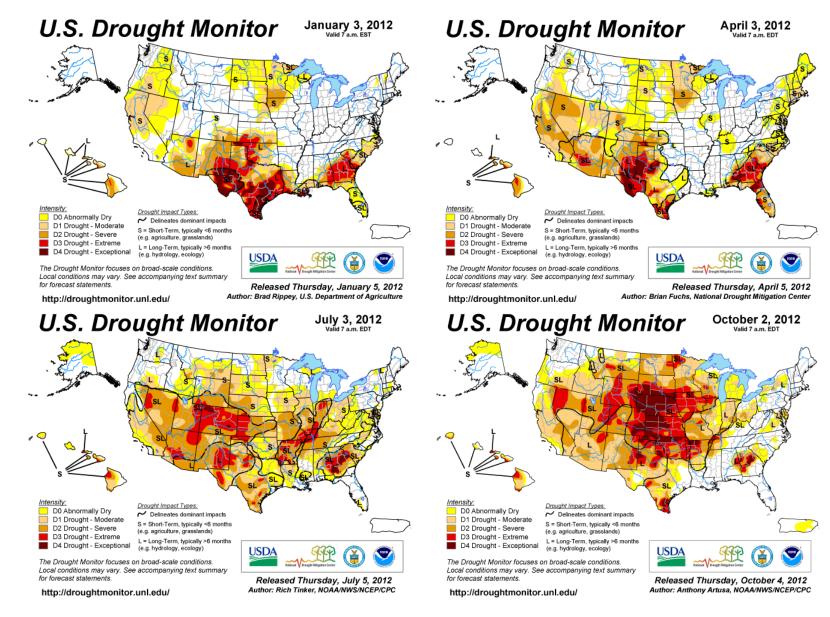
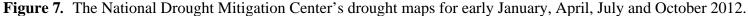




Figure 4. January-December 2012 statewide temperature ranks.

Source: NOAA NCDC

Figure 5. Percent of normal precipitation maps for the 2012 3-month periods: Jan-Mar, Apr-Jun, Jul-Sep and Oct-Dec. Reformatted from the High Plains Regional Climate Center Climate Summary Maps.


Figure 6. Departure from normal temperature (degrees F) for the 2012 3-month periods: Jan-Mar, Apr-Jun, Jul-Sep and Oct-Dec. Reformatted from the High Plains Regional Climate Center Climate Summary Maps.


Figure 7 depicts drought magnitudes in January, April, July and October 2012 as defined by the National Drought Mitigation Center. On January 3 abnormally dry conditions covered North Dakota, parts of South Dakota and Nebraska. Moderate to severe drought conditions had begun to develop in eastern South Dakota, eastern Nebraska and northwest Iowa. By April 3 the abnormally dry conditions expanded into eastern Montana and eastern Wyoming and were covering most of South Dakota and some of western Nebraska. In addition, moderate drought conditions had developed in western North Dakota and western South Dakota. Very warm and dry conditions continued to impact the upper Missouri River Basin through June. By July 3 drought conditions had intensified in areas already impacted by drought and expanded westward into the Rocky Mountains. The July 3 map shows intensification to moderate and severe drought conditions in southern Montana, Wyoming, western South Dakota and western Nebraska. Some precipitation relief occurred between April and June improving the drought classifications in northeast Montana and northwest North Dakota. The July through September period was much warmer and much drier than normal, resulting in further intensification to extreme and exceptional drought conditions across Wyoming, South Dakota and Nebraska and western Iowa by October 2. Moderate to severe drought conditions also expanded across Montana and North Dakota. During the October through December period, precipitation was above normal and temperatures were below normal in northern Montana and North Dakota, providing some additional improvement to drought conditions in those areas; however, the extreme and severe drought conditions in Wyoming, South Dakota, Nebraska and Iowa did not change.

a. January - March

January through March weather was drier and warmer than normal in the upper Missouri River Basin. As shown in *Figure 5*, precipitation was generally below normal, especially in eastern Montana, Wyoming, North Dakota, western South Dakota and Nebraska. Some areas received less than 50 percent of normal precipitation during the 3-month period. Temperature departures, shown in *Figure 6*, ranged from 2 degrees F above normal in the Rocky Mountains to 8 degrees F above normal in the plains. The warmest regions experienced departures of 10 degrees F above normal in central and eastern North Dakota and eastern South Dakota.

Very few significant snowfall events occurred during the January through March period in the mountains and plains. From February 3-5, a plains snowfall event moved from northeast Colorado, across Nebraska into southwest Iowa producing 1 to 1.5 inches of SWE and an average snowfall depth of 10 inches. Additional precipitation during February added to monthly precipitation totals in excess of 200 percent of normal precipitation in much of Nebraska, eastern South Dakota and western Iowa. February precipitation in the plains, which was less than 50 percent of normal in Nebraska and Iowa, sharply contrasted with January precipitation. The drier-than-normal and warmer-than-normal patterns continued into March with most of the upper basin receiving less than 50 percent of normal precipitation and temperature departures ranging from 3 to 6 degrees F above normal in the mountains and 12 to 15 degrees F above normal in the plains.

b. April - June

April through June weather was also drier and warmer than normal in nearly all of the Missouri River Basin. Precipitation departures as shown on *Figure 5* were particularly dry in the Rocky Mountains and the plains west of the Missouri River. Precipitation was less than 70 percent of normal in these areas, and it was less than 50 percent of normal in much of Wyoming, Colorado and western Nebraska. Temperature departures as shown on *Figure 6* generally were 2 to 6 degrees F above normal, and the greatest departures were 4 to 6 degrees F above normal in South Dakota, eastern Wyoming, Colorado, Kansas and Nebraska. Departures in Montana and North Dakota ranged from normal to 4 degrees F above normal.

April precipitation over the Missouri River Basin was above normal in most regions with the exception of the Rocky Mountains in Wyoming and Colorado. April precipitation was highlighted by a stormy period from April 12-16. During this time period, moderate to heavy rainfall occurred over South Dakota, eastern Nebraska, western Iowa and Missouri. Rainfall amounts ranged from 2 to 2.5 inches in eastern South Dakota, 2 to 3.5 inches in eastern Nebraska and western Iowa and 2 to 3.5 inches in Missouri. Near the end of April a large system produced widespread rainfall amounts of 1 to 2 inches across Montana, North Dakota, South Dakota and Nebraska. In central Missouri thunderstorms on April 29-30 produced 2.5 to 4 inches of rainfall. Temperatures during April were 4 to 6 degrees F above normal.

During May precipitation accumulations were well below normal in the Missouri River Basin, especially in the lower basin, which received less than 50 percent of normal precipitation during the month. The upper basin generally received from 70 to 90 percent of normal precipitation. The regions that received above normal precipitation included northeast Montana, eastern South Dakota and northwest Iowa where precipitation ranged from 100 to 200 percent of normal. Some significant May precipitation totals included 3.1 inches at Glasgow, MT; 4.6 inches at Sioux Falls, SD; and 6.2 inches at Sioux City, IA. May temperature departures were normal to 4 degrees F below normal in Montana, normal across the Dakotas and 4 to 6 degrees F above normal in the lower basin.

June precipitation accumulations were generally below normal throughout the Missouri River Basin. The Rocky Mountains extending from southwest Montana to Colorado received the least precipitation with accumulations ranging from 10 to 50 percent of normal. In the plains, accumulations ranged from 25 to 75 percent of normal with the exception of isolated areas that received normal precipitation. The heaviest rainfall event occurred June 14-15 in southeast Nebraska and northern Kansas producing amounts ranging from 1.5 to 3 inches. Temperatures in June were 4 to 8 degrees F above normal in eastern Wyoming, Colorado, western South Dakota, western Nebraska and western Kansas. In all other areas, temperature departures were normal to 4 degrees F above normal.

g. July - September

The warmer-than-normal and drier-than-normal weather pattern continued during July through September. Precipitation departures were less than 50 percent of normal in large portions of Montana, Wyoming, South Dakota, Nebraska and Iowa as shown on *Figure 5*. Temperature departures as shown on *Figure 6* were 2 to 5 degrees F above normal over much of

the same region, while in the remainder of the Missouri River Basin temperatures ranged from normal to 2 degrees F above normal.

Precipitation was below normal during July for most of the basin; however, several areas including northeast Colorado, southeast Wyoming, northwest South Dakota and eastern Montana received above normal precipitation. Precipitation in the lower basin was generally less than 50 percent of normal. There were no significant rainfall events that affected the Missouri River Basin in July. Average monthly temperatures were 4 to 8 degrees F above normal.

Rainfall in August was less than 50 percent of normal throughout a majority of the Missouri River Basin with the greatest departures occurring in the Rocky Mountains and the lower basin. Only localized areas received above normal August precipitation due to scattered thunderstorms. A particularly heavy rainfall event occurred on August 24-25, producing 3 to 5 inches of rain in a small portion of northwest Missouri, southwest Iowa and southeast Nebraska including 4.9 inches at Falls City, NE. Temperatures during August were normal to 3 degrees F below normal in some portions of the lower basin, North Dakota and South Dakota; while in much of Montana, Wyoming, Colorado and western Nebraska, temperatures were 1 to 4 degrees F above normal.

In September most of the upper Missouri River Basin received less than 25 percent of normal precipitation with large areas receiving less than 10 percent of normal precipitation. In the lower basin, precipitation was generally less than 50 percent of normal, with the exception being Missouri, which was impacted by precipitation from the remnants of Hurricane Isaac from August 31-September 1. Over the 2-day period, Isaac produced 4 to 6 inches of rainfall over western Missouri. Some significant rainfall amounts include 4.9 inches in Kansas City, MO and 5.6 inches in Lee's Summit, MO. Temperatures during September were near normal in the lower basin. In the upper basin west of the Missouri River, temperatures were 2 to 6 degrees F above normal.

j. October - December

During October precipitation was generally less than 75 percent of normal throughout the Missouri River Basin. Several areas received less than 50 percent of normal precipitation including South Dakota, central Wyoming, Nebraska northeast Kansas and western Missouri. In contrast, rainfall was much more persistent in northern Montana, northern North Dakota and southwest Iowa, which received greater than 150 percent of normal precipitation. Temperatures were normal to 4 degrees F below normal throughout the Missouri River Basin.

November precipitation was less than 50 percent of normal throughout much of Wyoming, South Dakota, Nebraska, Iowa, Colorado and Kansas. The wetter-than-normal precipitation pattern continued in Montana, northern North Dakota and the Rocky Mountains in Wyoming producing November precipitation accumulations in excess of 150 percent of normal in many areas. The above normal precipitation gave the mountain snowpack a substantial increase to levels that were normal by the end of November. With the exception of normal to 4 degrees F below normal temperatures in northern Montana and Wyoming, temperatures in much of the Missouri River Basin were warmer than normal. Average monthly temperature departures in southern Montana, Wyoming, South Dakota, Nebraska, Iowa and Kansas were 2 to 6 degrees F above normal.

December precipitation, as a percent of normal, showed improvement when compared to November. While the Rocky Mountains in Montana and Wyoming were slightly above normal, the remainder of Montana and Wyoming received less than 75 percent of normal precipitation. Monthly precipitation as a percent of normal in South Dakota, Nebraska and Iowa varied locally; however, there were several areas in these states that received greater than 200 percent of normal precipitation as a result of three winter storms, which occurred December 7-9, December 15-16 and December 20. Each of these storms produced similar amounts of precipitation, which contributed to December accumulations of 1 to 2.5 inches of precipitation in eastern South Dakota, 1 to 1.5 inches of precipitation in southern and eastern Nebraska and about 1 inch in western Iowa. Average monthly temperatures in Montana and North Dakota were normal to 2 degrees F below normal, while in the remainder of the basin temperatures were normal to 4 degrees F above normal.

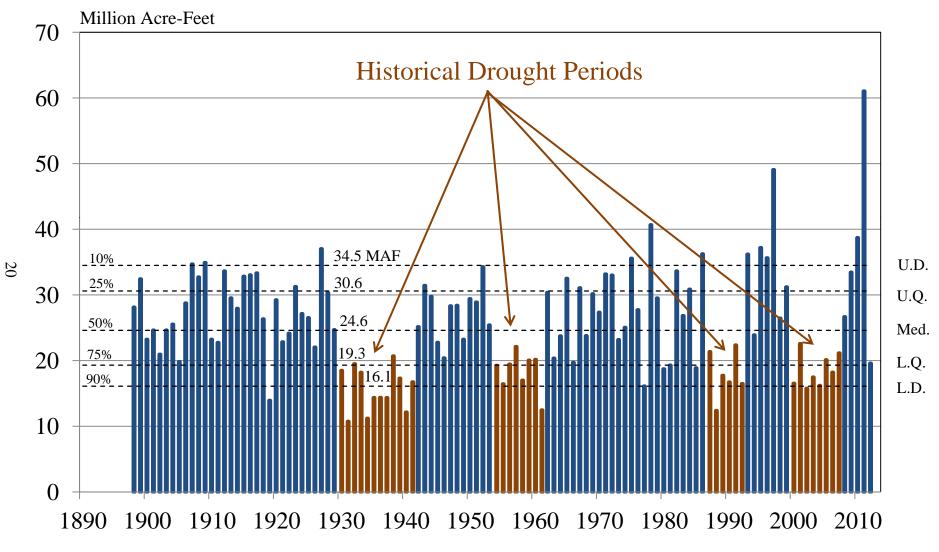
4. Calendar Year Runoff

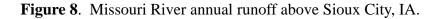
The final unregulated runoff volume for the period January through December 2012 for the upper basin above Sioux City, IA is 19.5 MAF, 77 percent of normal runoff, based on the historical period of 1898-2011 as shown in *Table 3* and *Figure 8*. Total runoff in the lower basin from Sioux City, IA to Hermann, MO, was 22.2 MAF, 51 percent of normal runoff. Of the nine reaches in the entire Missouri River Basin outlined in *Table 4*, runoff in one reach, Fort Randall to Gavins Point, was above normal. *Figure 9* indicates the monthly variation of runoff in the basin above Sioux City, IA.

Table 3 lists the runoff for the upper basin by month and reach and is the adjusted compilation of the runoff into the System. As the year progresses, this table is filled in with observed monthly runoff data for those months that have occurred and with forecast runoff data for the remaining months in the year. This runoff estimate forms a basis for intrasystem balancing of storage accumulated in the System and is updated by MRBWM on the first of each month to forecast the runoff for the remainder of the year. The monthly accumulation of actual runoff is shown under the "Accumulated Summation above Sioux City" column. As the season progresses, more of the observed runoff is accumulated and the estimate of annual runoff becomes more reliable. The majority of the annual runoff has usually occurred by the end of July and the remainder of the year can be estimated with a greater degree of accuracy.

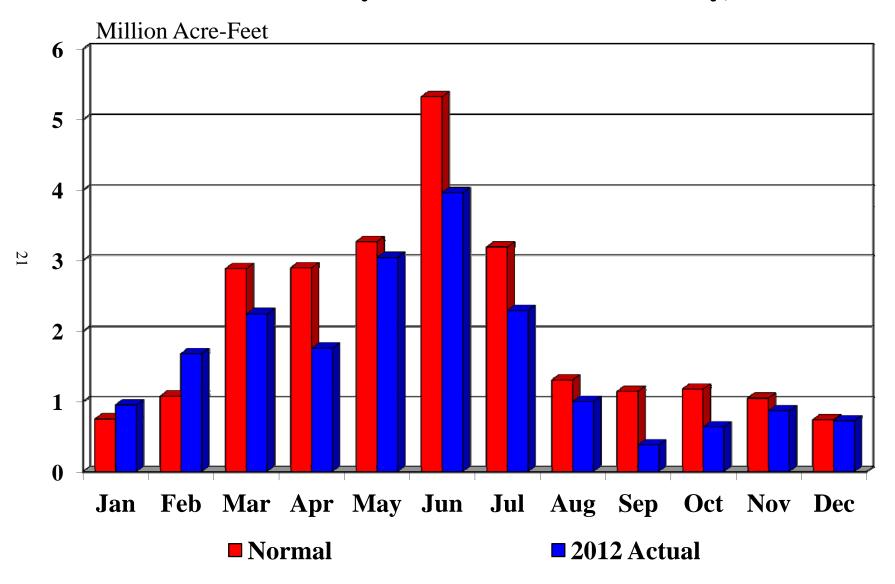
Table 3Missouri River Basin2012 Runoff above Sioux City, IA

