

Northwestern Division Missouri River Basin Water Management Division

Missouri River Mainstem System 2007-2008 Annual Operating Plan

Annual Operating Plan Process 55 Years Serving the Missouri River Basin

December 2007

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, NORTHWESTERN DIVISION 12565 WEST CENTER ROAD OMAHA NE 68144-3871

REPLY TO ATTENTION OF

DEC 21 2007

Division Commander

Dear Stakeholders and Concerned Citizens,

This Annual Operating Plan (AOP) presents the Corps of Engineers' regulation of the Missouri River Mainstem Reservoir System (System) through December 2008. The AOP is based upon water management guidelines designed to meet the reservoir regulation objectives of the existing Missouri River Master Water Control Manual (Master Manual) updated in March 2006.

The AOP information provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year to serve its Congressionally-authorized project purposes. System water management is provided by my staff at the Missouri River Basin Water Management Division, Northwestern Division, U.S. Army Corps of Engineers, located in Omaha, Nebraska.

A draft of this AOP was made available to the public in September 2007. A report presenting Draft AOP meeting comments and including copies of all the comment letters received is available upon request.

This year was the eighth consecutive year of drought in the Missouri River Basin, resulting in a record low System Storage level. At these low storage levels it is more important than ever to implement appropriate water conservation measures to ensure continued service to project purposes, should the drought continue. We realize that the benefits provided by the System are vitally important to the Nation and the people that live and work in the Basin. We believe that the continued implementation of the revised Master Manual, and more specifically this AOP, will result in an appropriate balance of benefits provided to all of the people who rely on the System. Thank you for your interest in the regulation of the System.

Sincerely,

Steven R. Miles, P.E. Colonel, US Army Division Commander

Printed on Recycled Paper

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2007 - 2008

List o List o	of Table of Plate	es	ii ii
List o Defin	of Abbr aition o	eviations f Terms	111 v
I.	FOR	EWORD	1
II.	PUR	POSE AND SCOPE	2
III.	MAI	NSTEM MASTER MANUAL AND ESA CONSULTATIONS	3
IV.	FUTI	URE RUNOFF: AUGUST 2007 – DECEMBER 2008	3
V.	ANN	IUAL OPERATING PLAN FOR 2007-2008	5
	A.	General	5
	В.	2007-2008 AOP Simulations	5
	C.	Regulation for the Balance of 2007 Nav. Season and Fall of 2	20079
	D.	Regulation Plan for Winter 2007-2008	10
	E.	Regulation During the 2008 Navigation Season	
	F.	Regulation Activities for T&E Species and Fish Propagation	۱14
	G.	Regulation Activities for Historical and Cultural Properties	17
VI.	SUM	MARY OF RESULTS EXPECTED IN 2008	
	A.	Flood Control	18
	В.	Water Supply and Water Quality Control	18
	C.	Irrigation	20
	D.	Navigation	20
	E.	Power	20
	F.	Recreation, Fish and Wildlife	20
	G.	Historic and Cultural Properties	22
	H.	System Storage	23
	I.	Summary of Water Use by Functions	23
V	II. T	ENTATIVE PROJECTION OF REGULATION THROUGH	
	F	EBRUARY 2014	
	A.	Median Runoff	
	в.	Lower Ouartile Runoff	
	C.	Lower Decile Runoff	

TABLES

Ι	Natural and Net Runoff at Sioux City	4
II	Navigation Service Support for the 2007 Season	12
III	Peaking Capability and Sales	21
IV	Energy Generation and Sales	21
V	Anticipated December 31, 2008 System Storage	24
VI	Missouri River Mainstem System Water Use for Calendar Years 2006,	
	2007, and 2008 Above Sioux City, Iowa	25
VII	Navigation Service Support, Spring Pulses, Unbalancing – AOP	
	Extension Studies	27
VIII	Median Extension Studies - Criteria Considered in the Modeling	
	Process	28
IX	Lower Quartile Extension Studies - Criteria Considered in the Modeling	g
	Process	29
Х	Lower Decile Extension Studies - Criteria Considered in the Modeling	
	Process	30

PLATES

- 1 Missouri River Basin Map
- 2 Summary of Engineering Data
- 3 Summary of Master Manual Criteria
- 4 System Storage and Fort Peck Elevations
- 5 Garrison and Oahe Elevations
- 6 System Storage
- 7 Gavins Point Releases
- 8 Fort Peck Elevations and Releases
- 9 Garrison Elevations and Releases
- 10 Oahe Elevations and Releases
- 11 Fort Randall Elevations and Releases
- 12 Reservoir Release and Unregulated Flow
- 13 System Gross Capability and Average Monthly Generation
- 14 Tentative 5-Year Extensions of 2007-2008 AOP System Storage, Gavins Point Regulated Flows, and System Peaking Capability
- 15 Tentative 5-Year Extensions of 2007-2008 AOP Fort Peck, Garrison, Oahe, and Fort Randall
- 16 American Indian Reservations

ABBREVIATIONS

AOP	-	annual operating plan
ac.ft.	-	acre-feet
ACHP	-	Advisory Council on Historic Preservation
AF	-	acre-feet
В	-	Billion
BiOp	-	Biological Opinion
BOR	-	Bureau of Reclamation
cfs	-	cubic feet per second
COE	-	Corps of Engineers
CY	-	calendar year (January 1 to December 31)
elev	-	elevation
ESA	-	Endangered Species Act
ft	-	feet
FTT	-	Flow-to-Target
FY	-	fiscal year (October 1 to September 30)
GIS	-	Geographic Information System
GWh	-	gigawatt hour
ISP	-	initial starting point
KAF	-	1,000 acre-feet
Kcfs	-	1,000 cubic feet per second
kW	-	kilowatt
kWh	-	kilowatt hour
М	-	million
MAF	-	million acre-feet
MRBA	-	Missouri River Basin Association
MRNRC	-	Missouri River Natural Resources Committee
msl	-	mean sea level
MW	-	megawatt
MWh	-	megawatt hour
NEPA	-	National Environmental Policy Act
plover	-	piping plover
рр	-	powerplant
PA	-	Programmatic Agreement
P-S MBP	-	Pick-Sloan Missouri Basin Program
RCC	-	Reservoir Control Center
RM	-	river mile
RPA	-	Reasonable and Prudent Alternative
SHPO	-	State Historic Preservation Officers
SR	-	Steady Release
tern	-	interior least tern

T&E	-	Threatened and Endangered
THPO	-	Tribal Historic Preservation Officers
tw	-	tailwater
USFWS	-	United States Fish and Wildlife Service
USGS	-	United States Geological Survey
WY	-	water year
yr	-	year

DEFINITION OF TERMS

<u>Acre-foot (AF, ac-ft)</u> is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

This page is intentionally left blank.

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2007 - 2008

I. FOREWORD

This Annual Operating Plan (AOP) presents pertinent information and plans for regulating the Missouri River Mainstem Reservoir System (System) through December 2008 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the coming year to serve the Congressionally authorized project purposes; to fulfill the Corps' responsibilities to Native American Tribes; and to comply with environmental laws, including the Endangered Species Act (ESA). Regulation is directed by the Reservoir Control Center in the Missouri River Basin Water Management Division, Northwestern Division, U. S. Army Corps of Engineers (Corps). A map of the Missouri River basin is shown on *Plate 1* and the summary of engineering data for the six individual Mainstem projects and System is shown on *Plate 2*.

This plan may require adjustments such as when substantial departures from expected runoff occur; to meet emergencies including short-term intrasystem adjustments to protect human health and safety during periods of extended drought to maintain minimum river or reservoir levels to keep intakes operational, and adjustments in reservoir releases or reservoir levels to prevent loss of historic and cultural properties; or to meet the provisions of applicable laws, including the ESA. These adjustments would be made to the extent possible after evaluating impacts to all System uses, would generally be short term in nature and would continue only until the issue is resolved.

This document provides the plan for future regulation of the System. Other documents that may be of interest include the recently revised "System Description and Regulation" report dated November 2007 or the "Summary of Actual Calendar Year 2006 Regulation," dated March 2007. Both reports are currently available at the "Reports and Publications" link on our web site at: <u>www.nwd-mr.usace.army.mil/rcc</u>, or you may contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676 for copies. The "Summary of Actual Calendar Year 2007 Regulation" will be available at the same site in April of 2007.

II. PURPOSE AND SCOPE

Beginning in 1953, projected System reservoir regulation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, State, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System regulation. The Coordinating Committee on Missouri River Mainstem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982, the Committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meeting is conducted to take public input on a draft of the AOP, which typically is published in early October each year. The spring meetings are conducted to update the public on the current hydrologic conditions and projected System regulation for the remainder of the year as it relates to implementing the Final AOP.

Under the terms of Stipulation 18 of the March 2004 "Programmatic Agreement for the Operation and Management of the Missouri River Main Stem System for Compliance with the National Historic Preservation Act, as amended" (PA) the Corps has agreed to consult/meet with the affected Tribes and Tribal Historic Preservation Officers (THPO's), State Historic Preservation Officers (SHPO's), the Advisory Council on Historic Preservation (ACHP) and other parties on the draft AOP. The purpose of this consultation/meeting is to determine whether operational changes are likely to cause changes to the nature, location or severity of adverse effects to historic properties or to the types of historic properties affected and whether amendments to the Corps Cultural Resources Management Plans and Five-Year Plan are warranted in order to better address such effects to historic properties. During 2006 the Corps worked with the affected Tribes to establish processes for consultation on AOP's under 36 CFR Part 800, the PA, and Executive Order 13175. The process consists of a series of informational meetings with the Tribes and/or government-to-government consultation with Tribes, as requested. Informational meetings on the Draft AOP were held on August 23, 2007 in Rapid City, South Dakota and October 25, 2007 in Bismarck, North Dakota.

The 2007 spring public meetings were held at the following locations and dates: April 9 at Fort Peck, Montana; April 10 at Bismarck, North Dakota and Pierre, South Dakota; April 11 at Omaha, Nebraska; April 12 at Kansas City, Missouri and April 13 at St. Louis, Missouri. The attendees were given an update regarding the outlook for 2007 runoff and projected System regulation for the remainder of 2007. Six 2007 fall public meetings on the Draft 2007-2008 AOP were held: October 15 in Nebraska City, Nebraska; October 16 in Kansas City and Jefferson City, Missouri; October 17 in Fort Peck, Montana and Bismarck, North Dakota; and October 18 in Pierre, South Dakota. In the spring of 2008, public and Tribal meetings will be held to discuss the basin's hydrologic conditions and the effects those conditions are expected to have on the implementation of the Final 2007-2008 AOP.

III. MAINSTEM MASTER MANUAL AND ESA CONSULTATIONS

The Missouri River Master Water Control Manual (Master Manual) presents the water control plan and operational objectives for the integrated regulation of the System. First published in 1960 and subsequently revised during the 1970's, the Master Manual was revised in March 2004 to include more stringent drought conservation measures. The 2003 Amendment to the 2000 Biological Opinion (2003 Amended BiOp) presented the USFWS' opinion that the regulation of the System would jeopardize the continued existence of the endangered pallid sturgeon. The USFWS provided a Reasonable and Prudent Alternative (RPA) to avoid jeopardy to the pallid sturgeon that included a provision for the Corps to develop a plan to implement a bimodal 'spring pulse' from Gavins Point Dam. Working with the USFWS, Tribes, states and basin stakeholders, the Corps developed technical criteria for the bimodal spring pulse releases. In March 2006 the Master Manual was revised to include technical criteria for a spring pulse.

IV. FUTURE RUNOFF: AUGUST 2007 - DECEMBER 2008

Runoff into the six System reservoirs is typically low and relatively stable during the August-to-February period. The August 1 calendar year runoff forecast is used as input to the Basic reservoir regulation simulation (Simulation) in the AOP studies for the period August 2007 to February 2008. The August 1 runoff forecast for 2007 was 21.0 million acre-feet (MAF). Two other runoff scenarios based on the August 1 runoff forecast were developed for the same period. These are the 80 percent and 120 percent of the August 1 runoff forecast scenarios, which are input to the 80 percent and 120 percent of Basic Simulations for the August 2007 to February 2007 to February 2008 period.

Simulations for the March 1, 2008 to February 29, 2009 time period use five statistically derived inflow scenarios based on an analysis of historic water supply records from 1898 to 1997. This approach provides a good range of simulation for dry, average, and wet conditions, and eliminates the need to forecast future precipitation, which is very difficult. An update of the runoff statistics to include data through 2007 is anticipated prior to the 2008-2009 draft AOP.

The five statistically derived inflows are identified as the Upper Decile, Upper Quartile, Median, Lower Quartile and Lower Decile runoff conditions. Upper Decile

runoff (34.5 MAF) has a 1 in 10 chance of being exceeded, Upper Quartile (30.6 MAF) has a 1 in 4 chance of being exceeded, and Median (24.6 MAF) has a 1 in 2 chance of being exceeded. Lower Quartile runoff (19.5 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile (15.5 MAF) has a 1 in 10 chance of the occurrence of less runoff. There is still a 20 percent chance that a runoff condition may occur that has not been simulated; i.e., a 10 percent chance runoff could be lower than Lower Decile, and a 10 percent chance runoff could be greater than Upper Decile.

The Upper Decile and Upper Quartile simulations extend from the end of the 120 percent of Basic simulation through February 2009. Likewise, the Median simulation extends from the end of the Basic simulation, and the Lower Quartile and Lower Decile simulations extend from the end of the 80 percent of Basic simulation through February 2009.

The estimated natural flow at Sioux City, the corresponding post-1949 water use effects, and the net flow available above Sioux City are shown in *Table I*, where water supply conditions are quantified for the period August 2007 through February 2009. The natural water supply for calendar year (CY) 2006 totaled 18.2 MAF.

	<u>Natural</u> 1/	Post-1949 Depletions	<u>Net 2</u> /
August 2007 through Februa	ry 2008 (Basic Runoff S	Scenario)	
Basic	5,800	200	6,000
120% Basic	7,000	300	7,300
80% Basic	4,700	300	5,100
Runoff Year March 2008 thro	ough February 2009 (St	atistical Analysis of Past R	ecords)
Upper Decile	34,500	-2,600	31,900
Upper Quartile	30,600	-2,500	28,100
Median	24,600	-2,500	22,100
Lower Quartile	19,500	-2,600	16,900
Lower Decile	15.500	-2.600	12,900

TABLE I NATURAL AND NET RUNOFF AT SIOUX CITY (Volumes in 1,000 Acre-Feet)

1/ The word "Natural" is used to designate runoff adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck reservoir have also been eliminated during its period of regulation prior to 1949.

2/ The word "Net" represents the total runoff after deduction of the post-1949 irrigation, upstream storage, and other use effects.

V. ANNUAL OPERATING PLAN FOR 2007-2008

A. <u>General</u>. The anticipated regulation described in this AOP is designed to meet the regulation objectives presented in the current Master Manual. While some aspects of System and individual project regulation are clearly defined by technical criteria in the Master Manual, for example navigation service level and season length, others such as minimum releases for irrigation and water supply in the reaches between the reservoirs are based on regulation experience and will be adjusted as needed to respond to changing conditions. Consideration has been given to all of the authorized project purposes, to historic and cultural resources and to the needs of threatened and endangered (T&E) species. The recently revised "System Description and Regulation" report provides a concise summary of the primary aspects of System regulation and should be referred to for further information. For ease of use, a summary of the frequently used technical criteria included in the Master Manual is presented on *Plate* **3**.

The plan relies on a wealth of regulation experience. Reservoir regulation experience available for preparation of the 2007-2008 AOP includes 13 years of regulation at Fort Peck (1940) by itself, plus 54 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) have been brought progressively into System regulation. This regulation experience includes lessons learned during the six consecutive years of drought from 1987 through 1992, the high runoff period that followed, and the current eight-year drought that began in 2000. Runoff during the period 1993 to 1999 was greater than the Upper Quartile level in five of those seven years, including the record 49.0 MAF of runoff in 1997. In addition to the long period of actual System reservoir regulation experience, many background regulation studies for the completed System are available for reference.

B. <u>2007-2008 AOP Simulations</u>. AOP simulations for the five runoff scenarios are shown in the final section of this AOP as studies 4 through 8. Due to the ongoing drought, service to all authorized project purposes except flood control will be reduced in the coming year and all water conservation measures available under the Master Manual will be utilized. In summary, the studies provide the following: minimum service flow support and a shortened navigation season under all runoff scenarios; low winter releases; low releases in the spring and fall before and after the navigation season; a March spring pulse from Gavins Point for Median and above runoff conditions; a steady release – flow to target regulation during the tern and plover nesting season; emphasis on Garrison for a steady to rising reservoir level during the forage fish spawn; and reservoir releases and pool levels sufficient to keep all intakes operational under all runoff scenarios. Numerous other water conservations measures will be implemented if conditions allow including cycling releases from Gavins Point

during the early part of the nesting season, only supporting flow targets in reaches being used by commercial navigation, and utilization of the Kansas River projects authorized for Missouri River navigation flow support. Additional details about the studies are provided in the following paragraphs. Results of the simulations are shown in *Plates 4 and 5* for the System storage and the Fort Peck, Garrison and Oahe pool elevations.

The March 1 System storage is above the 36.5 MAF March spring pulse preclude for the Median, Upper Quartile and Upper Decile studies, but below it for the Lower Quartile and Lower Decile studies. The peak magnitude of the March pulse is 5,000 cfs over navigation flows. Under the two highest runoff scenarios, the Upper Decile and Upper Quartile, System storage on May 1 is above the 40.0 MAF May spring pulse drought preclude, so May pulses are shown for those runoff scenarios with peak magnitudes of 15,800 and 15,500 cfs, respectively. The actual peak magnitude of the May pulse is dependent on the actual System storage and the May 1 runoff forecast, and may be reduced or eliminated due to downstream flood control constraints, shown on Plate 3. Storms in May of 2007 produced widespread flooding in Missouri and as a result a significant number of levees were damaged. One comment on the Draft AOP was that the Corps should not implement the spring pulses in 2008 due to the increased risk of flooding associated with these damaged levees. First, it is very unlikely that the March pulse, given its rather modest magnitude, will exceed downstream channel capacity. Also, while it appears unlikely that a spring pulse will be conducted in May 2008, the current schedule shows that all of the damaged levees will be repaired by April of 2008. In addition, the current Master Manual technical criteria includes safeguards to minimize the risk of flooding associated with the spring pulses. The primary safeguard is what are termed 'downstream flow limits', which are well below the channel capacity of the Missouri River. These flow limits are identical to the most restrictive flood control constraints presented in the previous Master Manual and provide a very similar level of flood protection. And additional safeguards have been added compared to the criteria in the previous Master Manual. Under the current Master Manual, we incorporate anticipated precipitation into our river forecast, to provide greater assurance that flows will remain below the downstream flow limits during the duration of the spring pulses. As in 2006, primary consideration will be given to withdrawing the water needed for the May spring pulse from Fort Randall reservoir in 2008, rather than from one or more of the upper three reservoirs. This would avoid further declines at Fort Peck, Garrison and Oahe reservoirs, which are already drawn down substantially due to the ongoing drought. If using Fort Randall in this manner is not feasible, the Corps would then give consideration to distributing the upstream storage reductions due to the May pulse equally among the upper three reservoirs. The Corps will also avoid cycling releases on the declining limb of the spring pulse hydrograph if the anticipated level of take of the two protected bird species is not excessive. Prior to implementing the May pulse, the Corps will coordinate with the affected Tribes and States to evaluate the options and determine the

best course of action to minimize adverse impacts, including those associated with water quality due to low reservoir levels, water intakes, historic and cultural sites and reservoir fisheries. A May spring pulse is not shown for the lower three runoff scenarios: the Median, Lower Quartile and Lower Decile. It is important to note that the actual System storage on March 1 and May 1, 2007 will determine whether or not spring pulses will be implemented.

The March 15 and July 1 System storage checks were used to determine the level of flow support for navigation and other downstream purposes as well as the navigation season length. For modeling purposes in this AOP, the SR-FTT regulation scenario with an initial steady release of 25,000 cfs from Gavins Point dam is shown during the 2008 nesting season for Median runoff or above. The monthly average May release used in the simulations was determined using the May minimum service release of 22,000 cfs for two-thirds of the days and 25,000 cfs for the other third to reflect an every third day peaking cycle from Gavins Point. The June release was modeled as a steady 25,000 cfs due to the presence of chicks along the river at that time, and the long-term average releases (see *Plate 3*) were used for July and August to indicate flowing to target. For the two lower runoff conditions, Lower Quartile and Lower Decile, the SR-FTT regulation scenario with an initial steady release of 28,000 cfs was shown during the nesting season. The monthly average May releases was determined using the May minimum service release of 25,300 cfs for two-thirds of the days and 28,000 cfs for the other third to reflect an every third day peaking cycle from Gavins Point. The June release was modeled as a steady 28,000 cfs due to the presence of chicks along the river at that time. The long-term average values were used for July and August to indicate flowing to target. Although these modeled Gavins Point releases represent our best estimate of required releases during 2008, actual releases will be based on hydrologic conditions and the availability of habitat at that time. It may also be necessary to cycle releases for flood control regulation during the T&E species' nesting season.

The long-term average Gavins Point releases to meet target flows were used in all the AOP studies for navigation support during the spring and fall months. Winter 2007-2008 and winter 2008-2009 Gavins Point releases of 12,500 cfs are shown in the simulations. This is lower than actual winter releases required for downstream powerplants and water supply intakes prior to 2004, but completed and on-going modification of intakes will permit lower winter releases as a conservation measure when System storage is low. Non-winter, non-navigation Gavins Point releases were modeled at 9,000 cfs as a further water conservation measure as described in the 2004 Mainstem Master Manual, provided downstream tributary flows are adequate to serve water supply requirements. Gavins Point releases will be increased to meet downstream water supply requirements in critical reaches to the extent reasonably possible if downstream incremental runoff is low. The Gavins Point releases shown in this and previous AOPs are estimates based on historic averages and experience. Adjustments are made as necessary in real-time based on hydrologic conditions to meet the Missouri River target flows presented in the Master Manual.

Application of the July 1 System storage check (*see Plate 3*) indicated that the navigation season would be shortened 17 days for Upper Decile, 29 days for Upper Quartile, 30 days for Median, 46 days for Lower Quartile, and 60 days for Lower Decile runoff. Minimum service navigation flows are provided for all runoff conditions due to low System storage. None of the simulations reach the desired 57.0 MAF System storage level on March 1, 2009.

Intrasystem releases are adjusted to best serve the multiple purposes of the projects with special emphasis placed on regulation for non-listed fisheries starting in early April and for T&E bird species beginning in early May and continuing through August. As part of the overall plan to rotate emphasis among the upper three reservoirs during low runoff years, Garrison will be favored during the 2008 forage fish spawn if runoff is not sufficient to keep all three reservoirs rising. Emphasis will shift to Fort Peck and Oahe in 2009. The Median, Upper Quartile, and Upper Decile simulations include releases that provide a steady to rising pool level in each of the three large upper reservoirs during the spring forage fish spawn period. Releases in the Lower Quartile and Lower Decile simulations are adjusted to maintain a steady to rising reservoir level at Garrison.

Two modified reservoir regulation plans shown in previous AOPs, the Fort Peck "mini-test" and unbalancing the upper three reservoirs, will not be implemented in 2008 due to low System storage. Both of these plans may be implemented when System storage recovers to more normal levels.

Actual System regulation from January 1 through July 31, 2007 and the regulating plans for each project through CY 2008 using the five runoff scenarios described on Page 4 are presented on *Plates 6 through 11*, inclusive. Big Bend regulation is omitted since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual regulation since 1953.

Plate 12 illustrates for Fort Peck, Garrison, Oahe, and Gavins Point the actual releases (Regulated Flow) as well as the Missouri River flows that would have resulted if the reservoirs were not in place (Unregulated Flow) during the period January 2006 through July 2007. *Plate* 13 presents past and simulated gross average monthly power generation and gross peaking capability for the System.

C. <u>Regulation for the Balance of the 2007 Navigation Season and Fall of 2007.</u> The regulation of the System for the period of August though November 2007 is presented in the following paragraphs.

<u>Fort Peck Dam</u>. Releases averaged 7,000 cfs during August and the first half of September. In mid-September they were gradually reduced to 4,000 cfs. The releases were held near that level until the end of November. The Fort Peck pool rose slightly through the period to end at 2200.1 on the last day of November. The record low pool elevation of 2196.2 feet msl was set in March 2007. The previous record low pool elevation was 2208.7 feet msl set in April 1991.

<u>Garrison Dam</u>. Releases averaged 16,000 cfs during August through the first week of September when irrigation ceased and they were reduced to 11,000 cfs. Releases were held at 11,000 cfs through the end of September. Releases were further reduced to 10,000 to 11,000 cfs during October and November as a water conservation measure prior to being raised to 15,000 cfs the first week of December. The Garrison pool level declined to 1813.0 feet msl by the end of November. The record low pool elevation of 1805.8 feet msl was set in May 2005. The previous record low pool elevation was 1815.0 feet msl set in May 1991.

<u>Oahe Dam</u>. Releases averaged 21,100 cfs in August, and they were reduced in early September to initiate an early fall drawdown of the Fort Randall pool, as the navigation season closed early in 2007. Low releases continued in September through November to complete the annual fall draw of Fort Randall. Releases will be increased in December for winter power production. The Oahe pool ended November at elevation 1582.2 feet msl. The record low Oahe pool elevation of 1570.2 feet msl was set in August 2006. The previous record low pool elevation was 1580.7 feet msl set in November 1989.

<u>Big Bend Dam</u>. Releases paralleled those from Oahe. Big Bend generally fluctuated between 1420.0 feet msl and 1421.0 feet msl for weekly cycling during high power load periods.

<u>Fort Randall Dam</u>. Releases averaged 20,400 cfs in August and were scheduled in September and most of October to back up the navigation releases from Gavins Point Dam. After the navigation season ends in late-October, releases were gradually reduced to as low as 7,000 cfs in November. The majority of the Fort Randall fall pool draw down occurred in September and early October, with the remainder occurring in late October and November.

<u>Gavins Point Dam</u>. Releases were scheduled to support downstream minimum service flows in reaches with commercial navigation throughout the remainder of the navigation season, which was shortened 35 days in 2007 in accordance with the

technical criteria for the July 1 System storage check presented in the Master Manual. The last day of flow support for the commercial navigation season ranged from October 17 at Sioux City to October 26 at the mouth near St. Louis. Releases were reduced by 3,000 cfs per day in mid-October until they reached 9,000 cfs because there was sufficient tributary inflow to meet the flow requirements at the critical downstream locations. Intakes were monitored during this period to ensure their operability. We believe that this 9,000 cfs minimum spring-fall release represents a reasonable long-term goal for water intake owners to strive for as they make improvements to their facilities. The Gavins Point pool level was raised 1.5 feet to elevation 1207.5 feet msl in August when it was determined that T&E species were not nesting along the reservoir. The pool level remained near that elevation during the fall and will be kept near that elevation through the winter months.

D. **Regulation Plan for Winter 2007-2008.** The September 1 System storage check (12,000 cfs if System storage on September 1 is less than 55 MAF prorated up to 17,000 cfs at 58 MAF) is used to determine the amount of the winter System release. During the winter of 2007-2008, we will strive to average a 12,000 cfs System release because the September 1, 2007 System storage was 38.4 MAF. If mild weather conditions prevail, System releases may be set lower than 12,000 cfs, but only if downstream water supply intakes can remain operable at those levels. Conversely, 12,000 cfs may be less than is required for downstream water supply intakes without sufficient incremental tributary inflow below the System, and therefore, releases may need to be set at levels higher than 12,000 cfs at times to ensure downstream water supply intakes are operable. However, we believe that this minimum winter flow represents a reasonable long-term goal for water intake owners to strive for as they make improvements to their facilities. It may be necessary at times to increase Gavins Point releases to provide adequate downstream flows due to the forecast of excessive river ice formation or if ice jams or blockages form which temporarily restrict flows. Based on past experiences, these events are expected to occur infrequently and be of short duration. Given these infrequent temporary release increases above the 12,000 cfs level, the winter System release will likely average around 12,500 cfs. It is anticipated that this year's winter release will be adequate to serve all downstream water intakes except for very short periods during significant river ice formation or ice jamming.

<u>Fort Peck Dam</u>. Releases are expected to average 5,500 to 6,000 cfs to serve winter power loads and balance System storage from December through February. Average winter release rates are about 11,000 cfs. The Basic simulation shows that the Fort Peck pool level will remain nearly steady near 2200 feet msl during the winter period, ending February about 34 feet below the base of the annual flood control storage zone. Carryover multiple purpose storage in the three large upper reservoirs will be near a balanced condition on March 1, 2008. The pool level is expected to rise during March to near elevation 2202 feet msl. <u>Garrison Dam</u>. Releases will be adjusted to serve winter power loads and balance System storage. Releases will be scheduled at 15,000 to 15,500 cfs at the time of freezein and will then be increased to 16,000 to 16,500 cfs as conditions stabilize. Releases may have to be reduced for a short period during any re-freeze-in in the Bismarck area since warmer temperatures can melt a significant portion of the downstream ice cover. This reduction in releases is scheduled to prevent exceeding a targeted 13-foot stage at the Bismarck gage. Flood stage is 16 feet. Average winter release rates for Garrison are 20,500 cfs in December, 23,200 cfs in January and 24,400 cfs in February. The Garrison pool level is expected to fall from near elevation 1815 feet msl to near elevation 1810 feet msl by March 1, 27.5 feet below the base of the annual flood control storage zone. The Median simulation indicates the pool level will rise to elevation 1812 feet msl by March 31.

<u>Oahe Dam</u>. Releases for the winter season will provide backup for the Fort Randall and Gavins Point releases plus fill the recapture space available in the Fort Randall reservoir consistent with anticipated winter power loads. Monthly average releases may vary substantially with fluctuations in power loads occasioned by weather conditions but, in general, are expected to average 15,000 cfs. Daily releases will vary widely to best meet power loads. Peak hourly releases, as well as daily energy generation, will be constrained to prevent urban flooding in the Pierre and Fort Pierre areas if severe ice problems develop downstream of Oahe Dam. This potential reduction has been coordinated with the Western Area Power Administration. The Oahe pool level is expected to gradually slightly from elevation 1578 feet msl at the end of November to elevation 1579 feet msl by the beginning of March, 28.5 feet below the base of the annual flood control storage zone. The pool is expected to rise to elevation 1581 feet msl by the end of March.

<u>Big Bend Dam</u>. The Big Bend pool level will be maintained in the normal 1420.0 to 1421.0 feet msl range during the winter.

<u>Fort Randall Dam</u>. Releases will average near 11,000 cfs during the winter season. The Fort Randall pool level is expected to rise from its actual fall drawdown elevation of 1338.8 feet msl to near elevation 1350.0 feet msl, the seasonal base of flood control, by March 1. However, if the plains snowpack flood potential downstream of Oahe Dam remains quite low, the Fort Randall pool level will be raised to near 1353.0 feet msl by March 1. It is likely that a pool level as high as 1355.2 feet msl could be reached by the end of the winter period on March 31 if runoff conditions permit. The Fort Randall pool level above the White River delta near Chamberlain, South Dakota will likely remain at a higher elevation than the pool level below the delta from early October through December, due to the damming effect of this delta area.

<u>Gavins Point Dam</u>. Gavins Point winter releases are discussed in the first paragraph of this section. The Gavins Point pool level will be near elevation 1207.5 feet

msl until late February when it will be lowered to elevation 1206.0 feet msl to create additional capacity to store spring runoff.

System storage for all runoff conditions will be substantially below the base of the annual flood control zone by March 1, 2008, the beginning of next year's runoff season.

E. <u>Regulation During the 2008 Navigation Season</u>. The Upper Decile, Upper Quartile, Median, Lower Quartile, and Lower Decile runoff scenarios modeled for this year's AOP follow the specific technical criteria presented in the current Master Manual for downstream flow support. All five runoff scenarios studied for this year's AOP provide gradually increasing Gavins Point releases to provide Missouri River navigation season flow support at the mouth of the Missouri near St. Louis on April 1, 2008, the normal navigation season opening date. The corresponding dates at upstream locations are Sioux City, March 23; Omaha, March 25; Nebraska City, March 26; and Kansas City, March 28. However, if there is no commercial navigation scheduled to use the upper reaches of the navigation channel, we will consider eliminating navigation flow support for targets in those reaches to conserve water in the System, as has been done since 2003.

Navigation flow support for the 2008 season will be determined by actual System storage on March 15 and July 1. Although all runoff scenarios modeled indicate minimum service flow support throughout the navigation season, if the July 1 System storage check indicates an increase in service level, any increase may be delayed until the end of the T&E bird species' nesting season, depending on the potential for 'take' of those species. The normal 8-month navigation season is shortened as a water conservation measure for all runoff scenarios as shown in *Table II*.

	Runoff Scenario	System S March 15	torage Iulv 1	Flow Lev Below Fr	el Above or ull Service	Season Shortening			
	(MAF)	(MAF)	(MAF)	((cfs)				
				Spring	Summer/F	all			
U.D.**	34.5	39.4	48.9	-6,000	-6,000	17			
U.Q.**	30.6	39.2	46.9	-6,000	-6,000	29			
Med *	24.6	37.4	43.0	-6,000	-6,000	30			
L.Q.	19.5	35.9	38.7	-6,000	-6,000	46			
L.D.	15.5	35.7	36.6	-6.000	-6.000	60			

TABLE II NAVIGATION SERVICE SUPPORT FOR THE 2008 SEASON

* Includes only a March Spring Pulse

**Includes both March and May Spring Pulses

As previously stated, the planned regulation for the 2008 nesting season will be SR-FTT. The initial steady release, which is estimated to be 25,000 to 28,000 cfs, will be based on hydrologic conditions and the availability of habitat at that time. Model runs included in this AOP have a Gavins Point release peaking cycle of 2 days down and 1 day up during May to keep birds from nesting at low elevations. Gavins Point releases will be adjusted to meet downstream targets as tributary flows recede, but ideally the initial steady release will be sufficient to meet downstream targets until the majority of the birds have nested. The purpose of this regulation is to continue to meet the project purposes while minimizing the loss of nesting T&E species and conserving water in the upper three reservoirs. Releases from Garrison and Fort Randall will follow repetitive daily patterns from early May, at the beginning of the T&E species' nesting season, to the end of the nesting in late August. In addition to the intra-day pattern, Fort Randall releases may also be cycled with 2 days of low releases and 1 day of higher releases during the early part of the nesting season to maintain release flexibility in that reach while minimizing the potential for take.

The simulation of March spring pulses are indicated for the Median through Upper Decile runoff scenarios, and the Upper Quartile and Upper Decile runoff scenarios also include the simulation of a May spring pulse for the benefit of the endangered pallid sturgeon. The magnitude of the May pulses in the Upper Decile and Upper Quartile runoff scenarios are 15,800 cfs and 15,500 cfs, respectively. The actual System storage on March 1 and May 1, 2008 will be used to determine whether or not spring pulses will be implemented. If a May pulse is to be implemented, the actual May 1 System storage and the May 1 runoff forecast will be used to determine the magnitude of that pulse.

Gavins Point releases may be quite variable during the 2008 navigation season but are expected to range from 18,000 to 32,000 cfs. Release reductions necessary to minimize downstream flooding are not reflected in the monthly averages shown in the simulations but will be implemented as conditions warrant. Reductions in System releases to integrate the use of downstream Missouri River flow support from the Kansas Reservoir System have not been included since they are based on downstream hydrologic conditions but this storage will be utilized to the extent possible to provided basin water conservation. Simulated storages and releases for the System and individual reservoirs within the System are shown on *Plates 6 through 11*. Ample storage space exists in the System to control flood inflows under all scenarios simulated for this AOP.

The reservoir regulation simulations presented in this AOP for the Upper Decile, Upper Quartile, and Median runoff scenarios show that steady to rising pool levels would occur during the spring fish spawn period for the upper three System reservoirs. The studies show that inflows are sufficient to maintain steady to rising pools at Fort Peck and Garrison from April through June for Lower Quartile and Lower Decile runoff scenarios, however, the Oahe pool level may fall during this period. The ability to provide steady to rising pool levels in the upper three reservoirs in low runoff years is very dependent on the volume, timing, and distribution of runoff. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2008, the Corps will, to the extent reasonably possible, set releases to result in a steady to rising pools at Garrison during April and May. This will be accomplished at Garrison by setting releases at Fort Peck and Garrison at a level that would maintain a rising Garrison pool, but no less than the minimum required to supply downstream irrigation. These adjustments may be restricted when the terns and plovers begin nesting in May. If the drought continues, emphasis during the fish spawn will be rotated with Garrison being favored in even years, and Oahe and Fort Peck favored in odd years. The upper three reservoirs will be managed to benefit forage fish to the extent reasonably possible, while continuing to serve the other Congressionally authorized project purposes. The plan may also be adjusted to be opportunistic in regard to runoff potential and will continue to evolve as additional information becomes available.

F. <u>Regulation Activities for T&E Species and Fish Propagation Enhancement.</u> As discussed in the previous section, the 2007-2008 AOP includes no provisions for unbalancing the Fort Peck, Garrison, and Oahe reservoirs on March 1, 2008 for any of the runoff scenarios. The criteria for unbalancing are based on recommendations provided by the MRNRC and the USFWS. Under all simulations, System storage will be below the minimum levels under which unbalancing is recommended by either the MRNRC or the USFWS. In addition, while it appears to possible to maintain steady to rising reservoirs levels at Fort Peck, Garrison and Oahe during the forage fish spawn under all but the lowest runoff scenarios, the reservoirs will likely be below the levels required for optimum availability of spawning substrate.</u>

<u>Fort Peck Dam</u>. The repetitive daily pattern of releases from Fort Peck Dam has not been implemented since the 2004 tern and plover nesting season. This adaptive management decision was made based on data collected during previous nesting seasons. In recent years, birds in this reach have nested on available high habitat, and thus were not expected to be impacted by the potential range of releases from Fort Peck during the summer. Releases during the 2008 nesting season will not be restricted by the repetitive daily pattern unless habitat conditions or nesting patterns change. This regulation should result in habitat conditions for nesting terns and plovers that are similar to those that were available in 2007.

If flood flows enter the Missouri River below the project during the nesting season, hourly releases will be lowered to no less than 3,000 cfs in order to keep traditional riverine fish rearing areas continuously inundated, while helping to lower river stages at downstream nesting sites. April releases should be adequate for trout spawning below the project. Maintaining a rising Fort Peck pool level will be dependent upon the daily inflow pattern to the reservoir, but appears possible under all the runoff scenarios.

The T&E flow modification "mini-test" would not be run under any runoff scenario. The Fort Peck pool level must be at elevation 2229 feet msl to allow releases required for the "mini-test" via the spillway.

<u>Garrison Dam</u>. Daily average releases from Garrison will be much less than full powerplant capacity during the tern and plover nesting season under all runoff scenarios. Monthly average releases will decline 500 to 1,000 cfs during the summer nesting season. Hourly peaking will be restricted during the nesting season to limit peak stages below the project for nesting birds.

The Garrison pool level may again approach a level that jeopardizes the volume of cold-water habitat in 2008. In 2005 plywood was attached to the lower 50 feet of the trash racks on two of the penstocks to allow water to be drawn from a higher, and therefore warmer, region of the reservoir. In 2007 plywood was installed on one additional trash rack. During 2008, releases from Garrison during the summer months will be made through the three hydropower units with modified intakes, to the extent reasonably possible. In addition, the manner in which the other hydropower units are operated will be adjusted to run them at or near full capacity when in use, which also has the effect of drawing water off the upper, warmer, portion of the reservoir. In combination, these two efforts are expected to save several hundred thousand acre-feet of coldwater habitat for the benefit of the coldwater fishery.

If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2008, the Corps will, to the extent reasonably possible while serving other Congressionally authorized project purposes, set releases to result in a steady to rising pool at Garrison during April and May. Adjustments to Garrison's releases, however, may be restricted when the terns and plovers begin nesting in May. A rising pool at Garrison during the fish spawn in April and May will be dependent upon the daily inflow pattern to the reservoir but appears possible with all runoff simulations.

<u>Oahe Dam</u>. Releases in the spring and summer will back up those from Gavins Point Dam. The pool level should be steady to rising in the spring during the fish spawn under median and above runoff scenarios, but it will be dependent on the timing and distribution of runoff as well as the need to maintain reasonable releases from Garrison to avoid adverse impacts to other authorized purposes.

<u>Fort Randall Dam</u>. If System storage is high enough for the implementation of a May Gavins Point spring pulse, primary consideration will be being given to staging or storing extra water in Fort Randall reservoir prior to the pulse. This will reduce the risk of impacts at the upper three reservoirs including those associated with water quality due to lower reservoir levels, water intake access problems and historic and cultural site exposure.

To the extent reasonably possible, Fort Randall will be regulated to provide for a pool elevation near 1355 feet msl during the fish spawn period, provided water can be supplied from other reservoirs for downstream uses. The pool will not be drawn down below elevation 1337.5 feet msl in the fall to ensure adequate supply for water intakes. As a measure to minimize take while maintaining the flexibility to increase releases during the nesting season, hourly releases from Fort Randall during the 2008 nesting season will be restricted to limit peak stages below the project for nesting birds. Daily average flows may be increased every third day to preserve the capability of increasing releases later in the summer with little or no incidental take if drier downstream conditions occur.

<u>Gavins Point Dam.</u> March and May spring pulses will be made from Gavins Point Dam for the benefit of the endangered pallid sturgeon if storage is above the precludes outlined in the spring pulse technical criteria. Details related to the spring pulses, including the specific technical criteria for the 2008 pulses, are presented in Plate 3.

Based on 2003 through 2007 nesting season results with the SR-FTT regulation and planned habitat development activities, it is anticipated that sufficient habitat will be available above the planned release rates to provide for successful nesting. All reasonable measures to minimize the loss of nesting T&E bird species will be used. These measures include, but are not limited to, such things as a relatively high initial SR during the peak of nest initiation, the use of the Kansas River basin reservoirs, moving nests to higher ground when possible, and monitoring nest fledge dates to determine if delaying an increase a few days might allow threatened chicks to fledge. The location of tows and river conditions at intakes would also be monitored to determine if an increase could be temporarily delayed without impact. Cycling releases every third day may be used to conserve water early in the nesting season if extremely dry conditions develop. In addition, cycling may be used during downstream flood control regulation.

The Gavins Point pool will be regulated near 1206.0 feet msl in the spring and early summer, with minor day-to-day variations due to inflows resulting from rainfall runoff. Several factors can limit the ability to protect nests from inundation in the upper end of the Gavins Point pool. First, because there are greater numbers of T&E bird species nesting below the Gavins Point project, regulation to minimize 'take' usually involves restricting Gavins Point releases, which means that the Gavins Point pool can fluctuate significantly due to increased runoff from rainfall events. Second, rainfall runoff between Fort Randall Dam and Gavins Point Dam can result in relatively rapid pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs. And third, the regulation of Gavins Point for downstream flood control may necessitate immediate release reductions to reduce downstream damage. When combined, all these factors make it difficult and sometimes impossible to prevent inundation of nests in the upper end of the Gavins Point reservoir. Planned habitat creation projects in Lewis and Clark Lake will reduce the inundation risk to T&E

bird species by providing higher habitat for nesting. The pool will be increased to elevation 1207.5 feet msl when it is determined that there are no terms or plovers nesting along the reservoir.

Regulation Activities for Historic and Cultural Properties. As acknowledged in G. the 2004 Programmatic Agreement for the Operation and Management of the Missouri River Main Stem System (PA), wave action and fluctuation in the level of the System reservoir pools results in erosion along the banks of the reservoirs. With the recent drought conditions additional sites have become exposed as the pool levels have declined. The Corps will work with the Tribes utilizing 36 CFR Part 800 and the PA to address the exposure of these sites. The objective of a programmatic agreement is to deal "...with the potential adverse effects of complex projects or multiple undertakings..." The PA objective was to collaboratively develop a preservation program that would avoid, minimize and/or mitigate adverse effects along the System reservoirs. Under all simulations System storage will be below normal levels and pool elevation at the upper three reservoirs will remain low, continuing to expose cultural sites along the shorelines. Actions to avoid, minimize or mitigate adverse impacts and expected results of the actions are covered under Chapter VI of this AOP. Plate 14 shows the locations of the Tribal Reservations.

<u>Fort Peck Dam</u>. Depending on runoff in the Missouri River basin, System regulation during 2008 could result in a Fort Peck pool elevation variation from a high of 2227 feet msl to a low of 2192 feet msl. This is based on the Upper and Lower Decile runoff scenarios (see *Plate 8* and the studies included at the end of this report). Based on a review of existing information, approximately 25 to 50 known sites could be affected during this period.

<u>Garrison Dam</u>. Based on the Upper and Lower Decile runoff scenarios (see *Plate 9* and the studies included at the end of this report), Garrison pool elevations could range between 1833 and 1803 feet msl during 2008. Based on a review of existing information, approximately 100 to 150 known sites could be affected during this period.

<u>Oahe Dam</u>. At the Oahe reservoir, the System regulation under the Upper and Lower Decile runoff scenarios could result in pool elevations between 1601 and 1567 feet msl (see *Plate 10* and the studies included at the end of this report). Based on a review of existing information, approximately 200 to 250 known sites could be affected during this period.

<u>Big Bend Dam</u>. System regulation will be adjusted to maintain the Big Bend pool level in the normal 1420 to 1421 feet msl range during 2008. Short-term increases above 1421 due to local rainfall may also occur. Based on a review of existing information, approximately 40 to 80 known sites could be affected during this period. <u>Fort Randall Dam</u>. As part of the normal System regulation, the Fort Randall pool elevations will vary between 1350 and 1355 feet msl during the spring and summer of 2008. Short-term increases above 1355 feet msl due to local rainfall may occur. The annual fall drawdown of the reservoir to elevation 1337.5 feet msl will begin prior to the close of the navigation season and will be accomplished by early December. The reservoir will then refill during the winter to elevation 1350 feet msl. Based on a review of existing information, approximately 75 to 100 known sites could be affected during this period.

<u>Gavins Point Dam</u>. System regulation will be adjusted to maintain the Gavins Point pool level in the normal 1206 to 1207.5 feet msl range during 2008. Short-term increases above 1207.5 feet msl may occur due to local rainfall. Based on a review of existing information, approximately 25 to 50 known sites could be affected during this period.

VI. SUMMARY OF RESULTS EXPECTED IN 2008

With regulation of the System in accordance with the 2007-2008 Draft AOP outlined in the preceding pages, the following results can be expected.

A. <u>Flood Control</u>. All runoff scenarios studied will begin the March 1, 2008 runoff season substantially below the desired 57.0 MAF base of annual flood control and multiple use zone. Therefore, the entire System flood control zone, plus an additional 19.0 to 21.7 MAF of the carryover multiple use zone, will be available to store runoff. The System will be available to significantly reduce peak discharges and store a significant volume of water for all floods that may originate above the System.

Remaining storage in the carryover multiple use zone will be adequate to provide support for all of the other multiple purposes of the System, though at reduced levels.

B. <u>Water Supply and Water Quality Control</u>. Problems at intakes located in the river reaches and Mainstem reservoirs are related primarily to intake elevations or river access rather than inadequate water supply. In emergency situations, short-term adjustments to protect human health and safety would be considered to keep intakes operational.

Low reservoir levels during the current drought have contributed to both intake access and water quality problems for intakes on Garrison and Oahe reservoirs, including several Tribal intakes. The Standing Rock Sioux Tribe's intake at Fort Yates failed in November 2003 leaving the community without water for several days. The intake, which under normal circumstances is in Oahe reservoir, is presently in an open river situation due to Oahe reservoir receding as the pool level declined. The Bureau of Reclamation (BOR) has installed a temporary intake and drilled a well to ensure continued water supply for that community. The BOR has also lowered the intake at Wakpala on Oahe reservoir. The Corps has used its emergency authority to lower the intake at Parshall on Garrison reservoir. Other intakes that have been identified as having problems or potential problems include Mandaree, Twin Buttes, White Shield, Four Bears, Pick City and Garrison intakes on Garrison reservoir. The Cheyenne River Sioux Tribe's Mni Waste' water intake on Oahe reservoir was recently relocated and should now be able to operate through a wider range of reservoir elevations. This intake serves over 14,000 residents of and near the Cheyenne River Indian Reservation in Dewey, Ziebach, and Meade Counties in South Dakota. If the drought continues, reservoir pool levels and releases may continue to fall below their previous historic lows creating the potential for additional intake access and water quality problems at both river and reservoir intakes. Under the Lower Decile runoff scenario, new record low pool levels would be set at each of the upper three reservoirs. Although not below the critical shut-down elevations for any intake, the record low levels would require extra monitoring to ensure the continued operation of the intakes.

Although below normal winter releases are being provided for all five runoff scenarios, all water supply and water quality requirements on the Missouri River both below Gavins Point Dam and between System reservoirs should be met for all flow conditions studied. Due to the low reservoir levels and releases many intake operators have experienced, and will continue to experience, additional water treatment costs. It is possible with the low winter releases that ice formation or ice jams may temporarily reduce river stages to levels below which some intakes can draw water. Therefore, during severe cold spells, experience has shown that for brief periods it may be necessary to increase Gavins Point releases to help alleviate downstream water supply problems.

During the non-navigation periods in the spring and fall, System releases as low as 9,000 cfs are possible with adequate downstream tributary flow, as has been provided in the spring and fall of each season since the fall of 2004. If a non-navigation year would occur, summer releases averaging around 18,000 cfs from the System are possible during the summer months. These lower release rates are expected to result in reduced river levels that may impact some downstream intakes that have marginal access to the Missouri River. Historically, water access problems have been associated with several of these intakes; however, in all cases the problems have been a matter of restricted access to the river or reservoir rather than insufficient water supply. In addition, the low summer release rate would likely result in higher water temperatures in the river which could impact the thermal discharge permits at power plants located along the lower river. The Corps continues to encourage intake operators throughout the System and along the lower river reach to make necessary modifications to their intakes to allow efficient operation over the widest possible range of hydrologic conditions.

C. <u>**Irrigation**</u>. Scheduled releases from the System reservoirs will be sufficient to meet the volumes of flow required for irrigation diversions from the Missouri River. Some access problems may be experienced, however, if drought conditions persist. Below Fort Peck, localized dredging may once again be required in the vicinity of irrigation intakes in order to maintain access the water if releases are low next summer. Tributary irrigation water usage is fully accounted for in the estimates of water supply.

D. <u>Navigation</u>. Service to navigation in 2008 will be scheduled at minimum service flow support for all runoff scenarios. Although the AOP simulations provide a comparison of typical flow support under varying runoff conditions, the actual rate of flow support for the 2008 navigation season will be based on actual System storage on March 15 and July 1, 2008.

All simulations have a shortened navigation season. The anticipated service level and season length for all runoff conditions simulated are shown in *Table II*.

E. <u>**Power.**</u> *Tables III and IV* give the estimated monthly System load requirements and hydropower supply of the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP), from August 2007 through December 2008. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments.

F. <u>Recreation, Fish and Wildlife</u>. The regulation of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a managed system. As a result of the drought, the upper three reservoir levels will remain well below normal and recreation access will be limited at several locations. Special regulation adjustments incorporating specific objectives for these purposes will be accomplished whenever possible. Conditions in the lower three reservoirs should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs.

Boat ramps that were lowered and low water ramps that were constructed during the drought of the late 1980's to early 1990's and the further improvements made in 2003 through 2007 should provide adequate reservoir access in 2008 for runoff scenarios above the Lower Quartile. For the Lower Quartile runoff scenario, reservoir levels would be slightly above the minimum summer levels reached previously during the current drought but approaching the levels where many boat ramps become unusable.

TABLE III PEAKING CAPABILITY AND SALES (1,000 kW at plant)

E C	Estimated Committed Sales*	Fx	pected	CofEC	anahility	1	Fxr	ected B	ureau C	anahilit	v**		Exp Syste	ected To m Capa	otal bility	
2007			120%	Basic	<u>80%</u>		<u> </u>	<u>120%</u>	Basic	80%	<u> </u>		120%	Basic	<u>80%</u>	
Aug Sep Oct Nov Dec	2259 1844 1808 1889 2055		2054 2046 2012 2019 2040	2052 2043 2005 2008 2017	2048 2035 1994 1995 1998			207 209 210 207 202	203 203 203 203 203	205 203 203 203 202			2261 2255 2222 2226 2242	2255 2246 2208 2211 2220	2253 2238 2197 2198 2200	
2008 Jan Feb	2240 1993		2057 2063	2030 2038	2011 2015			196 191	203 203	199 199			2253 2254	2233 2241	2210 2214	
		<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>
Mar Apr May Jun Jul Aug Sep Oct Nov Dec	1903 1778 1482 1723 2310 1858 1670 1488 1836 2039	2092 2129 2156 2211 2231 2225 2235 2200 2200 2188	2083 2115 2136 2183 2198 2190 2195 2158 2167 2154	2053 2068 2085 2127 2132 2114 2117 2075 2081 2056	2021 2020 2023 2052 2045 2027 1989 1985 1988 1957	2018 2013 2007 2015 1996 1977 1936 1939 1941 1905	193 195 202 213 213 208 207 207 206 201	195 197 203 213 209 207 207 207 205 201	199 201 206 212 210 207 207 206 205 200	198 200 203 208 207 204 203 203 203 200	198 200 204 208 209 207 207 207 207 207	2285 2324 2358 2424 2424 2433 2442 2407 2406 2389	2278 2312 2399 2396 2411 2399 2402 2365 2372 2355	2252 2269 2291 2339 2342 2321 2324 2281 2286 2256	2219 2220 2226 2260 2252 2231 2192 2188 2191 2157	2216 2213 2211 2223 2205 2184 2143 2146 2148 2109

* Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements will be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant.

TABLE IV ENERGY GENERATION AND SALES (Million kWh at plant)

l C	Estimated Committed Sales*	Exp	pected (C of E G	eneratio	n	Exp	ected B	ureau G	eneratio	n **		Exp Syste	ected To m Gene	otal ration	
2007			<u>120%</u>	<u>Basic</u>	<u>80%</u>		· · · ·	<u>120%</u>	<u>Basic</u>	<u>80%</u>			<u>120%</u>	Basic	<u>80%</u>	
Aua	846		722	730	738			49	51	42			771	781	780	
Sep	718		508	519	524			47	48	40			555	567	564	
Oct	722		411	418	424			53	47	39			464	465	463	
Nov	783		262	272	277			72	44	38			334	316	315	
Dec	890		482	446	435			74	46	39			556	492	474	
2008																
Jan	903		461	441	450			72	45	39			533	486	489	
Feb	867		394	420	414			66	42	35			460	462	449	
		<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>
Mar	796	427	459	450	461	477	76	70	44	37	37	503	528	494	498	513
Apr	745	463	502	521	605	588	77	78	45	35	35	540	580	566	640	623
May	688	679	691	644	723	705	110	105	49	39	39	789	796	693	762	744
Jun	750	639	649	664	724	701	135	128	57	41	41	774	777	721	765	742
Jul	839	737	744	753	795	771	151	120	72	57	42	888	864	825	852	813
Aug	845	794	789	784	751	699	102	98	71	57	42	896	887	855	808	741
Sep	720	603	578	577	513	480	93	89	76	55	41	696	667	653	568	521
Oct	722	547	507	485	410	302	83	83	76	54	48	630	590	561	464	350
Nov	784	369	322	305	299	294	83	82	78	52	48	452	404	383	351	342
Dec	891	<u>557</u>	<u>552</u>	<u>501</u>	<u>476</u>	<u>456</u>	<u>85</u>	<u>83</u>	<u>85</u>	<u>62</u>	<u>49</u>	<u>642</u>	<u>635</u>	<u>586</u>	<u>538</u>	<u>505</u>
СҮ ТОТ	9550	6670	6648	6545	6622	6336	1133	1074	742	563	497	7803	7722	7287	7185	6834

* Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase. ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant.

Under the Lower Decile runoff scenario, all three of the upper reservoirs would be at or below previous record lows during next summer's recreation season and significant efforts would be needed to maintain access. However, boat ramps in some areas where the ramps cannot be extended may become unusable. This will affect the normal use patterns as visitors will have to seek out areas with usable boat ramps.

The effects of the simulated System regulation during 2008 on fish and wildlife are included in Chapter V, Section F, entitled, "Regulation Activities for T&E Species and Fish Propagation Enhancement."

G. <u>**Historic and Cultural Properties.**</u> As mentioned in Chapter V of this AOP, the regulation of the System during 2007 and 2008 will expose cultural sites due to erosion from the normal fluctuation of pool elevations as well as the recent drought conditions which has exposed previously inundated sites as the waters have receded. The Corps will work with the Tribes utilizing 36 CFR Part 800 and the PA to address the exposure of these sites. The objective of a PA is to deal "…with the potential adverse effects of complex projects or multiple undertakings…" The PA objective was to collaboratively develop a preservation program that would avoid, minimize and/or mitigate the adverse affects of the System operation.</u>

The planned preservation program for this AOP is outlined by multiple stipulations in the PA. One of the stipulations, or program components, is the Five-Year Plan. This plan outlines how the Corps will accomplish its responsibilities under the PA and the National Historic Preservation Act. The "Draft Five Year Plan, dated February 2005" (see <u>https://www.nwo.usace.army.mil/CR/</u>) is currently being implemented. The plan includes inventory, testing and evaluation, mitigation and other specific activities that will allow the Corps to avoid, minimize and/or mitigate the adverse effects to cultural sites on Corps lands within the System. Many of the actions listed in the plan are within the elevation ranges that will occur with the implementation of the Master Manual criteria in 2007-2008. Two critical components of the Five-Year plan that are applicable to this AOP are monitoring and mitigation, which will be briefly discussed in the following paragraphs.

First, a collaboratively developed plan, entitled "Draft Monitoring and Enforcement Plan, dated April 2005" (see <u>https://www.nwo.usace.army.mil/CR/</u>) is in place. This monitoring plan outlines the sites that require monitoring and specifies a frequency for monitoring. The Corps is strategically monitoring sites, including those sites within the potential operating pool elevations, to document the effects of the implementation of the 2007-2008 AOP. Specific sites are identified in the draft Monitoring and Enforcement Plan for the monitoring team, comprised of Corps rangers and tribal monitors, to visit and document impacts. This focused monitoring is resulting in more accurate data on the current impacts to sites along the river plus it is

assisting with the identification of sites for mitigation. Training for the monitoring team was held in June 2006 and again in July 2007.