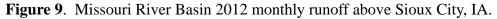
Values in 1000 Acre Peet Form 4 (20) RomeLag LAN 2012 332 248 71 131 76 240 713 762 763 DEPARTURE 20 -14 -33 104 -22 185 1015 122 122 DEPARTURE 20 -14 -33 4485 786 4425 1015 123 123 ORDMAL 200 -34 53 132 101 143 143 1433 143 1433 143 1236 143 1433 1431 1434 1433 1431 246 175 1235	Reach Above	Fort Peck	Garrison	Oahe	Fort Randall	Gavins Point	Sioux City	Summation above Gavins	Summation above Sioux	Accumulated Summation above
JAN 2012 332 248 -71 131 78 236 718 762 753 762 753 762 753 762 753 762 753 762 753 762 753 762 753 763					Values in 10	00 Acre Feet		Point	City	Sioux City
NORMAL 312 262 12 27 100 49 713 762 762 % OF NORM 1006 95% 55225 488% 78% 422% 1016 125% 762 762 NORMAL 360 533 194 53 1122 100 949 1.035 1.689 2.656 NORMAL 360 533 194 53 112 113 110 949 1.992 1.654 1.42% NORMAL 256 153% 106% 2.40% 142% 187% 151% 154% 142% NORMAL 204 4.93 4.94% 83% 102% 73% 766 122% MAR 2012 643 1.044 4.145 181 388 2.467 2.244 4.978 NORMAL 1.643 1.044 514 145 181 388 2.467 2.2455 7.732 MOR 201 613 1.044 1		(Actual)								
DEFARTURE NORNAL 20 -14 -83 104 -722 187 55 192 192 192 FB1 2012 455 539 539 184 127 188 187 1,493 1,690 2,654 FB1 2012 455 539 66 106 177 333 1011 22,444 4,878 MAR 2012 523 839 266 106 177 333 1011 2,244 4,878 NORMAL 597 999 590 218 212 337 2,616 2,943 4,797 NORMAL 597 999 590 218 212 337 2,616 2,943 4,797 % OF NORM 88% 45% 49% 83% 102% 7,752 102% 7,752 1044 4,106 1115 % OF NORM 88% 51% 21% 50% 101% 61% 59% 60% 62% 102% 1115 <t< td=""><td>JAN 2012</td><td>332</td><td>248</td><td>-71</td><td>131</td><td>78</td><td>236</td><td>718</td><td>954</td><td>954</td></t<>	JAN 2012	332	248	-71	131	78	236	718	954	954
5%. OF NORM 106% 95% 552% 485% 78% 482% 101% 125% 125% NORMAL DEPARTURE 300 333 94 53 132 100 992 1002 1.854 DEPARTURE 95 186 90 71 56 87 501 538 780 NORMAL 25% 185% 106% 117 333 1011 2.44 4.878 NORMAL 2977 999 900 128 212 327 2.016 2.244 4.878 NORMAL 997 999 900 128 212 327 7.755 7.66 122% AFR 2012 663 554 108 73 183 2.36 1.523 1.759 6.637 NORMAL 643 1.948 51% 21% 50% 101% 647 2.414 3.041 9.678 NORMAL 1.080 12.244 320 147 <td< td=""><td>NORMAL</td><td>312</td><td>262</td><td>12</td><td>27</td><td>100</td><td>49</td><td>713</td><td>762</td><td>762</td></td<>	NORMAL	312	262	12	27	100	49	713	762	762
FEB 2012 455 599 184 127 188 187 1,493 1,680 2,634 NOR NALL 303 353 94 53 132 100 992 1,092 1,854 NO F NORM 1266 153% 156% 106 177 156 807 101 2,244 4,878 NORMAL 573 999 500 218 212 337 2,246 2,479 878 NORMAL 574 -160 -532 -112 35 6 -715 -409 81 % OF NORM 88% 84% 45% 49% 839 102% 739 76% 102% NORMAL 645 514 106 71 183 388 2,232 1,044 4,797 7,98 7,752 1,93 2,115 7,96 6,72 2,414 3,441 9,678 7,752 1,53 1,044 3,441 9,678 7,752 1,99 <t< td=""><td>DEPARTURE</td><td>20</td><td>-14</td><td>-83</td><td>104</td><td>-22</td><td>187</td><td>5</td><td>192</td><td>192</td></t<>	DEPARTURE	20	-14	-83	104	-22	187	5	192	192
NORMAL 360 33 94 53 132 100 92 1.02 1.854 % OF NORM 126% 153% 196% 240% 142% 187% 151% 558 780 MAR 2012 523 839 266 106 171 333 1011 2.244 4.878 MORMAL 597 990 350 112 213 227 2.611 2.244 4.878 MORMAL 605 554 108 73 183 236 1.533 1.79 6.637 NORMA 643 1.084 714 565 1.058 2.567 2.955 7.722 DEPARTURE -433 -530 406 -72 2 -152 -1.044 -1.015 605 8698 MAY 2012 661 9.03 191 189 627 2.414 3.411 9.678 MORMAL 1.643 2.712 499 162 185	% OF NORM	106%	95%	-592%	485%	78%	482%	101%	125%	125%
NORMAL 360 33 94 53 132 100 92 1.02 1.854 % OF NORM 126% 153% 196% 240% 142% 187% 151% 558 780 MAR 2012 523 839 266 106 171 333 1011 2.244 4.878 MORMAL 597 990 350 112 213 227 2.611 2.244 4.878 MORMAL 605 554 108 73 183 236 1.533 1.79 6.637 NORMA 643 1.084 714 565 1.058 2.567 2.955 7.722 DEPARTURE -433 -530 406 -72 2 -152 -1.044 -1.015 605 8698 MAY 2012 661 9.03 191 189 627 2.414 3.411 9.678 MORMAL 1.643 2.712 499 162 185	FEB 2012	455	539	184	127	188	187	1.493	1.680	2.634
DEFARTURE % OF NORMAL 95 186 90 74 56 87 901 588 780 MAR 2012 523 839 266 106 177 333 1.911 2.244 4.878 NORMAL 577 999 500 2.18 2.12 327 2.616 2.943 4.707 % OF NORM 88% 84% 45% 40% 83% 102% 7.3% 7.66 16.637 NORMAL 643 1.088 514 145 181 388 2.567 2.053 7.752 NORMAL 643 1.084 514 145 181 388 2.367 2.053 7.752 NORMAL 1.087 1.024 320 147 185 319 3.031 3.322 11.074 DEPARTURE -126 -284 -127 -56 4 308 3.89 -281 -1.306 MORMAL 1.087 2.117 1.264 320										
% OF NORM 12% 15% 15% 15% 15% 15% 142% MAR 2012 533 839 266 106 177 333 111 2.244 4.797 DEPARTURE -74 -160 -324 -112 -35 6 -705 -699 41 SOF NORM 88% 84% 44% 148 2.35 6 -775 76% 102% MORMAL 645 1.044 1.05 183 2.36 1.523 1.044 -109% -1.15 VORMA 94% 51% 21% 50% 101% 01% 50% 86% 86% NORMAL 1.067 1.264 320 147 185 319 3.043 3.941 9.9678 NORMAL 1.087 1.264 320 147 185 319 3.043 3.941 9.678 NORMAL 1.087 1.264 320 147 185 316 549<										
MAR 2012 533 839 266 106 177 533 1.911 2.244 4.878 NORMAL 597 799 590 218 212 327 2.616 2.943 4.797 % OF NORM 80% 34% 45% 49% 83% 102% 73% 76% 102% NORMAL 605 554 104% 71 133 215 1.25% 7.752 7.755 7.752 7.755 <td></td>										
NORMAL DEPARTURE 577 999 500 218 212 527 22,616 2,943 4,777 % OF NORM 88% 84% 45% 49% 83% 102% 73% 76% 102% APR 2012 605 554 108 73 183 236 1,523 1,759 6,637 NORMAL 643 1,084 514 145 181 388 2,667 2,995 7,752 1,759 6,637 7,755 17752 1,015 906 80% 806 80% 2,975 7,755 1,157 907 806 806 80% 3,341 9,678 3,041 9,678 3,041 9,678 3,041 9,678 3,041 9,678 3,045 3,969 3,342 9,678 NORMAL 1,043 2,712 439 1,62 185 316 3,669 3,669 3,669 3,669 3,669 3,660 3,6653 3,660 3,665 3,660 <t< td=""><td>,</td><td></td><td></td><td></td><td>,.</td><td></td><td></td><td></td><td></td><td></td></t<>	,				,.					
DEFARTURE -7.4 -160 -324 -112 -35 6 -705 -699 81 % OF NORM 88% 44% 44% 49% 83% 102% 73% 76% 102% NORMAL 643 1.084 514 145 181 388 2.367 2.955 7.752 NORMAL 643 1.084 514 145 181 388 2.267 2.955 7.752 NORMAL 1.087 1.264 320 147 185 319 3.041 9.678 NORMAL 1.067 2.244 1.27 -56 4 308 5.89 2.21 1.366 W OF NORM 88% 78% 60% 60% 5.86 2.864 13.638 NORMAL 1.464 2.712 499 -1 156 301 3.659 3.966 13.638 NORMAL 1.463 2.712 439 -162 1892 14 -1.482										
% OF NORM 88% 84% 45% 49% 83% 102% 73% 76% 102% APR 2012 605 554 108 73 183 236 1,533 1,759 6,637 NORMAL 643 1,084 145 181 338 2,657 2,955 7,752 1,152 1,044 -1,196 -1,115 MOR NARU 1,067 1,264 320 1,477 185 319 3,003 3,322 1,1074 DEPARTURE -136 -284 -127 -56 403 3,003 3,322 1,074 DEPARTURE -400 -240 -163 -29 -14 -1,485 16,500 228% 85% NORMAL 1,463 2,772 439 162 185 59 139 244 3,414 3,456 16,500 DEPARTURE -460 -240 -163 188 98 2,191 2,289 15,977 NORMAL										
APR 2012 605 554 108 73 183 236 1,523 1,799 6,637 NORMAL 643 1,084 514 145 181 388 2,567 2,955 7,752 % OF NORM 94% 51% 21% 50% 101% 61% 59% 60% 88% MAX 2012 961 1,890 1,24 320 147 185 319 3.041 3,041 9,678 MORMAL 1,087 7.265 4 308 -589 -281 -1.376 W OF NORM 88% 78% 60% 62% 102% 197% 80% 22% 87% JUN 2012 1,193 2,112 199 -1 155 301 3,659 3,960 13,638 NORMAL 453 148 59 139 244 -1,402 1,406 -2,892 % OF NORM 73% 74% 74% 78% 919 22,91										
NORMAL 643 1.084 514 145 181 388 2.567 2.955 7.752 % OF NORM 94% 51% 21% 50% 101% 61% 59% 60% 86% MAY 2012 961 980 193 91 189 319 3.03 3.322 11.074 NORMAL 1.087 1.264 320 147 185 319 3.003 3.322 11.074 DEPARTURE -126 -284 -127 -56 4 308 -589 -281 -1.396 % OF NORM 88% 2.112 199 -1 1.56 301 3.659 3.960 13.638 NORMAL 1.643 2.712 439 162 185 315 5.141 5.456 16.530 DEPARTURE -450 -2892 * 198 84% 96% 71% 73% 83% JUL 2012 611 1.343 4145 43	% OF NORM	88%	84%	45%	49%	83%	102%	/3%	/6%	102%
DEPARTURE -33 -530 -406 -72 2 -152 -1.044 -1.196 -1.115 W OP NORM 94% 51% 50% 101% 59% 60% 86% MAY 2012 961 980 193 91 189 627 2.414 3.041 9.678 NORMAL 1.087 1.264 320 147 185 319 3.003 3.322 11.074 % OF NORM 88% 78% 60% 62% 102% 197% 80% 92% 87% JUN 2012 1.193 2.112 439 162 185 315 5.141 5.456 16.530 DEPARTURE -440 -600 -240 -163 -29 -14 -1.482 -1.406 -2.892 NORMAL 835 1.823 185 59 159 244 3.041 3.285 19.815 NORMAL 336 428 48 -5 137 78 <td>APR 2012</td> <td>605</td> <td>554</td> <td>108</td> <td>73</td> <td>183</td> <td>236</td> <td>1,523</td> <td>1,759</td> <td>6,637</td>	APR 2012	605	554	108	73	183	236	1,523	1,759	6,637
DEPARTURE -33 -530 -406 -72 2 -152 -1.044 -1.196 -1.115 W OP NORM 94% 51% 50% 101% 59% 60% 86% MAY 2012 961 980 193 91 189 627 2.414 3.041 9.678 NORMAL 1.087 1.264 320 147 185 319 3.003 3.322 11.074 % OF NORM 88% 78% 60% 62% 102% 197% 80% 92% 87% JUN 2012 1.193 2.112 439 162 185 315 5.141 5.456 16.530 DEPARTURE -440 -600 -240 -163 -29 -14 -1.482 -1.406 -2.892 NORMAL 835 1.823 185 59 159 244 3.041 3.285 19.815 NORMAL 336 428 48 -5 137 78 <td>NORMAL</td> <td>643</td> <td>1,084</td> <td>514</td> <td>145</td> <td>181</td> <td>388</td> <td>2,567</td> <td>2,955</td> <td>7,752</td>	NORMAL	643	1,084	514	145	181	388	2,567	2,955	7,752
MAY 2012 961 980 193 91 189 627 2.414 3.041 9.678 NORMAL 1.087 1.264 320 147 185 319 3.003 5.322 11.074 % OF NORM 88% 78% 60% 52% 102% 197% 80% 92% 87% JUN 2012 1.193 2.112 199 -1 156 301 3.659 3.960 13.658 DEPARTURE 450 -600 -240 -163 29 -14 -1.482 -1.966 2.892 NORMAL 835 1.823 185 59 139 2.44 3.041 3.285 19.977 NORMAL 835 1.823 145 59 139 2.44 3.041 3.285 19.977 NORMAL 835 1.823 145 59 139 2.44 3.041 3.285 19.975 NORMAL 835 1.823 145 149	DEPARTURE			-406	-72		-152			-1,115
NORMAL DEPARTURE 1.087 + 0.07 1.264 - 234 - 0.07 320 - 0.07 147 - 185 - 0.07 185 - 102% 319 - 102% 3.003 - 197% 3.221 - 80% 11.74 - 1.366 JUN 2012 1.193 - 0.07 2.112 199 - 0.07 1 156 - 0.07 301 3.659 - 3.869 3.960 - 3.669 13.638 NORMAL DEPARTURE 1.450 - 600 - 240 - 1.63 - 29 - 1.4 - 1.482 - 1.966 - 2.892 % OF NORM 73% 78% 45% - 1.1% 84% 98 2.191 2.289 15.927 NORMAL S5 1823 185 59 139 2.44 3.041 3.285 19.815 DEPARTURE -224 -483 -0 -122 19 -146 -850 -906 -3.888 19.815 DEPARTURE -224 -483 -0 -122 19 -146 -850 -906 -3.888 AUG 2012 316 428 48 5 137 78 924 1.002 </td <td>% OF NORM</td> <td>94%</td> <td></td> <td>21%</td> <td>50%</td> <td>101%</td> <td>61%</td> <td>59%</td> <td>60%</td> <td>86%</td>	% OF NORM	94%		21%	50%	101%	61%	59%	60%	86%
NORMAL DEPARTURE 1.087 + 0.07 1.264 - 234 - 0.07 320 - 0.07 147 - 185 - 0.07 185 - 102% 319 - 102% 3.003 - 197% 3.221 - 80% 11.74 - 1.366 JUN 2012 1.193 - 0.07 2.112 199 - 0.07 1 156 - 0.07 301 3.659 - 3.869 3.960 - 3.669 13.638 NORMAL DEPARTURE 1.450 - 600 - 240 - 1.63 - 29 - 1.4 - 1.482 - 1.966 - 2.892 % OF NORM 73% 78% 45% - 1.1% 84% 98 2.191 2.289 15.927 NORMAL S5 1823 185 59 139 2.44 3.041 3.285 19.815 DEPARTURE -224 -483 -0 -122 19 -146 -850 -906 -3.888 19.815 DEPARTURE -224 -483 -0 -122 19 -146 -850 -906 -3.888 AUG 2012 316 428 48 5 137 78 924 1.002 </td <td>MAY 2012</td> <td>961</td> <td>980</td> <td>103</td> <td>01</td> <td>180</td> <td>627</td> <td>2 414</td> <td>3 0/1</td> <td>9.678</td>	MAY 2012	961	980	103	01	180	627	2 414	3 0/1	9.678
DEPARTURE 1.26 2.24 1.17 -56 4 197% 80% 22% 1.396 % OF NORM 88% 78% 60% 62% 10% 197% 80% 92% 87% JUN 2012 1.193 2.112 199 1 156 315 5.141 5.456 16.530 DEPARTURE -430 -600 -240 -163 2.9 1.4 -1.482 -1.296 -2.892 WO F NORM 73% 78% 45% -1% 84% 96% 71% 73% 83% JUL 2012 611 1.340 145 -63 158 98 2.191 2.289 15.927 NORMAL .253 1.823 185 59 139 244 3.041 3.285 19.815 DEPARTURE -240 -184 -5 137 78 924 1.002 16.029 AUG 2012 316 428 48 5 137										
% OF NORM 88% 78% 60% 62% 102% 197% 80% 92% 87% UU 2012 1,193 2,112 199 -1 156 301 3,659 3,960 13,638 NORMAL 1.450 -600 -240 -163 -29 -14 -1,482 -1,496 -2,892 % OF NORM 73% 78% 45% -1% 84% 96% 71% 73% 83% JUL 2012 611 1,340 145 -63 158 98 2,191 2,289 19,927 NORMAL 835 1,823 185 59 139 244 3,041 3,285 19,815 DEPARTURE -224 -483 -40 -122 19 -46 -850 -996 -3,388 AUG 2012 316 428 48 -5 137 78 924 1,002 16,929 NORMAL 355 612 70 41										
JUN 2012 1,193 2,112 199 -1 156 301 3,659 3,960 13,638 DEPARTURE 4.50 -600 -240 163 -29 14 -1,482 -1,496 -2,892 W OP NORM 73% -45% -1% 84% -04 -1,482 -1,496 -2,892 NORMAL 825 1,823 185 59 139 244 3,041 3,285 19,815 DEPARTURE -224 -483 -40 -122 19 -146 -850 -996 -3,888 % OF NORM 73% 74% 78% -107% 114% 40% 72% 70% 83% AUG 2012 316 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE -40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% <										
NORMAL DEPARTURE 1.643 -450 2.712 -600 439 -45% 162 -1% 185 -29 315 -29 5.141 -1.4 5.456 -1.46 16.530 -2.892 JUL 2012 611 1.340 145 -63 158 98 2.191 2.289 15.927 NORMAL 835 1.823 1.83 59 139 244 3.041 3.285 19.815 DEPARTURE -224 -483 -40 -122 19 -146 -880 -996 -3.888 % OF NORM 73% 74% 78% -107% 114% 40% 72% 70% 80% AUG 2012 316 428 48 -5 137 78 924 1.002 1.6,929 NORMAL 326 612 70 41 116 148 1.105 1.243 21.158 DEPARTURE -40 -184 -22 -46 21 -70 -271 -341 -4.229 % OF NORM 89% <td< td=""><td>70 OF NORM</td><td>8870</td><td>7870</td><td>0078</td><td>0270</td><td>10270</td><td>19770</td><td>80%</td><td>9270</td><td>8770</td></td<>	70 OF NORM	8870	7870	0078	0270	10270	19770	80%	9270	8770
DEPARTURE -450 -600 -240 -1-63 -29 -14 -1.482 -1.496 -2.892 % OF NORM 73% 78% 45% -1% 84% 96% 71% 73% 83% JUL 2012 611 1.340 145 -63 158 98 2.191 2.289 15.927 NORMAL 835 1.823 185 59 139 244 3.041 3.285 19.815 DEPARTURE -224 -483 -40 -122 19 -146 -850 -996 -3.888 ØG PORM 73% 77% 77% 77% 80% -60 1.002 16.929 NORMAL 356 612 70 41 116 148 1.095 1.343 21.158 DEPARTURE -40 -184 -22 -46 21 -70 -271 -341 -4229 % OF NORM 89% 70% 65 87 -3										
% OF NORM 73% 78% 45% -1% 84% 96% 71% 73% 83% JUL 2012 611 1,340 145 -63 158 98 2,191 2,289 15,927 NORMAL 835 1,823 185 59 139 244 3,041 3,285 18,815 DEPARTURE -224 -483 -40 -122 19 -146 850 -996 -5,388 % OF NORM 73% 74% 78% -107% 114% 40% 72% 70% 80% AUG 2012 316 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE -40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% NORMAL 332 451 100 37 111										
JUL 2012 611 1,340 145 -63 158 98 2,191 2,289 15,927 NORMAL 835 1,823 185 59 139 244 3,041 3,285 19,815 DEPARTURE -224 -483 -40 -122 19 -146 -850 -906 -3,888 W OF NORM 73% 74% 78% -107% 114% 409% 72% 70% 80% DEPARTURE 356 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE 40 118 -22 -46 21 -70 -271 -341 -422 NORMAL 332 451 110 37 111 108 1,041 1,149 23,07 DEPARTURE -185 -340 -134 28 -24 -111 -655 638 17,950 NORMAL 382 525 64 5 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
NORMAL 835 1,823 185 59 139 244 3,041 3,285 19,815 DEPARTURE -224 -483 -40 -122 19 -146 -850 -996 -3,888 % OF NORM 73% 74% 78% -107% 114% 40% 72% 70% 80% AUG 2012 316 428 48 -5 137 78 924 1,002 16,929 NORMAL 356 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE 40 -184 -22 -46 21 -70 -271 -341 4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111	% OF NORM	73%	78%	45%	-1%	84%	96%	71%	73%	83%
DEPARTURE -224 -483 -40 -122 19 -146 -850 -996 -3.888 % OF NORM 73% 74% 78% -107% 114% 40% 72% 70% 80% AUG 2012 316 428 48 -5 137 78 924 1,002 16,929 NORMAL 356 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE -40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111 108 1,044 1,149 2,2307 DEPARTURE -185 -340 -134 28 -24 <td>JUL 2012</td> <td>611</td> <td>1,340</td> <td>145</td> <td>-63</td> <td>158</td> <td>98</td> <td>2,191</td> <td>2,289</td> <td>15,927</td>	JUL 2012	611	1,340	145	-63	158	98	2,191	2,289	15,927
DEPARTURE -224 -483 -40 -122 19 -146 -850 -996 -3.888 % OF NORM 73% 74% 78% -107% 114% 40% 72% 70% 80% AUG 2012 316 428 48 -5 137 78 924 1,002 16,929 NORMAL 356 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE -40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111 108 1,044 1,149 2,2307 DEPARTURE -185 -340 -134 28 -24 <td>NORMAL</td> <td>835</td> <td></td> <td>185</td> <td>59</td> <td></td> <td>244</td> <td>3,041</td> <td></td> <td></td>	NORMAL	835		185	59		244	3,041		
% OF NORM 73% 74% 78% -107% 114% 40% 72% 70% 80% AUG 2012 316 428 48 -5 137 78 924 1,002 16,929 NORMAL 356 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE 40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111 108 1,041 1,149 22,307 DEPARTURE -185 -340 -134 28 -24 -111 -655 638 17,950 NORMAL 382 525 64 5 120	DEPARTURE			-40	-122	19	-146	-850	-996	
NORMAL 356 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE 40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111 108 1,041 1,149 22,307 DEPARTURE -185 -340 -134 28 -24 -111 -655 -766 -4,995 % OF NORM 44% 25% -22% 176% 78% -3% 37% 33% 78% OCT 2012 205 429 -47 -51 119 -17 655 638 17,950 NORMAL 382 525 64 5 120	% OF NORM	73%	74%	78%	-107%	114%	40%	72%	70%	80%
NORMAL 356 612 70 41 116 148 1,195 1,343 21,158 DEPARTURE 40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111 108 1,041 1,149 22,307 DEPARTURE -185 -340 -134 28 -24 -111 -655 -766 -4,995 % OF NORM 44% 25% -22% 176% 78% -3% 37% 33% 78% OCT 2012 205 429 -47 -51 119 -17 655 638 17,950 NORMAL 382 525 64 5 120	AUG 2012	316	428	48	-5	137	78	924	1.002	16 929
DEPARTURE -40 -184 -22 -46 21 -70 -271 -341 -4,229 % OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111 108 1,041 1,149 22,307 DEPARTURE -185 -340 -134 28 -24 -111 -655 -676 -4.995 % OF NORM 44% 25% -22% 176% 78% -3% 37% 33% 78% OCT 2012 205 429 -47 -51 119 -17 655 638 17,950 NORMAL 382 525 64 5 120 89 1,096 1,185 23,492 DEPARTURE -177 -96 -111 -56 -1										
% OF NORM 89% 70% 69% -12% 118% 53% 77% 75% 80% SEP 2012 147 111 -24 65 87 -3 386 383 17,312 NORMAL 332 451 110 37 111 108 1,041 1,149 22,307 DEPARTURE -185 -340 -134 28 -24 -111 -655 -766 -4,995 % OF NORM 44% 25% -22% 176% 78% -3% 37% 33% 78% OCT 2012 205 429 -47 -51 119 -17 655 638 17,950 DEPARTURE -177 -96 -111 -56 -1 -106 -441 -547 -5,542 % OF NORM 54% 82% -73% 99% -19% 60% 54% 76% NORMAL 382 394 66 5 118										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.45		24		07	2	201	202	15 010
DEPARTURE -185 -340 -134 28 -24 -111 -655 -766 -4,995 % OF NORM 44% 25% -22% 176% 78% -3% 37% 33% 78% OCT 2012 205 429 -47 -51 119 -17 655 638 17,950 NORMAL 382 525 64 5 120 89 1,096 1,185 23,492 DEPARTURE -177 -96 -111 -56 -1 -106 -441 -547 -5,542 % OF NORM 54% 82% -73% 99% -19% 60% 54% 76% NORMAL 382 394 66 5 118 81 965 1,046 24,538 DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159%										
% OF NORM 44% 25% -22% 176% 78% -3% 37% 33% 78% OCT 2012 205 429 -47 -51 119 -17 655 638 17,950 NORMAL 382 525 64 5 120 89 1,096 1,185 23,492 DEPARTURE -177 -96 -111 -56 -1 -106 -441 -547 -5,542 % OF NORM 54% 82% -73% 99% -19% 60% 54% 76% NOV 2012 356 344 70 -63 188 -27 895 868 18,818 NORMAL 382 394 66 5 118 81 965 1,046 24,538 DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159% <										
OCT 2012 205 429 -47 -51 119 -17 655 638 17,950 NORMAL 382 525 64 5 120 89 1,096 1,185 23,492 DEPARTURE -177 -96 -111 -56 -1 -106 -441 -547 -5,542 % OF NORM 54% 82% -73% 99% -19% 60% 54% 76% NOV 2012 356 344 70 -63 188 -27 895 868 18,818 DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159% -33% 93% 83% 77% DEC 2012 297 199 58 -8 131 50 677 727 19,545 NORMAL 328 249 1 12 100 57<										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70 OF NORM	44 70	2370	-2270	170%	7870	-370	3770	3370	7870
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OCT 2012	205	429	-47	-51	119	-17	655	638	17,950
% OF NORM 54% 82% -73% 99% -19% 60% 54% 76% NOV 2012 356 344 70 -63 188 -27 895 868 18,818 NORMAL 382 394 66 5 118 81 965 1,046 24,538 DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159% -33% 93% 83% 77% DEC 2012 297 199 58 -8 131 50 677 727 19,545 NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88%	NORMAL	382	525	64	5	120	89	1,096	1,185	23,492
NOV 2012 356 344 70 -63 188 -27 895 868 18,818 NORMAL 382 394 66 5 118 81 965 1,046 24,538 DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159% -33% 93% 83% 77% DEC 2012 297 199 58 -8 131 50 677 727 19,545 NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% MORMAL 7,257 10,728 2,465 911 1,699 2,225<	DEPARTURE	-177	-96	-111	-56	-1	-106	-441	-547	-5,542
NORMAL 382 394 66 5 118 81 965 1,046 24,538 DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159% -33% 93% 83% 77% DEC 2012 297 199 58 -8 131 50 677 727 19,545 NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% Calendar Year Totals - - -67% 131% 88% 98% 9,545 NORMAL 7,257 10,728 2,465 911 1,699 2,225 <	% OF NORM	54%	82%	-73%		99%	-19%	60%	54%	76%
NORMAL 382 394 66 5 118 81 965 1,046 24,538 DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159% -33% 93% 83% 77% DEC 2012 297 199 58 -8 131 50 677 727 19,545 NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% Calendar Year Totals - - -67% 131% 88% 98% 9,545 NORMAL 7,257 10,728 2,465 911 1,699 2,225 <	NOV 2012	356	344	70	-63	188	-27	895	868	18 818
DEPARTURE -26 -50 4 -68 70 -108 -70 -178 -5,720 % OF NORM 93% 87% 106% 159% -33% 93% 83% 77% DEC 2012 297 199 58 -8 131 50 677 727 19,545 NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% WORMAL 7,257 10,728 2,465 911 1,699 2,225 23,060 25,285 DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740										
% OF NORM 93% 87% 106% 159% -33% 93% 83% 77% DEC 2012 297 199 58 -8 131 50 677 727 19,545 NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% NORMAL 7,257 10,728 2,465 911 1,699 2,225 23,060 25,285 DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740										
NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% Calendar Year Totals 6,001 8,123 1,129 402 1,791 2,099 17,446 19,545 NORMAL 7,257 10,728 2,465 911 1,699 2,225 23,060 25,285 DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740										
NORMAL 328 249 1 12 100 57 690 747 25,285 DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% Calendar Year Totals 6,001 8,123 1,129 402 1,791 2,099 17,446 19,545 NORMAL 7,257 10,728 2,465 911 1,699 2,225 23,060 25,285 DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740										
DEPARTURE -31 -50 57 -20 31 -7 -13 -20 -5,740 % OF NORM 91% 80% -67% 131% 88% 98% 97% 77% Calendar Year Totals 6,001 8,123 1,129 402 1,791 2,099 17,446 19,545 NORMAL 7,257 10,728 2,465 911 1,699 2,225 23,060 25,285 DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740										
% OF NORM 91% 80% -67% 131% 88% 98% 97% 77% Calendar Year Totals 6,001 8,123 1,129 402 1,791 2,099 17,446 19,545 NORMAL 7,257 10,728 2,465 911 1,699 2,225 23,060 25,285 DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740										
Calendar Year Totals6,0018,1231,1294021,7912,09917,44619,545NORMAL7,25710,7282,4659111,6992,22523,06025,285DEPARTURE-1,256-2,605-1,336-50992-126-5,614-5,740										
6,0018,1231,1294021,7912,09917,44619,545NORMAL7,25710,7282,4659111,6992,22523,06025,285DEPARTURE-1,256-2,605-1,336-50992-126-5,614-5,740	% OF NORM	91%	80%		-67%	131%	88%	98%	97%	77%
6,0018,1231,1294021,7912,09917,44619,545NORMAL7,25710,7282,4659111,6992,22523,06025,285DEPARTURE-1,256-2,605-1,336-50992-126-5,614-5,740					Calendar Y	ear Totals				
NORMAL 7,257 10,728 2,465 911 1,699 2,225 23,060 25,285 DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740		6,001	8,123	1,129			2,099	17,446	19,545	
DEPARTURE -1,256 -2,605 -1,336 -509 92 -126 -5,614 -5,740	NORMAL									
% OF NORM 83% 76% 46% 44% 105% 94% 76% 77%	DEPARTURE	-1,256	-2,605	-1,336	-509	92	-126	-5,614	-5,740	
	% OF NORM	83%	76%	46%	44%	105%	94%	76%	77%	


Reach	1898-2011 Average Runoff Volume	2012 Runoff Volume	Percent of Average Runoff	
Above Fort Peck	7,257	6,001	83	
Fort Peck to Garrison	10,728	8,123	76	
Garrison to Oahe	2,465	1,129	46	
Oahe to Fort Randall	911	402	44	
Fort Randall to Gavins Point	1,699	1,791	105	
Gavins Point to Sioux City	<u>2,225</u>	2,099	94	
TOTAL ABOVE SIOUX CITY	25,285	19,545	77	
	1967-2012 Average Runoff	2012 Runoff Volume	Percent of Average Runoff	
Sioux City, IA to Nebraska City, NE*	7,700	5,120	66	
Nebraska City, NE to Kansas City, MO*	11,800	5,530	47	
Kansas City, MO to Hermann, MO*	24,000	<u>11,570</u>	48	
TOTAL BELOW SIOUX CITY*	43,500	22,230	51	


 Table 4

 Missouri River Basin 2012 Runoff for Selected Reaches (kAF)


* Runoff in the reaches from Sioux City, IA to Hermann, MO is not adjusted to 1949 depletion levels. Annual monthly averages are taken from the USGS Water Data Reports for the period 1967-2012.