Secondly, mitigation or protection of sites that are being adversely impacted continues. In the 2006 Annual Report by the Corps on the implementation of the Programmatic Agreement it states, "During the reporting period sixteen sites were either completed, started, or in the design phase." The annual report is available at <u>https://www.nwo.usace.army.mil/CR/</u>. In addition the Corps has awarded a contract to develop an erosion model that will compare modeling data against actual erosion data, collected by the monitoring team, to assist in the prioritization of sites for protection. The model is expected to be complete by April 2008.

Results expected from the proposed monitoring and mitigation actions include more accurate horizontal and vertical data on existing cultural sites, detailed impact data, proactive protection and preservation of sites. The effects of the simulated System regulation during 2007 on cultural sites are included in the Chapter V, section G., entitled, "Regulation Activities for Historic and Cultural Properties."

H. <u>System Storage</u>. If August 1, 2007 Basic runoff forecast verifies, System storage will decline to 36.3 MAF by the close of CY 2007. This would be 2.4 MAF higher than the all-time record low storage of 33.9 MAF set on February 9, 2007 and nearly 2 MAF higher than last year's record low end-of-year storage of only 34.4 MAF. This end-of-year storage is 16.8 MAF less than the 1967 to 2006 average. The record low storage during the 1988-1992 drought was 40.8 MAF in January 1991. The end-of-year System storages have ranged from a maximum of 60.9 MAF, in 1975, to the 2006 minimum of 34.4 MAF. Forecasted System storage on December 31, 2008 is presented in *Table V* for the runoff scenarios simulated.

I. <u>Summary of Water Use by Functions</u>. Anticipated water use in CY 2007, under the regulation plan with the Basic forecast of water supply is shown in *Table VI*. Actual water use data for CY 2006 are included for information and comparison. Under the reservoir regulation simulations in this AOP, estimated water use in CY 2008 also is shown in *Table VI*.

		Carryover	Unfilled	Total
Water Supply	Total	Storage	Carryover	Change
Condition	(12/31/08)	Remaining 1/	Storage 2/	CY 2008
	(Volume	s in 1,000 Acre-Fee	et)	
Upper Decile	50,500	32,500	6,500	13,200
Upper Quartile	47,800	29,800	9,200	10,500
Median	41,500	23,500	15,500	5,200
Lower Quartile	35,700	17,700	21,300	400
Lower Decile	32,700	14,700	24,300	-2,600

TABLE VANTICIPATED DECEMBER 31, 2008 SYSTEM STORAGE

<u>1</u>/ Net usable storage above 18.0 MAF System minimum pool level established for power, recreation, irrigation diversions, and other purposes.

2/ System base of annual flood control zone containing 57.0 MAF.

TABLE VI MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2006, 2007, AND 2008 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF)

			Si	mulations	for	
CY 2006	CY 2007		Cale	endar Year	2008	
Actual	Basic	Upper	Upper		Lower	Lower
	Simulation	Decile	Quartile	Median	Quartile	Decile
2.4	2.2					
2.4	2.3					
<u>-0.1</u>	0.0	2.0	2.7	20	27	2.6
2.3	2.3	2.8	2.7	2.9	2.7	2.6
2.3	1.9	1.1	1.1	1.4	1.6	1.5
0.0	0.0					
11.3	10.0	13.2	12.2	11.3	10.8	10.0
0.2	0.2	0.5	0.5	0.3	0.2	0.2
0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.6	3.6	3.6	3.5	3.5	3.8	3.9
0.0	0.0	0.0	0.0	0.0	0.0	0.0
<u>-1.6</u>	<u>2.9</u>	<u>13.3</u>	10.6	<u>5.2</u>	0.4	<u>-2.6</u>
18.2	21.0	34.5	30.6	24.6	19.5	15.5
5.3	4.6	5.1	5.1	4.9	4.9	4.7
12.0	10.4	12.8	12.7	12.3	12.2	11.6
12.2	9.7	11.3	11.5	12.1	13.1	12.8
11.2	9.2	11.2	11.5	12.0	13.0	12.7
12.0	10.1	12.6	12.5	12.8	13.3	12.8
13.2	11.6	14.7	14.3	14.1	14.4	13.9
	CY 2006 Actual 2.4 -0.1 2.3 2.3 0.0 11.3 0.2 0.0 3.6 0.0 -1.6 18.2 5.3 12.0 12.2 11.2 12.0 13.2	$\begin{array}{c} CY 2006 \\ Actual \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c cccc} CY 2006 & CY 2007 \\ Actual & Basic \\ Simulation & Decile \\ \hline \\ 2.4 & 2.3 \\ \hline \\ -0.1 & 0.0 \\ 2.3 & 2.3 \\ 2.3 & 1.9 \\ 1.1 \\ \hline \\ 0.0 & 0.0 \\ 11.3 & 10.0 \\ 13.2 \\ 0.2 & 0.2 \\ 0.0 & 0.0 \\ 13.2 \\ 0.0 & 0.0 \\ 0.0 \\ 13.2 \\ 0.0 \\ 0.0 \\ 13.2 \\ 13.3 \\ 18.2 & 21.0 \\ 34.5 \\ \hline \\ 5.3 & 4.6 \\ 0.0 \\ 0.0 \\ -1.6 \\ 2.9 \\ 13.3 \\ 18.2 & 21.0 \\ 34.5 \\ \hline \\ 5.3 & 4.6 \\ 5.1 \\ 12.0 \\ 1.3 \\ 11.2 \\ 9.2 \\ 11.2 \\ 12.0 \\ 10.1 \\ 12.6 \\ 13.2 \\ 11.6 \\ 14.7 \\ \hline \end{array}$	Si CY 2006 CY 2007 Calc Actual Basic Upper Upper Upper 2.4 2.3 2.3 2.8 2.7 2.3 2.3 2.8 2.7 2.3 1.9 1.1 1.1 0.0 0.0 1.32 12.2 0.2 0.2 0.5 0.5 0.0 0.0 0.0 0.0 3.6 3.6 3.6 3.5 0.0 0.0 0.0 0.0 1.3 10.6 34.5 30.6 5.3 4.6 5.1 5.1 12.0 10.4 12.8 12.7 12.2 9.7 11.3 11.5 11.2 9.2 11.2 11.5 12.0 10.4 12.8 12.7 12.2 9.7 11.3 11.5 12.0 10.1 12.6 12.5 13.2 11.6 14.7 14.3 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Simulations for CY 2006 CY 2007 Actual Basic Upper Upper Decile Calendar Year 2008 2.4 2.3 2.3 2.8 2.7 2.9 2.7 2.3 2.3 2.8 2.7 2.9 2.7 2.3 1.9 1.1 1.1 1.4 1.6 0.0 0.0 0.0 0.0 0.0 0.0 11.3 10.0 13.2 12.2 11.3 10.8 0.2 0.2 0.5 0.5 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 3.6 3.6 3.6 3.5 3.5 3.8 0.0 0.0 0.0 0.0 0.0 0.0 -1.6 2.9 13.3 10.6 5.2 0.4 18.2 21.0 34.5 30.6 24.6 19.5 5.3 4.6

(1) Tributary uses above the 1949 level of development including agricultural depletions and tributary storage effects.

(2) Net evaporation is shown for 2008.

(3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point releases were held to as low as 6,000 cfs.

(4) Estimated requirement for downstream water supply and water quality in 2008 is approximately 6.0 MAF.

(5) Increased releases required for endangered species regulation.

(6) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River.

(7) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall release.

VII. TENTATIVE PROJECTION OF REGULATION THROUGH FEBRUARY 2014

The 5-year extensions to the AOP (March 2009 to March 2014) have been prepared to serve as a guide for the Western Area Power Administration's marketing activities and to provide data to allow basin interests to conduct long-term planning. Three runoff conditions are modeled in the extension studies: Median, Lower Quartile, and Lower Decile.

The navigation service level and season length criteria described in *Plate 3* were applied to the extensions. The March 15 and July 1 System storage checks shown in *Plate 3* were used to determine the flow support for navigation and other downstream uses and the navigation season length. A steady release – flow to target (SR-FTT) regulation with cycling in May was modeled during the T&E bird species' nesting season. The Gavins Point releases to meet navigation target flows, as shown in *Plate 3* and as computed by the March 15 and July 1 System storage checks, were used prior to and following the nesting season. The September 1 System storage check was used to determine the winter System release. Navigation service support and season length, magnitudes of March and May spring pulses, March 1 reservoir unbalancing, end of year System storage, and the winter release rate for the extensions are shown on *Table VII*. The criteria considered as each year of the extensions was modeled are listed, along with the results, in *Tables VIII through X* for the Median, Lower Quartile, and Lower Decile extension studies, respectively.

Median Runoff. Studies 9 through 13 present the results of simulating Α. Median runoff (24.6 MAF) from March 2009 through February 2014. The March 1, 2009 System storage would be 41.9 MAF and would rise to 53.0 MAF by March 1, 2014, 4.0 MAF below the desired March 1 storage of 57.0 MAF, the base of the annual flood control and multiple use pool. The navigation service level would gradually increase from minimum service in 2009 to full service after the July 1 storage check in 2013. The 2009 navigation season would be shortened 23 days; a full 8-month navigation season would be supported in 2010 through 2013. Winter System releases would increase slightly from an average of the minimum 12,500 cfs to 12,900 cfs beginning the winter of 2012-2013. The winter of 2013-2014 releases would be 14,000 cfs. March and May spring pulses would occur each year, with the magnitude of the May pulse increasing from 13,200 cfs in 2009 to 16,000 cfs in 2013. Fort Peck, Garrison, and Oahe pools rise to the elevations described in *Plate 3* that permit unbalancing by March 1, 2011. The Fort Peck "mini-test" could be conducted in 2012 by unbalancing the upper three reservoirs beginning in 2011, as shown in *Table VIII*. The Fort Peck release would average 12,800 cfs in June 2012. Fort Peck would not have to be favored again in 2013 to accommodate the full test, which would have a monthly average release of 18,200 cfs in June 2013.
TABLE VII NAVIGATION SERVICE SUPPORT, SPRING PULSES, UNBALANCING AOP EXTENSION STUDIES

	2009	2010	2011	2012	2013
MEDIAN					
Spring Pulse					
March (kcfs)	5.0	5.0	5.0	5.0	5.0
May (kcfs)	13.2	14.5	15.3	15.8	16.0
Flow Level Below Full Service					
Spring (kcfs)	-6.0	-6.0	-4.2	-2.1	-1.1
Summer/Fall (kcfs)	-6.0	-4.1	-1.7	-0.4	0.0
Season Length (Months)	8-23 days	8	8	8	8
Reservoir Unbalancing (ft)	2				
Fort Peck	0	0	+4.2	0	-4.2
Garrison	0	0	-3.0	+3.0	0
Oahe	0	0	0	-3.0	+3.0
Dec 31 Storage (MAF)	46.3	49.4	51.3	52.2	52.9
Winter Release (kcfs)	12.5	12.5	12.5	12.9	14.0
LOWER QUARTILE					
Spring Pulse					
March (kcfs)	0	5.0	0	5.0	5.0
May (kcfs)	0	0	9.1	9.4	9.8
Flow Level Below Full Service					
Spring (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Summer/Fall (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Season Length (Months)	8-40 days	8-30 days	8-30days	8-30 days	8-30 days
Reservoir Unbalancing (ft)					
Fort Peck	0	0	0	0	0
Garrison	0	0	0	0	0
Oahe	0	0	0	0	0
Dec 31 Storage (MAF)	37.1	38.6	40.3	42.0	44.4
Winter Release (kcfs)	12.5	12.5	12.5	12.5	12.5
LOWER DECILE					
Spring Pulse					
March (kcfs)	0	0	0	0	0
May (kcfs)	0	0	0	0	0
Flow Level Below Full Service					
Spring (kcfs)	-6.0	-6.0	-6.0	N/A	-6.0
Summer/Fall (kcfs)	-6.0	-6.0	-6.0	N/A	-6.0
Season Length (Months)	6	6	6	0	8-54
Reservoir Unbalancing (ft)					
Fort Peck	0	0	0	0	0
Garrison	0	0	0	0	0
Oahe	0	0	0	0	0
Dec 31 Storage (MAF)	31.1	30.3	30.2	35.1	35.3
Winter Release (kcfs)	12.5	12.5	12.5	12.5	12.5

		Table VIII					
	Median Exte	nsion Studies - Criteria Consi	dered in the	Modeling Pre	ocess		
Study Number			6	10	11	12	13
	Units	Criteria	2009-2010	2010-2011	2011-2012	2012-2013	2013-2014
March 1 Storage	MAF	Initially 36.5/40	41.859	46.538	49.665	51.520	52.487
March Spring Pulse?	N/A		Yes	Yes	Yes	Yes	Yes
March 15 Storage	MAF	31/49/54.5	42.841	47.544	50.681	52.533	53.514
Service Level	N/A or kcfs	No Sea/Min/Full Thresholds	Minimum	Minimum	Full -4.2	Full -2.1	Full -1.1
3rd Period March GP Q	kcfs		22.9	22.9	24.7	26.8	27.8
April Gavins Point Q	kcfs		20.7	20.7	22.5	24.6	25.6
May 1 Storage	MAF	40	44.355	49.049	52.043	53.700	54.589
May Spring Pulse?	N/A		Yes	Yes	Yes	Yes	Yes
Pulse Magnitude	kcfs		13.20	14.50	15.31	15.79	16.00
Gavins Point Cycling Qs	kcfs		22.0/25.0	23.9/26.9	26.3/29.3	27.6/30.6	28.0/31.0
May Gavins Point Q	kcfs		25.6	27.7	30.4	31.7	32.1
June Gavins Point Q	kcfs		25.0	26.9	29.3	30.6	31.0
July 1 Storage	MAF	50.5/57	47.968	52.501	55.153	56.596	57.354
Service Level	N/A	Min/Full Thresholds	Minimum	Full -4.1	Full -1.7	Full -0.4	Full
July Gavins Point Q	kcfs		25.6	27.5	29.9	31.2	31.6
Aug Gavins Point Q	kcfs		27.2	29.1	31.5	32.8	33.2
Sept Gavins Point Q	kcfs		26.6	28.5	30.9	32.2	32.6
July 1 Storage	MAF	36.5/41&46.8/51.5	47.968	52.501	55.153	56.596	57.354
Season Length Shortening	days	61/31&31/0 Thresholds	23.0	0	0	0	0
Oct Gavins Point Q	kcfs		25.9	27.9	30.3	31.6	32.0
Nov 1-15 Gavins Point Q	kcfs		10.7	27.0	29.4	30.7	31.1
Nov last period/s Gavins Q	kcfs		0.6	16.0	17.2	18.6	18.6
September 1 Storage	MAF	55/58	47.459	51.702	54.004	55.256	55.969
Winter Gavins Point Q	kcfs	12/17 Thresholds	12.5	12.5	12.5	12.9	14.0
Feb 28 Storage	MAF		46.538	49.665	51.520	52.487	52.965
Ft. Peck Level 2/28/end of WY	ft msl		2218.5	2223.2	2230.3	2227.4	2224.0
Garrison Level 2/28/end of WY	ft msl		1824.5	1828.6	1827.9	1835.1	1832.4
Oahe Level 2/28/end of WY	ft msl		1594.2	1598.4	1600.9	1599.0	1605.6
Balance/Unbalance	N/A	Bal <2227/1827/1600 ft msl	Balance	Balance	4.2 P -3.0 G	3.0 G -3.0 O	-4.2 P 3.0 O
Peck Rise 3/31-6/30	N/A		Yes	Yes	Yes	Yes	Yes
Garr Rise 3/31-6/30	N/A		Yes	Yes	Yes	Yes	Yes
Oahe Rise 3/31-6/30	N/A		Yes	Yes	Yes	Yes	Yes
Special Information	N/A					Peck Mini T	Peck Full T

		Table IX					
Lov	ver Quartile E	xtension Studies - Criteria Co	onsidered in	the Modeling	Process		
Study Number			14	15	16	17	18
	Units	Criteria	2009-2010	2010-2011	2011-2012	2012-2013	2013-2014
March 1 Storage	MAF	Initially 36.5/40	35.506	37.146	38.659	40.387	42.058
March Spring Pulse?	N/A		No	Yes	No	Yes	Yes
March 15 Storage	MAF	31/49/54.5	36.334	38.012	39.551	41.280	43.016
Service Level	N/A or kcfs	No Sea/Min/Full Thresholds	Minimum	Minimum	Minimum	Minimum	Minimum
3rd Period March GP Q	kcfs		23.8	26.0	23.8	26.0	26.0
April Gavins Point Q	kcfs		23.8	23.8	23.8	23.8	23.8
May 1 Storage	MAF	40	37.029	38.82	40.468	42.156	44.004
May Spring Pulse?	N/A		No	No	Yes	Yes	Yes
Pulse Magnitude	kcfs		0	0	9.10	9.45	9.83
Gavins Point Cycling Qs	kcfs		25/28	25/28	25/28	25/28	25/28
May Gavins Point Q	kcfs		26.2	26.2	27.5	27.6	27.7
June Gavins Point Q	kcfs		28.0	28.0	28.0	28.0	28.0
July 1 Storage	MAF	50.5/57	39.577	41.408	43.069	44.798	46.971
Service Level	A/A	Min/Full Thresholds	Minimum	Minimum	Minimum	Minimum	Minimum
July Gavins Point Q	kcfs		28.3	28.3	28.3	28.3	28.3
Aug Gavins Point Q	kcfs		28.0	28.0	28.0	28.0	28.0
Sept Gavins Point Q	kcfs		27.5	27.5	27.5	27.5	27.5
July 1 Storage	MAF	36.5/41&46.8/51.5	39.577	41.408	43.069	44.798	46.971
Season Length Shortening	days	61/31&31/0 Thresholds	40	30	30	30	29
Oct Gavins Point Q	kcfs		18.1	23.9	23.9	23.9	24.5
Nov 1-15 Gavins Point Q	kcfs		0.0	9.0	9.0	9.0	9.0
Nov last period/s Gavins Q	kcfs		9.0	9.0	9.0	9.0	9.0
September 1 Storage	MAF	55/58	38.315	40.146	41.844	43.500	45.795
Winter Gavins Point Q	kcfs	12/17 Thresholds	12.5	12.5	12.5	12.5	12.5
Feb 28 Storage	MAF		37.146	38.659	40.387	42.058	44.506
Ft. Peck Level 2/28/end of WY	ft msl		2201.7	2204.5	2207.7	2210.6	2214.8
Garrison Level 2/28/end of WY	ft msl		1810.9	1813.2	1815.8	1818.3	1821.7
Oahe Level 2/28/end of WY	ft msl		1579.8	1582.3	1585.1	1587.7	1591.3
Balance/Unbalance	N/A	Bal <2227/1827/1600 ft msl	Balance	Balance	Balance	Balance	Balance
Peck Rise 3/31-6/30	N/A		Yes	Yes	Yes	Yes	Yes
Garr Rise 3/31-6/30	N/A		Yes	Yes	Yes	Yes	Yes
Oahe Rise 3/31-6/30	N/A		Yes	Yes	Yes	Yes	Yes
Special Information	N/A						

		Table X					
Lo	wer Decile E	tension Studies - Criteria Co	nsidered in t	he Modeling	Process		
Study Number			19	20	21	22	23
	Units	Criteria	2009-2010	2010-2011	2011-2012	2012-2013	2013-2014
March 1 Storage	MAF	Initially 36.5/40	32.384	30.938	30.265	30.129	35.117
March Spring Pulse?	N/A		No	No	No	No	No
March 15 Storage	MAF	31/49/54.5	33.004	31.623	31.002	30.970	35.858
Service Level	N/A or kcfs	No Sea/Min/Full Thresholds	Minimum	Minimum	Minimum	No Season	Minimum
3rd Period March GP Q	kcfs		23.8	23.8	23.8	0.6	23.8
April Gavins Point Q	kcfs		23.8	23.8	23.8	0.6	23.8
May 1 Storage	MAF	40	33.354	32.148	31.620	33.013	36.643
May Spring Pulse?	N/A		No	No	No	No	No
Pulse Magnitude	kcfs		0	0	0	0	0
Gavins Point Cycling Qs	kcfs		25/28	25/28	25/28	9 to 18	25/28
May Gavins Point Q	kcfs		26.2	26.2	26.2	15.0	26.2
June Gavins Point Q	kcfs		28.0	28.0	28.0	18.0	28.0
July 1 Storage	MAF	50.5/57	34.286	32.275	32.615	35.539	37.934
Service Level	N/A	Min/Full Thresholds	Minimum	Minimum	Minimum	No Season	Minimum
July Gavins Point Q	kcfs		28.3	28.3	28.3	18	28.3
Aug Gavins Point Q	kcfs		28	28	28	18	28
Sept Gavins Point Q	kcfs		24.2	24.2	24.2	12	27.5
July 1 Storage	MAF	36.5/41&46.8/51.5	34.286	32.275	32.615	35.539	37.934
Season Length Shortening	days	61/31&31/0 Thresholds	61	61	61	No Season	54
Oct Gavins Point Q	kcfs		0.0	0.0	9.0	0.6	11.6
Nov 1-15 Gavins Point Q	kcfs		9.0	0.0	9.0	0.6	9.0
Nov last period/s Gavins Q	kcfs		0.0	0.6	9.0	0.0	9.0
September 1 Storage	MAF	55/58	32.041	30.935	30.691	34.898	36.072
Winter Gavins Point Q	kcfs	12/17 Thresholds	12.5	12.5	12.5	12.5	12.5
Feb 28 Storage	MAF		30.938	30.265	30.129	35.117	35.296
Ft. Peck Level 2/28/end of WY	ft msl		2189.2	2187.7	2187.4	2197.9	2198.2
Garrison Level 2/28/end of WY	ft msl		1800.3	1799.1	1798.8	1807.6	1807.9
Oahe Level 2/28/end of WY	ft msl		1568.3	1566.9	1566.6	1576.2	1576.6
Balance/Unbalance	N/A	Bal <2227/1827/1600 ft msl	Balance	Balance	Balance	Balance	Balance
Peck Rise 3/31-6/30	N/A		Yes	Yes	Yes	Yes	Yes
Garr Rise 3/31-6/30	N/A		No	Yes	No	Yes	Yes
Oahe Rise 3/31-6/30	N/A		Yes	No	Yes	Yes	Yes
Special Information	N/A						

B. <u>Lower Quartile Runoff</u>. Studies 14 through 18 show the results of Lower Quartile runoff extensions. System storage on March 1, 2009 is 35.5 MAF and rises to 44.5 MAF by March 1, 2014, with navigation service levels remaining at minimum service during the simulation period. The navigation season is shortened 40 days in 2009, 30 days in 2010 through 2012, and 29 days in 2013 as System storage increases. A 12,500-cfs average winter release is shown for the entire study period. Spring pulses would occur in March 2010, in May 2011, and in both March and May 2012 and 2013. The magnitude of these three May pulses are about 75 percent of those in the early years of the Median runs because of the reduction in the magnitude made for the runoff forecasts at and below Lower Quartile. Since the upper three reservoirs do not refill enough to meet the unbalancing criteria in *Plate 3* under Lower Quartile runoff, the carryover multiple use storage is balanced each March 1.

C. <u>Lower Decile Runoff</u>. Studies 19 through 23 show the results of Lower Decile runoff extensions. System storage is 32.4 MAF on March 1, 2009, reaching a low of 29.9 MAF on October 1, 2011, and then rising through much of the remainder of the period, ending at 35.3 MAF on March 1, 2014. Since the System storage is only 30.97 MAF (less than 31.0 MAF) on March 15, 2012, there would be no navigation season in 2012 under the Lower Decile runoff extensions. The Gavins Point releases were modeled at 9,000 cfs in the spring and fall months and 18,000 cfs in the summer months (early May through early September). The higher summer releases help ensure that thermal power generation downstream from Gavins Point Dam remains near full capacity in the heavy energy use summer period. In the other 4 years of the Lower Decile runoff extensions (2009, 2010, 2011, and 2013), the navigation service level remains at minimum service and the navigation season is shortened 2 months in 2009 through 2011 and 54 days in 2013. A 12,500-cfs average winter release is shown for the entire study period. No spring pulses or intrasystem unbalancing are shown due to the low System storage.

Plate 14 presents System storage, Gavins Point releases, and System peaking capability for Median, Lower Quartile, and Lower Decile runoff for the period 2009 through February 2014. Peak power, or peaking capability, is the amount of power available when all powerplants are operating at maximum.

Plate **15** presents reservoir pool elevations for Fort Peck, Garrison, Oahe, and Fort Randall for Median, Lower Quartile, and Lower Decile runoff for the period 2009 through February 2014.

This page intentionally left blank.

PLATE 1

	Summ	ary of Engineering Data Missouri River Mainstem System				
Item No	Subject	Fort Peck Dam -	Garrison Dam -	Oahe Dam -		
1	Location of Dam	Near Glasgow Montana	Near Garrison ND	Near Pierre, SD		
2	River Mile - 1960 Mileage	Mile 1771.5	Mile 1389.9	Mile 1072.3		
3	Total & incremental drainage	57,500	181,400 (2) 123,900	243,490 (1) 62,090		
4	areas in square miles Approximate length of full	134, ending near Zortman, MT	178, ending near Trenton, ND	231, ending near Bismarck, ND		
5	reservoir (in valley miles)	1520 (algorithm 2224)	1240 (algorithm 1827.5)	2250 (algorithm 1607.5)		
5	Average total & incremental	10 200	25 600 15 400	2250 (elevation 1607.5) 28 900 3 300		
÷	inflow in cfs	,	,			
7	Max. discharge of record near damsite in cfs	137,000 (June 1953)	348,000 (April 1952)	440,000 (April 1952)		
8 9	Construction started - calendar yr. In operation (4) calendar yr.	1933 1940	1946 1955	1948 1962		
10	Dam and Embankment	2200 5	1075	1660		
10	Length of dam in feet	2280.5 21.026 (excluding spillway)	1875 11 300 (including spillway)	1660 9 300 (excluding spillway)		
12	Damming height in feet (5)	220	180	200		
13	Maximum height in feet (5)	250.5	210	245		
14	Max. base width, total & w/o berms in feet	3500, 2700	3400, 2050	3500, 1500		
15	Abutment formations (under dam & embankment)	Bearpaw shale and glacial fill	Fort Union clay shale	Pierre shale		
16	Type of fill	Hydraulic & rolled earth fill	Rolled earth filled	Rolled earth fill & shale berms		
17	Fill quantity, cubic yards	125,628,000	66,500,000	55,000,000 & 37,000,000		
18	Date of closure	1,200,000 24 June 1937	1,500,000 15 April 1953	1,045,000 3 August 1958		
	Spillway Data					
20	Location	Right bank - remote	Left bank - adjacent	Right bank - remote		
21	Crest elevation in feet msl	2225	1825	1596.5		
22	Width (including piers) in feet	820 gated	1336 gated	456 gated		
23	No., size and type of gates	16 - 40' x 25' vertical lift gates	28 - 40' x 29' Tainter	8 - 50' x 23.5' Tainter		
24	Design discharge capacity, cfs	275,000 at elev 2253.3	827,000 at elev 1858.5	304,000 at elev 1644.4		
25	operating pool in cfs	230,000	660,000	80,000		
	Reservoir Data (6)					
26	Max. operating pool elev. & area	2250 msl 246,000 acres	1854 msl 380,000 acres	1620 msl 374,000 acres		
27	Max. normal op. pool elev. & area	2246 msl 240,000 acres	1850 msl 364,000 acres	1617 msl 360,000 acres		
28	Base flood control elev & area	2234 msl 212,000 acres	1837.5 msl 307,000 acres	160/.5 msl 312,000 acres		
29	Storage allocation & canacity	2100 IIISI 90,000 acres	1775 IIISI 128,000 acres	1540 liisi 117,000 acres		
30	Exclusive flood control	2250-2246 975.000 a.f.	1854-1850 1.489.000 a.f.	1620-1617 1.102.000 a.f.		
31	Flood control & multiple use	2246-2234 2,717,000 a.f.	1850-1837.5 4,222,000 a.f.	1617-1607.5 3,201,000 a.f.		
32	Carryover multiple use	2234-2160 10,785,000 a.f.	1837.5-1775 13,130,000 a.f.	1607.5-1540 13,461,000 a.f.		
33	Permanent	2160-2030 4,211,000 a.f.	1775-1673 4,980,000 a.f.	1540-1415 5,373,000 a.f.		
34	Gross	2250-2030 18,688,000 a.f.	1854-1673 23,821,000 a.f.	1620-1415 23,137,000 a.f.		
35	Reservoir filling initiated	November 1937	December 1953	August 1958		
30	Estimated annual sediment inflow	$18\ 100\ a\ f$ 1030 vrs	7 August 1955 25 900 a f 920 vrs	19 800 a f 1170 yrs		
	Outlet Works Data					
38	Location	Right bank	Right Bank	Right Bank		
39	Number and size of conduits	2 - 24' 8" diameter (nos. 3 & 4)	1 - 26' dia. and 2 - 22' dia.	6 - 19.75' dia. upstream, 18.25'		
40	Length of conduits in feet (8)	No 3 - 6615 No 4 - 7240	1529	dia. downstream		
41	No., size, and type of service gates	1 - 28' dia. cylindrical gate	1 - 18' x 24.5' Tainter gate per	1 - 13' x 22' per conduit, vertical		
	S	6 ports, 7.6' x 8.5' high (net	conduit for fine regulation	lift, 4 cable suspension and		
		opening) in each control shaft	C C	2 hydraulic suspension (fine		
				regulation)		
42	Entrance invert elevation (msl)	2095 Elas 2250	1672 Eleve 1854	1425 Eleve 1620		
43	Avg. discharge capacity per conduit	22 500 cfs - 45 000 cfs	Elev. 1854 30.400 cfs - 98.000 cfs	Elev. 1620 $18500 \text{cfs} = 111000 \text{cfs}$		
44	Present tailwater elevation (ft msl)	2032-2036 5,000 - 35,000 cfs	1670-1680 15,000- 60,000 cfs	1423-1428 20,000-55,000 cfs		
45	Power Facilities and Data	104	161	174		
45	Avg. gross head available in feet (14)	194 No. 1 24'8" dia - No. 2 22'4" dia	161 5 20' dia 25' papatagka	1/4 7 - 24' dia limbaddad papataaka		
40	Length of conduits in feet (8)	No 1 - 5 653 No 2 - 6 355	1829	From 3 280 to 4 005		
48	Surge tanks	PH#1: 3-40' dia PH#2: 2-65' dia	65' dia 2 per penstock	70' dia., 2 per penstock		
49	No., type and speed of turbines	5 Francis, PH#1-2: 128.5 rpm,	5 Francis, 90 rpm	7 Francis, 100 rpm		
	· · · · · · · · · · · · · · · · · · ·	1-164 rpm , PH#2-2: 128.6 rpm	r r	· · ·		
50	Discharge cap. at rated head in cfs	PH#1, units 1&3 170', 2-140' 8,800 cfs, PH#2-4&5 170'-7,200 cfs	150' 41,000 cfs	185' 54,000 cfs		
51	Generator nameplate rating in kW	1&3: 43,500; 2: 18,250; 4&5: 40,000	3 - 121,600, 2 - 109,250	112,290		
52	Plant capacity in kW	185,250	583,300	786,030		
53	Dependable capacity in kW (9)	181,000	388,000	534,000		
54	Avg. annual energy, million kWh (12)	1,087	2,318	2,717		
55	Initial generation, first and last unit	July 1943 - June 1961	January 1956 - October 1960	April 1962 - June 1963		
50	completed project (13)	\$158,428,000	\$305,274,000	\$346,521,000		