Annual Runoff above Sioux City, IA

Missouri River Basin 2012 Monthly Runoff Above Sioux City, Iowa

C. System Regulation

1. Basin Conditions and System Storage

Runoff above Sioux City in 2012 was 19.5 MAF, 77 percent of normal. This followed 2011, which had produced 61.0 MAF, the highest runoff on record and nearly 2.5 times the normal runoff.

a. Conditions in January and February

During the previous three winters the upper basin experienced significant plains snow. The winter of 2012 was very mild throughout the entire upper basin and very little plains snow was observed. During the first few months of 2012, temperatures were warmer than normal and wet soil conditions did result in above normal runoff early in the year. Runoff during January and February was 125 percent and 154 percent of normal, respectively.

The March 1 plains snow coverage as shown on *Figure 1* indicated little to no snow in the plains areas of Montana, Wyoming, North Dakota and western South Dakota. In eastern and central South Dakota, the plains snow depth ranged from 4 to 20 inches, which was significantly less than the previous three years. The mountain SWE in the reach above Fort Peck and the Fort Peck to Garrison reach was 94 percent and 105 percent, respectively. The March 1 annual inflow forecast was 26.1 MAF, 105 percent of normal. All of the stored floodwaters from 2011 had been evacuated from the System by December 21, 2011 when System storage reached 56.8 MAF, the base of the Annual Flood Control and Multiple Use Zone. As part of the flexible and aggressive approach taken following the 2011 flood, conditions allowed for higher-than-normal winter releases and creation of additional 0.7 MAF of flood control space in addition to the designated 16.3 MAF annual flood control and exclusive flood control storage space. By March 1 runoff from early plains snowpack had entered the reservoirs and system storage had increased to 56.5 MAF, 0.3 MAF below the base of the Annual Flood Control and Multiple Use Zone.

b. Conditions in March

The warmer-than-normal temperatures continued through March. During March the basin began to see the initial indications of the 2012 drought. March precipitation was significantly less than normal and temperatures were warmer than normal. This resulted in the soil conditions quickly moving from "wet" to "normal" throughout the upper basin. The result was 78 percent of normal runoff in March. The mountain SWE in the reach above Fort Peck and the Fort Peck to Garrison reach were below normal at 97 percent and 94 percent, respectively. The April 1 annual inflow forecast was 23.4 MAF, 94 percent of normal. System storage on April 1 was 56.9 MAF, which is 0.1 MAF above the base of the Annual Flood Control and Multiple Use Zone.

c. Conditions in April

The warmer-than-normal temperatures continued through April. Precipitation in the upper basin during April was generally normal with above normal precipitation in northern Montana and eastern South Dakota. Even with the normal to above normal precipitation, the lack of plains snow and drying soil conditions resulted in 61 percent of normal of runoff in April. The mountain SWE in the reach above Fort Peck peaked on April 9 at 97 percent of normal as shown on *Figure 2*. The mountain SWE in the Fort Peck to Garrison reach peaked on March 22 at 88 percent of normal. The May 1 annual inflow forecast was 21.6 MAF, 87 percent of normal. System storage on May 1 was 56.7 MAF, 0.1 MAF below the base of the Annual Flood Control and Multiple Use Zone.

d. Conditions in May through July

Well above normal temperatures continued during the late spring and early summer. While there were areas of northern Montana that observed above normal precipitation, the large majority of the upper basin received below normal precipitation. With May's very warm temperatures, the mountain snowpack melted significantly during the month and resulted in near normal May runoff, 93 percent of normal. However, the warmer-than-normal temperatures, faster-than-normal mountain snowpack melt and drier-than-normal precipitation led to much less-than-normal runoff in June and July, 79 percent and 68 percent, respectively. System storage on July 1 was 57.6 MAF, 0.8 MAF into the Annual Flood Control and Multiple Use Zone. Most significantly, the July 1 System storage check resulted in providing full service navigation flow support for a full 8-month season. The August 1 annual inflow forecast was 21.0 MAF, 85 percent of normal.

e. Conditions in August through December

Well above normal temperatures continued during the late summer and fall throughout the entire Missouri River Basin. The basin also endured below normal precipitation during this period. Because of dry conditions in the lower basin, which led to very low tributary inflow into the Missouri River, Gavins Point releases were higher than normal during the fall in order to meet the Kansas City full service navigation flow target of 41,000 cfs. The higher-than-normal System releases, coupled with below normal runoff in the upper basin, resulted in System storage decreasing at a very rapid rate. During the 4-month period of August 1 to November 30, System storage decreased from 56.4 MAF to 48.9 MAF. The September 1 System storage check of 54.3 MAF resulted in prescribed minimum winter releases of 12,000 cfs from Gavins during the 2012-2013 winter season.

2. Fort Peck

a. General

Fort Peck, the third largest Corps storage reservoir, serves all authorized purposes. Fort Peck's primary functions are: (1) to capture the snowmelt runoff and localized rainfall runoff from the large drainage area above Fort Peck, which are metered out at controlled release rates to meet the authorized purposes while reducing flood damages in the Fort Peck to Garrison reach; (2) to serve as a secondary storage location for water accumulated in the System from reduced System releases due to major downstream flood control regulation, thus helping to alleviate large pool increases in Garrison, Oahe and Fort Randall; and (3) to provide the water needed to meet all authorized purposes that draft storage during low-water years.

Table 5 lists the monthly inflows and releases and the end-of-month (EOM) pool elevations for Fort Peck for 2011 and 2012 as well as the average monthly inflow and releases and EOM pool elevations since the System first filled in 1967.

Fort Peck – Inflows, Releases and Elevations									
	Monthly Inflow (cfs)			Monthly Release (cfs)			EOM Elevation (ft msl)		
Month	2012	2011	1967- 2012	2012	2011	1967- 2012	2012	2011	1967- 2012
January	7,100	9,100	7,200	11,800	8,900	10,600	2234.8	2235.3	2227.4
February	9,000	12,000	8,700	10,800	9,800	10,900	2234.3	2235.8	2226.8
March	9,500	17,900	11,800	6,800	7,400	7,900	2234.9	2238.7	2227.9
April	10,100	15,400	10,300	6,900	7,100	7,300	2235.7	2240.9	2228.7
May	12,700	46,100*	15,700	9,100	14,700	9,100	2236.6	2248.9*	2230.4
June	14,000	61,200*	19,700	10,000	52,600*	10,600	2237.4	2250.7*	2232.9
July	7,300	26,700	12,400	11,100	41,500*	10,600	2235.9	2246.6	2232.9
August	5,700	10,800	7,900	10,900	26,600*	10,200	2233.8	2241.9	2231.8
September	5,600	10,100	7,800	10,500	23,000*	9,100	2231.8	2237.9	2230.9
October	5,600	10,200	7,400	10,100	9,200	8,000	2230.0	2237.7	2230.3
November	6,200	9,400	7,200	10,400	10,100	8,400	2228.4	2237.2	2229.6
December	4,800	8,800	6,600	11,100	11,100	9,500	2226.0	2236.2	2228.5

Table 5
Fort Peck – Inflows, Releases and Elevations

*monthly maximum of record

b. Winter Season 2011-2012

The Fort Peck pool level was at elevation 2237.2 ft msl on December 1, 2011, 1.7 feet higher than the previous year's elevation of 2235.5 ft msl. Releases from Fort Peck were above normal for December 2011 as well as January and February 2012. The Fort Peck pool level was at elevation 2236.2 ft msl on January 1, 2.2 feet above the base of the Annual Flood Control and Multiple Use Zone and 0.8 foot higher than the previous year. The 2012 annual minimum reservoir level occurred on December 31 at 2226.0 ft msl, 9.2 feet lower than the 2011 annual minimum, which was 2235.2 ft msl on February 12.

c. Winter River and Ice Conditions Below Fort Peck

No special release reductions were required to prevent ice-jam flooding downstream of Fort Peck. The average monthly discharge for December 2011 and January 2012 were above normal at 11,100 and 11,800 cfs, respectively. February releases of 10,800 cfs were near the normal monthly average. Ice-cover formation on the Missouri River downstream of Fort Peck occurred January 18-23 and resulted in the Missouri River stage rising over 6 feet in the Wolf Point, MT area. The stage at Wolf Point peaked at 8.3 feet on January 23, well below the flood stage of 23 feet. A majority of the ice cover near Wolf Point melted in early February and then re-formed later in the month. The highest winter stage at Wolf Point of 10.6 feet occurred on February 14. The Missouri River at Culbertson, MT peaked on January 26 at a stage of 9.3 feet, well below the flood stage of 19 feet. No reports of ice-affected flooding on the Missouri River below Fort Peck were recorded during the 2011-2012 winter season. Fort Peck Reservoir froze over on January 20 and was free of ice on March 20.

d. Spring Open Water Season 2012

Inflows into Fort Peck were near normal for April before dropping off in May and June. Releases from Fort Peck were also near their historic monthly normal for that same period. In May and June, monthly inflows to the reservoir were 12,700 cfs (81 percent of normal) and 14,000 cfs (71 percent of normal), respectively. Fort Peck releases were normal at 9,100 cfs in May and were near normal at 10,000 cfs in June. Fort Peck Reservoir rose 2.7 feet from its April 1 elevation of 2234.9 ft msl to its peak elevation for the year of 2237.6 ft msl in late June.

e. Summer Open Water Season 2012

Average monthly release rates from Fort Peck were near normal (109 percent of the 3-month normal) during the summer with 11,100, 10,900 and 10,500 cfs in July, August and September, respectively. Inflows during that same 3-month period were below normal (68 percent) with 7,300, 5,700 and 5,600 cfs, respectively. After peaking in late June, the reservoir level held steady before starting its gradual decline through the remainder of the year. Over a 3-month period the reservoir level steadily dropped 5.6 feet from 2237.4 ft msl (July 1) to 2231.8 ft msl (September 30).

f. Fall Open Water Season 2012

Releases during the fall were above normal with 10,100 cfs in October (126 percent of normal) and 10,400 cfs in November (124 percent of normal) and 11,100 cfs in December (117 percent of normal). The high releases were continued in an effort to balance system storage. Inflows for October, November and December were below normal, ranging from 73 percent to 86 percent of normal. The combination of below normal inflow and above normal releases resulted in the pool elevation declining 5.8 feet over a 3-month period from 2231.8 ft msl (October 1) to 2226.0 ft msl (December 31).

g. Summary

The highest Fort Peck Reservoir level during 2012 occurred on July 1 at 2237.6 ft msl, 3.6 feet into the Annual Flood Control and Multiple Use Zone. The lowest reservoir level during 2012 occurred on December 31 at 2226.0 ft msl. The average annual inflow of 8,100 cfs during 2012 was 79 percent of normal (1967-2012). The average annual release of 10,000 cfs during 2012 was 108 percent of normal (1967-2012).

3. Garrison

a. General

Garrison, the largest Corps storage reservoir, is another key component in the regulation of the System. Its primary functions are: (1) to capture the snowmelt runoff and localized rainfall runoff from the large drainage area between the Fort Peck and Garrisons, which are metered out at controlled release rates to meet the authorized purposes while reducing flood damages in the Garrison to Oahe reach, particularly in the urban Bismarck area; (2) to serve as a secondary storage location for water accumulated in the System from reduced System releases due to major downstream flood control regulation, thus helping to alleviate large pool increases in Oahe and Fort Randall; and (3) to provide water needed to meet all authorized purposes that draft storage during low-water years.

Table 6 lists the monthly inflows and releases in cfs and the EOM pool elevation in ft msl for Garrison for 2011 and 2012 as well as the average monthly inflows and releases and EOM pool elevations since the System first filled in 1967.

Garrison – Inflows, Releases and Elevations									
Month	Monthly Inflow (cfs)			Monthly Release (cfs)			EOM Elevation(ft msl)		
	2012	2011	1967- 2012	2012	2011	1967- 2012	2012	2011	1967- 2012
January	16,500	14,800	15,200	21,300	23,600	22,500	1838.2	1840.0	1831.9
February	21,700	18,000	18,500	22,600	25,800	23,700	1838.0	1838.5	1830.9
March	20,500	32,500	26,600	20,500	21,800	19,200	1837.9	1840.5	1832.4
April	16,300	53,700	22,800	26,600	14,900	18,700	1835.8	1847.6*	1833.0
May	25,400	88,200*	29,500	26,200	50,700*	21,500	1835.6	1853.3*	1834.5
June	36,800	144,600*	47,600	25,400	136,600*	25,100	1837.7	1854.5*	1838.7
July	23,300	111,700*	33,700	24,300	127,700*	26,100	1837.3	1851.6	1839.8
August	15,500	51,900*	18,700	24,600	91,100*	25,200	1834.8	1844.5	1838.0
September	14,700	37,300*	16,900	21,800	43,400	21,000	1832.8	1842.8	1836.8
October	17,400	22,700	17,300	19,700	25,800	19,100	1831.6	1841.9	1836.1
November	19,000	20,300	16,000	22,100	28,400	20,000	1830.3	1840.0	1834.9
December	14,600	18,800	13,800	17,400	20,400	20,000	1829.5	1839.5	1833.4

 Table 6

 Garrison – Inflows Releases and Flevations

*monthly maximum of record

b. Winter Season 2011-2012

The Garrison Reservoir level was at elevation 1839.9 ft msl on December 1, 2011, 2.5 feet lower than the previous year's elevation of 1842.4 ft msl. This elevation was 2.4 feet above the base of the Annual Flood Control and Multiple Use Zone. Releases from Garrison were above normal for December 2011. January and February releases were below normal. The reservoir level declined throughout the winter season and ended February at 1838.0 ft msl, 0.5 foot above the base of the Annual Flood Control and Multiple Use Zone. The annual minimum elevation of

1829.5 ft msl was reached on December 31, 2012. Garrison Reservoir froze over on January 18 and was free of ice on March 27.

c. Winter River and Ice Conditions Below Garrison

The Missouri River in the Bismarck, ND area rose over 6 feet on January 13-14 during river ice-cover formation. This type of rise in stage during the river ice formation is normal. The river ice-cover conditions were generally continuous from January 13 through February 17, at which time the river ice broke up due to warm temperatures. The winter ice-affected Missouri River peak stage at Bismarck was 12.1 feet on January 24. This was 2.4 feet below the Bismarck flood stage of 14.5 feet and 0.9 feet below the Corps' winter freeze-in maximum stage target of 13 feet.

d. Spring Open Water Season 2012

After starting the year with above normal runoff above Garrison, inflows dropped off in March and remained below normal for the rest of the spring. Releases from Garrison were kept at above normal levels during the spring in order to maintain a steady-to-rising pool level in Oahe during the critical fish spawning period. The less-than-normal inflows and above normal releases resulted in Garrison pool levels decreasing 2.3 feet over a 2-month period, from 1837.9 ft msl (April 1) to 1835.6 ft msl (May 31). During June melting mountain snowpack increased inflows and resulted in a pool rise of 1.8 feet to 1837.4 ft msl (June 30). Inflows for April were 71 percent of normal, for May were 86 percent of normal, and for June were 77 percent of normal, all well below normal. Releases were 142 percent of normal in April, 122 percent of normal in May and 101 percent of normal in June.

e. Summer Open Water Season 2012

Inflows into Garrison Reservoir were below normal for the 3-month period of July through August: July (23,300 cfs; 69 percent of normal); August (15,500 cfs; 83 percent of normal) and September (14,700 cfs; 87 percent of normal). Releases during this 3-month period were near normal. The pool rose to 1838.0 ft msl July 8, 0.5 foot into the Annual Flood Control and Multiple Use Zone. This was less than the annual peak elevation of 1839.3 ft msl that occurred on January 1. Following the July 8 seasonal crest, the Garrison pool declined and entered the Carryover Multiple Use Zone on July 27 and continued to decline to 1832.8 ft msl (September 30), 5.2 feet below the July 8 crest.

f. Fall Open Water Season 2012

Fall releases were normal over the October through December period. Inflows over this same period were above normal, averaging 108 percent of normal. Releases were reduced to about 16,000 cfs starting in mid-December in anticipation of the December freeze-in downstream of Garrison between Washburn and Bismarck, ND. The river froze over at Bismarck on December 25 at a stage of just over 9 feet. After the ice cover stabilized, releases from Garrison were increased 1,000 cfs every three days starting December 30 with the intent of reaching the planned winter release of 23,000 cfs. Garrison releases at the end of the year were

17,000 cfs. The end-of-year Garrison elevation was 1829.5 ft msl, 8.0 feet below the base of the Annual Flood Control and Multiple Use Zone.

g. Lake Audubon / Snake Creek Embankment

During the 2000-2007 drought, a 43-foot maximum water level difference between Lake Audubon and Garrison Reservoir was put in place. This restriction required a pool restriction for Lake Audubon as a result of an under-seepage evaluation of the Lake Audubon embankment by the Corps' Omaha District. Since that time relief wells have been installed and under-seepage issues should not be a factor in future operations of the Lake Audubon. In the event the pool difference approaches the 43-foot maximum that was in place in 2007, the Omaha District's Geotechnical Branch will be consulted as to whether or not the 43-foot maximum is still a consideration. Since Garrison Reservoir has returned to more normal elevations following the 8year drought, this water level difference restriction has not been in effect. Lake Audubon was drawn down to the normal winter level of 1845.0 ft msl in the fall.

h. Summary

The Garrison pool elevation peaked at 1839.3 ft msl on January 1, 2012, 1.8 feet above the base of the Annual Flood Control and Multiple Use Zone and 15.3 feet lower than the 2011 peak. The lowest Garrison Reservoir level during 2012 occurred on December 31 at 1829.5 ft msl or 8.0 feet lower than the base of the Annual Flood Control and Multiple Use Zone. The average annual inflow of 20,100 cfs was 88 percent of normal (1967-2012). The average annual release of 22,700 cfs was 104 percent of normal (1967-2012).

4. Oahe and Big Bend

a. General

Oahe, the second largest Corps storage reservoir, serves all authorized purposes. Oahe's primary functions are: (1) to capture snowmelt and localized rainfall runoff from the large drainage area between the Garrison and Oahe, which are metered out at controlled release rates to meet the authorized purposes, while reducing flood damages in the Oahe to Big Bend reach, especially in the urban Pierre and Fort Pierre areas; (2) to serve as a primary storage location for water accumulated in the System from reduced System releases due to major downstream flood control regulation, thus helping to alleviate large reservoir level increases in Big Bend, Fort Randall and Gavins Point; and (3) to provide water needed to meet all authorized purposes that draft storage during low-water years, particularly downstream water supply and navigation. In addition, hourly and daily releases from Big Bend and Oahe fluctuate widely to meet varying power loads. Over the long-term, their release rates are geared to back up navigation releases from Fort Randall and Gavins Point in addition to providing storage space to permit a smooth transition in the scheduled annual fall drawdown of Fort Randall. Big Bend, with less than 2 MAF of total storage, is primarily used for hydropower production, so releases from Oahe are generally passed directly through Big Bend.

Table 7 lists the monthly inflows and releases and the EOM pool elevations for Oahe for 2011 and 2012 as well as the average monthly inflows and releases and EOM pool elevations since the System first filled in 1967.

	Oahe – Inflows, Releases and Elevations									
	Mon	thly Inflow	w (cfs)	Mon	thly Releas	se (cfs)	EOM	EOM Elevation (ft msl)		
Month	2012	2011	1967- 2012	2012	2011	1967- 2012	2012	2011	1967- 2012	
January	20,200	24,800	23,000	26,700	22,500	20,900	1605.2	1605.4	1598.8	
February	25,200	30,500	27,100	22,400	17,700	18,300	1605.6	1607.7	1600.5	
March	23,500	50,400	31,300	22,300	13,900	18,100	1605.7	1614.4	1603.1	
April	27,900	41,400	27,200	24,800	26,000	20,900	1606.4	1617.5	1604.2	
May	28,400	65,100*	28,000	24,200	52,600*	22,200	1607.1	1618.8*	1605.1	
June	26,900	147,500*	30,700	29,400	142,500*	27,400	1606.5	1619.6*	1605.3	
July	24,100	133,600*	28,700	35,000	144,200*	31,600	1603.9	1617.5	1604.3	
August	23,800	95,300*	26,500	38,100	117,100*	34,200	1600.5	1613.3	1602.3	
September	21,400	46,800	22,500	36,800	67,300*	29,800	1596.8	1609.0	1600.4	
October	19,500	28,700	20,500	27,200	27,800	24,000	1594.7	1609.0	1599.2	
November	23,300	29,500	21,400	26,100	36,300	22,700	1593.3	1607.4	1598.7	
December	17,500	22,300	20,300	14,700	23,800	20,900	1593.5	1606.8	1598.3	

Table 7Oabe – Inflows, Releases and Elevations

*monthly maximum of record

A settlement agreement was approved in an order of dismissal by the United States District Court, District of South Dakota on August 8, 2003, in the case of Lower Brule Sioux Tribe et al. v. Rumsfeld, et al. (Civil No. 02-3014 (D.S.D.)). The agreement provides that the Corps will consult with the Lower Brule Tribe and the Crow Creek Sioux Tribe during any review and revision of the Missouri River Master Water Control Manual. This agreement also provides that the Corps will coordinate the regulation of Big Bend and the water level of the Big Bend Reservoir with the two Tribes to include the following: the Corps will normally strive to maintain a Big Bend Reservoir level between elevation 1419.0 ft msl and 1421.5 ft msl and, when the level of Big Bend Reservoir drops below elevation 1419.0 ft msl or exceeds elevation 1421.5 ft msl, the Chief of MRBWM will provide notice to such persons as the Tribes shall designate in writing. When it is anticipated that the water level will drop below 1418.0 ft msl or rise above 1422.0 ft msl or, in the event the water level falls below 1418.0 ft msl or rises above 1422.0 ft msl, the Commander, NWD, or his designee, shall immediately contact the Chairpersons of the Tribes or their designees to notify them of the situation and discuss proposed actions to remedy the situation. During 2012 the Big Bend Reservoir level varied in the narrow range between elevations 1419.2 ft msl to 1421.5 ft msl. As per the settlement agreement, no additional coordination was necessary.

Table 8 lists the monthly inflows and releases in cfs and the EOM pool elevations in ft msl for Big Bend for 2011 and 2012 as well as the average monthly inflows and releases and EOM pool elevations since the System first filled in 1967.

Dig Denu – Innows, Releases and Elevations									
	Monthly Inflow (cfs)			Mon	thly Release	e (cfs)	EOM Elevation (ft msl)		
Month	2012	2012	1967- 2012	2012	2011	1967- 2012	2012	2011	1967- 2012
January	25,500	20,600	20,600	25,200	19,700	20,500	1420.6	1421.2	1420.5
February	21,000	17,400	18,300	21,000	17,600	18,300	1420.5	1420.7	1420.4
March	21,100	17,100	18,900	21,100	17,200	18,800	1420.4	1420.5	1420.4
April	23,700	25,200	21,200	23,000	24,900	20,900	1420.8	1420.7	1420.5
May	22,900	49,200**	22,400	23,600	50,400**	22,300	1419.8	1419.0	1420.4
June	27,200	143,000**	27,600	26,400	142,100**	27,300	1420.3	1419.8	1420.3
July	32,100	141,600**	30,900	31,900	141,600**	30,500	1420.1	1419.5*	1420.3
August	35,400	113,500**	33,500	34,700	113,100**	33,000	1420.1	1419.3	1420.2
September	34,000	63,600**	29,300	32,800	62,800**	28,900	1420.9	1419.6	1420.3
October	25,100	25,800	23,800	25,200	24,700	23,300	1420.4	1420.4	1420.5
November	24,300	34,600	24,000	24,300	34,200	22,400	1420.1	1420.6	1420.4
December	13,500	22,500	20,700	12,900	22,700	20,500	1420.8	1420.4	1420.5

Table 8Big Bend – Inflows, Releases and Elevations

*monthly minimum of record **monthly maximum of record

b. Winter Season 2011-2012

No ice-induced flooding problems were experienced downstream of the two projects during the winter of 2011-2012 due to the warmer temperatures and much above average releases. In addition, it was not necessary to implement the one-unit-minimum release from Oahe. The one unit minimum, which is approximately 7,000 cfs, ensures that water is always flowing in the river downstream of the Oahe in order to lessen river ice-forming. Oahe Reservoir did not freeze over during the 2011-2012 winter season.

Big Bend was regulated in the winter season to follow power-peaking requirements and thus hourly releases varied widely. The daily average release during the winter season varied between 0 and 45,000 cfs. Big Bend Reservoir froze over on January 19 and was free of ice on March 16.

c. Spring Open Water Season 2012

The lack of plains snowpack combined with much below normal precipitation resulted in less-than-normal March incremental inflow into Oahe. Thus, most of the inflows into Oahe were a result of Garrison releases. In April and May, more than 90 percent of the Oahe inflows were a result of Garrison releases. March average monthly inflows of 23,500 cfs were below normal (75 percent of normal) while near normal inflows of 27,900 cfs and 28,400 cfs were observed during April and May, respectively. During this same time period, releases were above normal: 22,300 cfs in March (123 percent of normal), 24,800 cfs in April (119 percent of normal) and 24,200 cfs in May (109 percent of normal). Oahe releases were higher than normal from March through May in order to provide navigation flow support. The Oahe Reservoir level rose 1.4 feet during the critical fish spawning period from 1605.7 ft msl (April 1) to 1607.1 ft msl (May 31).

d. Summer Open Water Season 2012

With below normal inflows and above normal releases continuing from June through September, the Oahe pool level peaked at 1607.1 ft msl on June 6, 0.4 foot below the base of the Annual Flood Control and Multiple Use Zone. The above normal releases continued in support of navigation and reflected the lack of tributary runoff in the lower basin below Gavins Point. June releases were 29,400 cfs (107 percent of normal), July releases were 35,000 cfs (111 percent of normal), August releases were 38,100 cfs (111 percent of normal) and September releases were 36,800 cfs (123 percent of normal). The reservoir pool steadily declined from its peak in early June through the end of September, ending the month at 1596.8 ft msl, 10.3 feet lower than at its peak.

e. Fall Open Water Season 2012

Fall releases from Oahe continued to be above normal to support navigation through late November when releases to support navigation ended. Releases for October (27,200 cfs, 113 percent of normal) and November (26,100 cfs, 115 percent of normal) were above normal while December was below normal. Releases dropped off in late November in conjunction with the reduction in System releases. At the end of 2012 the Oahe pool elevation was 1593.5 ft msl, 14.0 feet below the base of the Annual Flood Control and Multiple Use Zone.

f. Summary

The highest Oahe Reservoir level of 1607.5 ft msl during 2012 occurred on May 10. The 2012 minimum pool elevation of 1593.3 ft msl occurred on November 30. The average annual inflow to Oahe of 23,500 cfs was 92 percent of normal (1967-2012). The average annual release from Oahe of 27,300 cfs was 112 percent of normal (1967-2012). During the year the Oahe Reservoir rose to the base of the Annual Flood Control and Multiple Use Zone. Big Bend was generally operated within its normal regulating range of 1420.0 ft msl to 1421.0 ft msl.

5. Fort Randall

a. General

Fort Randall, the fourth largest System reservoir, serves all authorized purposes. Fort Randall's primary functions are: (1) to capture snow and localized rainfall runoffs in the drainage area between the Big Bend and Fort Randall, which are metered out at controlled release rates to meet the authorized purposes while reducing flood damages in the Fort Randall reach where several areas have homes and cabins in close proximity to the river; (2) to serve as a primary storage location along with the upstream projects for water accumulated in the System when System releases are reduced due to major downstream flood control regulation, thus helping to alleviate large pool increases in the very small Gavins Point Project; (3) to provide a location to store the water necessary to provide increased winter hydropower energy by allowing an annual fall drawdown of the reservoir to occur with a winter reservoir refilling that is unique to Fort Randall; and (4) to provide water needed to meet all authorized purposes, particularly navigation and downstream water supply, that draft storage during low-water years.

Table 9 lists the Fort Randall monthly inflows and releases in cfs and the EOM pool elevation in ft msl for 2011 and 2012 as well as the average monthly inflows and releases and EOM pool elevations since the System was first filled in 1967.

	Fort Randall – Inflows, Releases and Elevations									
	Monthly Inflow (cfs)			Mont	nly Release	e (cfs)	EOM Elevation (ft msl)			
Month	2012	2011	1967-2012	2012	2011	1967- 2012	2012	2011	1967- 2012	
January	28,600	23,000	22,000	20,100	17,300	15,200	1346.1	1345.8	1347.1	
February	24,700	22,300	20,200	18,700	15,800	13,400	1350.7	1350.6	1352.0	
March	24,400	25,100	21,700	21,100	15,100	15,600	1353.0	1357.8	1356.3	
April	25,900	29,700	23,600	23,400	27,700	21,300	1354.5	1359.8	1357.7	
May	26,600	58,500*	25,200	25,400	57,000*	25,400	1355.2	1359.9	1357.4	
June	28,500	157,000*	30,300	29,800	134,600*	29,100	1354.0	1373.9*	1357.9	
July	33,600	149,600*	32,000	32,400	156,000*	33,300	1354.5	1369.3*	1356.7	
August	37,700	121,100*	34,500	36,500	133,000*	35,600	1354.7	1361.2	1355.4	
September	37,000	68,900*	30,000	37,600	80,000*	34,900	1353.6	1352.9	1351.1	
October	26,600	27,000	23,400	36,100	39,300	32,400	1345.4	1341.9	1343.2	
November	25,300	36,200	22,300	30,600	38,800	28,800	1340.2	1339.2	1336.8	
December	14,100	25,600	21,600	14,200	26,400	17,300	1340.0	1338.3	1341.0	

 Table 9

 Fort Randall – Inflows, Releases and Elevations

*monthly maximum of record

b. Winter Season 2011-2012

Fort Randall releases were reduced from approximately 41,000 cfs in early December 2011 to 21,000 cfs by mid-December. For the remainder of the winter Fort Randall average daily releases ranged from 15,900 to 21,900 cfs. Fort Randall Reservoir froze over on January 14 and was free of ice on March 12.

c. Spring Open Water Season 2012

The Fort Randall pool was increased 4.5 feet from 1350.7 ft msl (March 1) to its typical spring and summer pool of 1355.2 ft msl (May 31). Releases were adjusted as needed to back up System releases from Gavins Point and to maintain the Gavins Point pool in the desired range. The average March release of 21,100 cfs was 135 percent of normal and the average April release of 23,400 cfs was 110 percent of normal. These releases corresponded with above normal inflows of 24,400 cfs in March (112 percent of normal) and 25,900 cfs in April (110 percent of normal). During May Fort Randall inflows were near normal at 26,600 cfs (106 percent of normal) while the releases of 25,400 cfs were normal. Fort Randall Reservoir reached its annual peak elevation of 1356.6 ft msl on May 10.

d. Summer Open Water Season 2012

During June and July inflows and releases were near normal. During August and September, as tributary inflows downstream of Gavins Point diminished due to drought conditions, Fort Randall releases were increased to back up System releases in order to provide navigation flow support. Inflows were 28,500 cfs in June (94 percent of normal), 33,600 cfs in July (105 percent of normal), 37,700 cfs in August (109 percent of normal) and 37,000 cfs in September (123 percent of normal). Releases from Fort Randall were 29,800 cfs in June (102 percent of normal), 32,400 cfs in July (97 percent of normal), 36,500 cfs in August (103 percent of normal) and 37,600 cfs in September (108 percent of normal).

A daily peaking pattern was established at Fort Randall during the nesting season to provide flexibility to regulate over a range of releases while minimizing impacts to birds nesting below the project. Peaking started on June 22 and ceased on August 16. Initially, peaking was limited to 330 MW for a continuous 8-hour time frame. On June 29, due to Western Area Power Administration (Western) experiencing transmission restriction issues that made it difficult to sustain a continuous 8-hour peak, peaking was changed to 350 MW for a continuous 6-hour time frame. This peaking pattern was kept in place until August 16 at which time all restrictions were lifted.

e. Fall Open Water Season 2012

Normal regulation of Fort Randall includes the lowering of the pool level at the end of the navigation season to 1337.5 ft msl, 17.5 feet below the normal summer level (1355.0 ft msl), to make room for capture of the winter powerplant releases from the upper reservoirs. During a full navigation season, the pool is maintained above 1353.0 ft msl through the Labor Day weekend before starting the lowering of the pool. Both inflows and releases were above normal for

October and November because of the continuation of the dry conditions downstream of Gavins Point required higher releases to meet downstream navigation targets. On September 1, the pool level was 1354.7 ft msl. The lowering of Fort Randall was started after Labor Day and reached its fall season low of 1338.0 ft msl on November 21.

f. Summary

The highest Fort Randall Reservoir level during 2012 occurred on May 10 at 1356.6 ft msl. The lowest reservoir level during 2012 was 1337.6 ft msl on January 2. The lowest reservoir level after the 2012 navigation support season occurred on November 21 at 1338.0 ft msl. The average annual inflow to Fort Randall of 27,800 cfs was 109 percent of normal (1967-2012) and the average annual release of 27,200 cfs was 108 percent of normal (1967-2012).

6. Gavins Point

a. General

Gavins Point, the most downstream of the System projects, is primarily used for flow reregulating to smooth out the release fluctuations of the upper projects to better serve downstream purposes. With a total storage of 450,000 acre-feet (AF), it provides only a small amount of flood control storage and is generally maintained in a narrow reservoir elevation band between 1205.0 and 1208.0 ft msl. Due to the limited storage, releases from Gavins Point must be backed up with releases out of the upper reservoirs. Gavins Point is the key location in the initiation of release reductions for downstream flood control. Even though it has only a small amount of storage space for flood control, this volume is usually adequate to perform significant downstream flood control by coordinating Gavins Point release reductions with the upstream projects. Releases greater than the powerplant capacity, normally near 35,000 cfs, are passed through the spillway.

Table 10 lists the Gavins Point monthly inflows and releases in cfs and the EOM pool elevation in ft msl for 2011 and 2012 as well as the average monthly inflows and releases and EOM pool elevations since the System was first filled in 1967.

Gavins Point – Inflows, Releases and Elevations										
	Monthly Inflow (cfs)			Mon	Monthly Release (cfs)			EOM Elevation (ft msl)		
Month	2012	2011	1967- 2012	2012	2011	1967- 2012	2012	2011	1967- 2012	
January	21,800	18,400	17,400	21,900	18,500	17,100	1207.2	1207.2	1207.5	
February	21,800	20,000	16,600	22,000	20,700	17,400	1206.5	1205.5	1205.7	
March	23,600	21,500	19,700	23,900	21,000	19,700	1205.9	1206.5	1205.6	
April	26,700	30,000	25,200	26,200	30,300	25,000	1206.6	1205.7	1205.8	
May	27,900	57,000	29,000	28,000	56,300	28,800	1206.1	1206.5	1206.0	
June	32,000	139,200*	32,400	31,700	139,000*	32,200	1206.3	1206.3	1206.2	
July	34,300	159,800*	35,500	34,000	159,700*	35,100	1206.3	1205.8	1206.7	
August	38,100	136,900*	37,400	37,800	136,200*	36,900	1206.4	1206.6	1207.3	
September	38,800	82,500*	36,900	38,200	81,900*	36,600	1207.0	1207.3	1207.6	
October	38,400	40,500	34,700	37,600	40,100	34,500	1208.0	1207.3	1207.8	
November	34,400	40,200	31,100	34,200	40,100	31,100	1207.6	1207.0	1207.6	
December	16,400	28,000	19,400	16,300	27,700	19,500	1207.7	1207.8	1207.4	

 Table 10

 Gavins Point – Inflows, Releases and Elevations

*monthly maximum of record

b. Winter Season 2011-2012

The Gavins Point average daily release was reduced from 40,000 cfs in early December 2011 to approximately 22,000 cfs by mid-December. The Gavins Point average daily release was above the normal winter release rate in December 2011, January and February. Winter releases varied from 21,500 cfs to 22,100 cfs in January and from 21,800 cfs to 22,100 cfs in February. Gavins Point Reservoir froze over on January 13 and was free of ice on March 10.

c. Spring Open Water Season 2012

The March spring pulse from Gavins Point was not conducted in 2012. The 2011 flood event was unprecedented in both magnitude and duration along much of the Missouri River resulting in significant damage to the projects, levees and other infrastructure. During 2012 the Corps was still in the process of inspection, repair and restoration of this important infrastructure and all repairs were not completed prior to the start of the 2012 runoff season. The river experienced a natural rise of near historic proportions in 2011, therefore it was determined that the efforts of the Missouri River Recovery Program (MRRP) should be focused on capturing the impact of the historic flood event rather than monitoring and analyzing a much smaller managed spring pulse in 2012. Finally, based on discussions with the U.S. Fish and Wildlife Service (USFWS) regarding the aforementioned factors and the ongoing review of the Gavins Point bimodal spring pulse by the Independent Science Advisory Panel (ISAP), the future direction of the bimodal spring pulse from Gavins Point has not yet been determined.

Flow support for the 2012 navigation season began on March 23 at Sioux City, IA; March 25 at Omaha, NE; March 26 at Nebraska City, NE; March 28 at Kansas City, MO; and April 1 at the mouth of the Missouri River near St. Louis, MO. Based on the March 15 System storage check of 56.8 MAF, full navigation flow support was provided for the first half of the navigation season.

No cycling of Gavins Point releases were made in 2012. Cycling of releases has been conducted in previous years in early May to encourage the threatened and endangered (T&E) birds to nest on the higher elevation areas of downstream sandbars in the reach. This allows for future increases to support navigation. Cycling of releases has also been conducted in previous years as a drought conservation measure as well as a flood risk management measure. Starting in mid-May, Gavins Point releases of 28,000 cfs and above were needed to maintain the flow at the downstream navigation targets and therefore, the cycling was not necessary.

d. Summer Open Water Season 2012

Based on the July 1 System storage check of 57.6 MAF, full navigation flow support for a full length (8-month) season was provided. Persistent hot and dry conditions began impacting the lower basin by the start of the summer. In order to meet the Kansas City full service navigation flow target of 41,000 cfs, Gavins releases were increased to 35,000 cfs by the end of July and were as high as 38,500 cfs by mid-August.

From mid-July to early August supplemental flow support was provided by Tuttle Creek, Perry and Milford, NWK Kansas River projects, to minimize take of threatened and endangered species nesting below the mainstem dams. Additional information about this operation is provided in Section II.F.5 of this report.

e. Fall Open Water Season 2012

Based on the September 1 System storage of 54.3 MAF, minimum winter releases of 12,000 cfs from Gavins were dictated per rule curves outlined in the Master Manual. During September and October an extensive outreach effort with the downstream intake owners was conducted to verify critical river stages as they relate to keeping intakes operational. Based on feedback from intake owners, it was decided that MRBWM would reduce to winter releases more slowly than normal to determine if the Gavins Point minimum winter release of 12,000 cfs could be achieved while still keeping downstream intakes operational. Continued drought conditions in the lower basin reduced incremental inflows downstream of Gavins Point to extremely low levels. After reducing Gavins Point releases to 14,000 cfs, intake owners from Yankton, SD, Blair and Omaha, NE, Council Bluffs, IA and Kansas City, MO all indicated that further reductions would severely impact their respective intake operations. Thus, minimum winter releases from Gavins Point for the 2012-2013 winter season were 14,000 cfs.

f. Summary

The highest Gavins Point Reservoir level in 2012 was 1208.3 ft msl, reached on December 18. The lowest reservoir level during 2012 occurred on January 22, at 1204.6 ft msl. The 2012 average annual inflow to Gavins Point of 29,500 cfs was 105 percent of average (1967-2012). The 2012 average annual release from Gavins Point of 29,300 cfs was 105 percent of average (1967-2012).

D. Non-Routine Regulation and Other Items Pertaining to System Regulation

Numerous regulation activities are performed each year that, although at one time may have been considered unique, are now considered routine. These include release restrictions from a particular project for a period of time to permit hydrographic surveys, to facilitate limited construction within or adjacent to the downstream channel and to pattern releases to facilitate measurements of downstream discharges and water surface profiles. Events that occurred in connection with regulation activities during 2012 that may be considered unusual, or recently have come to the attention of MRBWM, are discussed in the following paragraphs.

1. Lawsuits

There were no lawsuits that impacted regulation of the System in 2012.

2. Fort Peck Spillway Assessment and Flow Test

During the week of September 3, 2012 a flow test was conducted using the Fort Peck spillway. The test was performed to determine whether a sub-drain system that relieves potential pressure beneath the spillway was functioning properly. The test included spillway releases ranging from 3,000 cfs to 30,000 cfs at periodic intervals over a 5-day period. During the test, powerplant releases were reduced to 3,000 cfs to lessen the downstream impacts. Hourly powerplant and spillway release are shown on *Plate 3*.

The flow test was originally scheduled for June 2012, but stakeholder input noted that negative impacts to agricultural production and other activities along the river made a September test preferable. During the test period, stages at Wolf Point, MT increased as much as 3 feet and Culbertson, MT increased nearly 2 feet as shown on *Plate 3*.

3. Gavins Point Spillway Assessment and Zero Release

Following the flood of 2011, preliminary assessments of Gavins Point indicated minor damage sustained to a number of areas on the spillway slab and the need for subsurface investigations into the foundation conditions underlying the slab. In order to properly evaluate the actual damage, Gavins Point releases were reduced to zero to dewater the uppermost portion of the spillway slab on May 9, 2012. In the early morning, releases from Gavins Point were reduced from 25,000 cfs to zero in increments of approximately 9,000 cfs per hour. Flows remained at zero for eight hours and were then stepped up over four hours to 28,000 cfs. The spillway assessment included the use of ground penetrating radar and other investigative methods. Hourly Gavins Point releases are shown on *Plate 4*.

The Sioux City stage dropped approximately 2.7 feet as a result of the reduction in flows. The stage reduction lessened downstream with Omaha dropping 1.7 feet and Nebraska City dropping 1.0 foot. The Missouri River stage reductions were lessened due to increased tributary flows from the James, Vermillion and Big Sioux rivers near the time of the assessment, as shown on *Plate 4*.

E. <u>Reservoir Elevations and Storage</u>

Reservoir elevations and storage contents of the System reservoirs at the end of July 2012 are presented in *Table 11* and the same information for the end of December 2012 is presented in *Table 12*. The 12-month-change columns for the end of July indicate significant decreases in the elevations and respective storages in the Fort Peck, Garrison and Oahe reservoirs, with all three of the large storage reservoirs at or near the base of their respective Annual Flood Control and Multiple Use Zones. By the end of December, all three were well below their bases of Annual Flood Control and Multiple Use Zone.

Figure 10A and *Figure 10B* show the end-of-July pool elevations for Fort Peck, Garrison and Oahe plus total System end-of-July storage for 2011 and 2012. Individual tables with the historic maximum, average and minimum pool elevations for each reservoir are also shown. During the 2000-2007 drought, all three reservoirs experienced their historical minimum record pool levels: Garrison in 2005, Oahe in 2006 and Fort Peck in 2007. During 2011 Fort Peck, Oahe and Fort Randall experienced their historical maximum pool levels in addition to the System experiencing its maximum storage of 72.8 MAF.

Kesel von Levels and Storages – July 51, 2012								
	Reservoir	Elevation	Reservoir Storage in 1,000 AF					
Project	Elevation	12-Month	Total	Above Min.	12-Month			
	(ft msl)	Change (ft)	Total	Level*	Change			
Fort Peck	2235.9	-10.7	15,191	11,103	-2,443			
Garrison	1837.3	-14.3	18,018	13,308	-4,902			
Oahe	1603.9	-13.6	17,766	12,393	-4,471			
Big Bend	1420.1	+0.6	1,629	8	+38			
Fort Randall	1354.5	-14.8	3,486	1,969	-1,364			
Gavins Point	1206.3	+0.5	350	43	+11			

Table 11Reservoir Levels and Storages – July 31, 2012

*Net usable storage above minimum reservoir levels established for power, recreation, irrigation diversions and other purposes.

Reservoir Levels and Storages – December 31, 2012								
	Reservoi	r Elevation	Reservoir Storage in 1,000 AF					
Project	Elevation	12-Month	Total	Above Min.	12-Month			
	(ft msl)	Change (ft)	Total	Level*	Change			
Fort Peck	2226.0	-10.2	13,192	9,104	-2,063			
Garrison	1829.5	-10.0	15,762	10,782	-2,876			
Oahe	1593.5	-13.3	14,907	9,534	-3,608			
Big Bend	1420.8	+0.4	1,666	45	+30			
Fort Randall	1340.0	+1.7	2,440	923	+117			
Gavins Point	1207.7	-0.1	384	77	-1			

Table 12Reservoir Levels and Storages – December 31, 2012

*Net usable storage above minimum reservoir levels established for power, recreation, irrigation diversions and other purposes.

Missouri River System Reservoirs End-of-July Pool Elevations and Total System Storage

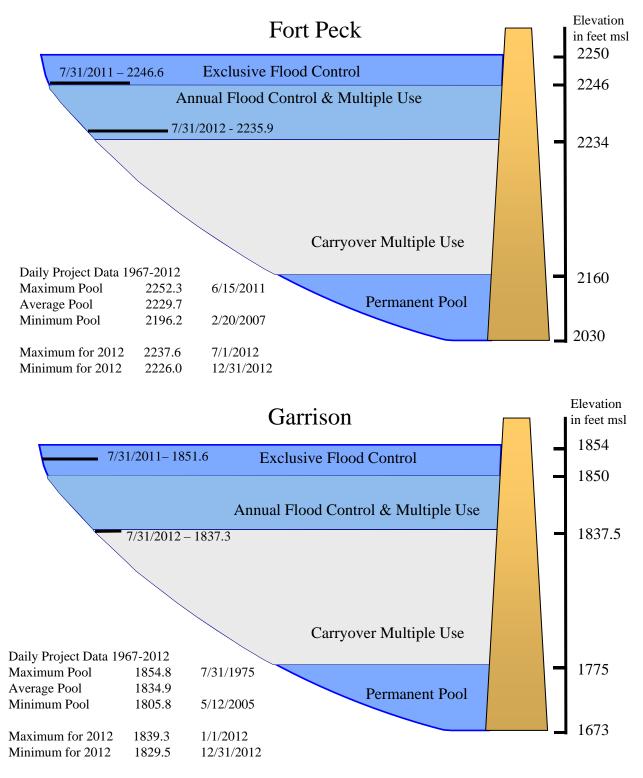


Figure 10A. End of July pool elevations for Fort Peck and Garrison.