 Die Deuri Deur	East Bandall Dam	Data Wilssouri River Wia	Instem System	Térre	D
Lake Sharpe	Lake Francis Case	Gavins Point Dam - Lewis & Clark Lake	Total	No.	Kemarks
21 miles upstream Chamberlain, SD	Near Lake Andes, SD	Near Yankton, SD		1	(1) Includes 4,280 square
249,330 (1) 5,840	263,480 (1) 14,150	279,480 (1) 16,000		3	areas.
80, ending near Pierre, SD	107, ending at Big Bend Dam	25, ending near Niobrara, NE	755 miles	4	 (2) Includes 1,350 square miles of non-contributing areas.
200 (elevation 1420) 28,900	540 (elevation 1350) 30,000 1,100	90 (elevation 1204.5) 32,000 2,000	5,940 miles	5 6	(3) With pool at base of flood control.(4) Standard France in the flood f
440,000 (April 1952)	447,000 (April 1952)	480,000 (April 1952)		7	(4) Storage first available for regulation of flows.(5) Damming height is height
 1959 1964	1946 1953	1952 1955		8 9	from low water to maximum operating pool. Maximum
1440 10,570 (including spillway) 78 95 1200, 700	1395 10,700 (including spillway) 140 165 4300, 1250	1234 8,700 (including spillway) 45 74 850, 450	71,596 863 feet	10 11 12 13 14	 streambed to top of dam. (6) Based on latest available storage data. (7) River regulation is attained by flows over low-crested
Pierre shale & Niobrara chalk	Niobrara chalk	Niobrara chalk & Carlile shale		15	spillway and through turbines.
 Rolled earth, shale, chalk fill 17,000,000 540,000 24 July 1963	Rolled earth fill & chalk berms 28,000,000 & 22,000,000 961,000 20 July 1952	Rolled earth & chalk fill 7,000,000 308,000 31 July 1955	358,128,000 cu. yds 5,554,000 cu. yds.	16 17 18 19	 (8) Length from upsteam face of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985).
 Left bank - adjacent 1385 376 gated 8 - 40' x 38' Tainter 390,000 at elev 1433.6 270,000	Left bank - adjacent 1346 1000 gated 21 - 40' x 29' Tainter 620,000 at elev 1379.3 508,000	Right bank - adjacent 1180 664 gated 14 - 40' x 30' Tainter 584,000 at elev 1221.4 345,000		20 21 22 23 24 25	 (10) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2006 Average (13) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract
1423 msl 61,000 acres 1422 msl 60,000 acres 1420 msl 57,000 acres 1415 msl 51,000 acres	1375 msl 102,000 acres 1365 msl 95,000 acres 1350 msl 77,000 acres 1320 msl 38,000 acres	1210 msl 31,000 acres 1208 msl 28,000 acres 1204.5 msl 24,000 acres 1204.5 msl 24,000 acres	1,194,000 acres 1,147,000 acres 989,000 acres 450,000 acres	26 27 28 29	Report Fiscal Year 1999. (14) Based on Study 8-83-1985
1423-1422 60,000 a.f. 1422-1420 117,000 a.f. 1420-1345 1,621,000 a.f. 1423-1345 1,798,000 a.f. November 1963 25 March 1964 4300 a.f. 430 vrs.	1375-1365 985,000 a.f. 1365-1350 1,309,000 a.f. 1350-1320 1,607,000 a.f. 1320-1240 1,517,000 a.f. 1375-1240 5,418,000 a.f. January 1953 24 November 1953 18 300 a.f. 250 yrs	1210-1208 59,000 a.f. 1208-1204.5 90,000 a.f. 1204.5-1160 321,000 a.f. 1210-1160 470,000 a.f. August 1955 22 December 1955 2600 a.f. 180 yrs	4,670,000 a.f. 11,656,000 a.f. 38,983,000 a.f. 18,023,000 a.f. 73,332,000 a.f.	30 31 32 33 34 35 36 37	
4,500 a.i. 450 yis.	Left Bank	2,000 a.i. 100 yis.	92,500 a.i.	38	
None (7)	 4 - 22' diameter 1013 2 - 11' x 23' per conduit, vertical lift, cable suspension 	None (7)		39 40 41	
1385 (11)	1229 Elev 1375	1180 (11)		42 43	
 1351-1355(10) 25,000-100,000 cfs	32,000 cfs - 128,000 cfs 1228-1239 5,000-60,000 cfs	1155-1163 15,000-60,000 cfs		44	
70 None: direct intake	117 8 - 28' dia., 22' penstocks	48 None: direct intake	764 feet	45 46 47	
None 8 Fixed blade, 81.8 rpm	59' dia, 2 per alternate penstock 8 Francis, 85.7 rpm	None 3 Kaplan, 75 rpm	36 units	47 48 49	
67' 103,000 cfs	112' 44,500 cfs	48' 36,000 cfs		50	
3 - 67,276, 5 - 58,500 494,320 497,000 1,001 October 1964 - July 1966	40,000 320,000 293,000 1,778 March 1954 - January 1956	44,100 132,300 74,000 740 September 1956 - January 1957	2,501,200 kw 1,967,000 kw 9,642 million kWh July 1943 - July 1966	51 52 53 54 55	Corps of Engineers, U.S. Army Compiled by Northwestern Division
 \$107.498.000	\$199.066.000	\$49.617.000	\$1,166,404,000	56	Missouri River Region January 2007
 	, ,		. ,,,,,,		

Plate 3 Summary of Master Manual Technical Criteria

	NAVIGATION TARGET FLOWS	
Location	Minimum Service (kcfs)	Full Service (kcfs)
Sioux City	25	31
Omaha	25	31
Nebraska City	31	37
Kansas City	35	41

RELATION OF SYSTEM STORAGE TO NAVIGATION SERVICE LEVEL

Date	System Storage (MAF)	Navigation Service Level
March 15	54.5 or more	35,000 cfs (full-service)
March 15	49.0 to 31	29,000 cfs (minimum-service)
March 15	31.0 or less	No navigation service
July 1 July 1	57.0 or more 50.5 or less	35,000 cfs (full-service) 29,000 cfs (minimum-service)

RELATION OF SYSTEM STORAGE TO NAVIGATION SEASON LENGTH

Date	System Storage (MAF)	Final Day of Navigation Support <u>at Mouth of the Missouri River</u>
July 1	51.5 or more	November 30 (8-month season)
July 1	46.8 through 41.0	October 31 (7-month season)
July 1	36.5 or less	September 30 (6-month season)

GAVINS POINT RELEASES NEEDED TO MEET TARGET FLOWS

	1 Median, Up	.950 to 199 per Quarti	6 Data (kc le, Upper	fs) Decile Ru	noff			
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	26.7	28.0	27.9	31.6	33.2	32.6	32.0	31.1
Minimum Service	20.7	22.0	21.9	25.6	27.2	26.6	26.0	25.1
	Lower Q	Quartile, L	ower Deci	le Runoff				
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	29.8	31.3	31.2	34.3	34.0	33.5	33.1	31.2
Minimum Service	23.8	25.3	25.2	28.3	28.0	27.5	27.1	25.2

RESERVOIR UNBALANCING SCHEDULE

	Fort P	eck	Garr	ison	Oa	he
Year	March 1	Rest of Year	March 1	Rest of Year	March 1	Rest of Year
1	High	Float	Low	Hold Peak	Raise & hold during spawn	Float
2	Raise & hold during spawn	Float	High	Float	Low	Hold peak
3	Low	Hold peak	Raise & hold during spawn	Float	High	Float

Notes: Float year: Normal regulation, then unbalance 1 foot during low pool years or 3 feet when System storage is near 57.0 MAF on March 1.

Low year: Begin low, then hold peak the remainder of the year.

High year: Begin high, raise and hold pool during spawn, then float.

MRNRC RECOMMENDED RESERVOIR ELEVATION GUIDELINES FOR UNBALANCING

	Fort Peck	Garrison	Oahe
Implement unbalancing if March	2234	1837.5	1607.5
1 pool is above this level.	feet msl	feet msl	feet msl
Implement unbalancing if March			
1 pool level is in this range and	2227-2234	1827-1837.5	1600-1607.5
the pool is expected to raise more	feet msl	feet msl	feet msl
than 3 feet after March 1.			
Scheduling Criteria	Avoid pool level decline	Schedule after spawn period	Schedule after spawn
	during spawn period which	of April 20 - May 20	period of April 8 - May 15
	ranges from April 15 - May 30		

Plate 3 (cont'd) Summary of Master Manual Technical Criteria

TECHNICAL CRITERIA FOR SPRING PULSES FROM GAVINS POINT DAM

Criteria Applicable to Both the March and May Spring Pulses

Kansas City

Flood Control Constraints	No change from current levels
Criteria Applicable to the March Spring Pulse	
Drought Preclude	36.5 MAF or below measured on March 1.
Drought Proration of Pulse Magnitude*	None, 5 kcfs added to navigation releases, but no greater than 35 kcfs.
Initiation of Pulse	Extend the stepped System release increases that precede the beginning of the navigation season.
Rate of Rise before Peak	Approximately 5 kcfs for 1 day.
Duration of Peak	Two days.
Rate of Fall after Peak	Drop over 5 days to navigation target release.
Criteria Applicable to Time Period Between the	e Bimodal Pulses
Release	Existing Master Manual Criteria
Criteria Applicable to the May Spring Pulse	
Drought Preclude	40.0 MAF or below measured on May 1.
Proration of Pulse Magnitude Based On System Storage*	Prorated from 16 kcfs based on a May 1 System Storage check; 100% at 54.5 MAF; straight line interpolation to 75% at 40.0 MAF.
Proration of Pulse Magnitude Based On Projected Runoff*	After the proration of the spring pulse magnitude for System Storage, the resultant magnitude would be further adjusted either up or down based on the May CY runoff forecast; 100% for Median; straight-line interpolation to 125% at Upper Quartile runoff; 125% for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile.
Initiation of Pulse	Between May 1 to May 19, depending on Missouri River water temperature immediately below Gavins Point Dam. If possible, pulse will be initiated after the second daily occurrence of a 16 degree Celsius water temperature; however, the decision will be informed by the potential for 'take' of Threatened and Endangered bird species.
Rate of Rise before Peak	Approximately 6 kcfs per day.
Duration of Peak	Two days.
Rate of Fall after Peak	Approximately 30% drop over 2 days followed by a proportional reduction in releases back to the existing Master Manual criteria over an 8-day period.
Spring Pulse Downstream Flow Limits	
Omaha Nebraska City	41,000 cfs 47,000 cfs

* Spring pulse magnitudes will be determined by taking the difference between pre-pulse Gavins Point releases and the peak pulse Missouri River flows measured just downstream of the mouth of the James River.

71,000 cfs

System Storage 2007-2008 AOP

Fort Peck 2007-2008 AOP

Garrison 2007-2008 AOP

2007-2008 AOP

Plate 12

For illustrative purposes.

1

	STU	dy no	
200	B		

DATE OF STUDY	08/27/	07				2007-	2008 AO	P BASIC	SIMULA	TION	
TIME OF STUDY	14:02:	40				SR-FT VALUE	T SHORT S IN 10	EN NAVI 00 AF E	GATION XCEPT A	SEASON S S INDICA	35 DAYS ATED
31JU	107 INI-SUM	31AUG	200 30SEP	7 310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	29FEB	
FORT PECK- NAT INFLOW DEPLETION	- 1995 -308	245 -13	240 -85	290 - 62	145 -13	68 - 6	77 -7	250 - 55	315 -40	365 -28	
EVAPORATION MOD INFLOW	302 2001	62 196	248	67 285	31 127	14	16	35 270	355	393	
RELEASE STOR CHANGE	2262 -261	430 -234	326 -78	246	119	56	63 4	338 -68	338	345	
STORAGE ELEV FTMSL DISCH KCFS POWER	9342 2202.3 6.7	9108 2200.8 7.0	9030 2200.2 5.5	9069 2200.5 4.0	9077 2200.5 4.0	9080 2200.6 4.0	9085 2200.6 4.0	9016 2200.1 5.5	9033 2200.3 5.5	9081 2200.6 6.0	
AVE POWER MW PEAK POW MW ENERGY GWH	323.2	83 129 61.7	65 128 46.5	47 128 35.2	47 128 17.0	47 128 7.9	47 128 9.1	65 128 48.3	65 128 48-2	71 128 49.2	
GARRISON- NAT INFLOW DEPLETION	2220 -271	390 23	340 -123	390 25	145 -75	68 -35	77 -40	190 -39	260 -13	360 6	
CHAN STOR EVAPORATION	360	-3 74	17 92	16 80	36	17	19	-16 41		-6	
REG INFLOW RELEASE	4400 6004	720 984	713 803	547 676	303 327	141 153	162 175	509 953	611 . 984	694 949	
STOR CHANGE STORAGE	-1604 12514	-263 12251	-90 12160	-130 12031	-25 12006	-11 11995	-13 11982	-444 11538	-373 11165	-256 10910	
ELEV FTMSL DISCH KCFS POWER	1816.9 15.9	1815.8	1815.4	1814.9	1014.8	1814.7	1814.7	1812.7	1811.1	1809.9 16.5	
AVE POWER MW PEAK POW MW ENERGY GWH	772.7	173 389 128.8	145 387 104.7	385 88.1	385 42.5	385 19.8	384 22.7	165 377 122.4	168 371 124.7	1/1 367 119.0	
NAT INFLOW DEPLETION CHAN STOP	275 187	. 99 1	60 25	35 -7	25 2	12 1	13 1	14	10 20	90 32	
EVAPORATION	316	66	80	70	32	15	17	37	- 3	1004	
RELEASE	6365	1674	794	718	223	116	131	927	901	880	
STOR CHANGE STORAGE	12045	11220	11197	11140	11235	11268	11307	11258	11328	11453	
DISCH KCFS	1581.5	27.2	13.3	1577.3	7.5	8.4	8.2	1577.8	1578.2	1578.8	
POWER AVE POWER MW PEAK POW MW ENERGY GWH	843.8	299 554 222.8	146 554 105.0	127 552 94.9	82 554 29.6	92 555 15.4	90 556 17-4	165 555 122.7	160 557 119.4	168 560 116.8	
BIG BEND- EVAPORATION	- 97	20	25	22	10	5	5	11			
RELEASE	6258	1644	770	696	214	111	125	916	901	880	
ELEV FTMSL DISCH KCFS	1419.8	1420.0 26.7	1420.0 12.9	1420.0 11.3	1420.0	1420.0	1420.0 7.9	1420.0 14.9	1420.0 14.7	1420.0 15.3	
POWER AVE POWER MW		125	64	57	36	41	40	75	72	73	
PEAK POW MW ENERGY GWH	369.7	511 93.2	538 45.8	538 42.6	538 13.1	538 6.8	538 7.7	538 55.6	538 53.7	529 51.1	
NAT INFLOW	160	30	30	10	5	2	3	10	20	50	
DEPLETION EVAPORATION	100	15 25	29	1 20	1 8	0 4	14	3 10	3	3	
REG INFLOW RELEASE	6284 6605	1634 1549	764 1534	685 1148	210 210	109 110	123 123	913 710	918 668	927 553	
STOR CHANGE STORAGE	-321 3445	85 3530	-770 2760	-463 2297	0 2297	0 2297	0 2297	203 2500	250 2750	374 3124	
ELEV FTMSL DISCH KCFS FOWER	1354.0 21.1	1355.0 25.2	1345.0 25.8	1337.5 18.7	1337.5 7.1	1337.5 7.9	1337.5 7.8	1341.0 11.5	1344.8 10.9	1350.0 9.6	
AVE POWER MW PEAK POW MW ENERGY GWH	630.4	211 355 157.3	208 319 150.0	140 285 104.4	52 285 18.6	58 285 9.7	57 285 10.9	86 301 63-8	83 319 62.1	77 339 53.5	
GAVINS POIN NAT INFLOW	r 6 <u>50</u>	85	80	. aõ	45	21	24	80	100	125	
CHAN STOR	27 21	10 -8	-5 -1	1 13	5 22	2 -2	3	. 10 -7	1	2	
EVAPORATION REG INFLOW	36 7213	7 1610	9 1609	8 1242	4 268	2 125	2 143	4 769	769	680	
RELEASE STOR CHANGE	7215 -2	1599 11	1583 26	1242	268	125	143	769	769	719 -39	
STORAGE ELEV FTMSL DISCH KCFS POWER	360 1206.1 21.1	371 1206.5 26.0	397 1207.5 26.6	397 1207.5 20.2	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 12.5	397 1207.5 12.5	358 1206.0 12.5	
AVE POWER MW PEAK POW MW ENERGY GWH	305.9	89 115 66.4	92 117 66.6	71 117 53.0	32 117 11.6	32 117 5.4	32 117 6.2	44 117 33.0	44 117 33.0	44 114 30.7	
GAVINS POIN NAT INFLOW DEPLETION	r - SIOU 540 118	X CITY- 130 35	- 95 23	75 10	38 6	18	20	45 12	35 13	65 14	
REGULATED FLOW KAF KCFS	W AT SIC 7637	UX CITY 1694 27.5	1655 27.8	1307 21.3	300 10.1	140 10.1	160 10.1	802 13.0	791 12.9	790 13.7	
TOTAL	5840	010	945	 201	402	120			2	1075	
DEPLETION	-213	169	~158	-32	-74	-35	-39	-55	-16	27	
EVAPORATION	1211	-12 252	312	268	120	-2	64	-47	-1	-6	
SYSTEM POWER	59317	38100	37165	36554	36633	36658	36688 	36331	36295	36547	
AVE POWER MW PEAK POW MW ENERGY GWH	3245.7	981 2052 730.2	720 2043 518.7	562 2005 418.1	368 2008 132.5	388 2008 65.1	385 2009 73.9	599 2017 445.8	593 2030 441.1	604 2038 420.2	
DATEI GWH		0.د∠	11.3	T3.2	0.0	9.3	9.2	14·4	14.2	14.5	

INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB

DATE OF STUDY 08/13/07

2007-2008 AOP 120 PERCENT SIMULATION

STUDY NO 2

.

2008

TIME OF STUDY 11:27:3	36				SR-FT	T SHORT	EN NAVI	GATION	SEASON 3	S-DAYS
31JUL07 INI~SUM	31AUG	200 ⁻ 305EP	7 310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB	ATED
FORT PECK		~~~								
DEPLETION -378 EVAROPATION 207	294 21 46	-51	348 -36 51	174 -19 12	81 -9	-10 -7	-85	378 -110	438 -79	
MOD INFLOW 2565 RELEASE 2398	227 430	281 311	333 246	181	84 56	96 63	358	488 400	517 374	
STOR CHANGE 167 STORAGE 9342	-204 9138	-30 9109	.87 9196	62 9257	29 9286	33 9319	-42 9278	88 9366	143 9509	
ELEV FTMSL 2202.3 DISCH KCFS 6.7	2201.0 7.0	2200.8 5.2	2201.3 4.0	2201.7 4.0	2201.9 4.0	2202.2 4.0	2201.9 6.5	2202.5 6.5	2203.4 6.5	
POWER AVE POWER MW DEAK DON MM	83	62	47	48	48	48	77	77	78	
ENERGY GWH 344.8	61.7	44.5	35.3	17.1	8.0	9.2	57.5	57.5	54.0	
GARRISON NAT INFLOW 2664	468	408	468	174	81	93	228	312	432	
DEPLETION -251 CHAN STOR 2	141	-66	53 13	-99	-46	-53	-89 -27	-63	-30	
REG INFLOW 5069 RELEASE 6153	699 984	734	614 676	14 377 327	176	201 175	658 952	775	836	
STOR CHANGE -1084 STORAGE 12514	-285	-68 12161	-63	50 10148	23 12171	27	-295	-301	-171	
ELEV FTMSL 1816.9 DISCH KCFS 15.9	1815.7	1815.4 13.5	1815.1 11.0	1815.4	1815.5	1815.6	1814.3 15.5	1813.0	1812.3	
POWER AVE POWER MW	173	145	119	118	119	119	166	186	184	
ENERGY GWH 795.6	388 128.7	387 104.6	88.2	42.7	19.9	388 22.8	383 123.5	378 138.0	376 128.2	
NAT INFLOW 330	36	72	42	30	14	16		12	108	
CHAN STOR -8 EVAPORATION 218	-1 50	13 61	13 53	13	0	07	-23	-10	32	
REG INFLOW 6070 RELEASE 6129	871 1637	802 757	685 686	342 200	160 105	183 118	887 1066	1058 884	1083 674	
STOR CHANGE -59 STORAGE 12045	-767 11278	45 11323	 11323	142 11465	55 11519	64 11584	-179 11405	173 11578	408 11986	
ELEV FTMSL 1581.5 DISCH KCFS 19.4	1577.9 26.6	1578.1 12.7	1578.1 11.2	1578.8 6.7	1579.1 7.6	1579.4 7.5	1578.5 17.3	1579.4 14.4	1581.3 11.7	
AVE POWER MW PEAK POW MW	293 555	139 557	122 557	74 560	84 562	83 563	191	158 563	130 573	
ENERGY GWH 816.5	218.1	100.3	91.0	26.7	14.1	15.8	141.9	117.8	90.7	
BIG BEND EVAPORATION 66	15	19	16	4	2	2	9			
RELEASE 6053 STOPAGE 1611	1623	738	669 1621	196	103	115 115 1601	1058	884 884	674 674	
ELEV FIMSL 1419.8 DISCH KCFS 17.6	1420.0	1420.0	1420.0	1420.0	1420.0	1420.0	1420.0	1420.0	1420.0	
POWER AVE POWER MW	123	61	55	34	38	37	85	70	56	
PEAK POW MW ENERGY GWH 356.5	511 91.4	538 44.0	538 41.0	538 12.1	538 6.4	538 7.1	538 63.3	538 52.1	529 39.2	
FORT RANDALL NAT INFLOW 192	36	36	12	6	3	3	12	24	60	
DEPLETION 34 EVAPORATION 69	15 19	7 21	1 15	1	0	1 2	3 8	3	3	
REGINFLOW 6142 RELEASE 6463 STOP CHANGE -321	1530	1516 720	1128	199	104	117	1059	905 648	731 527	
STORAGE 3445 ELEV FTMSL 1354.0	3530	2760 1345.0	2297	2297 1337.5	2297	2297	2663	2920 1347 2	204 3124 1350 0	
DISCH KCFS 21.1 POWER	24.9	25.5	18.3	6.7	7.5	7.4	11.3	10.5	9.2	
AVE POWER MW PEAK POW MW	209 355	206 319	138	49 285	55 285	54 285	85 313	83 330	74 _339	
GAVINS POINT	100.4	140.2	102.6	1/./	9.3	10.4	63.0	01.0	51.6	
NAT INFLOW 780 DEPLETION 27	102 10	96 -5	108 . 1	54 5	25 2	29 3	96 10	120 1	150	
CHAN STOR 22 EVAPORATION 24	-7	-1 7	13	22	-2	0	-7	1	3	
RELEASE 7215 STOR CHANGE +2	1599	1583	1242	268	125	143	769	769	680 719	
STORAGE 360 ELEV FTMSL 1206.1	371 1206.5	397	397 1207.5	397 1207-5	397 1207.5	397	397	397	-39 358 1206 0	
DISCH KCFS 21.1 POWER	26.0	26.6	20.2	9.0	9.0	9.0	12.5	12.5	12.5	
AVE POWER MW PEAK POW MW ENERGY GWH 305.9	89 115 66.4	92 117 66.6	71 117 53.0	32 117 11.6	32 117 5.4	32 117 6.2	44 117 33.0	44 117 33.0	44 114 30.7	
GAVINS POINT - SIOU NAT INFLOW 648	X CITY-	-	90	45	51	24	E <i>1</i>	40	100	
DEPLETION 118 REGULATED FLOW AT SION	JX CITY	23	íð	÷	3	3	12	13	14	
KAF 7745 KCFS	1720 28.0	1674 28.1	1322 21.5	307 10.3	143 10.3	164 10.3	811 13.2	798 13.0	807 14.0	
TOTAL NAT INFLOW 7008	1092	1014	1068	483	225	258	690	888	1290	
CHAN STOR 16	321	-67 31	22 39	-104	-49	-55	-135	-136 -9	-60 3	
STORAGE 39317 SYSTEM POWER	38167	37370	202 36931	48 37185	37292	26 37415	37265	37483	38028	
AVE POWER MW PEAK POW MW	970 2054	706 2046	552 2012	355 2017	375 2019	372 2021	648 2040	618 2057	567 2063	
ENERGY GWH 3240.0 DAILY GWH	721.9 23.3	508.2 16.9	411.0 13.3	127.7 8.5	63.0 9.0	71.5 8.9	482.2 15.6	460.1 14.8	394.3 13.6	

INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB

2007-2008 AOP 80 PERCENT SIMUMATION

•

STUDY NO 3

2008

TIME OF STUI	Y 14:03:	55				SR-FI	T SHORT	EN NAVI	GATION	SEASON 3	5 DAYS
313	UL07 INI-SUM	31AUG	200 30sep	7 310CT	15NOV	22NOV	S IN IU 30NOV	31DEC	XCEPT A	29FEB	TED
FORT PECH NAT INFLOW DEPLETION	 1596 -361	196	192 ~110	232 - 89	116 -15	54 -7	62 -8	200 -42	252 - 50	292 -33	
MOD INFLOW RELEASE	1582	126 430	206 310	238 246	58 93 119	18 44 56	20 50 63	43 199 338	302 338	325 316	
STOR CHANGE STORAGE	-634 9342	-304 9038	-103 8934	-8 8926	-26 8900	-12 8888	-14 8875	-140 8735	-36 8699	9 8708	
ELEV FTMSL DISCH KCFS	2202.3 6.7	2200.3 7.0	2199.6 5.2	2199.5 4.0	2199.4 4.0	2199.3 4.0	2199.2 4.0	2198.3 5.5	2198.0 5.5	2198.1 5.5	
POWER AVE POWER M PEAK POW MW ENERGY GWH	W 314.8	83 128 61.6	61 127 44.1	47 127 35.0	47 127 16.9	47 127 7.9	47 127 9.0	64 126 47.9	64 125 47.7	64 125 44.6	·
GARRISON NAT INFLOW		312	272	312	116	54	62 - 41	152	208	288	
CHAN STOR EVAPORATION	13 448	-3 93	20 115	13 100	45	21	24	-16	-12		
REG INFLOW RELEASE	3825 5884	603 984	603 803	460 676	267 327	125 153	142 175	463 922	558 953	604 892	
STOR CHANGE STORAGE	-2059	-381 12133	-200	-216	-61	-28	-32	-459	-395	-287	
DISCH KCFS POWER	15.9	16.0	13.5	11.0	11.0	1813.1	1813.0	1811.0	1809.2	15.5	
AVE POWER M PEAK POW MW	W	173 387	145 384	117 380	117 379	117 379	117 378	157 371	160 364	158 360	
ENERGY GWH	750.4	128.5	104.1	87.4	42.1	19.6	22.4	117.1	119.1	110.0	
NAT INFLOW DEPLETION	220 187	24 99	48 25	28 -7	20 2	9 1	11 1	14	8 20	72 32	
CHAN STOR EVAPORATION	2 394	-1 82	13 100	13 87	39	0 18	0 21	-21 46	-3		
REG INFLOW RELEASE STOR CHANGE	6585 -1059	1710	832	638 751	306 239	143 123 20	163 139	901 901	938 975	932 915	
STORAGE ELEV FTMSL	12045 1581.5	11161 1577.4	11068	10955	11022	11042	11066	11006	10969	10986	
DISCH KCFS POWER	19.4	27.8	14.0	12.2	8.0	8.9	8.8	14.7	15.9	15.9	
AVE POWER M PEAK POW MW ENERGY GWH	W 867.9	306 552 227.3	152 550 109.6	133 547 98.7	87 549 31.4	97 550 16.2	95 550 18.3	159 549 118.4	172 548 127.9	172 548 119.9	
BIG BEND EVAPORATION	121	24	31	27	12	6	7	14			
REG INFLOW RELEASE	6464 6454	1686	801 801	724	227	117	132 132	887 887	975 975	915 915	
ELEV FTMSL DISCH KCFS	1419.8	1420.0 27 3	1420.0	1420-0 11 B	1621 1420.0 7 6	1420.0	1420.0	1420.0	1621 1420.0	1621 1420.0	
POWER AVE POWER M	N	128	66	59	39	43	42	73	78	76	
PEAK POW MW ENERGY GWH	381.5	511 95.0	538 47.7	538 44.3	538 13.9	538 7.2	538 8.1	538 54.1	538 58.1	529 53.1	
FORT RANDAL NAT INFLOW	LL 128	24	24	8	4	2	2	8	16	40	
DEPLETION EVAPORATION	34 125	15 31	7 _36	25	10	5	1 5	3 12	3	3	
REG INFLOW RELEASE STOR CHANGE	6424 6745	1569	782 1552 -770	1168	220	114	129	880 727	988 688	952 578	
STORAGE ELEV FTMSL	3445 1354.0	3530	2760 1345.0	2297	2297	2297	2297	2450 1340 2	2750 1344 B	374 3124 1350 0	
DISCH KCFS POWER	21.1	25.5	26.1	19.0	7.4	8.2	8.1	11.8	11.2	10.0	
AVE POWER M PEAK POW MW	•	214 355	211 319	143 285	54 285	60 285	59 285	87 297	86 319	80 339	
GAVINS POT	642.9 IT	123.3	151.7	106.2	19.5	10.1	11.4	65.0	63.7	55.9	
NAT INFLOW DEPLETION	520 27	68 10	64 -5	72 1	36 5	17 2	19 3	64 10	80 1	100	
CHAN STOR EVAPORATION	20 45	-8 9	-1 11	13 10	21 5	-2	0	-7	ī	2	
REG INFLOW RELEASE	7213 7215	1610 1599	1609 1583	1242 1242	268 268	125 125	143 143	769 769	769 769	680 719	
STOR CHANGE STORAGE	-2 360 1205 1	11 371	26 397	397	397	397	397	397	397	-39	
DISCH KCFS POWER	21.1	26.0	26.6	20.2	9.0	9.0	9.0	12.5	1207.5	1206.0	
AVE POWER MY PEAK POW MW ENERGY GWH	1 305.9	89 115 66.4	92 117 66.6	71 117 53.0	32 117 11.6	32 117 5.4	32 117 6.2	44 117 33.0	44 117 33.0	44 114 30.7	
GAVINS POIN NAT INFLOW	T - SIOU 432	X CITY- 104	- 76	60	30	14	16	36	28	68	
DEPLETION REGULATED FLO	118 W AT_SIO	UX CITY	23	ĩŏ	Ĕ	3	-3	12	13	14	
KAF KCFS	7529	1668 27.1	1636 27.5	1292 21.0	292 9.8	136 9.8	156 9.8	793 12.9	784 12.7	773 13.4	
TOTAL NAT INFLOW	4672	728	676	712	322	150	172	460	592	860	
CHAN STOR	-262 35 1506	196 -12 316	-177 32 299	-73 39 322	-78 22 140	-36	-42	-43 -45	-25 -2	16 2	
STORAGE SYSTEM POWER	39317	37853	36713	35913	35894	35873	35851	35346	35178	35251	
AVE POWER MW PEAK POW MW	1	992 2048	728 2035	571 1994	376 1995	396 1995	393 1995	585 1998	604 2011	595 2015	
ENERGY GWH DAILY GWH	3263.3	738.2 23.8	523.9 17.5	424.5 13.7	135.4 9.0	66.5 9.5	75.4 9.4	435.5 14.0	449.6 14.5	414.3 14.3	
	INI-SUM	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB	

DATE OF STUDY 08/13/07

TIME OF STUDY 10:07:12

.

SR-FTT SHIN NAV SEAS 17-DAYS, SP MAR 5/MAY 15.8 STUDY NO VALUES IN 1000 AF EXCEPT AS INDICATED

1

4

28	FEBO8 INI-SUM	15MAR	2001 22MAR	8 31MAR	30APR	31MAY	3 IN IU 30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	09 31DEC	31JAN	28FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATIO MOD INFLOW	K 9600 235 N 274 9091	319 -11 330	149 -5 154	192 -6 198	797 72 725	1604 367 1237	2491 424 2067	1219 191 18 1010	456 -71 57 470	379 -129 72 436	531 -60 63 528	210 -41 15 236	98 -19 7 110	112 -22 9 126	346 -156 34 468	297 -180 477	400 -119 519
RELEASE STOR CHANG STORAGE BLEV FTMSL DISCH KCFS DOMER	5263 E 3829 9509 2203.4 6.5	179 152 9661 2204.4 6.0	98 98 9759 2205.0 4.0	71 127 9886 2205.8 4.0	238 487 10373 2208.8 4.0	523 714 11087 2213.1 8.5	506 1561 12648 2222.0 8.5	523 488 13136 2224.6 8.5	523 -53 13083 2224.4 8.5	403 33 13116 2224.5 6.8	307 220 13337 2225.7 5.0	149 87 13424 2226.2 5.0	69 41 13464 2226.4 5.0	79 46 13511 2226.6 5.0	553 -85 13426 2226.2 9.0	584 -107 13318 2225.6 9.5	500 19 13338 2225.7 9.0
AVE POWER PEAK POW M ENERGY GWH	MW W 828.5	72 133 25.9	48 133 8.1	48 134 10.5	49 138 35.3	106 143 78.5	109 152 78.4	112 155 83.1	112 155 83.6	90 155 64.5	66 156 49.4	67 156 24.0	67 157 11.2	67 157 12.8	120 156 89.1	126 156 93.8	119 156 80.3
GARRISO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO	N 14199 1293 -26 N 319	515 -2 6	240 -1 22	309 -1	1376 2	1934 134 -49	3530 956 0	2647 582 0 21	841 79 67	574 -113 17 84	652 27 18 74	260 -91 18	121 -42	139 -49 0 9	278 -84 -40 39	348 -71 -5	434 -32 5
RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCPS	13163 E 4661 11430 1812.3 17.5	476 226 11656 1813.3 16.0	208 111 11767 1813.7 15.0	268 114 11881 1814.2 15.0	1071 541 12422 1816.5 18.0	1261 1013 13435 1820.6 20.5	1220 1860 15295 1827.8 20.5	1230 1337 16632 1832.5 20.0	1210 1230 -12 16621 1832.5 20.0	1003 20 16641 1832.5 16.9	861 16 16657 1832.6 14.0	462 417 66 16723 1832.8 14.0	225 194 31 16753 1832.9 14.0	222 35 16788 1833.1 14.0	1045 -209 16579 1832.3 17.0	1291 -293 16286 1831.3 21.0	1166 -195 16091 1830.6 21.0
AVE POWER PEAK POW M ENERGY GWH	MW W 1853.3	169 379 60.7	159 381 26.7	160 383 34.5	193 391 139.0	225 406 167.1	233 433 168.1	237 450 176.3	241 450 179.0	203 450 146.3	169 450 125.9	169 451 61.0	169 451 28.5	170 452 32.6	205 449 152.6	251 445 187.1	250 443 168.0
OAHE- NAT INFLOW DEPLETION CHAN STOR	- 3850 640 ~15	559 23 8	261 11 5	335 14 0	474 48 -15	347 68 -12	881 135	297 160 2	123 106	163 26 14	102 -9 13	109 1	51 0	58 1 0	22 12 -13	10 17 -18	59 27
EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS	293 16064 11287 2 4778 11986 1581.3 11.7	1019 319 700 12686 1584.4 10.7	463 189 274 12960 1585.6 13.6	589 251 338 13298 1587.1 14.0	1482 687 795 14093 1590.4 11.5	1528 1164 364 14457 1591.8 18.9	1966 1017 949 15406 1595.5 17.1	1350 1326 24 15430 1595.6 21.6	1186 1511 -325 15104 1594.4 24.6	1078 882 196 15300 1595.1 14.8	917 820 97 15397 1595.5 .13.3	16 508 326 182 15579 1596.2 11.0	8 237 86 151 15730 1596.8 6.2	9 271 118 153 15883 1597.3 7.4	36 1006 1057 -51 15832 1597.1 17.2	1267 914 352 16184 1598.4 14.9	1198 619 579 16764 1600.5 11.1
POWER AVE POWER I PEAK POW M ENERGY GWH	WW ∛ 1641.9	121 590 43.6	155 596 26.1	162 604 34.9	135 621 97.1	224 628 166.3	205 646 147.5	261 646 194.0	296 640 220.2	179 644 128.8	162 646 120.2	133 649 48.0	75 652 12.7	91 655 17.5	210 654 156.3	182 660 135.7	138 671 92.9
BIG BEN EVAPORATIO REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS	0 N 71 11216 11216 1621 1420.0 11.7	319 319 1621 1420.0 10.7	189 169 1621 1420.0 13.6	251 251 1621 1420.0 14.0	687 687 1621 1420.0 11.5	1164 1164 1621 1420.0 18.9	1017 1017 1621 1420.0 17.1	5 1321 1321 1621 1420.0 21.5	15 1496 1496 1621 1420.0 24.3	19 863 863 1621 1420.0 14.5	16 804 1621 1420.0 13.1	4 323 323 1621 1420.0 10.8	2 84 1621 1420.0 6.0	2 116 1621 1420.0 7.3	9 1049 1049 1621 1420.0 17.1	914 914 1621 1420.0 14.9	619 619 1621 1420.0 11.1
AVE POWER I PEAK POW MI ENERGY GWH	1W 1 649.7	51 517 18.3	64 509 10.7	66 509 14.2	54 509 38-9	89 509 66.0	80 509 57.6	101 509 74.8	114 509 84.8	70 535 50.6	66 538 49.1	55 538 19.7	31 538 5.2	37 538 7.1	84 538 62.7	72 538 53.9	54 529 36.0
FORT RANDA NAT INFLOW DEPLETION EVAPORATION	ALL 1501 79 1 77	190 1	69 1	114 1	298 3	159 9	224 12	111 18 6	72 15 19	92 7 22	60 1 16	5 1 3	2 0 1	3 1 2	23 3 8	10 3	49 3
REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS	12561 12561 3124 1350.0 9.2	508 217 291 3415 1353.6 7.3	277 143 134 3549 1355.2 10.3	364 364 13549 1355.2 20.4	982 982 3549 1355.2 16.5	1314 1314 3549 1355.2 21.4	1229 1229 3549 1355.2 20.7	1408 1408 0 3549 1355.2 22.9	1535 1535 0 3549 1355.2 25.0	926 1475 -549 3000 1348.3 24.8	846 1446 -600 2400 1339.3 23.5	323 426 -103 2297 1337.5 14.3	85 85 2297 1337.5 6.1	116 117 2297 1337.5 7.3	1061 695 366 2663 1343.5 11.3	921 664 257 2920 1347.2 10.8	665 461 204 3124 1350.0 8.3
POWER AVE POWER 1 PEAK POW MI ENERGY GWH	W 1243.8	61 351 21.9	87 356 14.6	173 356 37.3	140 356 100-9	181 356 134.5	175 356 125.9	194 356 144.0	211 356 156.8	204 333 146.5	180 293 134.2	105 285 37.9	45 285 7-5	54 285 10.3	85 313 63.2	85 330 63.1	67 339 45.1
GAVINS PO NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW	INT 2252 112 1 1 26 14676	107 0 4 328	50 0 -6	64 0 -19 409	246 4 7	319 19 ~9	281 24 1	211 39 -4 2	170 10 -4 5	135 -5 0 7	157 1 2 1599	60 5 17 1	28 2 15 1	32 3 -2 1	95 10 -7 3	106 1 1	191 5
RELEASE STOR CHANGE STORAGE ELEV FTMSL	14676 358 1206.0	328 358 1206.0	187 358 1206.0	409 358 1206.0	1232 358 1206.0	1605 358 1206.0	1488 358 1206.0	1574 358 1206.0	1672 13 371 1206.5	1583 26 397 1207.5	1599 397 1207.5	497 397 1207.5	125 397 1207.5	143 397 1207.5	769 397 1207.5	770 397 1207.5	696 -39 358 1206.0
DISCH KCPS POWER AVE POWER N PEAK POW MY ENERGY GWH	12.5 W 615.6	11.0 39 114 13.9	13-5 47 114 7.9	22.9 79 114 17.0	20.7 71 114 51.4	26.1 89 114 66.3	25.0 86 114 61.6	25.6 88 114 65.1	27.2 93 115 69.3	26.6 92 117 55.5	26.0 91 117 67.8	16.7 59 117 21 3	9.0 32 117 5 4	9.0 32 117 6 2	12.5 44 78 33 1	12.5 44 78 33 1	12.5 44 76 29 7
GAVINS PO NAT INFLOW DEPLETION	NT - SIOU . 3100 255	X CITY- 195 6	- 91 3	117 4	1006 21	553 35	318 30	246 38	184 35	127 23	66 10	26	12	14	30 12	12 13	105
REGULATED FI KAF KCFS	OW AT SIC 17521	OUX CITY 517 17.4	275 19.8	522 29.2	2217 37.3	2123 34.5	1776 29.8	1782 29.0	1821 29.6	1687 28.3	1655 26.9	517 17.4	134 9.7	153 9.7	787 12.8	769 12.5	787 14.2
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE	34502 2614 -41 1060 38028	1885 17 17 39396	879 8 21 40014	1131 10 -19 40593	4197 150 -7 42416	4916 632 -70 44507	7725 1581 1 48877	4731 1028 -2 70 50726	1846 174 -4 223 50349	1470 -191 32 280 50075	1568 -30 33 243 49808	670 -120 17 58 50040	312 -56 16 27 50263	357 -64 -2 31 50497	794 -203 -61 128 50517	783 -217 -22 50726	1238 -107 10 51295
SISTEM POWE AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH	6832.7	512 2084 184.4 12.3	560 2090 94.1 13.4	587 2100 148.4 16.5	642 2129 462.6 15.4	912 2156 678.7 21.9	888 2211 639.1 21.3	991 2231 737.4 23.8	1067 2225 793.6 25.6	838 2235 603.5 20.1	735 2200 546.6 17.6	588 2197 211.9 14.1	419 2200 70.4 10.1	451 2203 86.5 10.8	749 2188 557.0 10 0	762 2207 566.7	673 2214 451.9 16 1
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

DATE OF STUDY 08/13/07

TIME OF STUDY 11:27:37

.

•

							VALUES	IN 100	DO AF EX	CEPT AS	S INDICA	TED			200	10		
	28F1	INI-SUM	15MAR	2001 22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
	FORT PECK- NAT INFLOW	8900	296	138	178	738	1487	2309	1130	423	351	492	195	91	104	321	276	371
	DEPLETION EVAPORATION	207 290 8403	-11	-5	-6 184	72 665	367	424	162 17 931	-76 55 444	-128 69 410	-85 61 516	-43 28 210	-20 13 98	-23 15 132	-150 32 439	-174	-118
	RELEASE STOR CHANGE	5414 2989	179 128	69 74	89	357 309	523 597	506 1379	523 408	523 -79	404	307 209	149 61	69 28	79 32	553 -115	584 -134	500 -11
	STORAGE ELEV FTMSL	9509 2203.4	9637 2204.2	9711 2204.7	9806 2205.3	10115	10712 2210.9	12091 2218.9	12499 2221.2	12421 2220.7	12427	12635 2221.9	12696	12725 2222.4	12757	12643 2222.0	12509 2221.2	12498 2221.2
	POWER AVE POWER M	8.5 7	6.0 72	5.U 60	5.U 60	ь.u 73	8.5	108	110	111	88	5.0	5.0	5.0	5.0	9.0	9.5 124	9.0 117
	PEAK POW MW ENERGY GWH	839.1	133 25.9	133 10.1	134 13.1	136 52.5	140 77.8	149 77.4	152 82.0	151 82.3	151 63.7	152 48.6	153 23.6	153 11.0	153 12.6	152 87.6	152 92.2	152 78.8
	GARRISON-		493	775	290	1250	1733	3207	2406	763	500	603	235	170	126	260	316	304
	DEPLETION CHAN STOR	1236	15 6	7 11	205	-11	161	873	606	64	-131	11 18	-95	~44	-51	-88 -41	-70	-33
	EVAPORATION REG INFLOW	341 16711	650	298	369	1595	2057	2840	20 2302	65 1157	82 993	72 836	32 447	15 209	17 239	37 823	965	932
	RELEASE STOR CHANGE	13072 3639 11430	476 174 11604	208 90 11694	268 101 11795	1071 524 12319	1230 828 13146	1190 1650 14796	1230 1072 15868	1199 -42 15826	1004 -11	861 -25 15790	417 31 15821	194 14 15835	222 16 15852	1045 -222 15629	-326	-234
	ELEV FTMSL DISCH KCFS	1812.3 17.5	1813.0 16.0	1813.4 15.0	1813.9 15.0	1816.1 18.0	1819.5 20.0	1825.9 20.0	1829.8 20.0	1829.7 19.5	1829.6 16.9	1829.5 14.0	1829.7 14.0	1829.7 14.0	1829.8 14.0	1829.0 17.0	1827.8 21.0	1826.9 21.0
	POWER AVE POWER MU	4	169	159	159	193	218	225	233	231	200	166	166	166	166	201	246	244
	ENERGY GWH	1813.1	60.7	26.7	34.4	138.6	162.1	162.3	173.7	171.5	143.7	123.4	59.7	27.9	31.9	149.4	182.9	164.1
	OAHE NAT INFLOW	3200	460	214	276	394	285	749	246	103	135	85	91	42	48	18	.5	49
	CHAN STOR EVAPORATION	-16 307	8	5	14	-15	-10	135	180	2	26 12 73	-9 13 64	1 29	14	0 16	-14 35	-18	21
	REG INFLOW RELEASE	15309 11578	920 500	417 101	530 288	1402 786	1437 1236	1804 1090	1297 1380	1141 1544	1052 780	904 755	477 219	222 112	254 126	1003 1068	1261 918	1188 677
	STOR CHANGE STORAGE	3731 11986	421	316 12723	242 12965	617 13581	201 13783	714 14497	-83 14414 1501 7	-403 14011	272 14282	149 14432	257 14689	111 14799	128 14927	-65	343 15205	512 15717 1596 7
	DISCH KCFS POWER	11.7	16.8	7.3	16.1	13.2	20.1	18.3	22.4	25.1	13,1	12.3	7.4	8.0	8.0	17.4	14.9	12.2
	AVE POWER MU PEAK POW MW		188	83 591	184 596	153 610	234 614	216 629	266 627	295 619	155 624	146 627	88 632	96 634	96 637	208 636	179 642	148 652
	BIG BEND-	1651.7	67.8	13.9	39.8	109.8	174.1	155.2	197.7	219.8	111.4	108.3	31.7	16.2	18.3	128.8	133.5	99.4
	EVAPORATION REG INFLOW	78 11501	500	101	288	786	1236	1090	5 1376	15 1529	19 762	'16 738	7 212	3 108	4 122	9 1060	918	677
	RELEASE STORAGE	11501 1621	500 1621	101	288 1621	786	1236 1621	1090 1621	1376	1529	762	738	212 1621	108	122 1621	1060	918 1621	677 1621
	DISCH KCFS POWER	1420.0	1420.0	7-3	1420.0	1420.0	20.1	18.3	22.4	24.9	1420.0	12.0	7.1	7.8	7.7	1420.0	1420.0	1420.0
	AVE POWER MW PEAK POW MW	1	79 510	34 509	75 509	62 509	94 509	86 509	105 509	116 509	63 538	61 538	36 538	40 538	39 538	85 538	73 538	58 529
_	-FORT RANDAL	665.5 L	25.3	5.7	16.3	44.5	70.0	61.7	77.9	86.6	45.1	45.2	13.0	6.6	/.5	63.4	54.2	39.3
	NAT INFLOW DEPLETION	1200 79	142 1	66 1	85 1	239 3	150 9	195 12	89 18	65 15	64 7	38 1	3 1	1	1	18 3	5 3	39 3
	EVAPORATION REG INFLOW RELEASE	82 12540 12541	640	166 149	372	1022	1377	1273	6 1441 1441	19 1560 1560	22 797 1496	15 760 1313	208 208	3 106 106	3 120 120	8 1067 701	920	713
	STOR CHANGE	-1 3124	408 3532	17 3549	3549	3549	3549	3549	0 3549	3549	-699 2850	-553 2297	2297	2297	2297	366 2663	237 2900	224 3124
	ELEV FTMSL DISCH KCFS	1350.0 9.2	1355.0 7.8	1355.2 10.7	1355.2 20.8	1355.2 17.2	1355.2 22.4	1355.2 21.4	1355.2 23.4	1355.2 25.4	1346.3 25.1	1337.5 21.4	1337.5 7.0	1337.5 7.6	1337.5 7.6	1343.5 11.4	1347.0 11.1	1350.0 8.8
	AVE POWER MW PEAK POW MW	ĩ	65 355	92 356	176 356	146 356	189 356	181 356	198 356	214 356	205 325	161 284	51 285	56 285	55 285	86 313	87 328	71 339
	ENERGY GWH	1241.6	23.5	15.4	38.1	104.9	140.9	130.3	147.3	159.4	147.3	119.9	18.5	9.4	10.6	63.7	64.7	47.8
-	-GAVINS POIN NAT INFLOW DEPLETION	1899 112	93 0	44	56	207 4	257 19	237 24	178	$144 \\ 10$	114	132 1	51	24 2	27	86 10	89 1	161
	CHAN STOR EVAPORATION	0 28	3	-6	-19	7	-10	2	-4 2	-4 5	0 7	7 6	27 3	-1 1	õ	-7 3	ī	4
	REG INFLOW RELEASE	14299 14299	329 329	187 187	409 409	1232 1232	1605 1605	1488 1488	1574 1574	1685 1672	1609 1583	1445 1445	277 277	125 125	143 143	767 767	771 771	654 693
	STORAGE ELEV FTMSL	358 1206.0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	371 1206.5	397 1207.5	397 1207.5	397 1207.5	397 1207,5	397 1207.5	397 1207.5	397 1207.5	358 1206.0
	DISCH KCFS POWER	12.5	11.0	13.5	22.9	20.7	26.1	25.0	25.6	27.2	26.6	23.5	9.3	9.0	9.0	12.5	12.5	12.5
	ave power MW Peak pow MW Energy Gwh	599.8	39 114 13 9	47 114 7 9	79 114 17 0	71 114 51 4	89 114 66 3	86 114 51 6	88 114 65 1	93 115 69 3	92 117 66 6	83 117 67 4	33 117 12 0	32 117 54	32 117 6 2	44 78 33 0	45 78 33 1	44 76 79 6
-	-GAVINS POIN	T - SIQU	X CITY-	-				01.0								2210		
Р	NAT INFLOW DEPLETION FOULATED FLC	2500 255 W NT SIO		85 3	109 4	811 21	406 35	252 30	199 38	148 35	97 23	53 10	21 6	10 3	11 3	24 12	10 13	84 14
R	KAF KCFS	16544	504 16.9	269 19.4	514 28.8	2022 34.0	1976 32.1	1710 28.7	1735 28.2	1785 29.0	1657 27.8	1488 24.2	292 9.8	132 9.5	151 9.5	779 12.7	768 12.5	763 13.7
	TOTAL					2520	42.00					4200						
	DEPLETION CHAN STOR	2529 -42	1654 35 16	16	992 21 -19	3639 149 -19	4308 659 -47	6949 1498 2	4247 1043 _4	1546 154 -1	-208 -208	1393 -71 39	595 -125 27	278 ~58 _1	175ء 67-17	-201 -62	-210 -23	-1098
	EVAPORATION STORAGE	1125 38020	39159	39656	40093	41543	43169	46912	68 48309	216 47798	271 47392	235 47172	106 47521	49 47674	57 47851	124 47815	47935	48386
	SYSTEM POWER Ave power MW Peak dour MW		612	474	734	697 2115	929 2126	901	1000	1060	802	681	440	456	454	742	753	683
	ENERGY GWH DAILY GWH	6810.8	220.2 14.7	79.7 11.4	158.6	501.7 16.7	691.2 22.3	648.6 21.6	743.7 24.0	788.9 25.4	577.8 19.3	506.9 16.4	158.5 10.6	76.6 10.9	87.2 10.9	4134 551.9 17.8	560.6 18.1	458.9 16.4
		INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

2007-2008 AOP MEDIAN RUNOFF SIMULATION SHTN NAV SEAS 30 DAYS, SP MAR 5/MAY 0

99001 9901 4 PAGE 1

.