Missouri River System Reservoirs End-of-July Pool Elevations and Total System Storage

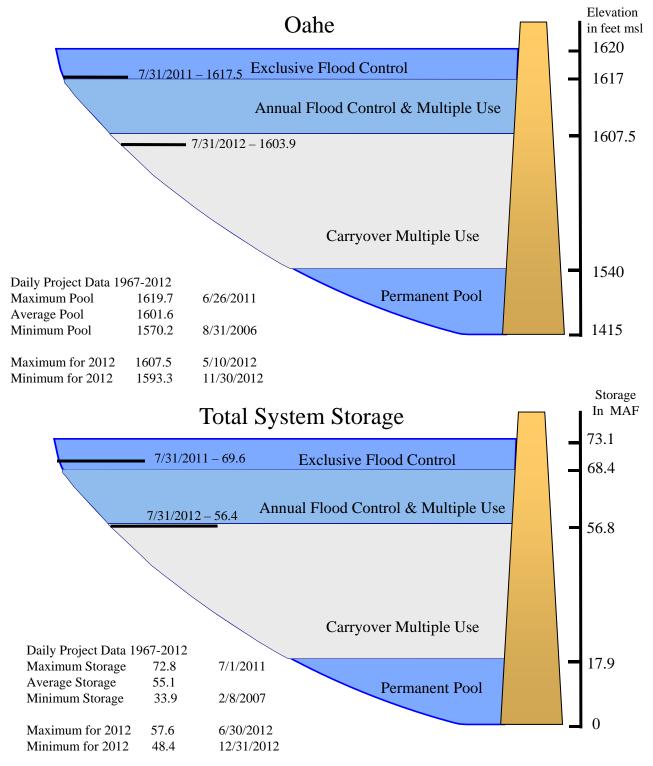
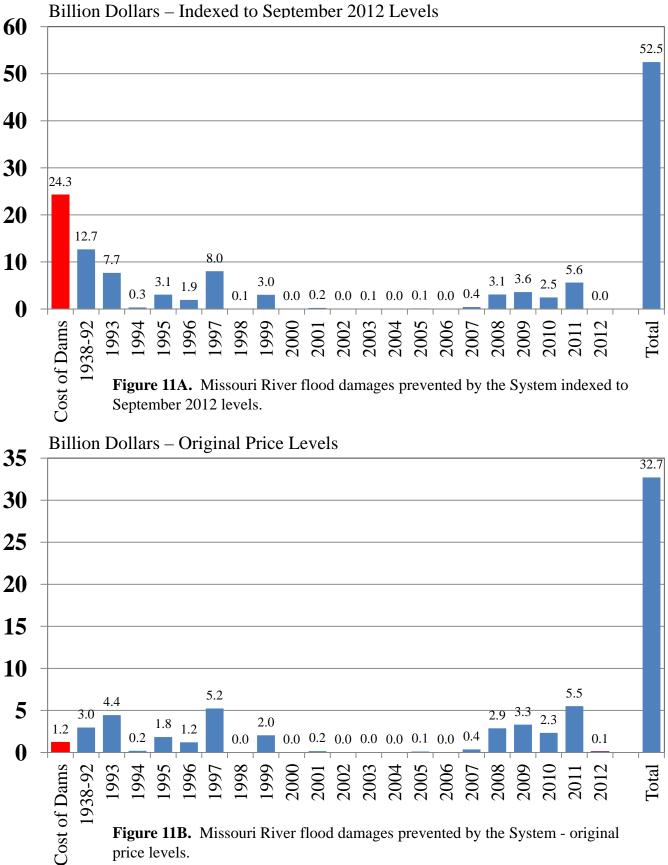


Figure 10B. End of July pool elevation for Oahe and Total System Storage.


F. Summary of Results

1. Flood Control

Following the record runoff and record releases in 2011 and as outlined in the 2011-2012 Annual Operating Plan (AOP), a more flexible posture was taken as water was evacuated during the fall of 2011 and early winter of 2012. If it appeared that 2012 would be another high runoff year, the Corps agreed to aggressively release water during the winter and spring as weather permitted and repair work allowed. This "flexible and aggressive" strategy was implemented during the winter and created 0.7 MAF of additional flood control storage space. As the 2012 runoff season unfolded it became evident that the basin was being impacted by an absence of runoff, rather than an excess of runoff.

The estimated total flood damages prevented by all the Corps controlled reservoir projects in the basin during 2012 were estimated to exceed \$58.1 million (\$54.3 million Omaha District; \$3.8 million Kansas City District). As shown in *Figure 11A*, the estimated total flood damages prevented by the System alone during 2012 were \$48.5 million (\$46.8 million Omaha District; \$1.7 million Kansas City District). The un-indexed flood damages prevented by the System since its construction now total \$32.7 billion, the bulk of which were prevented during the 7-year period from 1993 to 1999 and the 4-year period of 2008 and 2011 (see *Figure 11B*). *Figure 11A* indicates the flood damages prevented indexed to 2012. For comparison purposes, the *Figure 11A* and *Figure 11B* include the construction cost of the dams.

Figure 12 shows the 2012 regulated (actual experienced) and unregulated (with no System reservoirs and tributary reservoirs upstream from them) Missouri River flows at Omaha, NE; Nebraska City, NE and Kansas City, MO.

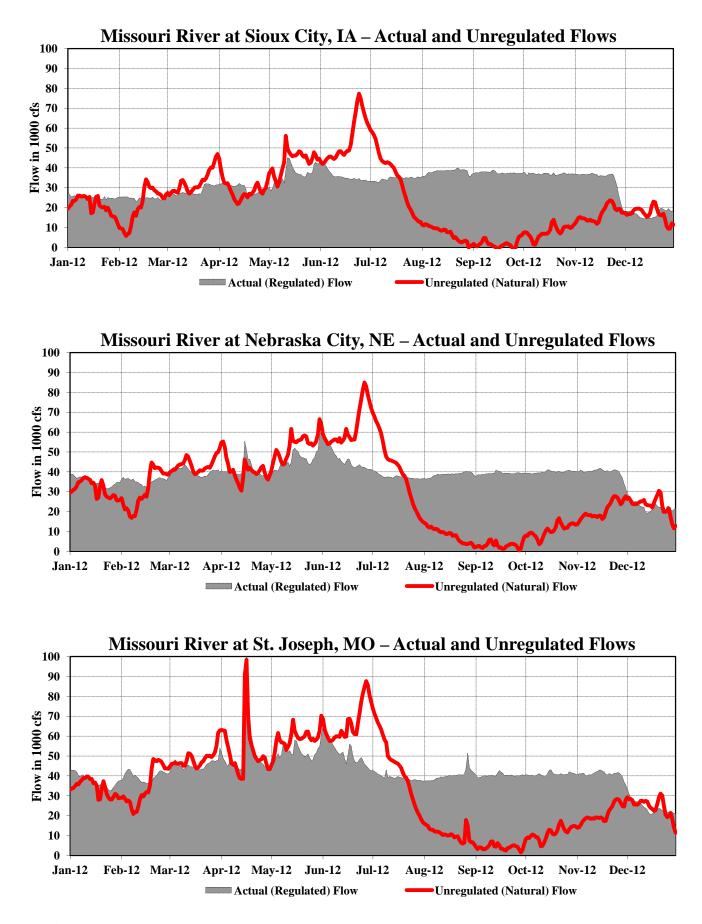


Figure 12. Actual and unregulated flows – Sioux City, IA, Nebraska City, NE and St. Joseph, MO.

2. Irrigation

Federally developed irrigation projects are not being served directly from the System reservoirs. The reservoirs, however, are being utilized by numerous private irrigators as well as Federally financed projects that take water from the Missouri River. About 900 private irrigators pump directly from the reservoirs or river reaches.

3. Water Supply

Problems at municipal and industrial (M&I) intakes located in the river reaches and System reservoirs are related primarily to intake or river access problems rather than inadequate water supply. Intake owners today are generally better prepared to handle periods of low water with adjustments to intakes or regulation procedures. Some of these adjustments involve using warm water to keep ice formation from building up on intake screens, installing new pumps, lowering intakes, installing sediment redirection vanes and ice deflectors, obtaining, or arranging to obtain, alternate sources of water, and cleaning screens more thoroughly and frequently. While these remedial actions are expensive to install and operate, they significantly improved the ability of the intakes to operate at lower river stages and reservoir levels.

Due to the historic releases in 2011, stretches of the Missouri River experienced significant channel degradation. The September 1 storage check called for minimum winter System releases of 12,000 cfs. After significant coordination with the intake owners and operators, it was determined that winter releases for 2012 would be set at 14,000 cfs rather than 12,000 cfs. All intake owners and operators were advised to take necessary action during 2013 so that their intakes are operational in subsequent years for the minimum release rate of 12,000 cfs.

4. Water Quality Control

a. Overview

During 2012 Omaha District conducted long-term, fixed-station ambient water quality monitoring at the System reservoirs and on the lower Missouri River. Water quality conditions of the water discharged through each of the System dams was continuously monitored. An intensive water quality survey of the lower Missouri River was continued and conducted jointly with the Kansas City District and extended from Gavins Point Dam to the river's mouth at St. Louis, Missouri. More detailed water quality monitoring information is available via the Omaha District water quality annual reports.

The Omaha District has identified eight priority water quality issues that have relevance to the System projects. These identified priority issues are:

- 1. Determine how regulation of the System affects water quality in the impounded reservoir and downstream river reaches. Utilize the CE-QUAL-W2 hydrodynamic and water quality model to facilitate this effort.
- 2. Evaluate how eutrophication is progressing in the System reservoirs, especially regarding the expansion of anoxic conditions in the hypolimnion during summer stratification.
- 3. Determine how flow regimes, especially the release of water from System projects, affects water quality in the Missouri River.
- 4. Determine how current water quality conditions in the Missouri River (e.g. water temperature, turbidity) may be affecting pallid sturgeon populations in the Missouri River.
- 5. Provide water quality information to support Corps reservoir regulation elements for effective surface water quality and aquatic habitat management.
- 6. Provide water quality information and technical support to the Tribes and States in the development of their Section 303(d) lists and development and implementation of total maximum daily loads (TMDLs) at Omaha District tributary projects.
- 7. Identify existing and potential surface water quality problems at Omaha District projects and develop and implement appropriate solutions.
- 8. Evaluate surface water quality conditions and trends at Omaha District projects.

Table 11 provides a summary of water quality issues and concerns at each of the System projects based on Omaha District monitoring and a review of current State integrated water quality reports.

b. Occurrence of "Two-Story" Fisheries at System Reservoirs

The Fort Peck, Garrison, and Oahe reservoirs maintain "two-story" fisheries that are comprised of warmwater and coldwater species. The ability of the reservoirs to maintain "twostory" fisheries is due to their thermal stratification in the summer that allows coldwater habitat to be maintained in the deeper, colder region of the reservoir (i.e. hypolimnion). Warmwater species inhabit the warmer, shallower areas of the reservoirs (i.e. epilimnion), while coldwater species inhabit the colder, deeper areas of the reservoirs. Coldwater fish species also provide forage that is used extensively by both the coldwater and warmwater fish species. These

Table 13					
Water Quality Issues and Concerns					

		TMDL Co	onsiderations*			nsumption isories	
Project	On 303(d) List	Impaired Uses	Pollutant/Stressor	TMDL Completed	Advisory in Effect	Identified Contamination	Other Potential Water Quality Concerns
Fort Peck	Yes (MT)	Drinking Water Supply	Lead Mercury	No	Yes	Mercury	
• Fort Peck Lake		Recreation	Aquatic Plants - Native	NA**			
• Missouri River, Fort Peck Dam to the Milk River	Yes (MT)	Aquatic Life Cold Water Fishery	Water Temperature Degraded riparian vegetation Other flow regime alterations	No NA**	No		
• Missouri River, Milk River to the Poplar River	Yes (MT)	Aquatic Life Warm Water Fishery	Water Temperature Degraded riparian vegetation Other flow regime alterations	No NA**	No		
Missouri River, Poplar River to North Dakota	Yes (MT)	Aquatic Life Warm Water Fishery	Water Temperature Other flow regime alterations	No NA**	No		
Garrison • Lake Sakakawea	Yes (ND)***	Fish Consumption	Methyl-Mercury	No	Yes	Mercury	Coldwater fishery during drought conditions Hypolimnetic dissolved oxygen levels
• Missouri River, Garrison Dam to Lake Oahe	No				Yes	Mercury	Low dissolved oxygen in Garrison Dam tailwaters (associated with late summer hypolimnetic lake withdrawals)
Oahe • Lake Oahe	No				Yes	Mercury	Fish consumption advisory issued by the Cheyenne River Sioux Tribe for Lake Oahe within their tribal lands.
Big BendLake Sharpe	Yes	Coldwater Permanent Fish Life	Temperature	No	No		TMDL completed for sediment. A nonpoint source management project is being implemented in the Bad River watershed.
Fort Randall • Lake Francis Case	No				No		Low dissolved oxygen in Fort Randall Dam tailwaters (associated with late summer hypolimnetic reservoir withdrawals)
 Missouri River, Fort Randall Dam to Lewis and Clark Lake 	No				No		
Gavins Point • Lewis and Clark Lake	Yes	Aquatic Life	Nutrients (Total Phosphorus and Total Nitrogen)	No	No		Sedimentation Emergent aquatic vegetation
• Missouri River, Gavins Point Dam to the Big Sioux River	No				No		Reduced suspended sediment and turbidity impacts to pallid sturgeon. Assimilative capacity and flow reduction
• Missouri River, Big Sioux River to Platte River	Yes (NE)	Aquatic Life	Cancer Risk and Hazard Index Compounds (Primarily PCBs and Dieldrin)	No	Yes	Dieldrin PCBs	Reduced suspended sediment and turbidity impacts to pallid sturgeon. Assimilative capacity and flow reduction
• Missouri River, Boyer River to Council Bluffs water supply intake	Yes (IA)	Drinking Water	Arsenic	No	No		
• Missouri River, Platte River (NE) to Kansas	Yes (NE)	Recreation Aquatic Life	E. coli Cancer Risk and Hazard Index Compounds (Primarily PCBs and Dieldrin)	Yes (E. coli)	Yes	Dieldrin PCBs	Reduced suspended sediment and turbidity impacts to pallid sturgeon. Assimilative capacity and flow reduction

Information taken from published state Total Maximum Daily Load (TMDL) 303(d) reports and listings as of January 1, 2011.
 Impairment identified in Montana's integrated report, but not on 303(d) list for development of a TMDL.
 *** Was delisted in 2010 for impairment to Fish and other Aquatic Biota (water temperature and low dissolved oxygen) when Lake Sakakawea pool elevations recovered from drought conditions.

coldwater forage species include the rainbow smelt (*Osmerus mordax*) in Oahe and Garrison and lake cisco (*Coregonus artedi*) in Fort Peck. Maintaining healthy populations of these coldwater forage fish is important to maintaining both the coldwater and warmwater recreational fisheries in the three reservoirs.

c. Bottom Withdrawal Reservoirs

Bottom withdrawal reservoirs have outlet structures located near the deepest part of the reservoir. During the summer thermal stratification period, bottom withdrawal releases cold water from the deep portion of the reservoir that may be hypoxic during periods of stratification. Hypoxic conditions in the hypolimnion can result in the release of water with low dissolved oxygen and high levels of nutrients. Bottom outlets can cause density interflows or underflows through the reservoir and generally provide little or no direct control over the quality of the water released through the bottom withdrawal. Garrison and Fort Randall are bottom withdrawal reservoirs with both their power and flood tunnels drawing water from the bottom of the impounded reservoirs. Fort Peck Reservoir has a near-bottom withdrawal (i.e. 60 feet above the reservoir bottom) for the power and flood tunnels. The power tunnels at Oahe draw water at a mid-depth (i.e. 114 feet above the reservoir bottom); however, the flood tunnels draw water from the bottom of the reservoir. The Big Bend and Gavins Point powerplants both draw water from the bottom of the reservoir, however these are shallower, run-of-the-river reservoirs and water drawn into the powerplants is usually fairly well-mixed through the reservoir water column.

d. Fort Peck Reservoir

Fort Peck is not assigned a coldwater fishery use by the State of Montana in their water quality standards. However, the reservoir supports a stocked put-grow-take salmon fishery and a naturally reproducing lake trout and lake cisco fishery; all are considered coldwater species. Since a coldwater fishery is currently supported in Fort Peck, it is seemingly an existing use and is to be protected pursuant to the Federal Clean Water Act and anti-degradation policy provisions (40 CFR 131.3).

Dissolved oxygen concentrations below Montana's 5 mg/l 7-day mean minimum water quality standard were monitored at the Fort Peck powerplant for the first time in 2012. A Special Water Quality Study was conducted in 2012 to evaluate the situation. When monitored on September 25, the area immediately downstream of the dam to just beyond the energy dissipation structures was below 5 mg/l dissolved oxygen, while the area from just downstream of the energy dissipation structures through the dredge cuts area was just above 5 mg/l. The situation will continued to be evaluated to determine if corrective measures to meet Montana water quality standards may be needed.

e. Garrison Reservoir

The State of North Dakota's water quality standards protect Garrison for Coldwater Permanent Fish Life Propagation (CPFLP) use (i.e. coldwater fishery). As such, a water temperature criterion of \leq 57 degrees F (or 15 degrees C), a dissolved oxygen criterion of \geq 5 mg/l and a minimum volume of 500,000 AF meeting those criteria have been promulgated by North Dakota to protect the coldwater fishery of Garrison.

Water temperature and dissolved oxygen depth profiles that were measured during water quality monitoring conducted at Garrison over the 10-year period 2003 through 2012 were used to estimate the volume of water in the reservoir that meets the coldwater habitat conditions defined by the State of North Dakota. *Plate 3* and *Plate 4* show estimated reservoir and coldwater habitat volumes, by year, for 2003 through 2012. Water quality monitoring in 2012 indicates that North Dakota's 500,000-AF minimum water quality standards criterion for coldwater habitat was seemingly not met.

Dissolved oxygen concentrations below North Dakota's 5 mg/l water quality standard have been monitored in late summer at the Garrison powerplant. To date, there is no evidence of current or past fish kills in Garrison tailwaters. A Special Water Quality Study of the situation is being considered, and the situation will continue to be evaluated to determine if corrective measures to meet North Dakota's water quality standards may be needed.

f. Oahe Reservoir

South Dakota's water quality standards protect Oahe for CPFLP use. As such, a water temperature criterion of ≤ 65 degrees F (or 18.3 degrees C) and a dissolved oxygen criterion of ≥ 6 mg/l have been promulgated by South Dakota to protect the coldwater fishery of Oahe.

The occurrence of coldwater fishery habitat (i.e. water temperature ≤ 18.3 degrees C and dissolved oxygen ≥ 6 mg/l) in Oahe was estimated from water quality monitoring conducted over the 8-year period 2005 through 2012. *Plate 5* shows estimated summer reservoir and coldwater habitat volumes, by year, for 2005 through 2012. At least 1 MAF of coldwater fishery habitat was present in Oahe for all years except 2011. The record releases made from Oahe during 2011 significantly reduced residence time of the water in storage. The lowered residence time was a function of the high releases "flushing" the water through the reservoir and appears to have resulted in greater dissolved oxygen degradation in the hypolimnion as hypoxic water was drawn from the upstream reaches of the reservoir downstream to the dam. This situation was exacerbated by the extensive use of the bottom-withdrawal flood tunnels, which tended to pull water along the bottom of the reservoir.

g. Big Bend Reservoir

The State of South Dakota classifies Big Bend for CPFLP use and currently lists the designated coldwater fishery as impaired due to warm water temperatures. However, during the next triennial water quality standards review, South Dakota may pursue reclassification of Big Bend from a coldwater fishery to a warmwater fishery based on a use attainability assessment of "natural conditions" (personal communication with South Dakota Department of Environment and Natural Resources). Natural summer water temperatures of the Oahe powerplant discharge, especially during lower pool levels, did not meet the temperature requirements for a coldwater fishery use and allow for the support of coldwater fishery habitat in Big Bend during the summer.

h. Fort Randall Reservoir

Hypoxic water is passed through Fort Randall during power production in the summer and dissolved oxygen levels in Fort Randall tailwaters fall below South Dakota's water quality standards' minimum dissolved oxygen criterion of 6 mg/l. The low dissolved oxygen levels in the tailwaters are not seemingly impairing the designated Warmwater Permanent Fish Life Propagation (WPFLP) beneficial use as regions of refugia exist in the impacted area, and there is no evidence of current or past summer fish kills in the tailwaters attributable to hypoxic conditions. If warranted, dissolved oxygen conditions in Fort Randall tailwaters, during periods of hypoxic dam releases, could be mitigated by spilling surface water with higher dissolved oxygen concentrations down the spillway. The situation will continued to be evaluated to determine if corrective measures to meet South Dakota's water quality standards may be needed.

5. Navigation

a. Barge Traffic

The first towboats using the Missouri River in 2012 were the Motor Vessel (*MV*) Jamie Leigh, with an assistant towboat *MV* Halle Kate. Both vessels are owned by Jefferson City River Terminal, which is located at Jefferson City, MO at river mile (RM) 143. The vessels left the terminal on January 31 with two empty barges headed to a Mississippi River cement terminal near St. Louis, MO. On February 1 the vessels returned to the Missouri River with two loaded cement barges destined for Jefferson City, MO. On March 31 the *MV Mary Lynn*, pushing six barges loaded with fertilizer and operated by Hermann Sand and Gravel, was the first towboat to arrive at the AgriServices Terminal, Brunswick, MO (RM 256). On April 15 the *MV Mary Lynn*, pushing three fertilizer-loaded barges, made a second trip passing Kansas City, MO (RM 367) and arrived at Nebraska City, NE (RM 462).

There were three special "high value" product barge moves during 2012: two moves involved powerplant equipment barges and the other move involved three barges loaded with prefabricated bridge steel. The *MV Claude*, owned by McDonough Marine, brought one barge hauling four transformers to the Ameren Calloway plant and arrived on August 15, off-loading at RM 115. The *MV Mary Lynn* transported one barge of four transformers for Nebraska Public Power District's (NPPD) Cooper Nuclear Power Plant. The barge was delivered on June 15 and off-loaded at Brownville, NE (RM 535). The *MV Mary Lynn* brought up two barges of prefabricated bridge steel, arriving at RM 596 on November 20. The *MV Atlas*, owned by Gateway Dredging and Contracting, in tow with the *MV Kathryn Ann*, owned by Hermann Sand and Gravel, brought the third steel barge to RM 471.5 where they met the *MV Mary Lynn*. The *MV Mary Lynn* and *MV Atlas* then proceeded upstream to RM 596 and delivered the third barge arriving on November 23. The estimated total value on the barges for all of these deliveries was \$50 million.

Per the March 15 and July 1 storage checks, the reservoir system had adequate storage to provide for full service navigation flow support with a full 8-month season. The four downstream navigation flow targets were met or exceeded flow support all season. However, downstream of Kansas City, the last target location, the tributary basins that provide incremental flow to the river were in extreme drought conditions. The river channel was designed to provide the 9-foot by 300-foot authorized channel with the help of normal tributary inflows. Due to the dry conditions in the lower basin, extreme low water conditions plagued the downstream 200 miles of the navigation channel all season. The result was multiple groundings, stoppages and delays at several river mile locations: RM 178, 60, 41, 35 and 23. At RM 178 a Missouri River Recovery Program (MRRP) side channel chute sill was damaged during the 2011 flood. Early in the navigation season several tows were delayed at this location due to channel shoaling. With the support of the Corps' NWK Napoleon field office reconnaissance and sill repairs, the channel conditions improved. At RM 41, groundings occurred throughout the month of August. From August 29 to September 17 the Corps field office conducted emergency dredging at this location to assist commercial navigation. On a totally voluntary basis and using their permit, Gateway Dredging Company did conduct sand and gravel mining operations at RM 41 for their own purposes.

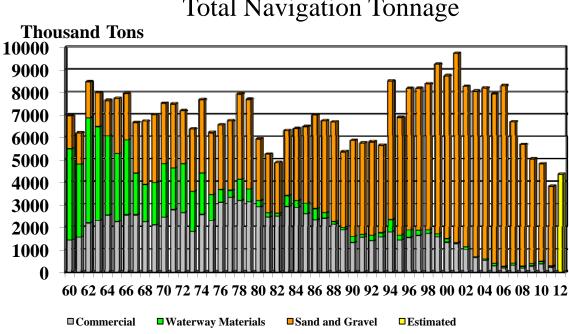
The *MV Jamie Leigh* was the last towboat to use the river during the calendar year. On December 3, after flow support for navigation had ceased, the vessel entered the river with four loads of cement destined for Jefferson City, MO. The *MV Jamie Leigh* was temporarily grounded and stopped from proceeding at RM 34.5 by a channel shoal. The company decided to tie up at RM 28 in a standby status and wait for more favorable channel conditions to finish the trip. There were no tows with a Sioux City, IA (RM 735); Blair, NE (RM 648); or Omaha, NE (RM 616) destination during 2012. The farthest upstream move was to move the bridge steel to RM 596.

b. Tonnage

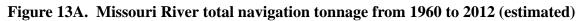
Table 14 shows the Missouri River tonnage data for 2008 – 2011 compiled by the Waterborne Commerce Statistics Center (WCSC). The 2011 total of 3,832 thousand tons includes 3,548 thousand tons for sand and gravel, 77 thousand tons for waterways materials and 230 thousand tons for long-haul commercial tonnage. In 2011 the total commercial tonnage decreased by almost a million tons compared to 2010. The 2011 long-haul tonnage of 230 thousand tons decreased by 150 thousand tons from 2010. As outlined in the Summary of Actual 2011 Regulation, the Missouri River Flood of 2011 impacted the total tonnage and the long haul tonnage as portions of the river were closed for several months to all vessel traffic by the Coast Guard to protect levee integrity. The largest total tonnage year was 2001 at 9,730 thousand tons. The largest long-haul commercial tonnage, excluding sand, gravel and waterway material, occurred in 1977 at 3,340 thousand tons. Figure 13A shows total navigation tonnage on the Missouri River. Total tonnage for 2011 is final; the total 2012 tonnage is estimated. Figure 13B shows the long-haul commercial navigation tonnage not including sand, gravel and waterway materials. The Missouri River long-haul commercial tonnage in 2011 is final. The long-haul commercial tonnage in 2012 is currently estimated to total about 350 thousand tons, based on carrier interviews, towboat activity and barge counts from the Corps' daily boat reports. Figure 14A shows the navigation tonnage value of the commodities since 1960, using 2013 presentworth computations. *Figure 14B* shows the navigation tonnage value of long-haul commercial commodities since 1960. The Figures 13A, 13B, 14A and 14B tonnages and tonnage values for 2012 are estimates and will change once final WCSC tabulations are available.

Navigation season target flows for past years are given in *Table 15*. *Table 16* shows the scheduled lengths of past System-supported navigation seasons, with total tonnage and ton-miles for each year.

c. Kansas River Projects


From mid-July to early August supplemental flow support was provided by three of the NWK Kansas River projects: Tuttle Creek, Perry and Milford, as noted in *Table 17*. Storage in each of these three projects is authorized to be used to supplement Missouri River navigation either: (1) as a drought conservation measure to minimize impact on the mainstem reservoirs or (2) as a measure to minimize take of endangered species nesting below the mainstem dams. According to the agreement with the State of Kansas, the Corps can use 3 feet of storage (from

Commodity Classification Group	2008	2009	2010	2011
Farm Products	0	18	35	21
Corn	0	4	13	6
Wheat	0	0	0	0
Soybeans	0	14	23	15
Misc Farm Product	0	0	0	0
Nonmetallic Minerals	5415	4666	4388	3588
Sand/Gravel	5415	4649	4346	3548
Misc Nonmetallic	0	17	42	39
Food and Kindred	16	32	36	0
Pulp and Paper	0	0	0	0
Chemicals	5	26	72	49
Fertilizer	4	24	70	49
Other Chemicals	1	2	1	0
Petroleum (including coke)	87	120	118	44
Stone/Clay/Glass	55	57	76	77
Primary Metals	0	0	0	0
Waterway Materials	81	117	105	53
Other	12	0	0	0
Total Commercial	5671	5036	4831	3832
Total Long-Haul Commercial	175	270	380	230


Table 14Missouri River Tonnage by Commodity (1000 Tons)

the base of flood control zone) out of each reservoir prior to October 1 and an additional 3 feet thereafter. During 2012, the Kansas River project storage was used to meet navigation targets solely as a measure to minimize take. Several low elevation nests below Gavin Point would have been inundated with additional releases that were needed to meet the Kansas City navigation target. By mid-August the eggs had hatched, the chicks were able to move themselves to higher ground and all downstream navigation targets were met with releases from the mainstem projects. The pool drawdown from Milford, Tuttle Creek and Perry was 2.9, 2.9 and 2.6 feet, respectively.

Figure 15 presents discharge data at Sioux City, IA; Nebraska City, NE; and Kansas City, MO, three of the four navigation target locations for 2012. The navigation target at Sioux City was missed during a portion of April, however, there was no commercial navigation occurring in that reach at that time. *Figure 16* presents the same information as *Figure 15* but focuses on a smaller flow range during the 8-month navigation season to better depict the Kansas River project flow support as well as the lack of incremental runoff at each of these locations from July to November.

Missouri River Total Navigation Tonnage

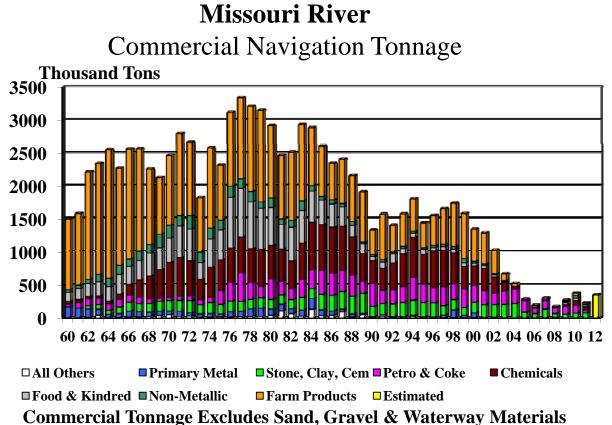
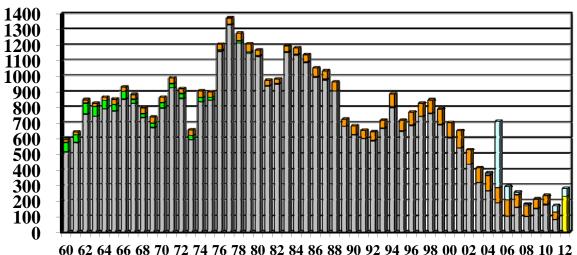



Figure 13B. Missouri River commercial navigation tonnage from 1960 to 2012 (estimated)

Missouri River

Total Navigation Tonnage Value - 2013 Present Worth Million \$

Missouri River

Commercial Navigation Tonnage Value - 2013 Present Worth

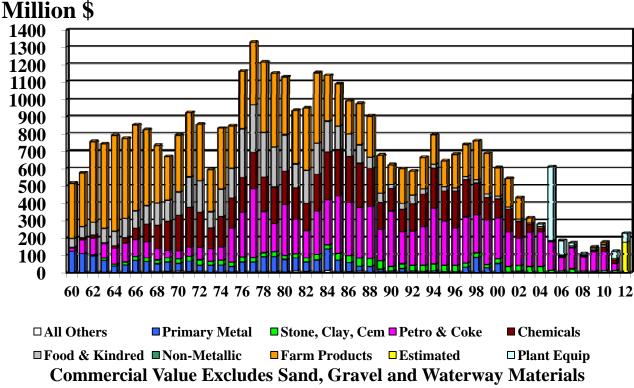


Figure 14B. Commercial navigation tonnage value using 2013 present worth computations

Table 15 **Navigation Season Target Flows** (1000 cfs)

<u>Year</u> 1967	<u>Months</u> Apr-Jun	Sioux City 28	Omaha 28	<u>Nebraska City</u> 34	<u>Kansas City</u> 38
	Jul-Nov	31	31	37	41
1968	Apr-Nov	31	31	37	41
1969	Apr-Jun(1)	35-40	35-40	41-46	45-50
	Jul(1)	36	36	42	46
	Aug-Sep(1)	50-55	50-55	55-60	55-60
	Oct-Nov(1)	40-45	40-45	45-50	50-55
1970	Apr-May	31	31	37	41
	May-Sep(1)	36	36	42	46
	Oct-Nov(1)	40	40	46	50
1971	Apr-May(1)	36	36	42	46
	May-Nov(1)	45-50	45-50	50-55	55-60
1972	Apr-Nov(1)	40-50	40-50	45-55	50-60
1973-74	Apr-Nov	31	31	37	41
1975	Apr	31	31	37	41
	May-Nov(1)	35-60	35-60	41-66	45-70
1976	Apr-Jul(1)	34-38	34-38	40-44	44-48
	Aug-Dec(1)	31-34	31-34	37-40	41-44
1977	Apr-Nov	31	31	37	41
1978	Apr	31	31	37	41
	May-Jul(1)	35-46	35-46	41-52	45-56
	Aug-Nov(1)	46-51	46-51	52-57	56-61
1979	Apr-Jul(1)	36-42	36-42	42-48	46-52
	Aug-Nov(1)	31-36	31-36	37-42	41-46
1980	Apr-Nov	31	31	37	41
1981	Apr-Nov(2)	31	31	37	41
1982	Apr-Sep	31	31	37	41
	Oct	31-36	31-36	37-42	41-46
	Nov-Dec(1)	36-46	36-46	42-52	46-56
1983	Apr-Jun	31	31	37	41
	Jul	31-36	31-36	37-42	41-46
	Aug-Nov(1)	36	36	42	46
1984	Apr-Jun	31	31	37	41
1005	Jul-Dec(1)	31-44	31-44	37-50	41-54
1985	Apr-Dec	31	31	37	41
1986	Apr(1)	36-41	36-41	42-47	46-51
1007	May-Dec(1)	41-46	41-46	47-52	51-56
1987	Apr-Nov	31	31	37	41
1988	Apr-Nov(2)	31	31	37	41
1989	Apr-Aug(3)	28	28	34	38
1990-93	Sep-Oct(3)	28 25	28	34 31	35 35
1990-93	Apr-Oct(4) Apr-Dec	31	25 31	31	41
1994	Apr-May	31	31	37	41 41
1995	Jun-Dec(1)	46-56	46-56	52-62	56-66
1996	Apr(1)	40-50	41	47	51
1990	May(1)	41-51	41-51	47-57	51-61
	Jun-Dec(1)	56	56	62	66
1997	Apr-Dec(5)	*	*	*	*
1998	Apr-Dec(5)	31	31	37	41
1999	Apr-Dec(1)	31-43	31-43	37-49	41-53
2000	Apr-Jun	31	31	37	41
2000	Jul-Dec(3)	29.5	29.5	35.5	39.5
2001	Apr-Dec(3)	28	28	34	38
2002	Apr-Jun(3)	27	27	33	37
	Jul-Dec(3)	25	25	31	35
2003	Apr-Nov(4)	25	25	31	35
2004-08	Apr-Oct(6)	25	25	31	35
2004-00	Apr-Nov(7)	25/31	25/31	31/37	35/41
2010	Apr-Dec(1)	31-43	31-43	37-49	41-53
2010	Apr(1)	31-41	31-41	37-47	41-51
	mid-Apr(1)	41-46	41-46	47-52	51-56
	May(1)	46-56	46-56	52-62	56-66
	mid-May(5)	*	*	*	*
2012	Apr-Dec	31	31	37	41
	-				

(1) Downstream flow targets above full-service navigation level as a flood control storage evacuation measure.

(2) Full service flows provided for shortened season.

(3) Navigation targets below full service as a water conservation measure.

(4) Navigation targets at minimum service as a water conservation measure.

(5) Releases determined by flood control storage evacuation critiera and not adjusted to meet specific navigation targets.

(6) Minimum service targets at Sioux City and Omaha not met during periods when there was no navigation in those reaches.(7) Minimum service targets at Sioux City were not met during periods when there was no navigation in those reaches.

Table 16 Missouri River Navigation Tonnage and Season Length

	Tonnage and Season Length						
	Reservoir System						
	Supported Length		Total				
	of Season	Commercial	Traffic	Total Traffic			
<u>Year</u>	(Months)	<u>(Tons) (1)</u>	(Tons) (2)	(1,000 Ton-Miles) (2)			
1967 (3)	8	2,562,657	6,659,219	1,179,235			
1968	8 (4)	2,254,489	6,724,562	1,047,935			
1969	8 (4)	2,123,152	7,001,107	1,053,856			
1909	8 (4) 8 (5)	2,462,935	7,519,251	1,190,232			
1970	8 (4)	2,791,929	7,483,708	1,329,899			
1971	8 (4)	2,665,579	7,182,841	1,280,385			
1972	8 (4)	1,817,471	6,370,838	844,406			
1973	8 8	2,576,018					
1974	8 8 (4)		7,673,084	1,227,525			
		2,317,321	6,208,426	1,105,811			
1976	8 (4)	3,111,376	6,552,949	1,535,912			
1977	8	3,335,780	6,734,850	1,596,284			
1978	8 (4)	3,202,822	7,929,184	1,528,614			
1979	8 (4)	3,145,902	7,684,738	1,518,549			
1980	8	2,909,279	5,914,775	1,335,309			
1981	7 1/4 (6)	2,466,619	5,251,952	1,130,787			
1982	8 (4)	2,513,166	4,880,527	1,131,249			
1983	8 (4)	2,925,384	6,301,465	1,300,000			
1984	8 (4)	2,878,720	6,386,205	1,338,939			
1985	8 (4) (7)	2,606,461	6,471,418	1,201,854			
1986	8 (4) (7)	2,343,899	6,990,778	1,044,299			
1987	8	2,405,212	6,735,968	1,057,526			
1988	7 1/2	2,156,387	6,680,878	949,356			
1989	6 3/4	1,906,508	5,352,282	796,799			
1990	6 3/4	1,329,000	5,841,000	552,509			
1991	6 3/4	1,563,000	5,729,000	537,498			
1992	6 3/4	1,403,000	5,783,000	593,790			
1993	8 (8)	1,570,000	5,631,000	615,541			
1994	8	1,800,000	8,501,000	774,491			
1995	8 (4)	1,439,000	6,884,000	604,171			
1996	8 (4)	1,547,000	8,165,000	680,872			
1997	8 (4)	1,651,000	8,172,000	725,268			
1998	8 (4)	1,735,000	8,379,000	777,727			
1999	8 (4)	1,576,000	9,252,000	699,744			
2000	8	1,344,000	8,733,000	628,575			
2001	8	1,288,000	9,732,000	566,150			
2002	8 (9)	1,009,000	8,266,000	409,980			
2003	8 (10)	667,000	8,050,000	256,788			
2003	6 1/2 (11)	525,498	8,192,219	181,995			
2005	6 1/2 (11)	284,641	7,935,747	129,882			
2005	6 1/2 (11)	195,290	8,295,226	84,483			
2000	6 3/4 (11)	302,769	6,684,625	119,177			
2007	7 (11)	174,800	5,670,968	86,203			
2008	8	269,563	5,035,744	114,865			
2009	8 8(4)	379,492	4,829,714	132,747			
2010	8(4) 8(4)	230,439(12)	3,831,925(12)	62,253(12)			
2011	8	350,000(13)	4,350,000(13)	100,000(13)			
2012	0	330,000(13)	4,350,000(15)	100,000(15)			

(1) Includes commercial tonnage except for sand and gravel or waterway materials. Tonnage compiled by Waterborne Commerce Statistics Center (WCSC).

(2) Includes commodities; sand, gravel, and crushed rock; and waterway improvement materials. Tonnage by WCSC.

(3) Mainstem Reservoir System first reached normal operating storage level in 1967.

(4) 10-day extension of season provided.

(5) 10-day extension and 10-day early opening provided.

(6) Full service flows for shortened season in preference to reduced service.

(7) 10-day extension provided for 1985 season in trade for 10-day delayed support of 1986 season.

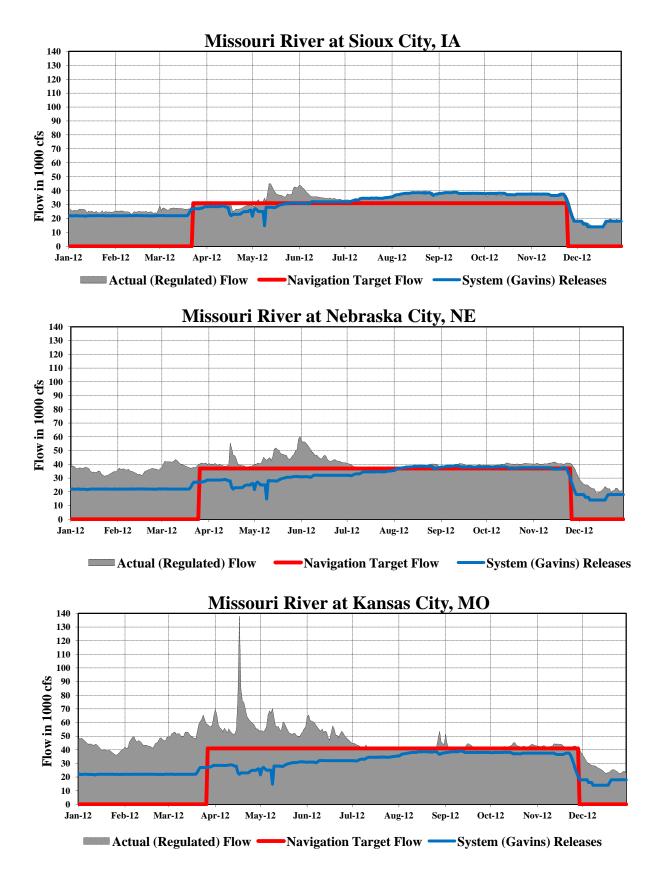
(8) Lower Missouri River closed: 57 days in 1993, 20 days in 1995, and 18 days in 1999.

(9) To protect endangered shore birds below Gavins Point Dam, the Corps did not support navigation from July 3 to August 14, 2002. Average days towing industry off the river was 23 days.

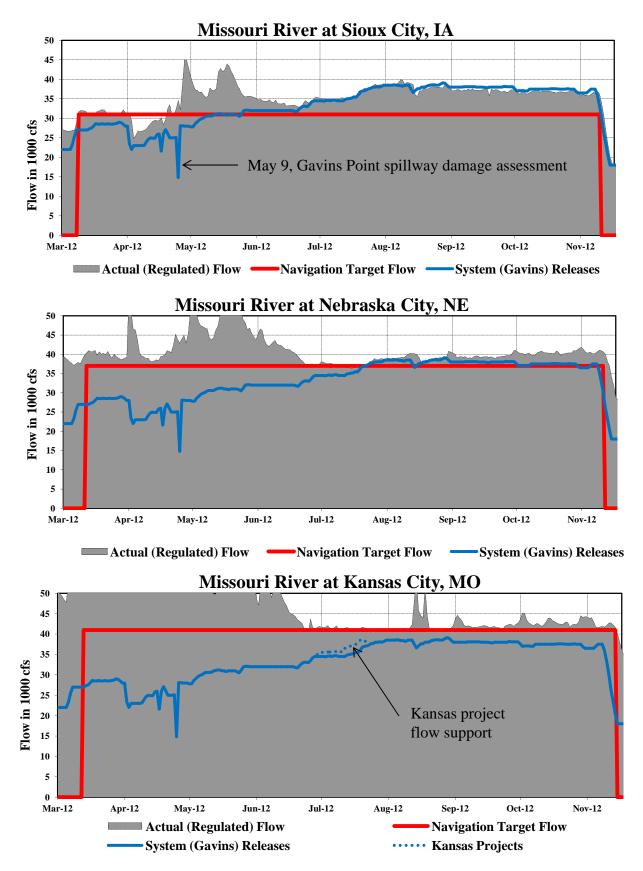
(10) 6-day shortening of season to follow CWCP. From Aug 11 to Sep 1 Corps did not support navigation flows to comply with lawsuit to follow 2000 Biological Opinion. Navigation industry left the river during this period.

(11) Season shortening; 47-days, 2004; 48-days, 2005; 44-days, 2006; 35-days, 2007; 30-days, 2008

(12) Preliminary


(13) Estimated using boat report barge counts.

Date*	Increase (cfs)	De Soto target	Decrease (cfs)	De Soto target
		flow (cfs)		flow (cfs)
July 12	500	1500		
July 14	500	2000		
July 23	1000	3000		
July 30	500	3500		
July 31 – August 3			2100	n/a
August 5			400	1000


 Table 17

 Navigation Flow Support – Kansas River Projects

*Indicates when releases from projects arrived at De Soto, KS. Travel times from Milford, Tuttle Creek and Perry to De Soto are approximately 4-6, 3-5 and 1-1.5 days, respectively. The range indicates when the release starts arriving and when it becomes fully effective. Travel time from De Soto to the Missouri River at Kansas City target location is approximately 1 day.

Figure 15. Actual flow, System releases and navigation target flows – Sioux City, IA; Nebraska City, NE and Kansas City, MO.

Figure 16. Actual flow, System releases and navigation target flows – Sioux City, IA; Nebraska City, NE and Kansas City, MO.

6. Hydropower Generation

The hydropower energy generated by the System is transmitted over a Federal transmission system that traverses 7,886 circuit miles. During 2012, service was provided to over 360 wholesale customers. Customers receiving service include 200 municipalities, 3 Federal agencies, 30 state agencies, 27 USBR projects, 5 irrigation districts, 36 rural electric cooperatives, 7 public utility districts, 12 private utilities, 25 Native American Services and 20 power marketers. Additional benefits were provided by the interconnections to the Southwestern Power Administration (SWPA) and Bonneville Power Administration (BPA) and other areas of the Western Area Power Administration (Western).

Per the Omaha Public Power District (OPPD) statistics, the average OPPD customer uses approximately 11,750 kilowatt hours (kWh) of energy annually. Based upon the total System generation of 10.4 billion kWh, the energy generated in 2012 by this portion of the Federal power system could have supplied all of the yearly needs of about 885,000 residential OPPD customers. In addition to the clean, renewable energy transmitted to the Midwest area, System hydropower provides an added measure of stability to the regional power system with the ability to meet full load in 5 seconds or less. Large coal-fired and nuclear units are reinforced by idle hydropower units, typically in 30 seconds. Outside utilities benefit through reserve sharing by calling on the hydropower capability within several minutes of a known problem. In addition, hydropower generation can be integrated with wind generation to provide balance to the regional power system. This balance is achieved by using hydropower to rapidly respond to the increased power system variation and forecast errors caused by wind. Currently, there is approximately 806 MW of wind generation capability in Western's balancing area.

The excellent reliability of System hydropower is indicated by having to maintain a 7 percent reserve, while thermal power must maintain a 12 percent reserve. Although the Federal hydropower that serves the Missouri River region accounts for only 9 percent of the region's energy, it is large enough to fill gaps and provide a positive benefit to the integrated system.

Hydropower generation in 2012 was 10.4 billion kWh, which was 111 percent of average since the System first filled in 1967. The 2012 generation was 0.7 billion kWh less than the 2011 generation of 11.1 billion kWh and 5.5 billion kWh more than the record low of 4.9 billion kWh, set in 2008. Generation was above average in 2012, largely due to the increased releases from the System projects to support navigation flows. Releases to support navigation were higher than normal due to tributary flows downstream of Gavins Point being much lower than normal due to the ongoing drought. Western purchased about 2.2 billion kWh between January 1 and December 31 at a cost of \$80.1 million to supplement System hydropower production.

System generation with individual project distribution for each calendar year in million megawatt hours (MWh) since 1954 is shown on *Figure 17*. The total generation from the Federal system (peak capacity and energy sales) for 2012 is shown in *Table 18*. The tabulations in *Table 19* and *Table 20* summarize the total gross generation and power regulation for the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP) marketing area system for the past operating year. Actual settlement figures at the end of the billing periods differ somewhat from the calendar month figures shown.

	Energy Generation 1000 kWh	Peak Hour kW	Generation Date
Corps Powerplants – Mainstem			
Fort Peck	1,163,830	194,000	Jun 18
Garrison	2,491,152	412,000	Feb 18
Oahe	2,908,388	679,000	Jun 20
Big Bend	1,114,849	422,000	Sep 12
Fort Randall	1,962,380	353,000	Aug 31
Gavins Point	752,990	115,000	Jun 2
Corps Subtotal	10,393,589	2,079,000	Aug 3
USBR Powerplants			
Canyon Ferry	324,864	53,000	January
Yellowtail*	291,230	74,500	January
USBR Subtotal	616,094	128,000	
Federal System Total	11,009,683	2,207,000	

Table 18Gross Federal Power System Generation – January 2012 through December 2012

* Includes only half of total Yellowtail generation, which is marketed by the Eastern Division, P-S MBP.

System Power Generation 1954 - 2012

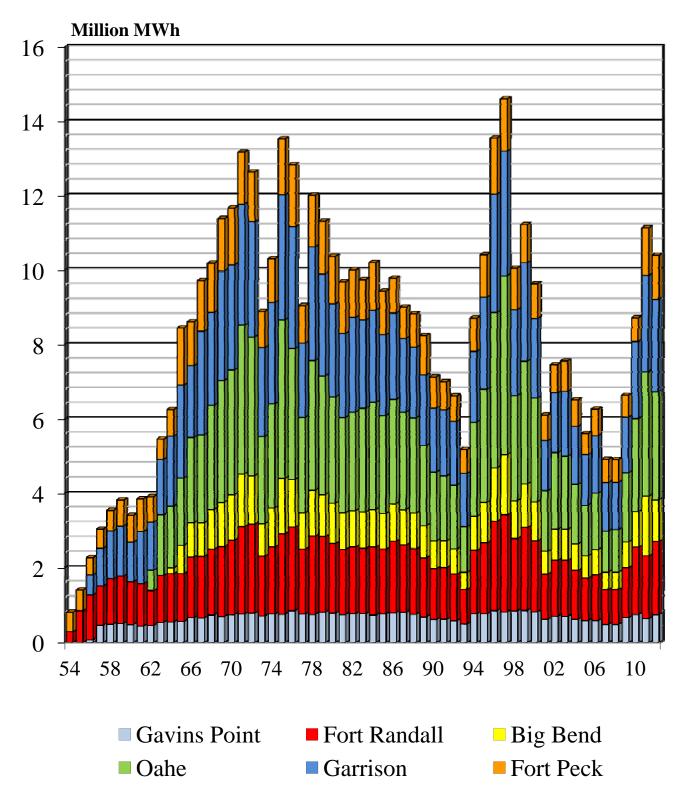


Figure 17. System power generation by project from 1954 to 2012.