TIME OF STUI	OY 14:02:	40				SHTN I	NAV SEA	S 30 DA	YS, SP I	MAR 5/M	AY 0				STUDY	NO	6
281	EB08 INI-SUM	15MAR	200 22MAR	8 31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	09 31DEC	31JAN	28FEB
FORT PECH NAT INFLOW DEPLETION WOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	7400 227 354 6819 5286 1533 9081 2200.6 6.0	264 6 258 179 80 9161 2201.1 6.0	123 3 121 69 51 9212 2201.4 5.0	158 3 155 89 66 9278 2201-9 5-0	628 68 560 357 203 9481 2203.2 6.0	1210 206 1004 523 481 9962 2206.3 8.5	1851 386 1465 506 959 10921 2212.1 8.5	829 279 21 529 492 37 10958 2212.4 8.0	324 17 67 240 492 -252 10706 2210.8 8.0	319 -124 85 358 398 -40 10665 2210.6	398 -77 74 401 307 93 10759 2211.2 5.0	188 -38 34 191 149 43 10601 2211.4 5.0	88 -18 16 89 69 20 10821 2211.5 5.0	100 -20 18 102 79 23 10644 2211.7 5.0	310 -157 39 428 523 -95 10749 2211.1 8.5	261 -179 440 553 -113 10636 2210.4 9.0	349 -129 478 500 -22 10614 2210-3 9.0
POWER AVE POWER M PEAK POW MW ENERGY GWH	1W 787.4	71 129 25.5	59 129 10.0	59 130 12.8	72 131 51.5	102 135 76.1	105 142 75.3	100 142 74.4	100 140 74.1	83 140 59.9	62 140 46.3	62 141 22.5	62 141 10.5	62 141 12.0	106 140 78.7	112 140 83.0	111 139 74.8
GARRISON NAT INFLOW DEPLETION	1 11001 1168	469 33	219 16	282 20	853 55	1423 225	2958 794	2066 549	581 87	497 -133	454 -10	192 -105	89 -49	102 -56	253 -115	237 -90	326 -53
EVANORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	413 14673 12807 1866 10910 1809.9 16.5	615 417 198 11108 1810.8 14.0	284 194 90 11198 1811.2 14.0	351 250 101 11298 1811.7 14.0	1144 952 192 11490 1812.5 16.0	1693 1261 433 11923 1814.4 20.5	2670 1220 1450 13373 1820.4 20.5	25 1989 1230 760 14133 1823.4 20.0	79 907 1230 -323 13810 1822.1 20.0	99 943 978 -35 13774 1822.0 16.4	87 703 799 -97 13678 1821.6 13.0	39 406 387 19 13697 1821.7 13.0	18 190 180 9 13706 1821.7 13.0	21 217 206 10 13717 1821.7 13.0	45 808 1045 -237 13480 1820.8 17.0	875 1291 -416 13064 1819.1 21.0	879 1166 -287 12776 1818.0 21.0
Power Ave Power M Peak Pow M Energy Gwh	W 1701.6	145 371 52.3	146 372 24.5	146 374 31.6	168 377 120.9	217 384 161.1	223 406 160.4	224 416 166-8	226 412 167.8	185 411 133.2	146 410 108.9	146 410 52.6	146 410 24.6	146 410 28.1	190 407 141.5	232 401 172.8	230 397 154.5
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION	2300 640 -22 368	317 23 13	148 11	190 14	364 48 -10	236 68 -23	689 135	162 160 2	33 106 70	118 26 18 89	14 -9 17 77	5 1 35	2 0 16	3 1 19	-20 12 -20	17 -20	40 27
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS DOWER	14076 12163 1913 11453 1578.8 15.3	723 402 321 11774 1580.3 13.5	331 227 104 11878 1580.8 16.4	426 300 126 12004 1581.4 16.8	1258 971 287 12291 1582.7 16.3	1406 1133 273 12564 1583.9 18.4	1774 1177 597 13161 1586.5 19.8	1212 1492 -280 12881 1585.3 24.3	1087 1604 -518 12363 1583.0 26.1	1001 855 145 12509 1583.6 14.4	763 775 -12 12497 1583.6 12.6	356 226 130 12627 1584.2 7.6	166 115 51 12678 1584.4 8.3	190 130 60 12738 1584.6 8.2	953 931 22 12760 1584.7 15.1	1254 942 313 13072 1586.1 15.3	1179 886 294 13366 1587.4 15.9
AVE POWER M PEAK POW MW ENERGY GWH	W 1669.7	149 568 53.8	182 571 30.5	187 574 40.5	183 581 131.6	208 587 154.7	226 601 162.4	277 594 206.4	295 582 219.5	162 586 117.0	143 585 106.2	86 588 31.1	94 589 15.9	93 591 17.9	172 591 128.3	175 599 130.4	184 605 123.5
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS DOWER	103 12060 12060 1621 1420.0 15.3	402 402 1621 1420.0 13.5	227 227 1621 1420.0 16.4	300 300 1621 1420.0 16.8	971 971 1621 1420.0 16.3	1133 1133 1621 1420.0 18.4	1177 1177 1621 1420.0 19.8	6 1486 1486 1621 1420.0 24.2	20 1585 1585 1621 1420.0 25.8	25 830 830 1621 1420.0 14.0	22 753 753 1621 1420.0 12.2	10 216 216 1621 1420.0 7.3	5 110 1621 1420.0 7.9	5 125 125 1621 1420.0 7.9	11 919 919 1621 1420.0 14.9	942 942 1621 1420.0 15.3	886 886 1621 1420.0 15.9
AVE POWER M PEAK POW MW ENERGY GWH	W 698.8	64 517 23.1	77 509 12-9	79 509 17.0	76 509 55.0	86 509 - 64.2	93 509 66.7	113 509 84.1	121 509 89.7	68 538 49.2	62 538 46.0	37 538 13.3	40 538 6.8	40 538 7.7	75 538 55.8	75 538 56-1	77 529 51.4
FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS DOWNER	LL 900 79 109 12772 12773 -1 3124 1350.0 9.6	122 1 523 232 291 3415 1353.6 7.8	57 1 283 149 134 3549 1355.2 10.8	73 1 373 373 1355.2 20.9	115 3 1083 1083 3549 1355.2 18.2	140 9 1264 1264 3549 1355.2 20.6	185 12 1350 1350 3549 1355.2 22.7	74 18 8 1534 1534 0 3549 1355.2 24.9	57 15 25 1601 1601 3549 1355.2 26.0	42 7 29 836 1535 -699 2850 1346.3 25.8	2 20 733 1286 -553 2297 1337.5 20.9	2 1 8 209 209 0 2297 1337.5 7.0	1 0 4 107 0 2296 1337.5 7.7	1 4 121 121 0 2296 1337.5 7.6	10 3 916 713 203 2499 1341.0 11.6	3 939 689 250 2749 1344.8 11.2	19 3 528 374 3123 1350.0 9.5
AVE POWER M PEAK POW MW ENERGY GWH	W 1262.0	65 351 23.3	91 356 15.3	177 356 38.2	154 356 111.0	174 356 129.4	192 356 138.1	211 356 156.7	220 356 163.5	210 325 151.1	158 284 117.5	52 285 18-6	56 285 9.5	56 285 10.7	86 301 64.1	86 319 64.0	76 339 51.1
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCU WCES	NT 1450 112 -1 38 14072 14072 358 1206.0 1206	92 0 3 328 328 328 1206.0	43 0 -6 187 187 358 1206.0	55 0 -19 409 409 358 1206-0	148 4 5 1232 1232 358 1206.0	174 19 -5 1414 1414 358 1206.0	166 24 -4 1488 1488 358 1206.0	86 39 -4 2 1574 1574 1574 358 1206.0	103 10 -2 1685 1672 13 371 1206.5	77 -5 0 9 1609 1583 26 397 1207.5	122 1 9 1408 1408 1408 397 1207.5	50 26 4 276 276 397 1207.5	23 2 -1 125 125 125 397 1207.5	27 3 0 143 143 143 397 1207.5	77 10 -7 769 769 397 1207.5	79 1 1 767 767 397 1207.5	127 3 658 697 -39 358 1206.0
POWER AVE POWER M PEAK POW MW ENERGY GWH	12.5 W 590.7	39 114 13.9	47 114 7.9	22.9 79 114 17.0	20.7 71 114 51.4	23.0 79 114 58.7	25.0 86 114 61.6	25.6 88 114 65.1	27.2 93 115 69.3	26.6 92 117 66.6	22.9 81 117 59.9	9.3 33 117 11.9	9.0 32 117 5.4	9.0 32 117 6.2	12.5 44 78 33.0	12.5 44 78 33.0	12.5 44 76 29.7
GAVINS POI NAT INFLOW DEPLETION	NT - SIOU 1550 255	X CITY- 169 6	- 79	102 4	199 21	310	224	129	96 35	60 23	42 10	16	7	9	21 12	5	82 14
REGULATED FL KAF KCFS	OW AT SIC 15367	OUX CITY 492 16.5	263 19.0	507 28.4	1410 23.7	1689 27.5	1682 28.3	1665 27.1	1733 28.2	1620 27.2	1440 23.4	287 9.6	130 9.3	148 9.4	778 12.6	759 12.4	765 13.8
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE	24601 2481 -56 1385 36547	1435 70 17 37437	669 33 5 37815	860 42 -19 38108	2307 199 -16 38790	3493 562 -55 39977	6073 1381 -4 42983	3346 1083 3 85 43499	1194 270 -2 268 42419	1113 -206 32 334 41816	1032 -84 44 288 41249	452 -130 26 129 41440	211 -61 -1 60 41520	241 -69 69 41613	651 -235 -64 151 41506	582 -235 -24 41539	943 -138 3 41859
SYSTEM POWE AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH	6710.0	533 2050 191.9 12.8	602 2052 101.1 14.4	727 2057 157.1 17.5	724 2068 521.4 17.4	866 2085 644.2 20.8	923 2127 664.4 22.1	1013 2132 753.5 24.3	1054 2114 784.0 25.3	801 2117 576.9 19.2	652 2075 484.8 15.6	416 2079 149.9 10.0	432 2081 72.6 10.4	430 2082 82.5 10.3	674 2056 501.4 16.2	725 2074 539.2 17.4	722 2085 485.1 17.3
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	28FEB

.

TI

2007-2008 AOP LOWER QUARTILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1

TIME OF STUDY	14:00:	52				SHTN I VALUE:	NAV SEA S IN 10	S 46 DA 00 AF E	YS, SPI KCEPT A	MAR 0 M S INDIC	AY O ATED				STUDY	NO	7
28FE	BO8 INI-SUM	15MAR	2008 22MAR	31MAR	30APR	31MAY	30JUN	31.JUL	31AUG	30SEP	310CT	15NOV	22NOV	200 30NOV	09 31DEC	31JAN	28FEB
FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS DONTE	- 6000 308 411 5281 5207 74 8708 2198.1 5.5	242 -1 243 119 124 8832 2198.9 4.0	113 -1 114 56 58 8890 2199.3 4.0	145 -1 146 71 75 8965 2199.8 4.0	525 50 475 446 29 8993 2200.0 7.5	925 146 779 523 256 9250 2201.7 8.5	1454 301 1153 506 647 9897 2205.9 8.5	633 212 25 396 492 -96 9801 2205.2 8.0	263 -5 79 189 492 -303 9498 2203.3 8.0	252 -93 99 246 380 -134 9364 2202.4 6.4	324 -64 86 302 -5 9359 2202.4 5.0	167 -12 39 140 149 -9 9350 2202.3 5.0	78 -5 18 65 69 -4 9345 2202.3 5.0	89 -6 21 75 -5 9341 2202.3 5.0	295 -85 335 523 -187 9153 2201.1 8.5	212 -93 305 523 -218 8936 2199.6 8.5	283 -35 318 472 -154 8782 2198.6 8.5
AVE POWER MW PEAK POW MW ENERGY GWH	747.8	47 127 16.8	47 127 7.9	47 128 10.2	88 128 63.4	100 130 74.6	102 134 73.3	97 134 71.9	96 132 71.5	76 131 54.9	60 130 44.4	60 130 21.5	60 130 10.0	60 130 11.4	101 129 74.9	100 127 74.4	99 126 66.7
GARRISON- NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	9400 -34 483 12931 12841 90 10455 1807.8 15.5	443 32 17 547 417 130 10585 1808.4 14.0	207 15 247 194 53 10638 1808.7 14.0	266 19 318 250 68 10706 1809.0 14.0	712 71 -39 1048 952 96 10802 1809.4 16.0	1197 135 -11 1573 1261 313 11115 1810.9 20.5	2521 640 0 1220 1167 12282 1815.9 20.5	1765 509 5 30 1724 1261 463 12745 1817.9 20.5	496 104 94 790 1230 -439 12305 1816.0 20.0	417 -98 17 116 981 -185 12120 1815:2 16.5	400 27 15 101 595 799 -205 11916 1814.4 13.0	164 -79 45 346 387 -41 11875 1814.2 13.0	76 -37 21 161 180 -19 11856 1814.1 13.0	87 -42 0 24 185 206 -22 11834 1814.0 13.0	222 -71 -38 52 726 1045 -320 11514 1812.6 17.0	165 -44 732 1291 -560 10955 1810.1 21.0	262 -22 0 756 1166 -410 10545 1808.3 21.0
Power Ave Power MW PEAK Pow MW ENERGY GWH	1635.4	143 362 51.3	143 363 24.0	143 364 31.0	164 366 118.1	211 371 157.0	216 389 155.8	222 396 165.1	217 389 161.2	177 387 127.7	139 383 103.7	139 383 50.0	139 383 23.3	139 382 26.6	180 377 133.8	218 368 162.4	215 361 144.1
OAHE NAT INPLOW DEPLETION CHAN STOR EVAPORATION RELEASE STOR CHANGE STOR CHANGE STOR CHANGE ELEV FIMSL DISCH KCFS DOWER	1449 640 -29 1325 13133 93 10986 1576.5 15.9	154 23 8 555 438 117 11103 1577.1 14.7	72 11 255 262 -7 11096 1577.0 18.9	92 14 328 367 -39 11057 1576.9 20.6	229 48 ~11 1122 1235 -113 10945 1576.3 20.8	130 68 -24 1298 1455 -156 10788 1575.5 23.7	577 135 1662 1432 229 11018 1576.7 24.1	102 160 24 1178 1695 -516 10501 1574.1 27.6	24 106 3 74 1076 1510 -434 10067 1571.8 24.6	65 26 19 94 597 349 10416 1573.6 10.0	9 -9 83 754 827 -73 10343 1573.2 13.4	1 38 348 243 105 10448 1573.8 8.2	0 18 162 119 43 10491 1574.0 8.6	1 186 135 50 10542 1574.3 8.5	-35 12 -22 44 933 897 36 10578 1574.4 14.6	-6 17 -22 1247 1009 238 10815 1575.6 16.4	36 27 912 263 11079 1577.0 16.4
AVE POWER MW PEAK POW MW ENERGY GWH	1704.5	160 551 57.6	205 551 34.4	223 550 48.2	225 547 161.7	255 543 189.5	259 549 186.7	295 535 219.6	259 523 192.9	106 533 76.6	143 531 106.4	87 534 31.4	92 535 15.4	91 536 17.5	156 537 116.1	176 544 131.1	178 551 119.4
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS POWER NUE DOWER MU	129 13004 13004 1621 1420.0 15.9	438 438 1621 1420.0 14.7	262 262 1621 1420.0 18.9	367 367 1621 1420.0 20.6	1235 1235 1621 1420.0 20.8	1455 1455 1621 1420.0 23.7	1432 1432 1621 1420.0 24.1	6 1687 1687 1621 1420.0 27.4	24 1486 1486 1621 1420.0 24.2	31 566 566 1621 1420.0 9.5	27 900 1621 1420.0 13.0	12 231 231 1621 1420.0 7.8	6 113 1621 1420.0 8.2	7 129 1621 1621 1420.0 8.1	14 883 883 1621 1420.0 14.4	1009 1009 1621 1420.0 16.4	912 912 1621 1420.0 16.4
PEAK POWER MW PEAK POW MW ENERGY GWH	754.2	517 25.1	510 14.9	509 20.8	509 70.0	509 82.4	509 81.1	509 95.5	519 85.0	48 538 34.7	538 48.9	538 14.2	538 7.0	41 538 7.9	538 53.8	538 60.0	529 52.9
- FORT RANDALI NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCPS POWER	500 79 128 13289 13291 -1 3124 1350.0 10.0	68 1 232 273 3397 1353.4 7.8	32 1 293 158 135 3532 1355.0 11.4	41 1 390 17 3549 1355-2 21.8	64 3 1296 1296 3549 1355-2 21.8	51 9 1497 1497 3549 1355.2 24.3	130 12 1550 1550 3549 1355.2 26.1	26 18 10 1685 1685 3549 1355.2 27.4	49 15 31 1489 1673 -184 3365 1353.0 27.2	23 7 542 1610 -1069 2296 1337.5 27.1	1 22 777 777 0 2296 1337.5 12.6	1 220 221 0 2296 1337.5 7.4	0 108 108 0 2296 1337.5 7.8	1 123 123 0 2296 1337.5 7.7	5 3 12 872 719 153 2449 1340.1 11.7	-5 3 1001 701 2749 1344.8 11.4	15 3 924 550 374 3123 1350.0 9.9
AVE POWER MW PEAK POW MW ENERGY GWH	1306.4	65 350 23.3	96 355 16.2	185 356 39.9	184 356 132.6	206 356 153.0	220 356 158.3	231 356 171.9	227 349 169.1	210 284 151.0	92 285 68.6	54 285 19.6	57 285 9.6	57 285 10.9	87 297 64.4	87 319 64.8	79 339 53.2
NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL	1251 112 -1 47 14382 14382 358 1206.0	91 0 4 328 328 328 1206.0	43 0 -7 194 194 358 1206.0	55 0 -20 425 425 358 1206.0	124 4 0 1416 1416 358 1205.0	138 19 -5 1611 1611 358 1206.0	143 24 -3 1666 1666 358 1206.0	81 39 -3 1722 1722 358 1206-0	80 10 9 1735 1722 13 371 1206.5	58 -5 0 11 1662 1636 26 397 1207.5	105 1 27 10 898 898 397 1207.5	47 5 268 268 268 397 1207.5	22 2 -1 125 125 125 397 1207.5	25 3 0 143 143 397 1207.5	70 10 -7 5 767 767 397 1207.5	68 1 769 769 397 1207.5	101 3 654 693 -39 358 1206.0
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH	12.5	11.0 39 114 13.9	14.0 49 114 8.2	23-8 114 17-6	23.8 82 114 58.7	26.2 89 114 65.6	28.0 95 114 58.6	28.0 95 114 70.9	28.0 96 115 71 3	27.5 95 117 58 7	14.6 52 117 38 5	9.0 32 117	9.0 32 117 5 4	9.0 32 117 6 2	12.5 44 78 33 0	12.5 44 78	12.5 44 76
GAVINS POINT NAT INFLOW DEPLETION REGULATED FLOW	- SIOU 900 255 AT SIC	IS CITY- 115 OUX CITY	- 54 3	69 4	90 21	174 35	125 30	75 38	56 35	35 23	24 10	11.0 13 6	5.4 6 3	7 3	13 12	-3 13	48 14
KAF KCFS	15027	437 14.7	245 17.6	490 27.5	1485 25.0	1750 28.5	1761 29.6	1759 28.6	1743 28.3	1648 27.7	912 14.8	275 9.2	128 9.2	147 9.2	768 12.5	753 12.2	727 13.1
NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER	19500 2554 -72 1592 35251	1114 61 29 35895	520 29 -7 36135	668 37 -20 36255	1744 197 -50 36268	2615 412 -40 36681	4950 1142 -3 38724	2682 976 3 100 38575	968 265 311 37227	850 -140 29 383 36215	863 -34 61 329 35931	390 -78 10 149 35986	182 -36 -1 69 36006	208 -42 0 79 36030	570 -119 -67 172 35712	431 -103 -21 35472	745 -13 3 35506
AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH	6750.1	523 2022 188.1 12.5	628 2021 105.6 15.1	776 2021 167.6 18.6	840 2020 604.6 20.2	972 2023 723.0 23.3	1005 2052 723.9 24.1	1069 2045 795.0 25.6	1009 2027 751.0 24.2	714 1989 513.8 17.1	552 1985 410.5 13.2	412 1987 148.2 9.9	421 1988 70.7 10.1	419 1989 80.5 10.1	640 1957 475.9 15.4	707 1974 525.8 17.0	693 1982 465.9 16.6

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 310CT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB

TIME OF STUDY 14:03:55

•

2007-2008 AOP LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 STUDY NO 8 SHIN NAV SEAS 60 DAYS, SP MAR O/MAY 0

288	RBOS		2008	9		VALUE	S IN 10	DO AF E	XCEPT AS	5 INDIC	ATED			20	99		
201	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30 <i>J</i> UN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION	5100 467	234 -1	109 -1	140 · -1	515 50	783 146	996 301	439 249	253 35	242 - 59	320 -61	159 -17	74 ~8	85 -9	271 -65	205 -59	275 -33
MOD INFLOW	4244	236	110	141	465	637	695	166	143	208	300	139	65	74	294	264	308
RELEASE STOR CHANGE	5071 -827	149 87	69 41	89 52	357 108	492 145	476 219	492 -326	492 ~349	391 -183	307	149	69 -5	79 -5	492 -198	-259	444 -136
STORAGE ELEV FTMSL	8708 2198.1	8795 2198.7	8835 2198.9	8887 2199.3	8995 2200.0	9140 2201.0	9359 2202.4	9033 2200.3	8684 2197.9	8501 2196.6	8493 2196.6	8483 2196.5	8479 2196.5	8474 2196.5	8276 2195.1	8017 2193.2	7881 2192.3
DISCH KCFS	5.5	5.0	5.0	5.0	6.0	8.0	8.0	8.0	8.0	6.6	5.0	5.0	5.0	5.0	8.0	8.5	8.0
AVE POWER M PEAK POW MW ENERGY GWH	W 711.7	58 126 21.0	59 127 9.8	59 127 12.7	70 128 50.7	94 129 70.1	95 131 68.2	95 128 70.4	94 125 69.6	76 123 54.8	58 123 43.0	58 123 20.8	58 123 9.7	58 123 11.1	92 121 68-1	96 118 71.5	90 117 60.2
GARRISON		220	100	1.00	700	0.03	2020	1077	263	077	200	161	76	95	108	160	222
DEPLETION CHAN STOR EVAPORATION	1063 -28 449	270 32 6	126	19	700 73 -11	903 143 -22	2020 547	12/7 445 28	361 94 88	-94 16 108	18 18 93	-81 -2	-38 20	-43 0 22	-45 -34 48	-18	223 -5 6
REG INFLOW RELEASE	10830 11837	392 417	180 194	232 250	973 893	1229 1138	1949 1101	1296 1138	671 1138	670 909	603 769	349 372	163 174	186 198	563 984	695 1138	678 1027
STOR CHANGE	-1007	-25	-14	-18	80 10478	92 10570	848 11418	158 11577	-466	-239 10871	-165	-23	-11	-12	-420	-443	-349
ELEV FTMSL	1807.8	1807.7	1807.7	1807.6	1808.0	1808.4	1812.2	1812.9	1810.8	1809.8	1809.0	1808.9	1808.6	1808.8	1806.8	1804.7	1802.9
POWER	12.2	14.0	14.0	14.0	15.0	18.5	10.5	10.5	10.5	13.3	12.5	12.5	12.5	12.5	10.0	10.5	10.3
AVE POWER M PEAK POW MW ENERGY GWH	1462.1	359 51.2	359 23.9	359 30.7	360 109.5	362 139.7	376 137.5	378 144.6	371 143.9	367 113.8	364 95.8	364 46.2	363 21.5	363 24.6	356 120.7	348 348 136.9	342 121.7
NAT INFLOW DEPLETION	1049 640	197 23	92 11	118 14	183 48	100 68	215 135	82 160	21 106	64 26	5 -9	-5 1	-2 0	-3 1	-48 12	-12 17	41 27
CHAN STOR EVAPORATION	-15 369	8			~5	~19		23	69	. 19 87	16 78	35	17	19	-20 41	-14	
REG INFLOW RELEASE	11861 12893	599 442	276 282	354 377	1022 1260	1151 1478	1181 1447	1037 1713	983 1361	878 629	721 542	330 259	154 120	176 138	863 908	1094 1016	1041 920
STOR CHANGE STORAGE	-1032 10986	157 11143	-7 11136	-23 11113	-238 10875	-327 10548	-267 10282	-676 9606	-378 9228	250 9477	179 9656	71 9727	34 9761	38 9799	-45 9754	78 9833	121 9954
ELEV FTMSL	1576.5	1577.3	1577.2	1577.1	1575.9	1574.3	1572.9	1569.3	1567.1	1568.5	1569.5	1569.9	1570.1	1570.3	1570.1	1570.5	1571.2
POWER		10	2013	22.14	21.2	21.0	43.3	27.2	24.1	10.0	0.0	0.7	0.7	0.7	11.0	10.3	10.0
PEAK POWER M	۹ 	552	552	551	545	537	529	290 510	499	507	512	514	515	516	154 514	517	520
ENERGY GWH	1641.8	58.1	37.2	49.6	164.9	191.5	185.7	215.9	168.8	78.1	68.0	32.7	15.2	17.4	114.4	128.0	116.4
BIG BEND EVAPORATION	129							8	24	31	27	12	6	7	14		
REG INFLOW	12764 12764	442 442	282 282	377	1260 1260	1476 1478	1447 1447	1705 1705	1337 1337	598 598	515 515	247 247	115 115	131 131	894 894	1016	920 920
STORAGE	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621	1621
DISCH KCFS	1420.0	1420.0	20.3	21.1	21.2	24.0	24.3	27.7	21.7	1420.0	8.4	8.3	8.3	8.3	1420.0	1420.0	16.6
AVE POWER	4	70	95	99	99	113	114	130	104	51	42	42	42	42	73	81	80
PEAK POW MW ENERGY GWH	740.2	518 25.3	510 16.0	509 21.4	509 71.4	509 83.7	509 82.0	509 96.5	525 77.1	538 36.6	538 31.6	538 15.2	538 7.0	538 8.0	538 54.5	538 60.5	529 53.4
FORT RANDAL																	
NAT INFLOW	300	55	26 1	33	43	35	120	13 18	36	-10	-52 1	-3	-1	-1	а	-63	12
EVAPORATION	126	405	-	410	1200	1504	1666	10	30	31	22	10	5	5	12	1007	000
RELEASE	12855	235	160	393	1300	1504	1555	1690	1677	1447	440	234	108	124	726	707	555
STORAGE	3124	3384	3532	3549	3549	3549	3549	3549	3200	2296	2296	2296	2296	2296	2448	2748	3122
ELEV FTMSL DISCH KCFS	1350.0 10.0	1353.2	1355.0 11.5	1355.2	1355.2 21.8	1355.2	1355.2	1355.2 27.5	1351.0 27.3	1337.5 24.3	1337.5	1337.5	1337.5	1337.5 7.8	1340.1	1344.8 11.5	1350.0 10.0
POWER AVE POWER M	1	66	97	186	185	207	221	232	226	187	53	58	57	57	87	88	80
PEAK POW MW	1265.3	350	355	356	356	356	356	356	342	284	285	285	285	285	297	319	339
GAVINE POT			20.0		200.0	2001/	250.0	2/2/1	100.1	10117	55.1	2017	5.0	11.0	0115	05.1	22
NAT INFLOW	1200	87	41	52	120	131	138	76	76	55	104	45	21	24	67	65	98
CHAN STOR	-1	4	-7	-20	ō	-5	-3	-3	0	-5	32	-1	2 0	0	-7	1	3
REG INFLOW	47 13895	327	194	425	1416	1611	1666	3 1722	9 1735	11 1502	10 565	268	2 125	2 143	770	772	656
RELEASE STOR CHANGE	13895	327	194	425	1416	1611	1666	1722	1722 13	1476 26	565	268	125	143	770	772	695 -39
STORAGE	358 1206.0	358	358	358	358	358	358 1206.0	358	371	397	397 1207.5	397	397	397	397	397	358
DISCH KCFS	12.5	11.0	14.0	23.8	23.8	26.2	28.0	28.0	28.0	24.8	9.2	9.0	9.0	9.0	12.5	12.5	12.5
AVE POWER M	I	39	49	82	82	89	' 95	95	96	86	33	32	32	32	44	45	44
ENERGY GWH	581.4	13.9	8.2	17.6	58.7	66.6	68.6	70.9	71.3	62.3	24.4	11.6	5.4	6.2	33.1	33.2	29.7
GAVINS POIN	T - SIOU	X CITY-	-														
NAT INFLOW DEPLETION	550 255	36	17 3	22 4	77 21	144 35	106 30	47 38	22 35	15 23	14 10	10 6	4	5	10 12	-5 13	26 14
REGULATED FLC	W AT SIC	UX CITY	208	443	1472	1720	1742	1731	1709	1468	569	272	127	145	768	754	707
KCFS	>V	12.0	15.0	24.8	24.7	28.0	29.3	28.1	27.8	24.7	9.2	9.1	9.1	9.1	12.5	12.3	12.7
TOTAL	15100											a					
DEPLETION	2616	880 61	411 29	528 37	199	2096 420	3595 1049	949	295	ь43 -102	781 -40	367 -86	171 -40	195 ~46	408 -73	407 -43	675 6
CHAN STOR EVAPORATION	-50 1509	18	-7	-20	-16	-46	-3	-3 95	0 295	34 362	65 312	-1 141	0 66	0 75	-61 163	-19	8
STORAGE SYSTEM POWER	35251	35730	35898	35926	35876	35786	36587	35743	34214	33164	33170	33208	33226	33247	32736	32413	32384
AVE POWER MY	T .	536	663	797	817	948	973	1036	939	667	406	409	408	408	613	666	647
ENERGY GWH	6402.5	193.0	111.4	172.1	588.3	705.2	700.9	770.8	698.7	480.4	301.7	147.1	68.5	78.3	455.7	495.5	435.1
DATUI GWA		12.9	12.3	19.1	73.0	24.1	4.62	44.9	22.5	10.0	9.1	9.8	у.8	9.8	14.7	10.0	15.5
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

DATE OF STUDY 12/11/07

TIME OF STUDY 10:25:50

2007-2008 AOP EXTENS	SIONS, MEDIAN RUNOFF SIMULAT	99001 9901	4 PAGE	1
SHTN NAV SEAS 23 DAY VALUES IN 1000 AF EX	S, SP MAR 5 MAY 13.20 CEPT AS INDICATED		STUDY NO	9

28	FEB09 INI-SUM	15MAR	2009 22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	1 SNÓV	22NOV	20: 30NOV	10 31DEC	31JAN	28FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATIO	K 7400 538 N 379	264 7	123 3	158 4	628 11	1210 332	1851 672	829 226 23	324 -51 72	319 -146 91	398 -86 80	188 -39 36	88 -18 17	100 -21 19	310 -127 42	261 -141	349 -89
MOD INFLOW RELEASE	6483 5133	257 179	120 69	154 89	617 357	878 492	1179 476	580 492	303 492	374 387	404 307	190 149	89 69	101 87	395 492	402 523	438 472
STOR CHANG STORAGE ELEV FTMSL DISCH KCFS	10614 2210.3 9.0	10693 2210.8 6.0	10744 2211.1 5.0	10809 2211.5 5.0	11069 2213.0 6.0	386 11455 2215.3 8.0	12158 2219.3 8.0	12246 2219.8 8.0	12057 2218.7 8.0	12044 2218.6 6.5	97 12141 2219.2 5.0	41 12182 2219.4 5.0	12201 2219.5 5.0	14 12215 2219.6 5.5	-97 12119 2219.1 8.0	-121 11998 2218.4 8.5	-34 11964 2218.2 8.5
AVE POWER I PEAK POW MI ENERGY GWH	1Wi N 795.8	74 140 26.8	62 140 10.5	62 141 13.5	75 143 54.1	101 145 75.1	102 150 73.7	103 150 77.0	103 149 76.9	84 149 60.4	65 149 48.1	65 150 23.3	65 150 10.9	71 150 13.7	103 149 76.9	110 149 81.5	109 148 73.4
GARRISON NAT INFLOW DEPLETION CHAN STOR	11001 1054 6	469 -7 32	219 -3 11	282 -4	853 -5 -11	1423 194 -21	2958 837	2066 592	581 70	497 -131 15	454 -9 16	192 -111	89 - 52	102 -59 -5	253 -112 -26	237 -90 -5	326 -55 0
EVAPORATION REG INFLOW	448 14638	688	303	375	1204	1700	2597	27 1939 1251	86 917	108 923	94 692	42 409	20 191	23 221	49 782	844	853
STOR CHANGE	1644 12776	271 13047	108 13155	125 13281	252 13533	408 13941	1377	678 15997	-344 15653	-90 15564	-138 15426	7 15433	15436	214 7 15443	+263 15180	-447 14733	-313
ELEV FTMSL DISCH KCFS POWER	1818.0 21.0	1819.1 14.0	1819.5 14.0	1820.0 14.0	1821.0 16.0	1822.6 21.0	1827.8 20.5	1830.3 20.5	1829.1 20.5	1828.7 17.0	1828.2 13.5	1828.3 13.5	1828.3 13.5	1828.3 13.5	1827.3 17.0	1825.7 21.0	1824.5 21.0
AVE POWER M PEAK POW MV ENERGY GWH	W 1813.8	154 401 55.4	155 402 26.0	155 404 33.6	178 408 128.3	235 414 175.0	235 433 169.2	241 442 179.4	242 437 180.1	200 436 144.2	159 434 118.2	159 434 57.1	159 434 26.7	159 434 30.5	199 431 147.9	243 425 180.6	240 420 161.6
OAHE NAT INFLOW DEPLETION CHAN STOR	2300 652 1	317 23 34	148 11	190 14	364 48 -10	236 69 -23	689 138 2	162 164	33 109	118 27 16	14 -9 16	5 1	2 0	3 1	-20 12 -16	17 -19	40 27
REG INFLOW RELEASE	14237 12552	744 403	331 227	426 300	1259 971	1435 1298	1773 1171	25 1234 1492	78 1107 1604	97 1023 981	85 785 841	38 367 265	18 171 112	21 196 130	45 952 931	1256 942	1179
STOR CHANGE STORAGE	1685	341 13707	104 13811	126 13937	288 14225	137 14362	602 14964	-258 14706	-497 14208	42 14251	-56 14195	102 14297	59 14356	65 14422	22 14443	314 14757	294 15051
DISCH KCFS POWER	15.9	13.5	16.4	16.8	16.3	21.1	193.8	24.3	26.1	16.5	13.7	8.9	8.1	1591.7	1591.8	1593.0	1594.2
AVE POWER M PEAK POW MW ÊNERGY GWH	W 7 1799.2	157 613 56.7	191 615 32.1	197 617 42.5	192 623 138.2	249 626 185.3	234 638 168.8	290 633 215.4	309 623 229.5	195 624 140.1	162 622 120.2	105 624 38.0	96 626 16.1	98 627 18.7	180 627 133.6	182 634 135.7	191 639 128.4
BIG BEND EVAPORATION REG INFLOW) 1 103 12449	403	777	300	071	1200	1171	6 1495	20	25	22	10	5	5	11		
RELEASE	12449 1621	403 1621	227 1621	300 1621	971 1621	1298 1621	1171 1621	1486 1621	1585 1585 1621	956 1621	819 1621	255 255 1621	107 1621	125 125 1621	919 919 1621	942 942 1621	886 886 1621
ELEV FTMSL DISCH KCFS POWER	1420.0 15.9	1420.0 13.5	1420.0 16.4	1420.0 16.8	1420.0 16.3	1420.0 21.1	1420.0 19.7	1420.0 24.2	1420.0 25.8	1420.0 16.1	1420.0 13.3	1420.0 8.6	1420.0 7.7	1420.0 7.9	1420.0 14.9	1420.0 15.3	1420.0 15.9
AVE POWER M PEAK POW MW ENERGY GWH	W 721.1	64 517 23.1	77 509 12.9	79 509 17.0	76 509 55.0	99 509 73.5	92 509 66.4	113 509 84.2	121 509 89.7	78 537 56.2	67 538 50.0	43 538 15.6	39 538 6.6	40 538 7.7	75 538 55.8	75 538 56.1	77 529 51.4
FORT RANDA NAT INFLOW	LL 900	122	57	73	115	140	185	74	57	42	2	2	1	1	10		19
EVAPORATION REG INFLOW	79 110 13160	1 524	_ 1 283	1 373	3 1083	9 1429	12 1344	18 8 1534	15 25 1601	7 30 961	1 21 798	1 8 249	0 4 104	1 4 121	3 10 916	3	3 902
RELEASE STOR CHANGE	13160	232 292	149 134	373	1083	1429	1344	1534 0	1601	1535 -574	1476 -678	248	104 0	121 0	713 203	689 250	528 374
ELEV FTMSL DISCH KCFS	1350.0 9.5	3415 1353.6 7.8	3549 1355.2 1 10.8	3549 1355.2 20.9	3549 1355.2 18.2	3549 1355.2 23.2	3549 1355.2 22.6	3549 1355.2 24.9	3549 1355.2 26.0	2975 1348.0 25.8	2297 1337.5 24.0	2297 1337.5 8.3	2297 1337.5 7.5	2297 1337.5 7.6	2500 1341.0 11.6	2750 1344.8 11 2	3124 1350.0
POWER AVE POWER M	W	65	91	177	154	196	191	211	220	211	182	61	55	56	86	86	76
GAVINS POI	1300.6 NT	23.3	15.3	38.2	111.0	356 146.1	356 137.5	156.7	356 163.5	332 152.2	284 135.7	285 22.0	285 9.2	285 10.7	301 64.1	319 64.0	339 51.1
NAT INFLOW DEPLETION CHAN STOP	1450 112	92 0	43 0	55 0	148 4	174 19	166 24	86 39	103	77 -5	122	50 5	23 2	27 3	77 10	79 1	127
EVAPORATION REG INFLOW	38 14459	328	-0 187	409	1232	-10 1574	1488	-5 2 1574	-2 7 1685	9 1609	3 8 1593	29 4 318	2 2 125	2 143	-7 4 769	1 767	3 658
RELEASE STOR CHANGE STORAGE	14459	328	187 358	409	1232	1574	1488	1574	1672 13	1583 26	1593	318	125	143	769	767	697 -39
ELEV FTMSL DISCH KCFS POWER	1206.0 12.5	1206.0 11.0	1206.0 : 13.5	1206.0 22.9	1206.0 20.7	1206.0 25.6	1206.0 25.0	1206.0 25.6	1206.5 27.2	1207.5 26.6	1207.5 25.9	1207.5 10.7	1207.5 9.0	1207.5 9.0	1207.5 12.5	1207.5 : 12.5	12.5
AVE POWER M PEAK POW MW ENERGY GWH	W 606.5	39 114 13.9	47 114 7.9	79 114 17.0	71 114 51.4	88 114 65.1	86 114 61.6	88 114 65.1	93 115 69.3	92 117 66.6	91 117 67.6	38 117 13.7	32 117 5.4	32 117 6.2	44 78 33.0	44 78 33.0	44 76 29.7
GAVINS POI NAT INFLOW	NT - SIOU 1550	X CITY-	- 79	102	199	310	224	129	96	60	42	16	7	9	21	5	82
REGULATED FL	OW AT SIO 15751	UX CITY 491	263	1 507	⊿⊥ 1410	35 1849	1681	38 1665	36 1732	23 1620	10 1625	6 329	3 130	3 148	12 778	14 758	14 765
KCFS		16.5	19.0	28.4	23.7	30.1	28.2	27.1	28.2	27.2	26.4	11.1	9.3	9.4	12.6	12.3	13.8
NAT INFLOW DEPLETION	24601 2693	1435 30	669 14	860 18	2307 82	3493 658	6073 1714	3346 1077	1194 189	1113 -225	1032 -92	452 -137	211 -64	241 -73	651 -202	582 -196	943 -100
CHAN STOR EVAPORATION STORAGE	6 1484 41859	70 42841	5 43238	-19 43554	-15 44355	-54 45286	4 47968	-5 91 48477	-2 287 47459	32 359 46851	34 309 46076	30 138 46227	2 65 46309	-5 74 46395	-49 161 46260	-23 46254	3
SYSTEM POWER	R	554	623	749	747	968	941	1045	1087	861	726	472	446	456	687	740	738
PEAK POW MW ENERGY GWH DAILY GWH	7037.1	2135 199.3 13.3	2137 104.6 14.9	2142 161.7 18.0	2153 537.9 17.9	2164 720.1 23.2	2200 677.2 22.6	2204 777.7 25.1	2189 809.1 26.1	2195 619.7 20.7	2145 539.8 17.4	2148 169.7 11.3	2150 74.9 10.7	2151 87.5 10.9	2125 511.3 16.5	2142 550.8 17.8	2152 495.7 17.7
	INI-SUM	15MAR	22MAR	31MAR	SUAPE	31MAV	30.70	31.пп.	31 4110	20980	31007	15000	22100	201007	21000	21.75N	20000

DATE OF STUDY 12/11/07

TIME OF STUDY 10:25:50

2007-2008 AC	P EXTENSIONS,	MEDIAN	RUNOFF	SIMULAT	99001	9901	4	PAGE	1
SHTN NAV SEA VALUES IN 10	S 0 DAYS, SP 00 AF EXCEPT	MAR 5 M	AY 14.5 CATED	0			STU	DY NO	10

	EB10 INI-SUM	15MAR	201 22MAR	0 31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20: 30NOV	11 31DEC	31JAN	28FEB
FORT PECH NAT INFLOW DEPLETION EVAPORATION	(7400 443 I 404	264 -22	123 -10	158 -13	628 48	1210 337	1851 588	829 238 25	324 -50 77	319 -147 97	398 -81 85	188 -40 38	88 -19 18	100 -21 20	310 -130 44	261 -143	349 -91
MÓD INFLÓW RELEASE	6553 5649	287 179	134 69	172 89	580 357	873 523	1263 506	566 523	297 523	369 428	394 369	189 179	88 83	101 95	396 584	404 615	440 528
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	11964 2218.2 8.5	12072 12072 2218.8 6.0	12136 2219.2 5.0	12219 2219.6 5.0	12442 2220.9 6.0	12792 2222.8 8.5	13549 2226.8 8.5	13593 2227.1 8.5	-226 13367 2225.9 8.5	13308 2225.6 7.2	25 13334 2225.7 6.0	13344 2225.8 6.0	13349 2225.8 6.0	13355 2225.8 6.0	-188 13166 2224-8 9.5	12956 2223.7 10.0	-88 12868 2223.2 9.5
AVE POWER M PEAK POW MV ENERGY GWH	W 902.0	77 149 27.9	65 149 10.9	65 150 14.0	78 151 56.1	111 153 82.6	112 157 81.0	113 157 84.3	113 156 84.2	96 156 68.8	80 156 59.3	80 156 28.7	80 156 13.4	80 156 15.3	126 155 93.7	132 154 97.9	125 154 83.9
GARRISON NAT INFLOW DEPLETION CHAN STOR	11001 1029 -10	469 -9 26	219 -4 10	282 -5	853 -8 -10	1423 178 -26	2958 838 0	2066 600 0	581 76	497 -134 13	454 -14 12	192 -115	89 -53	102 -61	253 -114 -36	237 -90 -5	326 -56 5
EVAPORATION REG INFLOW RELEASE	469 15141 14044	683 417	303 194	376	1208	1742	2626	29 1960 1353	91 937 1353	113 959 1128	98 751 984	44 440 475	21 206 222	24 235 254	51 865 1107	937 1383	915 1250
STOR CHANGE	1098 14420	266 14686	109 14795	126 14921	196 15117	389 15506	1317 16823	607 17430	-416 17014	-169 16846	-233 16613	-36 16577	-17 16561	-19 16542	-242 16300	-447 15853	-335 15518
DISCH KCFS POWER	1824.5	1825.5	1825.9	1826.4	1827.1	1828.5	22.0	1835.2	1833.8 22.0	1833.3 19.0	1832.4 16.0	1832.3	1832.3	1832.2	1831.4 18.0	1829.8	1828.6
AVE POWER M PEAK POW MW ENERGY GWH	W 2024.7	161 424 57.9	162 426 27.2	162 427 35.0	197 430 142.1	256 435 190.8	262 452 188.4	267 460 198.9	268 455 199.3	230 453 165-4	193 450 143.9	193 449 69.4	193 449 32.4	193 449 37.0	216 446 160.6	267 440 198.6	265 435 177.8
OAHE NAT INFLOW DEPLETION CHAN STOR	2300 665 -6	317 24 32	148 11	190 14	364 49 -13	236 70 -22	689 141	162 169	33 112	118 27 13	14 -10 13	5 1	20	3 1	-20 12 -9	17 -20	40 27
REG INFLOW RELEASE	15240 14115	741 402	331 227	426 300	1313 971	1497 1431	1857 1284	1319 1609	1190 1721	1129 1526	932 1010	40 440 475	205 219	22 234 195	47 1019 1082	1346 949	1263 716
STOR CHANGE STORAGE ELEV FTMSL	1125 15051 1594.2	339 15390 1595,5	104 15494 1595.9	125 15619 1596.3	343 15962 1597.6	66 16028 1597,9	573 16601 1599.9	-290 16310 1598.9	-532 15779 1596.9	-397 15382 1595-4	-78 15304 1595.1	-35 15268 1595.0	-14 15255 1595.0	40 15294 1595.1	-63 15232 1594 9	397 15629 1596 4	547 16176 1598 4
DISCH KCFS POWER	15.9 N	13.5	16.4	16.8	16.3	23.3	21.6	26.2	28.0	25.6	16.4	16.0	15.8	12.3	17.6	15.4	12.9
PEAK POWER M PEAK POW MW ENERGY GWH	2082.0	646 58.8	648 33.3	650 44.1	656 143.4	657 211.8	200 668 191.4	662 240.1	653 254.5	645 223.7	644 147.8	643 69.5	643 32.0	644 28.5	643 158.0	650 139.1	660 106.1
EVAPORATION REG INFLOW	103 14012	402	227	300	971	1431	1284	6 1603	20 1702	25 1501	22 988	10 465	5 214	5 190	11 1070	949	716
RELEASE STORAGE ELEV FTMSL	14012 1621 1420.0	402 1621 1420.0	227 1621 1420.0	300 1621 1420.0	971 1621 1420.0	1431 1621 1420.0	1284 1621 1420.0	1603 1621 1420.0	1702 1621 1420.0	1501 1621 1420.0	988 1621 1420.0	465 1621 1420.0	214 1621 1420.0	190 1621 1420.0	1070 1621 1420.0	949 1621 1420.0	716 1621 1420.0
DISCH KCFS POWER AVE POWER M	15.9 w	13.5 64	16.4	16.8 79	16.3	23.3	21.6	26.1	27.7	25.2	16.1	15.6	15.4	12.0	17.4	15.4	12.9
PEAK POW MW ENERGY GWH	808.1	517 23.1	509 12.9	509 17.0	509 55.0	509 81.1	509 72.7	509 90.8	509 96.4	517 86.1	538 58.7	538 28.3	538 13.1	538 11.6	538 64.0	538 55.9	529 41.6
NAT INFLOW DEPLETION	900 79	122	57 1	73 1	115 3	140 9	185 12	74 18	57 15	42 7	2	2	1	1	10	3	19 3
	110									12	42	10	~~ "	4			
REG INFLOW RELEASE	14716 14715	523 232	283 149	373 373	1083 1083	1562 1562	1457 1457	1651 1651	25 1718 1718	1504 1648	965 1600	456 761	356	186 209	1067 701	946 689	732 528
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL	14716 14715 1 3124 1350.0	523 232 291 3415 1353.6	283 149 134 3549 1355,2	373 373 3549 1355,2	1083 1083 3549 1355,2	1562 1562 3549 1355-2	1457 1457 3549 1355.2	1651 1651 0 3549 1355.2	25 1718 1718 0 3549 1355-2	1504 1648 -144 3405 1353.5	965 1600 -635 2770 1345.1	456 761 -305 2465 1340-4	211 356 -145 2320 1337.9	186 209 -23 2297 1337.5	1067 701 366 2663	946 689 257 2920 1347.2	732 528 204 3124 1350.0
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS FOWER NUE DOWER	14716 14715 1 3124 1350.0 9.5	523 232 291 3415 1353.6 7.8	283 149 134 3549 1355.2 10.8	373 373 3549 1355.2 20.9	1083 1083 3549 1355.2 18.2	1562 1562 3549 1355.2 25.4	1457 1457 3549 1355.2 24.5	1651 1651 0 3549 1355.2 26.8	25 1718 1718 0 3549 1355.2 27.9	1504 1648 -144 3405 1353.5 27.7	965 1600 -635 2770 1345.1 26.0	456 761 -305 2465 1340.4 25.6	211 356 -145 2320 1337.9 25.6	186 209 -23 2297 1337.5 13.2	1067 701 366 2663 1343.5 11.4	946 689 257 2920 1347.2 11.2	732 528 204 3124 1350.0 9.5
EVAPORATION REGINFLOW RELEASE STOR CHANGE ELEV FTMSL DISCH KCFS POWER AVE POWER AVE POWER MPEAK POW MW ENERGY GWH	14716 14715 1 3124 1350.0 9.5 W 1463.1	523 232 291 3415 1353.6 7.8 65 351 23.3	283 149 134 3549 1355.2 10.8 91 356 15.3	373 373 3549 1355.2 20.9 177 356 38.2	1083 1083 3549 1355.2 18.2 154 356 111.0	1562 1562 3549 1355.2 25.4 214 356 159.5	1457 1457 3549 1355.2 24.5 207 356 148.9	1651 1651 0 3549 1355.2 26.8 226 356 168.4	25 1718 1718 0 3549 1355.2 27.9 236 356 175.2	1504 1648 -144 3405 1353.5 27.7 232 350 167.0	965 1600 -635 2770 1345.1 26.0 209 320 155.5	456 761 -305 2465 1340.4 25.6 194 298 69.9	211 356 -145 2320 1337.9 25.6 188 287 31.6	186 209 -23 2297 1337.5 13.2 96 285 18.5	1067 701 366 2663 1343.5 11.4 86 313 63.7	946 689 257 2920 1347.2 11.2 88 330 65.4	732 528 204 3124 1350.0 9.5 77 339 51.6
BYAFORATION REGINFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER AVE POWER M PEAK POW MW ENERGY GWH - GAVINS POI NAT INFLOW DEPLETION	14716 14715 1 3124 1350.0 9.5 W 1463.1 NT 1450 112	523 232 291 3415 1353.6 7.8 65 351 23.3 92 0	283 149 134 3549 1355.2 10.8 91 356 15.3 43 0	373 373 3549 1355.2 20.9 177 356 38.2 55 0	1083 1083 3549 1355.2 18.2 154 356 111.0 148 4	1562 1562 3549 1355.2 25.4 214 356 159.5 174 19	1457 1457 3549 1355.2 24.5 207 356 148.9 166 24	1651 1651 3549 1355.2 26.8 226 356 168.4 86 39	25 1718 1718 0 3549 1355.2 27.9 236 356 175.2 103 10	1504 1648 -144 3405 1353.5 27.7 232 350 167.0	965 1600 -635 2770 1345.1 26.0 209 320 155.5 122 122	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 50	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 23 22	186 209 -23 2297 1337.5 13.2 96 285 18.5 27 27	1067 701 366 2663 1343.5 11.4 86 313 63.7 77 10	946 689 257 1347.2 11.2 88 330 65.4 79	732 528 204 3124 1350.0 9.5 77 339 51.6 127
EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW	14716 14715 1 3124 1350.0 9.5 9.5 1463.1 NT 1450 1450 1450 1450 1450 1450 1450 1450	523 232 291 3415 1353.6 7.8 65 351 23.3 92 0 3 328	283 149 134 3549 1355.2 10.8 91 356 15.3 43 0 -6 187	373 373 3549 1355.2 20.9 177 356 38.2 55 0 -19 409	1083 1083 3549 1355.2 18.2 154 356 111.0 148 4 5 1232	1562 1562 3549 1355.2 25.4 214 356 159.5 174 19 -14 1703	1457 1457 3549 1355.2 24.5 207 356 148.9 166 24 2 1601	1651 1651 3549 1355.2 26.8 226 356 168.4 86 39 -5 2 1691	25 1718 1718 1355.2 27.9 236 356 356 175.2 103 10 -2 7 1802	1504 1648 -144 3405 1353.5 27.7 232 350 167.0 77 -5 0 9 1722	965 1600 -635 2770 1345.1 26.0 209 320 155.5 122 1 3 8 1716	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 5 1 4 803	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 2 0 2 375	186 209 2297 1337.5 13.2 96 285 18.5 27 3 23 23 254	1067 701 366 2663 1343.5 11.4 86 313 63.7 77 10 3 4 767	946 689 257 2920 1347.2 11.2 88 330 65.4 79 1 0 767	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658
BYAFORATION REG INFLOW RELEASE STOR CHANGE ELEV FTMSL DISCH XCPS POWER AVE POWER AVE POWER MPEAK POWER OF AVE - GAVINS POI NAT INFLOW CHAN STOR EVAPORATION RELEASE STOR CHANGE STOR CHANGE	14716 14715 1 3124 1350.0 9.5 W 1463.1 NT 1450 112 -1 38 16015 16015	523 232 291 3415 1353.6 7.8 65 351 23.3 92 0 3 328 328	283 149 134 3549 1355.2 10.8 91 356 15.3 43 0 0 6 187 187	373 373 3549 1355.2 20.9 177 356 38.2 55 0 -19 409 409 358	1083 1083 3549 1355.2 18.2 154 356 111.0 148 4 5 1232 1232	1562 1562 359 1355.2 25.4 214 356 159.5 174 19 -14 1703 1703 258	1457 1457 3549 1355.2 24.5 207 356 148.9 1666 24 2 1601 1601 358	1651 1651 1651 1355.2 26.8 226 356 168.4 86 359 -5 2 1691 1691 1691	25 1718 0 3549 1355.2 27.9 236 356 175.2 103 10 10 10 10 10 10 10 10 10 10 10 10 10	1504 1648 -144 3405 1353.5 27.7 232 350 167.0 77 -5 9 9 1722 1696 266 266	965 -635 2770 1345.1 26.0 209 320 155.5 1222 1 3 8 1716 1716	456 761 -305 2445 1340.4 25.6 194 298 69.9 50 50 51 4 803 803	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 2 2 0 2 375 375	186 209 -23 2297 1337.5 13.2 96 285 18.5 18.5 27 3 23 23 254 254	1007 701 366 2663 1343.5 11.4 86 313 63.7 77 10 3 4 767 767 767	946 689 257 2920 1347.2 11.2 88 330 65.4 79 1 0 767 767	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658 697 -39
BYAFORATION REGINFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH XCFS POWER AVE POWER AVE POWER - GAVINS POI NAT INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	14716 14715 1 13124 1350.0 9.5 W 1463.1 NT 1450 112 -1 38 16015 16015 358 1206.0 12.5	523 291 3415 1353.65 351 23.3 92 0 3 328 328 328 328 1206.0 11.0	283 149 134 3549 1355.2 10.8 91 356 15.3 43 0 -6 187 187 187 358 1206.0 13.5	373 3549 1355.2 20.9 177 356 38.2 55 0 -19 409 409 358 1206.0 22.9	1083 1083 3599 1355.2 18.2 154 356 111.0 148 4 5 1232 1232 1232 1232 1232 1232 1232	1562 1562 3549 1355.2 25.4 214 356 159.5 174 19 -14 1703 358 1206.0 27.7	1457 1457 3549 1355.2 24.5 148.9 166 24 2 1601 1601 1601 358 1206.0 26.9	1651 1651 0 3549 13552 26.8 226 356 168.4 86 39 -5 2 1691 1691 358 1206.0 27.5	25 1718 1718 0 3549 1355.2 27.9 236 356 175.2 103 10 -2 7 1802 1789 13 371 1206.5 29.1	1504 1648 -144 3405 1353:27.7 232 350 167.0 77 -5 0 9 1722 1696 26 397 1207.5 28.5	965 1600 -635 2770 1345.1 26.0 209 320 155.5 122 1 3 8 1716 1716 397 1207.5 27.9	456 761 -305 2340.4 25.6 194 298 69.9 50 5 1 4 803 803 803 397 1207.5 27.0	211 356 -145 237.9 25.6 188 287 31.6 23 2 375 375 375 375 375 375 27.0	186 209 -23 2297 13372 13.2 96 285 18.5 27 3 23 23 25 4 254 254 254 254 254 254 255 18.5	1067 701 366 2663 1343.5 11.4 86 313 63.7 10 3 4 767 767 767 767 767 797 1207.5 12.5	946 689 257 2920 1347.2 11.2 88 330 65.4 79 1 0 767 767 767 767 767 767 767 767	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658 697 -39 358 1206.0 12.5
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER PEAR POW MW ENERGY GHH GAVINS POI NAT INFLOW DEFLETION CHAN STOR EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER M PEAR POW MW ENERGY GWH	14716 14715 3124 1350.0 9.5 W 1463.1 NT 1450 1463.1 NT 1450 125 16015 1206.0 12.5 W 670.2	523 2291 33415 1353.6 7.8 65 351 23.3 92 0 3 328 328 328 1206.0 1100 39 114 13.9	283 149 134 1355.2 10.8 91 355.2 15.3 43 0 -6 15.3 43 0 -6 187 187 187 1206.0 13.5 1206.0 13.5 1205.0 147 114 7.9	373 3549 1355.2 20.9 1355.2 20.9 1355.3 38.2 55 38.2 55 0 -19 409 409 409 409 1206.0 22.9 79 114 17.0	1083 1083 355,2 1355,2 18,2 154 356 111.0 148 4 5 1232 1232 1232 1232 1205,0 20.7 71 114 51.4	1562 1562 3549 1355.2 25.4 214 355.5 155.5 174 1703 1703 358 1206.0 27.7 94 114 70.2	1457 1457 355.2 24.5 207 356 148.9 166 24 2 148.9 166 260 260 260 260 260 260 260 260 260 2	1651 1651 03549 1355.2 26.8 226 356 168.4 86 39 -5 2 1691 1691 1206.0 27.5 94 114 69.7	25 1718 1718 175.2 27.9 23.6 356 175.2 103 10 -2 7 7 1802 175.2 103 371 1206.5 29.1 99 115 73.8	1504 1648 -144 3405 1353:27.7 232 350 167.0 77 -5 0 9 9 1722 1696 286 297 1207.5 28.5 99 117 71.1	965 1600 -2770 1345.1 26.0 209 3200 155.5 1222 3 3 1716 1716 1716 397 1207.5 27.9 98 117 72.7	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 5 1 4 803 803 397 1207.5 27.0 95 117 34.0	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 2 375 375 375 375 375 27.0 95 117 15.9	186 209 -23 1337.5 13.2 96 285 18.5 27 3 23 254 254 254 254 397 1207.5 160.9	1067 701 366 2663 1343.5 11.4 86 313 63.7 77 10 3 4 767 767 1207.5 12.5 12.5 12.5 4 4 78 33.0	946 629 2257 29920 11.2 88 330 65.4 79 1 0 767 767 397 1207.5 12.5 12.5 44 78 33.0	732 528 204 3124 1350.0 9.5 77 3399 51.6 127 3 658 697 358 1206.0 12.5 44 76 29.7
REG INFLOW RELEASE STOR CHANGE ELEV FTMSL DISCH XCPS POWER AVE POWER AVE POWER GAVINS POI NAT INFLOW RELEASE STOR CHANGE STOR CHANGE STO	14716 14715 1 3124 1350.0 9.5 W 1463.1 NT 1450 112 -1 38 16015 16015 16015 358 1206.0 12.5 W 670.2 NT - SIOU 253	523 231 231 3415 1353.67 23.3 92 0 3 328 328 328 328 1206.0 11.0 39 114 13.9 X CITY2- 169 7	283 149 134 3549 13552 10.8 91 356 15.3 43 0 -6 187 187 358 1206.0 13.5 47 114 7.9 - 7 9 3	373 3549 1355.2 20.9 177 356 38.2 55 0 -19 409 409 358 1206.0 22.9 79 114 17.0	1083 1083 3599 1355.2 18.2 154 356 111.0 148 4 5 1232 1232 1232 1232 358 1206.0 20.7 71 114 51.4	1562 1562 3549 1355.2 25.4 214 355.5 159.5 174 19 -14 1703 1703 358 1206.0 27.7 94 114 70.2 310 358	1457 1457 355.2 24.5 24.5 148.9 166 24 22 1601 1601 358 1206.0 26.9 92 114 66.1 2224 31	1651 1651 0 3549 13552 26.8 226 356 168.4 86 39 -5 2 1691 1691 1691 358 1206.0 27.5 94 114 69.7 129 38	25 1718 1718 175.2 27.9 236 356 175.2 103 10 -2 7 1802 175.2 103 10 -2 7 1802 29.1 1206.5 29.1 1206.5 29.1 99 115 73.8	1504 1648 -144 3405 1353.27.7 232 355 167.0 77 -5 0 9 9 1722 1696 266 397 1207.5 28.5 9 9 117 71.1	965 1600 -2770 1345.1 26.0 209 320 155.5 122 1 3 8 1716 1716 397 1207.5 27.9 98 117 72.7	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 5 1 4 803 803 803 397 1207.5 27.0 95 117 34.0	211 356 -145 2320 1337.9 25.6 188 23 31.6 23 2 0 2 375 375 375 375 375 375 375 377 1207.5 27.0 95 117 15.9	186 209 -23 2297 1337.5 13.2 96 285 18.5 27 3 23 2254 254 254 254 254 254 254 254 254 25	1067 701 3666 2663 1343.5 11.4 86 313 63.7 77 100 34 767 767 767 767 767 767 767 767 397 1207.5 12.5 12.5 44 78 33.0 21	946 689 257 2920 11.2 88 330 65.4 79 1 0 767 767 397 1207.5 12.5 12.5 44 33.0 5 5 44	732 528 204 351,0 9,5 77 339 51.6 127 3 658 697 -39 358 697 -39 358 697 -39 358 697 -39 358 697 -39 358 29,7 12,5 12,6 12,5 12,6 12,7 3 3 4 4 76 29,7 3 28,4 12,0 12,7 3 3 28,5 12,0 12,7 3 3 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH - GAVINS POI NAT INFLOW RELEASE STOR CHANGE STOR CHANGE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH GAVINS POI NAT INFLOW DEPLETION REGULATED FL KAF KCFS	14716 14715 1 3124 1350.0 9.5 W 1463.1 NT 1450 112 -1 38 16015 16015 358 1206.0 12.5 W 670.2 NT - SIOU 1550 263 DW AT SIO 17302	523 232 291 3415 1353.6 5 351 23.3 92 0 3 328 328 328 328 328 328 328 328 1206.0 11.0 39 114 13.9 124 13.9 7 7 7 9 0 114 13.9 14 13.9 14 13.9 14 13.9	283 149 134 3549 1355.2 10.8 91 356 15.3 43 0 -6 187 187 187 187 358 1206.0 13.5 1206.0 13.5 47 147 7.9 -79 3 263 18.9	373 373 3549 1355.2 20.9 1355.2 20.9 1356 38.2 55 38.2 55 38.2 409 409 409 409 409 409 120.9 79 114 17.0 102 40 22.9	1083 1083 3599 1355.2 18.2 154 356 111.0 148 4 5 1232 1232 1232 358 1206.0 20.7 71 114 51.4 199 23.7	1562 1562 3549 1355.2 25.4 25.4 356 159.5 174 19 -14 1703 1703 1703 310 35 1978 32.2	1457 1457 359 1355.2 24.5 24.5 148.9 166 24 2 1601 1601 358 1206.0 26.9 92 114 66.1 224 31 30.1	1651 1651 13552 26.8 226 356 168.4 86 39 -5 2 1691 1691 1691 1691 1206.0 27.5 94 114 69.7 129 38 1782 29.0	25 1718 1718 175.2 27.9 236 356 175.2 103 10 175.2 103 10 175.2 103 10 175.2 175.2 103 10 1206.5 29.1 99 115 73.8 96 36.1 1849 30.1	1504 1648 -144 3405 1353.27.7 232 350 167.0 77 -5 0 9 9 1722 1696 26 397 1207.5 28.5 9 9 9 177 71.1 60 260 260 260 260 260 27.7	965 1600 -635 2770 1345.1 26.0 2009 3200 155.5 122 155.5 122 1716 1716 1716 1716 27.9 98 117 72.7 98 117 72.7 42 10 1748 28.4	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 5 5 5 5 5 5 5 5 7 5 27.0 95 117 34.0 16 6 813 27.3	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 22 375 375 375 27.0 95 117 15.9 7 3 3 80 27.3	186 209 -23 132297 133.2 96 285 18.5 27 3 23 23 24 254 254 254 254 254 397 1207.5 16.0 57 117 10.9 3 25 16.2 57 12.7 12.7 16.2 17 18.5 19.6 19.7 10.7	1067 701 366 2663 11343.5 11.4 86 313 63.7 10 3 4 7767 77 100 3 4 4 767 767 397 1207.5 12.5 44 33.0 21 13 775 12.6	946 689 257 2920 1347.2 11.2 88 330 65.4 79 1 0 767 767 767 767 767 767 767 767 397 1207.5 12.5 44 33.0 5 14 5 14 2.5	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658 697 -39 35.0 1205 1205 1205 1205 1205 1205 1205 120
REGINFLOW RELEASE STOR CHANGE ELEV FIMSL DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH GAVINS POI NAT INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH GAVINS POI NAT INFLOW DEFLETION REGULATED FL KAF KCFS TOTAL NAT INFLOW DEFLETION	14716 14715 1 3124 1350.0 9.5 W 1463.1 NT 1450 1205 16015 1206.0 12.5 W 670.2 NT - SIOU 1550 263 DW AT SIC 17302 24601 2591	523 231 3415 1353.6 7.8 65 351 23.3 92 0 3 328 328 328 1206.0 11.0 39 114 13.9 7 7 7 7 7 7 7 7 7 7 114 15.9 7 7 7 7 7 114 15.9 7 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 15.9 7 114 115 114 115 115 115 115 115 115 115	283 149 134 3549 1355.2 10.8 91 356 15.3 43 0 -6 187 187 1206.0 13.5 1206.0 13.5 263 18.9 -79 3 263 18.9 669 0	373 3549 1355.2 20.9 1355.2 20.9 1355.2 20.9 1355.2 38.2 55 38.2 50 117 409 409 409 358 1206.0 22.9 114 17.0 102 4 507 28.4 860 0	1083 1083 3552 18.2 154 356 111.0 148 4 5 1232 1232 1232 1232 1232 1232 1232 12	1562 1562 3549 1355.2 25.4 214 355.5 159.5 159.5 174 1703 358 1206.0 27.7 94 114 70.2 310 35 1978 32.2 3493 648	1457 1457 1457 355.2 24.5 207 356 148.9 166 24 2 148.9 166 260 26.0 26.0 26.1 206.0 26.1 224 31 1794 30.1 6073 1634	1651 1651 13552 26.8 226 356 158.4 86 39 -5 2 1691 1691 358 1206.0 27.5 94 114 69.7 129 38 1782 29.0 3346 1102	25 1718 1718 1755.2 27.9 236 356 175.2 103 10 -2 175.2 103 10 -2 175.2 103 10 -2 175.2 103 10 -2 175.2 103 10 13 371 15 29.1 99 115 73.8 96 36 1849 30.1 1194	1504 1648 -144 3405 1353 27.7 232 350 167.0 77 -5 0 9 9 1722 1696 28.5 99 117 71.1 60 24 1732 29.1 1113 -228	965 1600 -635 2770 1345.1 26.0 209 300 155.5 1222 13 397 1207.5 27.9 98 117 72.7 98 117 72.7 42 10 1748 28.4	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 5 1 4 803 803 397 1207.5 27.0 95 117 34.0 16 6 813 27.3 452 -142	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 31.6 23 375 375 375 27.0 95 117 15.9 7 3 380 27.3 2211 -66	186 209 -23 2297 1337.5 13.2 96 285 18.5 27 3 23 254 254 397 1207.5 16.0 57 117 10.9 9 3 259 16.3 241 -75	1067 701 366 2663 1343.5 11.4 86 313 63.7 77 10 3 4 767 767 1207.5 12.5 12.5 44 8 333.0 21 13 775 12.6 551 -206	946 629 2257 29920 11.2 88 330 65.4 79 1 0 767 767 1207.5 12.5 12.5 44 78 33.0 5 14 758 12.3 582 -198	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658 697 -39 358 1206.0 12.5 44 76 29.7 82 14 765 13.8 943 -103
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH XCPS POWER AVE POWER AVE POWER -GAVINS POI NAT INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCPS POWER AVE POWER M PEAK POW MW ENERGY GWH GAVINS POI NAT INFLOW ENERGY GWH GAVINS POI NAT INFLOW DEPLETION REGULATED FL KAF KCFS TOTAL NAT INFLOW DEPLETION	14716 14715 1 3124 1350.0 9.5 W 1463.1 NT 1450 112 -1 38 16015 16015 358 1206.0 12.5 W 670.2 VT - SIOU 1550 263 DW AT SIC 17302 24601 2591 -17 1564	523 232 291 3415 1353.65 351 23.3 92 0 3 328 328 328 328 1206.0 11.0 39 114 13.9 X CITY- 169 114 13.9 X CITY- 16.5 1435 61 47542	283 149 134 3549 1355.2 10.8 91 356 15.3 43 0 -6 187 358 1206.0 13.5 47 114 7.9 - 7 3 263 18.9 - 669 5 47953	373 3549 1355.2 20.9 177 356 38.2 55 0 -19 409 358 1206.0 22.9 79 114 17.0 102 4 507 28.4 860 -19 48287	1083 1083 3599 1355.2 18.2 154 356 111.0 148 4 5 1232 1232 1232 358 1206.0 20.7 71 114 51.4	1562 1562 3549 1355.2 25.4 214 356 159.5 174 19 -14 1703 1703 305 1206.0 27.7 94 114 70.2 310 35 1978 32.2 3493 62 49854	1457 1457 3457 355.2 24.5 24.5 148.9 166 24 24 1601 358 1206.0 26.9 92 114 66.1 224 30.1 1794 30.1 6073 1634 252501	1651 1651 13552 26.8 226 356 168.4 86 39 -2 1691 1692 27.5 94 114 1782 29.0 3346 1055 16555 16555 16555 16555	25 1718 1718 175.2 27.9 236 356 175.2 103 102 175.2 103 102 175.2 175.2 103 102 175.2 175.2 103 102 175.2 175.2 103 102 175.2 175.2 103 102 175.2 175.2 175.2 103 102 175.2 175.2 175.2 103 102 175.2	1504 1648 -144 3405 1353.27.7 232 3550 167.0 77 -5 28.5 99 11722 28.5 99 1177 71.1 600 24 1732 29.1 1113 -228 375 9595	965 1600 -675 2770 1345.1 26.0 209 320 155.5 122 13 8 1716 397 1207.5 27.9 98 117 72.7 42 100 1748 28.4 1032 -93 3038	456 761 -305 2465 1340.4 256 194 258 69.9 50 5 50 5 50 5 1 4 4 803 803 803 803 803 7 1207.5 27.0 95 117 34.0 16 6 813 27.3 452 -142	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 25.6 0 23 375 375 375 27.0 95 117 15.9 7 3 380 27.3 211 -66 68 49502	186 209 -23 2297 1337.5 13.2 96 285 18.5 27 3 23 24 254 254 254 254 254 254 254	1067 701 366 2663 11343.5 11.4 86 313 63.7 77 100 3 4 776 777 1207.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	946 689 257 2920 11.2 88 330 65.4 79 1 0 767 767 397 1207.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658 697 -39 358 697 -39 358 1205.0 12.5 44 76 29.7 82 14 765 13.8 943 -108 84 9655
REG INFLOW RELEASE STOR CHANGE ELEV FIMSL DISCH KCFS POWER AVE POWER AVE POWER GAVINS POI NAT INFLOW RELEASE STOR CHANGE STOR CHANGE STOR CHANGE STOR CHANGE ELEV FIMSL DISCH KCFS GAVINS POI NAT INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS GAVINS POI NAT INFLOW DEFLETION REGULATED FL KAF KCFS TOTAL NAT INFLOW DEFLETION CHAN STOR EVAPORATION STORAGE ST	14716 14715 1 3124 1350.0 9-5 W 1463.1 NT 1450 112 -1 38 16015 16015 1206.0 12.5 W 670.2 SW 670.2 1550 263 0W AT SICO 17302 24601 2591 -17 1564 46538	523 231 3415 1353.65 351 23.3 92 0 3 328 328 1206.0 11.0 39 114 13.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 114 15.9 7 7 7 7 114 15.9 7 7 114 15.9 7 7 8 114 15.9 7 7 114 115.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	283 149 135 1355 10.8 91 355 15.3 43 0 -6 187 187 1206.0 13.5 1206.0 13.5 1206.0 13.5 47 114 7.9 - 7 3 263 18.9 669 0 5 47953 639 2025	373 373 3549 1355.2 20.9 1355.2 20.9 1355.2 20.9 1355.2 38.2 55 38.2 55 38.2 79 109 409 409 358 1206.0 22.9 79 114 177.0 28.4 860 -19 48287 7655	1083 1083 3552 18.2 154 356 111.0 148 45 1232 1232 1232 1232 1232 1232 1232 123	1562 1562 3549 1355.2 25.4 214 355.2 159.5 159.5 174 1703 358 1206.0 27.7 94 114 70.2 310 35 1978 32.2 3493 648 -62 49854 10705	1457 1457 1457 355.2 24.5 207 356 148.9 166 24 2 1601 1601 1601 1601 1206.9 92 114 66.1 224 31 1794 30.1 6073 1634 2 52501 1039	1651 1651 13552 26.8 226 356 158.4 86 39 -5 2 1691 1691 358 1206.0 27.5 94 114 69.7 129 38 1782 29.0 3346 1102 -5 52862 1145 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	25 1718 1718 175.2 27.9 236 356 175.2 103 10 -2 7 1802 178.2 178.2 371 1206.5 29.1 1206.5 29.1 1206.5 29.1 1206.5 29.1 1206.5 36 36 36 36 36 1849 30.1 1194 199 -2 304 51702 1187	1504 1648 -144 3405 1353 27.7 232 350 167.0 77 -5 28.5 397 1207.5 28.5 99 117 71.1 60 24 1732 29.1 1113 -228 27 379 50959 10866	965 1600 -635 2770 1345.1 26.0 209 300 155.5 1222 13 3 1716 1716 1716 1716 1716 1716 1716	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 5 1 4 803 803 397 1207.5 27.0 95 117 34.0 16 6 813 27.3 1452 -142 1 146 49673 833	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 31.6 23 25 375 375 27.0 95 117 15.9 7 380 27.3 380 27.3 211 -66 0 68 49502 824	186 209 -23 2297 1337.5 13.2 96 285 18.5 27 3 23 254 254 397 1207.5 16.0 57 117 10.9 9 3 259 16.3 241 -75 27 49506 634 634	1067 701 366 2663 1343.5 11.4 86 313 63.7 77 10 3 4 767 767 1207.5 12.5 12.5 12.5 12.6 651 -206 -41 168 49379 770	946 629 257 2920 11.2 88 330 65.4 79 1 0 767 767 1207.5 12.5 12.5 44 758 12.3 514 758 12.3 582 -198 -25 49376 793	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658 697 -39 358 1206.0 12.5 44 76 29.7 82 14 765 13.8 943 -103 8 49665 7300
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCPS POWER AVE POWER AVE POWER -GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCPS POWER AVE POWER M PEAK POW MW ENERGY GWH GAVINS POI NAT INFLOW DEFLETION REGULATED FL KAF KCFS TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWEN	14716 14715 13124 1350.0 9.5 W 1463.1 NT 1450 112 -1 38 16015 16015 1206.0 12.5 N 670.2 358 1206.0 12.5 N 670.2 253 W AT SIC 17302 24601 2591 -17 1564 46538 V 7950.1	523 232 231 3415 1353.6 7.8 65 351 23.3 92 0 3 328 328 328 328 328 1206.0 11.0 11.0 11.4 13.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	283 149 134 3549 13559 10.8 91 356 15.3 43 0 -6 187 187 358 1206.0 13.5 1206.0 13.5 47 114 7.9 - 79 3 263 18.9 669 0 5 47953 639 2202 107.4 15.3	373 373 3549 1355.2 20.9 177 356 38.2 55 0-19 409 409 358 1206.0 22.9 114 177.0 102 4 507 28.4 8600 0 -19 48287 765 2207 165.3 18.4	1083 1083 31983 1355.2 18.2 154 356 111.0 148 4 5 1232 1232 1232 1232 1232 1232 1232 12	1562 1562 3549 1355.2 25.4 214 355.5 155.5 174 179 -14 1703 1703 358 1206.0 27.7 94 114 70.2 3493 648 -62 49854 1070 2225 795.0 25.7	1457 1457 1457 355.2 24.5 207 356 148.9 166 24 2 1601 1601 358 1206.0 26.9 92 114 66.1 224 31 1794 30.1 1634 1673 1634 2257 748.4 24.9	1651 1651 13552 26.8 226 356 158.4 86 39 -5 2 1691 1691 358 1206.0 27.5 94 114 69.7 129 38 1782 29.0 3346 1102 -5 97 52862 1145 2259 852.2 27.5	25 1718 1718 175.2 27.9 236 356 175.2 103 10 -2 77.8 371 1206.5 29.1 1206.5 29.1 99 115 73.8 96 36 36 1849 30.1 1194 199 -2 304 451702 1187 2244 883.5	1504 1648 -144 3405 1353:27.7 232 350 167.0 77 -5 28.5 28.5 99 917 1207.5 28.5 99 117 71.1 60 24 1732 29.1 1113 -228 27, 379 50959 1086 2239 782:1 26.1	965 1600 -635 2770 1345.1 26.0 209 320 155.5 122 13 8 1716 1716 397 1207.5 27.9 9 9 117 72.7 42 10 1748 28.4 1032 -93 29 327 50038 857 2224 637.9 20.6	456 761 -305 2465 1340.4 25.6 194 298 69.9 50 5 14 803 803 397 1207.5 27.0 95 117 34.0 95 117 34.0 16 6 813 27.3 452 -142 1 146 49673 833 2202 299.8 20.0	211 356 -145 2320 1337.9 25.6 188 287 31.6 23 20 2 375 375 375 27.0 95 117 15.9 7 3 380 27.3 211 -66 0 68 49502 824 2190 138.4 19.8	186 209 -23 2297 1337.5 13.2 96 285 18.5 27 3 23 254 397 1207.5 16.0 57 117 10.9 9 3 259 16.3 241 -75 23 749506 634 218 8 52 634 218 52 13 15 15 15 16 15 15 15 15 15 15 15 15 15 15	1067 701 366 263 31343.5 11.4 86 313 63.7 77 10 3 4 767 767 767 1207.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	946 689 257 2920 11.2 88 330 65.4 79 1 0 767 767 397 1207.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	732 528 204 3124 1350.0 9.5 77 339 51.6 127 3 658 697 358 697 358 697 358 29.7 44 765 13.8 943 -103 8 49665 730 2193 490.7 7.5