Table 19 Historical Generation and Load Data – Peaks Eastern Division, Pick-Sloan Missouri Basin Program* Data at Plant (1000 kW) January 1, 2012 through December 31, 2012

Period	Corps of Engineers Hourly Generation (Gross)**	(plus)	USBR Hourly Generation (Gross)**	(equals)	Federal Hour Generation (Gross)**	(plus)	Interchange and Purchases Received**	(equals)	Peak Total System Load	Peak Date	Peak Hour
January	1,732		110		1,842		1,842		1,892	Jan 26	1900
February	1,604		109		1,713		1,713		2,223	Feb 27	800
March	1,510		109		1,619		1,619		1,669	Mar 28	800
April	1,806		126		1,932		1,932		1,977	Apr 10	800
May	1,598		82		1,680		1,680		1,730	May 31	1300
June	2,018		73		2,091		2,091		2,191	Jun 18	1800
July	2,036		72		2,108		2,108		2,262	Jul 30	1600
August	2,079		71		2,150		2,150		2,252	Aug 03	1600
September	1,928		64		1,992		1,992		2,042	Sep 03	1500
October	1,763		65		1,828		1,828		1,878	Oct 04	2000
November	1,741		61		1,802		1,802		1,852	Nov 23	1800
December	1,956		75		2,031		2,031		2,497	Dec 25	1900

* This tabulation summarizes the total gross generation and power operations for the Eastern Division marketing area system shown on Table 18.

** During hour of peak total system load.

Table 20Historical Generation and Load Data – TotalEastern Division, Pick-Sloan Missouri Basin Program*Data at Plant (1000 kWh)January 1, 2012 through December 31, 2012

Period	Corps of Engineers Generation (Gross)	(plus)	USBR Generation (Gross)	(equals)	Federal Generation (Gross)	(plus)	Scheduled Interchange and Purchases Received	(equals)	Total System Load
January	843,790		70,078		913,868		22,741		936,609
February	729,959		67,298		797,257		75,808		873,065
March	738,252		61,895		800,147		41,025		841,172
April	821,571		55,101		876,672		4,742		881,414
May	844,874		49,487		894,361		9,456		903,817
June	950,007		45,046		995,053		43,081		1,038,134
July	1,062,093		47,397		1,109,490		106,028		1,215,518
August	1,105,582		44,647		1,150,229		13,408		1,163,637
September	997,830		39,953		1,037,783		4,657		1,042,440
October	894,320		34,736		929,056		4,046		933,102
November	836,398		38,033		874,431		25,991		900,422
December	568,923		43,039		611,962		375,066		987,028

*Powerplants from Table 18.

7. Recreation

The System reservoirs provide outstanding opportunities for boating, fishing, swimming, camping and other outdoor recreation pursuits. Tourism related to the reservoirs is a major economic factor in all of the states adjoining the System. However, when the reservoirs are drawn down due to extended drought periods, as they were in some recent years, recreation may be adversely affected primarily due to access issues. Most of the recreational impacts of drought are experienced at Fort Peck, Garrison and Oahe, the upper three reservoirs. Due to the manner in which they are regulated, the lower three reservoirs are not significantly impacted by drought. In 2012, reservoirs levels during the first half of the year were near normal. However, as drought conditions continued into the late summer, reservoirs levels began to drop, which impacted recreation sites at some reservoirs.

Access areas at the upper three reservoirs include Corps-owned as well as Tribal, state and privately-owned facilities. In 2002, many of the Federal recreation areas and boat ramps in South Dakota were turned over in fee title to the State of South Dakota and the Bureau of Indian Affairs through the Title VI process. Since the land transfer, both the Federal treasury and the Corps have provided money to the South Dakota Game Fish and Parks, Cheyenne River Sioux Tribe and Lower Brule Sioux Tribe for operations and stewardship of the Title VI lands they received. Congress is also capitalizing a trust fund to cover these costs in the future.

At the time this report was being prepared, visitation data was only available for the January through September period of 2012. For this period, public use at the System reservoirs totaled 45,153,500 visitor hours, an 8 percent increase from 2011. The annual visitation data will be updated when the October through December period is available. Visitor attendance figures at the System reservoirs from 2008 through 2012 are shown in *Table 21. Figure 17* displays recreation-related visitor hours at each of the six System projects for the years 1954 through 2012. Although the drought had an impact on visitation during the years from 2000-2007, much of the reduction shown in *Figure 17* is attributed to the data collection changes associated with the South Dakota Title VI land transfer mentioned previously. Since the land transfer occurred, the Corps has not collected visitation in South Dakota presented in *Table 22* and *Figure 17* reflects water-related use on the reservoirs but not the visitation at the campgrounds that were turned over to South Dakota and the Tribes.

The reporting method was changed from recreation days to visitor hours in 1987. All Corps projects, including the System projects, are now reporting visitation using the Visitation Estimation Reporting System (VERS).

In the 2011, a number of recreation areas were unusable due to the high reservoir levels and record project releases. In that year, the number of visitors increased but overall visitor hours declined due to the closure of areas such as campgrounds that tend to be used for longer periods. The 8 percent increase in visitor hours for 2012 is attributed to the availability of many of those same recreation areas.

		it bystem Kest		= === = == = = = = = = = = = = = = = = =	
Mainstem					Percent
Project	2009	2010	2011	2012*	Change
110jeet	2007	2010	2011	2012	2011-2012*
Fort Peck	5,820,400	6,173,900	6,455,300	6,666,900	+3
Garrison	13,773,900	15,698,700	14,190,300	15,233,400	+7
Oahe	9,322,300	9,503,100	6,964,900	10,863,700	+56
Big Bend	3,210,200	3,346,500	2,528,100	2,651,700	+5
Fort Randall	1,030,900	1,067,000	1,108,500	860,300	-22
Gavins Point	8,880,300	9,410,000	10,737,500	8,877,500	-17
System Total	42,038,100	45,199,200	41,984,600	45,153,500	+8

Table 21Visitation at System Reservoirs (Visitor Hours)

*2012 visitor hours are for January to September only.

System Visitation 1954 - 2012

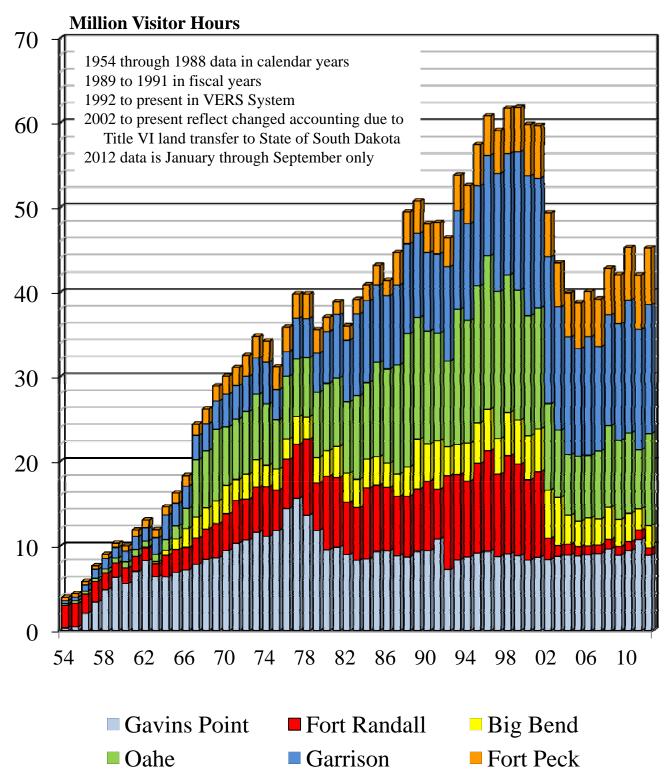


Figure 18. System visitation by project from 1954 to 2012.

8. Fish and Wildlife

a. Fish Management

Rainbow smelt are the primary forage species in both Garrison and Oahe reservoirs. Successful rainbow smelt reproduction is dependent on many factors including stable reservoir levels during the smelt spawning period, generally in April and early May. Most eggs are laid in water less than 1 foot deep and are subject to desiccation through wave action and slight drops in water level.

With the return of the drought and lower reservoir levels in 2012, forage fish production was again a major concern in the upper three large reservoirs. Coupled with the high entrainment experienced during the flood of 2011 and the lower reservoir levels in 2012, forage fish production was more dire in Oahe than in Garrison. Gizzard shad have been stocked in both reservoirs to supplement the rainbow smelt forage base.

- b. Threatened and Endangered Species
- (1) Pallid Sturgeon

The bimodal spring pulse from Gavins Point was not conducted in 2012, as detailed in section II.C.6.c. of this report.

(2) Piping Plovers and Least Terns

Since 1986 the System has been regulated for the threatened piping plover (plover) and endangered least tern (tern), when they were federally listed. The terns and plovers nest on sparsely vegetated sandbars, islands and shoreline of the Missouri River and the reservoirs. Real-time telemetered streamgaging stations have been installed along the Missouri River to monitor river stages and flows during the nesting season. These gages provide a check, as well as a stage history, throughout the season to help relate the effects of regulation and natural events at intervals along the river. The gage data must be supplemented with observations of nesting activities and conditions to provide the information that is needed for regulation of the reservoirs. A dynamic flow routing model has been developed to predict river stages along the river reaches downstream from the Fort Peck, Garrison, Fort Randall, and Gavins Points for different combinations of daily and hourly power peaking; however, the cross-sectional data needs to be updated following the 2011 Flood.

Beginning in 1999, Omaha District created a computerized threatened and endangered (T&E) species Data Management System (DMS). Report data, which is updated daily, includes nest records, census and productivity data, site descriptions, field journals and field observations. This database is a valuable tool in aiding regulation decisions benefiting the terns and plovers in years when the reservoirs are regulated to protect nesting terns and plovers.

Although the Corps prevented inundation of nests where possible and created habitat following the listing, fledging ratios continued to be lower than predicted by the USFWS 1990 Biological Opinion until 1998, when fledge ratios exceeded the goal for both species. Predation, habitat degradation, severe weather, nest inundation, record runoff and other factors contributed to the low fledging rates. The record fledging that occurred for both species between 1998 and 2005 is primarily attributed to the large amount of habitat created by the high runoff years of 1995, 1996 and 1997 and the declining reservoir levels during the 2000-2007 drought. The creation of additional habitat has also allowed greater flexibility in the release levels at Fort Randall and Gavins Point, the lower two System projects.

During 2012 the majority of terns and plovers were found on the Gavins Point Reservoir constructed habitat. The record runoff above the System during 2011 created an abundance of high elevation nesting habitat throughout the System. This habitat allowed for the production of a large number of T&E fledged birds during 2012. A detailed description of the factors affecting tern and plover nesting, fledge ratios and habitat conditions and creation activities can be found in the Missouri River Recovery Program 2012 Annual Report (<u>www.moriverrecovery.org</u>).

The population distribution and productivity for terns and plovers for 1986 through 2012 are shown in *Table 22* and *Table 23*, respectively. Productivity estimates for these birds on the Missouri River do not include terns and plovers raised in captivity from 1995 to 2002. Adult bird totals listed in *Table 22* and *Table 23* are considered breeders even though they may not have had nesting success. The term "fledglings/pair" refers to the number of young birds produced per breeding pair. The fledge ratio is an estimate, as the fate of every single fledgling is impossible to ascertain.

Interior Least Tern Survey Data Missouri River System Table 22

		1986	1987 1	1988	1989	1990	1991 1	1992 1993	33 1994	1995	1996	1997	1998	1999	2000	2001	2002	2003 2	2004 20	2005 20	2006 20	2007 2008	38 2009	9 2010	2011	2012
Fort Peck Lake	Lake																									
	Adults	,	4		4	6 1	10 0	2	6	0	0	0	4	0	0	0	0	2	0	2	7	0	0	0	0	0
	Fledglings/Pair	-	-	0 3.	3.00	- 0.	0.40 {}	0	0.44	0	0	0	0	0	0	0	0	0 0	0	3	0	0	0	0	0	
								-					-					-			-					
Fort Peck t	Fort Peck to Lake Sakakawea												-	-		-		-								
	Adults	,	-	18 4	48	92 6	66 110	0 31	58	95	128	162	25	40	13	39	34	38 48	34	36	17	22	46	26	0	0
	Fledglings/Pair		- 0.3	0.33	0 0.	0.17+ 0.5	0.55+ 0.25+	5+ 0.45+	1.41	+ 0.99+	0.33	0.53	.1.52	1.70	0.15 (0.97 0	0.59 0.	0.63 0.50	0 2.18	8 1.17	7 1.38	3 1.45	0.87	1.00	0.00	0.00
Lake Sakakawea	kawea																									
	Adults	-	-	7 1	15 6	6* 8	8 29+	+ 17	35	7	27	2	23	6	10	34	21 2	25 16	5 26	6 48	\$ 53	14	15	11	3	14
	Fledglings/Pair		-	0	0		- 0.83+	3+ 0.12+		0	0.15	0		0.67	_	0.76 0	0.86 0.	0	0	1 0.71	-	2 2.57	1.07	0.00	0.00	0.29
Garrison to	Garrison to Lake Oahe																	-								
	Adults	171 1	175 12	142 1:	121 1	174 19	195 198	8 145	217	284	105	41	141	105	105	125	126 1.	144 142	2 157	7 139	9 123	73	108	134	0	105
	Fledglings/Pair	,	- 0.9	0.93 0.	0.43 0.4	0.44+ 0.	0.58 0.48	8 0.28	0.54	-	0.08	0.39	1.52		1.03 1		_	1.13 1.13	3 0.73	3 0.81	1 1.06	1	0.48	1.36	0.00	0.99
																		-								
Lake Oahe,	Lake Oahe/Lake Sharpe																									
	Adults	16* 2	21* 8	82 5	97 1	100 1	143 124	4 125	160	84	74	101	110	57	85	94	106 7	70 73	3 131	1 128	8 186	111	71	48	39	100
	Fledglings/Pair	0.75 1	1.62 (0	0	-	- 0.42	2 0	0.06	0	0.24	0.16	1.29	0.88	1.01	.34 1	1.32 1.	.20 1.26	6 0.87	7 1.14	4 0.48	3 0.58	0.96	0.17	1.33	1.06
								-					-					-	-	-	-					
Ft. Randall	Ft. Randall to Niobrara																									
	Adults	25	90 (, 0	4	26 3	32 13	38	43	10	2	0	64	124	72	71	84 55	50 71	76	55	74	58	23	10	0	87
	Fledglings/Pair	0.48 0	0.43 (0	0 0.	0.31+ 0.	0.63 0.46	6 0	0	0	0	0	0.94	1.03	1.26 (0.14 0	0.71 0.	0.92 0.37	7 0.47	7 0.69	9 0.30	1.14	0.43	0.00	0.00	1.10
Lake Lewis	Lake Lewis and Clark																									
	Adults	0	0 4	45 2	29 (63 5	55 29	9/ 16	4	16	28	09	120	76	4	58	46 4	46 13	4	0	85	225	214	272	231	211
	Fledglings/Pair	-	- 0.	0.13 0.	0.62 0.3	0.35+ (0 1.59	9 0.97	0	0	0	1.57	2.33	0.21	0.38 1	1.17	1.04 0.	0.39 0.00	0 0.00	0 0.00	0 1.58	8 0.67	0.76	1.01	0.15	1.43
Gavins Poi	Gavins Point to Ponca																									
	Adults	181 2	232 25	252 2	210 1	167 19	193 187	7 272	211	93	82	115	148	161	149	232 3	314 30	366 359	9 476	6 383	3 410	278	211	159	0	209
	Fledglings/Pair	0.26 0	0.46 0.4	0.49 0.	0.55 0.4	0.46+ 0.2	0.26 0.21	1 0.83	0.48	0.49	0.27	0.90	2.27	2.41	1.72	1.09 1	1.32 0.	0.75 1.04	4 1.34	4 0.63	3 0.59	9 1.14	1.00	1.17	0	1.2
Total Adults	ts		492 54				702 690	0 711	<i>LTT</i>	591	446	481	635	572	551	653	731 7.	741 722	2 904	4 802**	** 1,010	0 781	696	650	273	726
Fledglings/Pair	Pair	0.26 0	0.46 0.5	0.59 0.	0.54 0.	0.38 0.4	0.41 0.42	2 0.50	0.41	0.67	0.21	0.66	1.73	1.42	1.22	1.04 1	1.27 0.	0.87 0.95	5 1.09	9 0.80**	** 0.75	5 0.98	0.80	1.02	0.32	1.19

5-Year Running Average Interior Least Tern Fledge Ratio Goal = 0.94

Data not collected

ı *

╤ + *

Partial Survey Results No Birds Found Subsampling of Selected Nesting Areas Includes adults and fledglings from Lake Francis Case

The data do not include least terms and piping plovers raised in captivity from 1995 to 2002. The data represent only wild fledged birds. From 1990 to 2003 the 10-Year Least Tern Fledge Ratio was 0.70 (1990 and 2000 Biological Opinions). From 2004 to current 5-Year nunning average goal is 0.94 (2003 Amended Biological Opinion) Data in this table may differ from previous reports. As information becomes available, this table is updated. Notes:

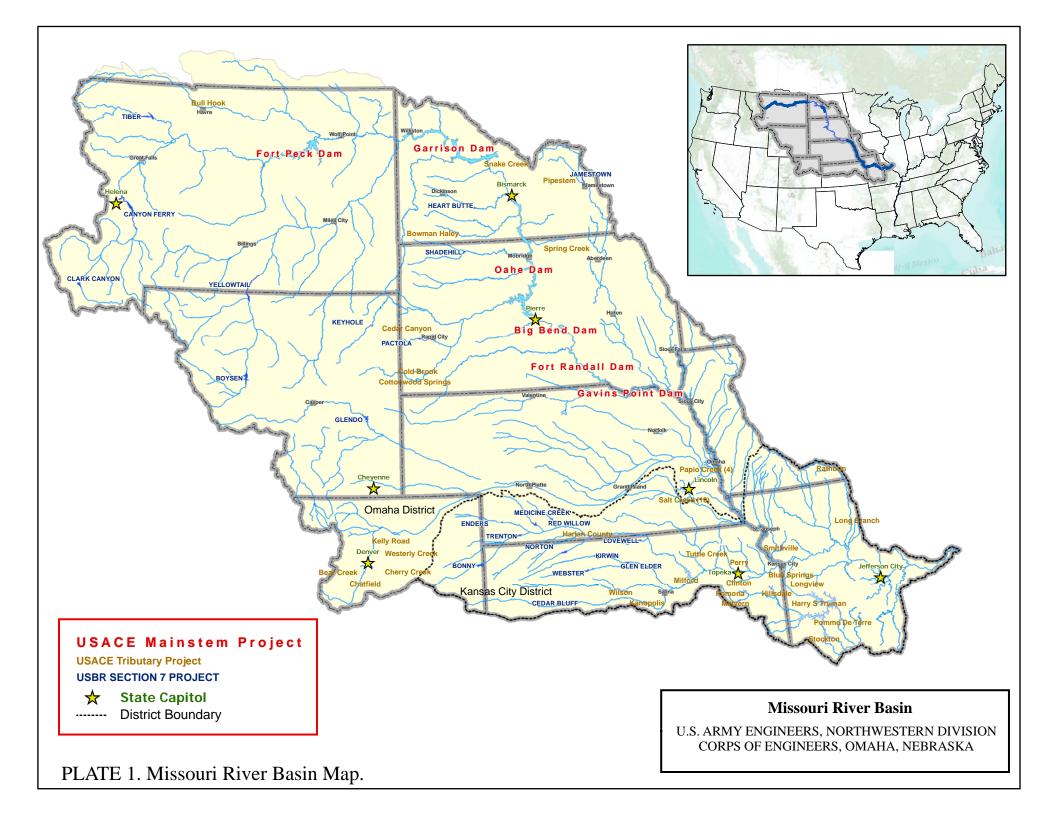
Piping Plover Survey Data Missouri River System Table 23

	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997 1	61 8661	1999 2000	00 2001	01 2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Fort Peck Lake																										
Adults	16	10	20	12	22	25	26	30	4	5 0	0 0	0 4	1 2	0	4	2	17	6	26	20	16		12	3	2	0
Fledglings/Pair			1.70 1	1.50 3	3.18 1	1.20 1	1.00 0	0.60 1.	1.50 1.2	1.20 0	0 0	0 0	2.00	0	1	2	0.35	2.22	1.08	1.2	0.5	0.22	0.33	0	0	0
Fort Peck to Lake Sakakawea																									-	
Adults			5	=	17	13	0	4	9 2	20 2,	24 2.	23 4	5	4	ŝ	2	9	0	2	5	0	0	0	0	0	0
Fledglings/Pair			0 0	0.18	0	0	-	+0	0 3.	3.50 1.0	0.87 0.87		0 00.1	0	1.33	0	2.67	0	4	0.4	0	0	0	0	0	0
Lake Sakakawea																									-	
Adults	-	-	143	57	132 1	150	108	8 4	45 2	24 70	70 3	3 119	9 83	277	424	469	528	738	746	430	399	363	85	38 2	24	200
Fledglings/Pair			0	0		-	1.50 8	8.5+ 1.	1.24 (0 0.5	0.57 0.67	1	.24 1.25	5 1.61	1.25	1.65	1.06	1.5	0.89	0.61	0.7	0.68	0.21	0.89 1.	-67	1.4
																									-	
Garrison to Lake Oahe																									-	
Adults	139	160	113	84	71	124	1 17	127 1	119 20	261 4:	45 6	6 74	4 139	66	149	119	149	164	220	175	222	218	275	287 (0	98
Fledglings/Pair			0.97 0	0.26 1	1.04+ 1.	1.13+ 1.	1.06+ 0.	0.54+ 0.	0.87 0.	0.87 0.0	0.09	0 1.8	.84 0.88	3 1.41	1.53	2.03	1.66	1.16	0.8	0.77	0.97	1.37	0.94	0.84 0	0	_
																									-	
Lake Oahe/Lake Sharpe																									-	
Adults	*	4*	55 1	140	88	87	143 6	8 +99	85 3	30 2	21 3	31 98		141	184	203	301	372	364	331	273	281	158	44 2	20	125
Fledglings/Pair		2.50*	0	0		- 0	0.97+ 0	0.33 0.	0.09 0.0	0.93 0.2	0.29 1.2	.29 1.06	0.30	1.45	1.41	2.16	1.84	1.41	1.21	0.99	0.62	0.0	0.47	0.1 0	0.4 1	1.76
Ft. Randall to Niobrara																									-	
Adults	11	16	0	0	12	25	8	12 1	17 (0 3	3 0) 33	3 51	62	38	35	37	42	42	37	21	26	16	9	0	43
Fledglings/Pair	0.18	0.13	0	0 0	0.67* 0	0.48 (0.75	0	0	0 0	0 0	0 1.27	27 1.02	0.87	0.74	1.03	1.46	0.71	0.81	0.38	0	1	1	0	0	.81
Lake Lewis and Clark																									-	
Adults	0	0	31	18	30	33	9	32 1	12 4	4 6	6 3	32 84	4 67	28	34	44	14	0	24	4	20	57	122	152 1:	134	179
Fledglings/Pair	-		0.06 0	0.56 0	0.67 +	0	0 0	0.06 0.	0.33 (0 0	0 1.2	.25 2.45	45 0.30	0.5	0.71	1.68	1.57	0	0.17	0.5	1.8	1.37	1.8	1.25 0.	0.22 1	1.35
Gavins Point to Ponca																										
Adults	172	177	212 1	122	148	166	112 1	109	62 6	63 22	22	22 49	9 141	186	218	260	286	262	340	309	300	320	238	74	6	137
Fledglings/Pair	0.05	1.13	0.62 0	0.21 0	0.39+ 0	0.35 (0.34 1	1.06 0.	0.61 0.	0.16 0	0 0	2.20	20 1.60	2.17	1.85	2.29	1.9	1.87	1.97	0.78	0.39	1.39	1.09	1.86	0	.82
Total Adults	342	367							353 4(407 19		117 465			1054	1134	1338	1587	1764	1311	1251	1274	906	-	82	782
Fledglings/Pair	0.06	1.08	0.73 0	0.32 (0.76 0	0.62	0.94 0	0.76 0.	0.61 0.	0.84 0.3	0.39 0.87	87 1.61	51 1.01	1.58	1.41	1.91	1.5	1.49	1.15	0.78	0.66	1.06	0.94	1.01 0.	0.43 1	1.49

10-Year Running Average Piping Plover Fledge Ratio Goal = 1.22

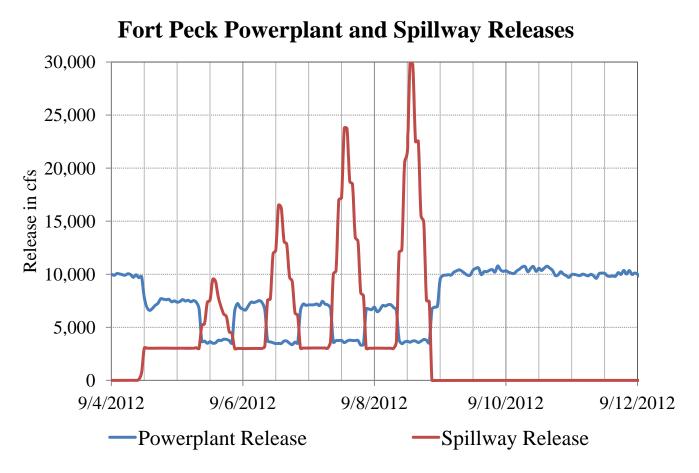
Data not collected Partial Survey Results No Birds Found Subsampling of Selected Nesting Areas , * 🛈 +

The data do not include least terms and piping plovers raised in captivity from 1995 to 2002. The data represent only wild fledged birds. From 1990 to 2000 the 15-Year Piping Plover Fledge Ratio Goal was 1.44 (1990 Biological Opinion). From 2001 to 2003 the goal was 1.13 (2000 Biological Opinion). From 2004 to current the 10-year running acceage goal is 1.22 (2003 Annended Biological Opinion). Data in this table may differ from previous reports. As information becomes available, this table is updated. Notes:


9. Cultural Resources

As acknowledged in the 2004 Programmatic Agreement (PA) for the operation and management of the System, wave action and the fluctuation of reservoirs levels results in erosion along the banks of the reservoirs. During drought conditions, cultural resource sites are exposed as the pool levels decline. With higher-than-normal reservoir levels in 2011, a number of sites were still affected, and assessment of those sites continued into 2012. The Corps will continue to work with the Tribes utilizing 36 CFR Part 800 and the PA to address the exposure of sites. The objective of a programmatic agreement is to deal "...with the potential adverse effects of complex projects or multiple undertakings..." The objective of the PA was to collaboratively develop a preservation program that would avoid, minimize and/or mitigate the adverse effects of the System regulation. All Tribes, whether signatory to the PA or not, may request government-to-government consultation on the regulation of the System and the resulting effect on historic and cultural properties and other resources.

The planned preservation program is outlined by multiple stipulations in the PA. One of the stipulations, or program components, is the 5-year plan. This plan outlines how the Corps will accomplish its responsibilities under the PA and National Historic Preservation Act. The "Final Five Year Plan, dated February 2012" is currently being implemented (see website *http://www.nwo.usace.army.mil/Missions/CivilWorks/CulturalResources.aspx*).


The plan includes inventory, testing and evaluation, mitigation and other specific activities that will allow the Corps to avoid, minimize and/or mitigate the adverse effects to cultural sites on the Corps' lands within the System.

Under the terms of Stipulation 18 of the PA the Corps has agreed to consult/meet with the affected Tribes and Tribal Historic Preservation Officers (THPO's), State Historic Preservation Officers (SHPO's), the Advisory Council on Historic Preservation (ACHP) and other parties on the draft AOP. The purpose of this consultation/meeting is to determine whether operational changes are likely to cause changes to the nature, location or severity of adverse effects to historic properties or to the types of historic properties affected and whether amendments to the Corps' Cultural Resources Management Plans and Final Five Year Plan are warranted in order to better address such effects to historic properties. A letter, dated September 5, 2012, was sent to the Missouri River basin Tribes offering consultation on the 2012-2013 AOP. To date, one tribe requested consultation; and two Tribes participated in the fall AOP public meetings in October and November 2012. No Tribe provided written input on the draft AOP.

		ary of Engineering Data	Missouri River Mainstem S	-
Item No.	Subject	Fort Peck Dam - Fort Peck Lake	Garrison Dam - Lake Sakakawea	Oahe Dam - Lake Oahe
1	Location of Dam	Near Glasgow, Montana	Near Garrison, ND	Near Pierre, SD
2 3	River Mile - 1960 Mileage Total & incremental drainage areas in square miles	Mile 1771.5 57,500	Mile 1389.9 181,400 (2) 123,900	Mile 1072.3 243,490 (1) 62,090
4	Approximate length of full reservoir (in valley miles)	134, ending near Zortman, MT	178, ending near Trenton, ND	231, ending near Bismarck, ND
5 6	Shoreline in miles (3) Average total & incremental	1520 (elevation 2234) 10,200	1340 (elevation 1837.5) 25,600 15,400	2250 (elevation 1607.5) 28,900 3,300
7	inflow in cfs Max. discharge of record near damsite in cfs	137,000 (June 1953)	348,000 (April 1952)	440,000 (April 1952)
8 9	Construction started - calendar yr. In operation (4) calendar yr.	1933 1940	1946 1955	1948 1962
10	Dam and Embankment		1077	1.000
10 11	Top of dam, elevation in feet msl Length of dam in feet	2280.5 21,026 (excluding spillway)	1875 11,300 (including spillway)	1660 9,300 (excluding spillway)
11	Damming height in feet (5)	220 (excluding spinway)	180	200
13	Maximum height in feet (5)	250.5	210	245
14	Max. base width, total & w/o berms in feet	3500, 2700	3400, 2050	3500, 1500
15	Abutment formations (under dam & embankment)	Bearpaw shale and glacial fill	Fort Union clay shale	Pierre shale
16	Type of fill Fill quantity, aubia yarda	Hydraulic & rolled earth fill	Rolled earth filled	Rolled earth fill & shale berms
17 18	Fill quantity, cubic yards Volume of concrete, cubic yards	125,628,000 1,200,000	66,500,000 1,500,000	55,000,000 & 37,000,000 1,045,000
18	Date of closure	1,200,000 24 June 1937	15 April 1953	3 August 1958
	Spillway Data		A	
20	Location	Right bank - remote	Left bank - adjacent	Right bank - remote
21	Crest elevation in feet msl	2225	1825	1596.5
22	Width (including piers) in feet	820 gated	1336 gated	456 gated
23	No., size and type of gates	16 - 40' x 25' vertical lift gates	28 - 40' x 29' Tainter	8 - 50' x 23.5' Tainter
24 25	Design discharge capacity, cfs Discharge capacity at maximum	275,000 at elev 2253.3 230,000	827,000 at elev 1858.5 660,000	304,000 at elev 1644.4 80,000
25	operating pool in cfs	250,000	000,000	80,000
	Reservoir Data (6)			
26	Max. operating pool elev. & area	2250 msl 241,000 acres	1854 msl 380,000 acres	1620 msl 374,000 acres
27	Max. normal op. pool elev. & area	2246 msl 234,000 acres		
28 29	Base flood control elev & area Min. operating pool elev. & area Storage allocation & capacity	2234 msl 210,000 acres 2160 msl 89,000 acres		
30	Exclusive flood control	2250-2246 971,000 a.f.	1854-1850 1,489,000 a.f.	1620-1617 1,102,000 a.f.
31	Flood control & multiple use	2246-2234 2,704,000 a.f.		
32	Carryover multiple use	2234-2160 10,700,000 a.f.		
33	Permanent	2160-2030 4,088,000 a.f.		
34	Gross	2250-2030 18,463,000 a.f.		
35 36	Reservoir filling initiated Initially reached min. operating pool	November 1937 27 May 1942	December 1953 7 August 1955	August 1958 3 April 1962
30 37	Estimated annual sediment inflow			19,800 a.f. 1170 yrs.
57	Outlet Works Data	1000 1000 1000 1000	20,000 ulli 920 jisi	19,000 ull 1170 jist
38 39	Location Number and size of conduits	Right bank 2 - 24' 8" diameter (nos. 3 & 4)	Right Bank 1 - 26' dia. and 2 - 22' dia.	Right Bank 6 - 19.75' dia. upstream, 18.25'
40	Length of conduits in feet (8)	No. 3 - 6,615, No. 4 - 7,240	1529	dia. downstream 3496 to 3659
40	No., size, and type of service gates	1 - 28' dia. cylindrical gate	1 - 18' x 24.5' Tainter gate per	1 - 13' x 22' per conduit, vertical
		6 ports, 7.6' x 8.5' high (net opening) in each control shaft	conduit for fine regulation	lift, 4 cable suspension and 2 hydraulic suspension (fine
				regulation)
42	Entrance invert elevation (msl)	2095	1672	1425
43	Avg. discharge capacity per conduit	Elev. 2250	Elev. 1854	Elev. 1620
44	& total Present tailwater elevation (ft msl)	22,500 cfs - 45,000 cfs 2032-2036 5,000 - 35,000 cfs		
15	Power Facilities and Data Avg. gross head available in feet (14)	194	161	174
45 46	Avg. gross head available in feet (14) Number and size of conduits	194 No. 1-24'8" dia., No. 2-22'4" dia.	5 - 29' dia., 25' penstocks	7 - 24' dia., imbedded penstocks
40	Length of conduits in feet (8)	No. 1 - 5,653, No. 2 - 6,355	1829	From 3,280 to 4,005
48	Surge tanks	PH#1: 3-40' dia., PH#2: 2-65' dia.	65' dia 2 per penstock	70' dia., 2 per penstock
49	No., type and speed of turbines	5 Francis, PH#1-2: 128.5 rpm, 1-164 rpm, PH#2-2: 128.6 rpm	5 Francis, 90 rpm	7 Francis, 100 rpm
50	Discharge cap. at rated head in cfs	PH#1, units 1&3 170', 2-140' 8,800 cfs, PH#2-4&5 170'-7,200 cfs	150' 41,000 cfs	185' 54,000 cfs
51	Generator nameplate rating in kW	1&3: 43,500; 2: 18,250; 4&5: 40,000	3 - 121,600, 2 - 109,250	112,290
52	Plant capacity in kW	185,250	583,300	786,030
53	Dependable capacity in $kW(9)$	181,000	388,000	534,000
54 55	Avg. annual energy, million kWh (12) Initial generation, first and last unit	1,048 July 1943 - June 1961	2,253 January 1956 - October 1960	2,635 April 1962 - June 1963
56	Estimated cost September 1999			
	completed project (13)	\$158,428,000	\$305,274,000	\$346,521,000

	Summary of Engineering		ainstem System	1	
 Big Bend Dam - Lake Sharpe	Fort Randall Dam - Lake Francis Case	Gavins Point Dam - Lewis & Clark Lake	Total	Item No.	Remarks
	Near Lake Andes, SD	Near Yankton, SD		1	(1) Includes 4,280 square
Mile 987.4 249,330 (1) 5,840	Mile 880.0 263,480 (1) 14,150	Mile 811.1 279,480 (1) 16,000		2 3	miles of non-contributing areas.
80, ending near Pierre, SD	107, ending at Big Bend Dam	25, ending near Niobrara, NE	755 miles	4	(2) Includes 1,350 square miles of non-contributing
200 (elevation 1420) 28,900	540 (elevation 1350) 30,000 1,100	90 (elevation 1204.5) 32,000 2,000	5,940 miles	5 6	areas.(3) With pool at base of flood control.
440,000 (April 1952)	447,000 (April 1952)	480,000 (April 1952)		7	(4) Storage first available for regulation of flows.(5) Damming height is height
 1959 1964	1946 1953	1952 1955		8 9	from low water to maximum operating pool. Maximum
1440 10,570 (including spillway) 78 95 1200, 700	1395 10,700 (including spillway) 140 165 4300, 1250	1234 8,700 (including spillway) 45 74 850, 450	71,596 863 feet	10 11 12 13 14	height is from average streambed to top of dam.(6) Based on latest available storage data.(7) River regulation is attained by flows over low-crested
Pierre shale & Niobrara chalk	Niobrara chalk	Niobrara chalk & Carlile shale		15	spillway and through turbines.
Rolled earth, shale, chalk fill 17,000,000 540,000 24 July 1963	Rolled earth fill & chalk berms 28,000,000 & 22,000,000 961,000 20 July 1952	Rolled earth & chalk fill 7,000,000 308,000 31 July 1955	358,128,000 cu. yds 5,554,000 cu. yds.	16 17 18 19	 (8) Length from upstream face of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985).
Left bank - adjacent 1385 376 gated 8 - 40' x 38' Tainter 390,000 at elev 1433.6 270,000	Left bank - adjacent 1346 1000 gated 21 - 40' x 29' Tainter 633,000 at elev 1379.8 508,000	Right bank - adjacent 1180 664 gated 14 - 40' x 30' Tainter 584,000 at elev 1221.4 345,000		20 21 22 23 24 25	 (10) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2011 Average (13) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract
1423 msl 61,000 acres 1422 msl 60,000 acres 1420 msl 57,000 acres 1415 msl 51,000 acres	1365 msl 95,000 acres 1350 msl 77,000 acres	1208 msl 27,000 acres 1204.5 msl 23,000 acres		26 27 28 29	Report Fiscal Year 1999. (14) Based on Study 8-83-1985
1423-1422 60,000 a.f. 1422-1420 117,000 a.f. 1420-1345 1,621,000 a.f. 1423-1345 1,798,000 a.f. November 1963 25 March 1964 5,300 a.f. 430 yrs.	1365-1350 1,309,000 a.f. 1350-1320 1,607,000 a.f. 1320-1240 1,517,000 a.f. 1375-1240 5,418,000 a.f. January 1953 24 November 1953	1208-1204.5 86,000 a.f. 1204.5-1160 307,000 a.f.	4,664,000 a.f. 11,639,000 a.f. 38,898,000 a.f. 17,886,000 a.f. 73,087,000 a.f. 89,700 a.f.	30 31 32 33 34 35 36 37	
None (7)	Left Bank 4 - 22' diameter	None (7)		38 39	
	1013 2 - 11' x 23' per conduit, vertical lift, cable suspension			40 41	
1385 (11)	1229 Elev 1375	1180 (11)		42 43	
1351-1355(10) 25,000-100,000 cfs	32,000 cfs - 128,000 cfs 1228-1239 5,000-60,000 cfs	1155-1163 15,000-60,000 cfs		43	
70 None: direct intake None	117 8 - 28' dia., 22' penstocks 1,074 59' dia, 2 per alternate penstock	48 None: direct intake None	764 feet 55,083	45 46 47 48	
8 Fixed blade, 81.8 rpm	8 Francis, 85.7 rpm	3 Kaplan, 75 rpm	36 units	49	
67' 103,000 cfs	112' 44,500 cfs	48' 36,000 cfs		50	
3 - 67,276, 5 - 58,500 494,320 497,000 983	40,000 320,000 293,000 1,728	44,100 132,300 74,000 726	2,501,200 kw 1,967,000 kw 9,372 million kWh	51 52 53 54	Corps of Engineers, U.S. Army Compiled by
 October 1964 - July 1966	March 1954 - January 1956	September 1956 - January 1957	July 1943 - July 1966	55	Northwestern Division Missouri River Region
 \$107,498,000	\$199,066,000	\$49,617,000	\$1,166,404,000	56	August 2012

Missouri River Stages at Wolf Point and Culbertson

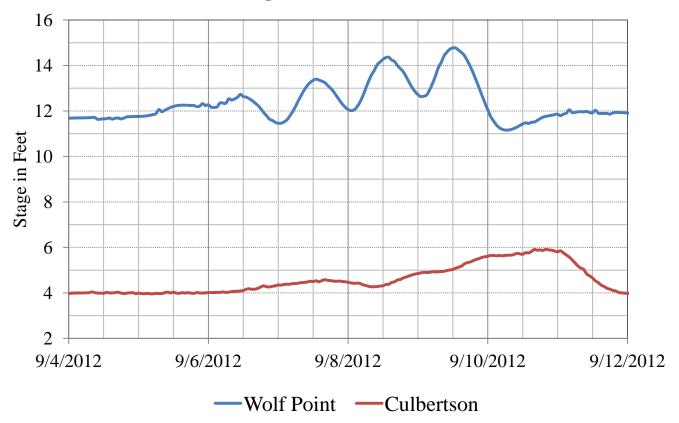
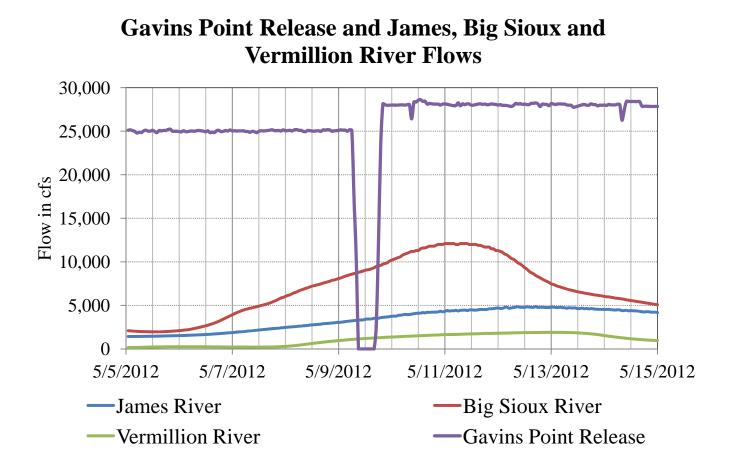



Plate 3. Fort Peck Spillway Assessment – Downstream Flows and Stages

Missouri River Stages at Yankton, Sioux City and Omaha

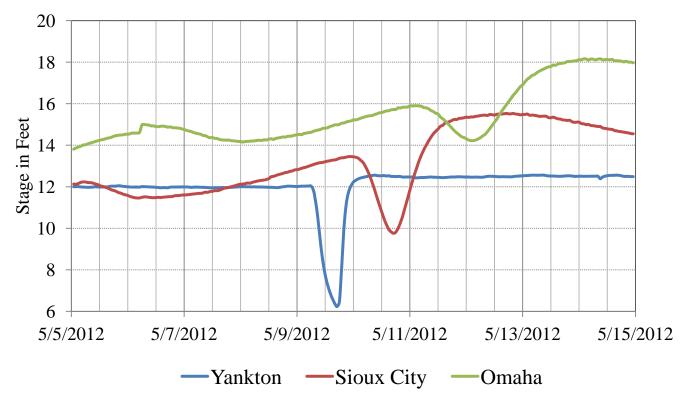


Plate 4. Gavins Point Spillway Slab Assessment - Downstream Flows and Stages

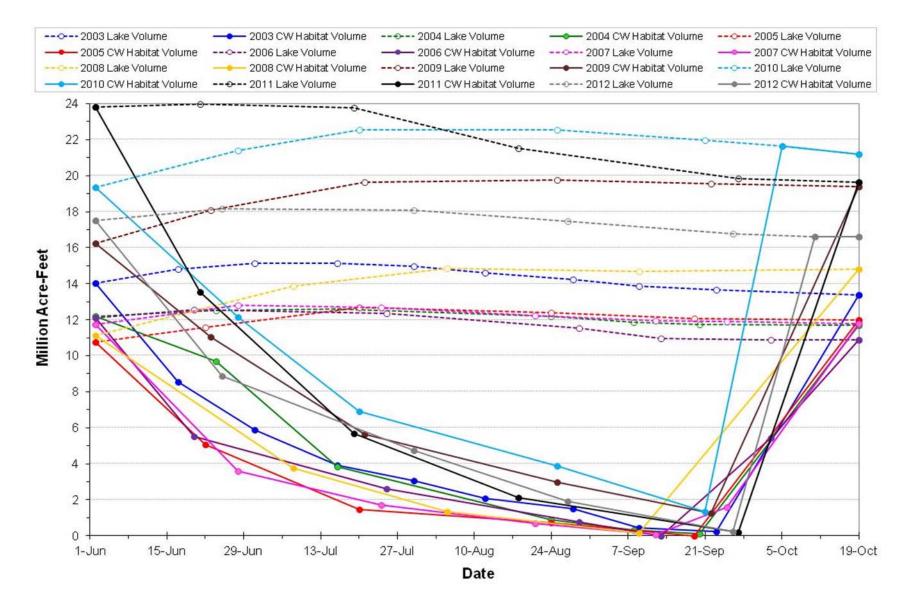


Plate 5. Garrison Reservoir - estimated reservoir and coldwater habitat 2003 through 2012.

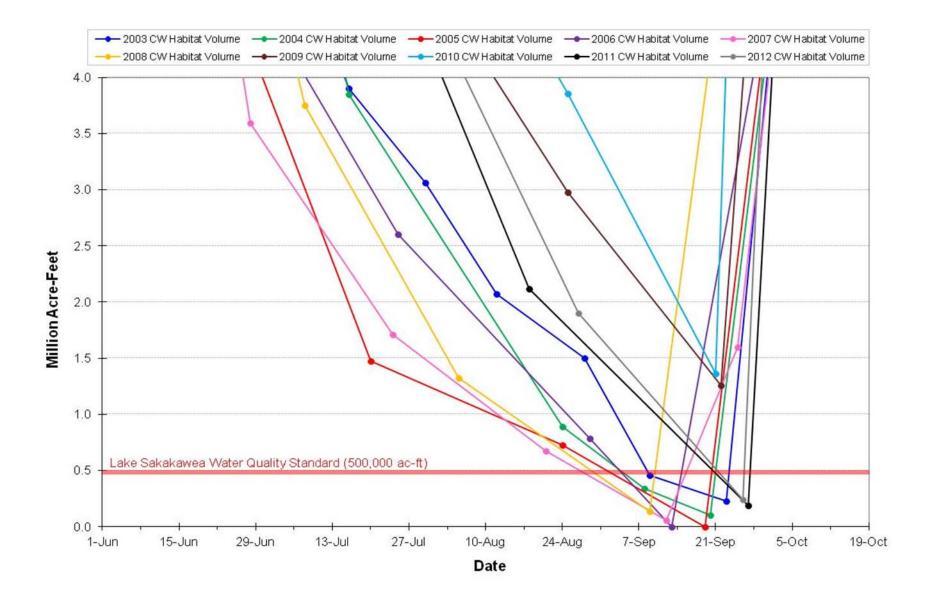


Plate 6. Garrison Reservoir - estimated reservoir and coldwater habitat 2003 through 2012 (exploded view).

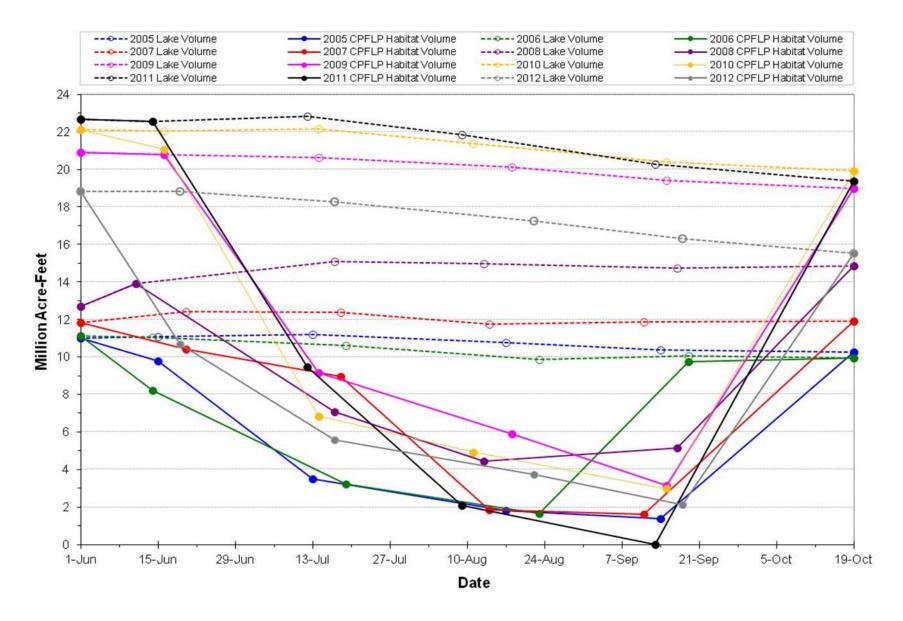


Plate 7. Oahe Reservoir - estimated reservoir and coldwater habitat 2005 through 2012.