DATE OF STUDY 12/11/07

TIME OF STUDY 10:25:50

2007-2008 AOP EXTENSIONS, MEDIAN RUNOFF SIMULAT 99001 9901 4 PAGE 1 SHT NV 0, SP MR 5 MY 15.14, FTPK +4.2 GARR -3.0 STUDY NO 11

285	EB11 INI-SUM	15MAR	2013 22MAR	L 31MAR	30APR	31MAY	NUT02 3	31JUL	31AUG	S INDIC	ATED 310CT	15NOV	22NOV	20 30NOV	12 31DEC	31JAN	29FEB
FORT PECH	(7400	264	102	1 5 9	628	1210	1951	820	304	210		100		100			
DEPLETION EVAPORATION	455 455 1 436	-23	-11	-14	49	339	593	245 245 26	-46	-147 -147 104	-79	188 -40 41	-19 19	-21	-129 48	-141	349 -101
MOD INFLOW RELEASE	6509 5154	287 179	134	172 89	579 357	871 492	1258	558 492	287 492	362 392	386 307	186 149	87 69	99 87	391 492	402 523	450 489
STORAGE ELEV FTMSL	12868	12977 2223.8	13042 2224.1	83 13125 2224.6	13347 2225.8	13726 2227-7	14508	66 14574 2232.0	-205 14368 2231.0	-30 14338 2230.8	78 14417 2231-2	37 14454 2231 4	17 14471 2231 5	12 14483 2231 5	-101 14382 2231 0	-121 14262 2230 5	-39 14223 2230 3
DISCH KCFS POWER	9.5	6.0	5.0	5.0	6.0	8.0	8.0	8.0	8.0	6.6	5.0	5.0	5.0	5.5	8.0	8.5	8.5
AVE POWER M PEAK POW MW ENERCY CWH	IN 1 839 0	79 154 28 5	66	66 155	80 156	107 158	108	108	108	89 160	68 160	68 160	68 160	75	108	115	115 159
GARRISON		20.9		14.1	27.2	/9.5	//.5	00.0	80.9	04.1	50-3	24.4	11.4	14.3	80.5	85.3	79.7
NAT INFLOW DEPLETION	11001 1042	469	219	282 -5	853	1423 178	2958 848	2066 616	581 82	497 -137	454 -18	192 -118	89 -55	102 -63	253 -114	237 -90	326 -62
EVAPORATION REG INFLOW	478 14646	693	303	376	1207	-20	2586	29 1912	93 898	14 115 925	16 100 696	45	21	-5 24 224	-25	-5	977
RELEASE STOR CHANGE	14830 -184	446 247	208 94	268 108	893 314	1537 179	1428 1158	1445 467	1445 -547	1199 -275	1045 -349	506 -92	236 -43	270 -46	1107 -324	1445 -600	1352 -475
STORAGE ELEV FTMSL DISCH KORS	15518 1828.6 22.5	15765	15859 1829.8	15967	16281	16461	17619	18086	17539	17264	16915	16822	16780	16733 1832.9	16409 1831.7	15809 1829.6	15334 1827.9
POWER AVE POWER M	22.J W	177	178	178	179	298	291	23.5	23.5	20.2	207	206	206	206	217	23.5	23.5
PEAK POW MW ENERGY GWH	2163.3	439 63.7	440 29.9	441 38.5	445 128.9	448 221.9	462 209.3	468 215.6	461 215.4	458 177.6	453 154.0	452 74.2	452 34.6	451 39.5	447 161.1	439 207.5	433 191.7
OAHE NAT INFLOW	2300	317	148	190	364	236	689	162	33	118	14	5	2	3	-20		40
DEPLETION CHAN STOR	680 -4	24 33	11	14 0	49 0	71 -43	145 4	173 2	115	28 14	-10 14	i	ō	ī	12 -4	18 -24	28
REG INFLOW RELEASE	15998 15313	772 402	345 244	443 334	1208 1077	1660 1599	1976 1426	28 1408 1756	88 1275 1869	108 1196 1668	93 990 1157	42 468 546	19 219 252	22 250 211	48 1022 1082	1403	1364
STOR CHANGE	685 16176	370 16546	101 16647	110 16757	130 16887	61 16948	550 17498	-349 17150	-594 16556	-473 16083	-167 15916	-78 15838	-34 15804	38 15843	-59	454 16237	624 16861
DISCH KCFS POWER	1598.4	13.5	1600.1	1600.5	1600.9	1601.2 26.0	1603.1 24.0	1601.9 28.6	1599.8 30.4	1598.1 28.0	1597.4 18.8	1597.2 18.4	1597.0 18.2	1597.2 13.3	1597.0 17.6	1598.6 15.4	1600.9 12.9
AVE POWER M PEAK POW MW	W	167 667	218 669	232 671	226 673	324 674	300 685	358 678	377 667	345 658	231 655	224 654	222 653	163 654	215 653	189 661	160 673
ENERGY GWH	2294.2	60.1	36.6	50.2	162.4	240.8	216.2	266.4	280.7	248.1	171.6	80.8	37.3	31.3	159.8	140.8	111.2
EVAPORATION REG INFLOW	103 15210	402	244	334	1077	1599	1426	6 1750	20 1849	25 1644	22 1136	10 537	5 24 8	206	11 1070	949	740
RELEASE	15210 1621	402 1621	244 1621	334 1621	1077 1621	1599 1621	1426 1621	1750 1621	1849 1621	1644 1621	1136 1621	537 1621	248 1621	206 1621	1070 1621	949 1621	740 1621
DISCH KCFS POWER	1420.0	1420.0	1420.0	1420.0 18.7	1420.0	1420.0 26.0	1420.0 24.0	1420.0 28.5	1420.0 30.1	1420.0 27.6	1420.0 18.5	1420.0 18.0	1420.0 17.8	1420.0 13.0	1420.0 17.4	1420.0 15.4	1420.0 12.9
AVE POWER M PEAK POW MW	Ň	64 517	82 509	88 509	85 509	122 509	112 509	133 509	141 509	131 517	91 538	91 538	90 538	66 538	86 538	75 538	62 529
ENERGY GWH	876.8 Ub	23.1	13.8	18.9	61.0	90.6	80.8	99.1	104.7	94.3	67.4	32.6	15.1	12.6	64.0	55.9	43.0
NAT INFLOW DEPLETION	900 79	122 1	57 1	73 1	115 3	140 9	185 12	74 18	57 15	42 7	2 1	2 1	1	1	10	3	19
EVAPORATION REG INFLOW	118 15914 15914	523	300	406	1189	1730	1599	8 1798	25 1866	31 1647	25 1112	10 528	4 244	4 202	10 1067	946	756
STOR CHANGE	3124	291 3415	134 3549	3549	3549	1730 0 3549	1599 0 3549	1798 0 3549	1866 0 3549	1791 -144 3405	1747 -635 2770	833 -305 2465	389 -145 2320	225 -23 2297	701 366 2663	689 257 2920	552 204
ELEV FTMSL DISCH KCFS	1350.0 9.5	1353.6 7.8	1355.2 12.0	1355.2 22.8	1355.2 20.0	1355.2 28.1	1355.2 26.9	1355.2 29.2	1355.2 30.3	1353.5 30.1	1345.1 28.4	1340.4 28.0	1337.9 28.0	1337.5 14.2	1343.5 11.4	1347.2 11.2	1350.0 9.6
AVE POWER MI PEAK POW MW	9	65 351	101 356	192 356	169 356	237 356	227	246	255	252	228	212	205	104	86	88	78
ÉNERGY GWH	1581.2	23.3	17.0	41.5	121.9	176.4	163.2	183.2	190.0	181.2	169.6	76.3	34.5	19.9	63.7	65.4	54.0
DEPLETION	1450 112	92	43	55	148	174	166	86	103	77	122	so	23	27	77	79	127
CHAN STOR EVAPORATION	-2 38	3	- 8	-21	5	-16	2	-5	-2	-5 0 9	3	5 1 4	0 2	26 2	10 5 4	0 0	3
REG INFLOW RELEASE STOR CHANCE	17212 17212	328 328	201 201	441 441	1339 1339	1869 1869	1744 1744	1839 1839	1950 1937	1865 1839	1863 1863	875 875	408 408	273 273	769 769	767 767	682 721
STORAGE ELEV FTMSL	358 1206.0	358 1206.0	358 1206.0	358 L206.0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	371 1206.5	25 397 1207.5	397 1207.5	397 1207.5	397 1207.5	397 1207.5	397	397	-39 358 1206 0
DISCH KCFS POWER	12.5	11.0	14.5	24.7	22.5	30.4	29.3	29.9	31.5	30.9	30.3	29.4	29.4	17.2	12.5	12.5	12.5
PEAK POWER MW ENERGY GWH	712.0	114 13.9	114 8.5	114 18.3	114 55.7	102 114 75.8	99 114 71.4	101 114 74.9	105 115 78.0	105 117 75.5	104 117 77 6	102 117 36 8	102 117 17 2	61 117 11 7	44 78	44 78	44 76
GAVINS POIN	T - SIOU	X CITY-							,			20.0	17.2		22.1	33.0	30.0
DEPLETION REGULATED FLC	263 W AT SIO	159 7 UX CITY	. 3	102	199 22	310 35	224 31	129 38	96 36	60 24	42 10	16 6	7 3	9' 3	21 13	5 14	82 14
kaf KCFS	18499	491 16.5	277 20.0	539 30.2	1516 25.5	2144 34.9	1937 32.5	1930 31.4	1997 32.5	1875 31.5	1895 30.8	885 29.7	413 29.7	278 17.5	777 12.6	758 12.3	789 13.7
TOTAL NAT INFLOW	24601	1435	669	860	2307	3493	6073	3346	1194	1112	1022	450	211	741	657	E 0 0	040
DEPLETION CHAN STOR	2631 5	0	0	0 -21	120	651	1653 7	1129 -2	212	-230	-95 33	-145 1	-68	-77 21	-205	-195 -29	-118 -1
STORAGE SYSTEM POWRR	1621 49665	50681	51076	51377	52043	52663	55153	101 55337	316 54004	393 53109	338 52036	151 51597	70 51393	80 51374	173 51256	51245	51520
AVE POWER MW PEAK POW MW		591 2242	695 2243	841 2247	816 2254	1189 2259	1137 2287	1236 2286	1276 2269	1168 2261	928 2244	903 2220	893 2207	673 2205	756 2189	790 2206	733
ENERGY GWH DAILY GWH	8466.5	212.7 14.2	116.8 16.7	181.7 20.2	587.2 19.6	884.7 28.5	818.4 27.3	919.8 29.7	949.3 30.6	840.7 28.0	690.6 22.3	325.0 21.7	150.0 21.4	129.2 16.2	562.1 18.1	587.9 19.0	510.4 17.6
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB

DATE OF STUI	Y 12/11/	07				2007-	2008 AO	P EXTEN	SIONS, 1	MEDIAN I	RUNOFF	SIMULAT	99001	9901	4 P	AGE	1
TIME OF STUE	Y 10:25:	50				SHT N VALUE	V 0, SP S IN 10	MR 5 M 00 AF E	Y 15.79 XCEPT A	, GARR -	+3.0 Oal ATED	he -3.0			STUDY	NÔ	12
285	EB12 INI-SUM	15MAR	2013 22MAR	2 31MAR	30APR	31MAY	3 Û JUN	31,502	31AUG	30SEP	310CT	15NOV	22NOV	20: 30NOV	13 31DEC	31JAN	28FEB
FORT PECS NAT INFLOW DEPLETION EVAPORATION	7400 465 445	264 -23	123 -11	158 -14	628 48	1210 340	1851 597	829 252 28	324 ~42 86	319 -148 107	398 -83 93	188 -42 42	88 -19 19	100 -22 22	310 -132 47	261 -144	349 -92
MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	6490 7060 -569 14223 2230.3 8.5	287 179 109 14332 2230.8 6.0	134 83 51 14383 2231.0 6.0	172 107 65 14448 2231.4 6.0	580 357 223 14671 2232.4 6.0	870 553 317 14987 2234.0 9.0	1254 762 492 15480 2236.3 12.8	549 676 -127 15353 2235.7 11.0	280 676 -397 14956 2233.8 11.0	360 597 -238 14718 2232.7	388 553 -165 14553 2231.9 9.0	187 268 -80 14472 2231.5 9.0	87 125 -37 14435 2231.3 9.0	100 159 -59 14376 2231.0	395 676 -282 14095 2229.6 11.0	405 676 -271 13823 2228.2	441 611 -170 13653 2227.4
Power Ave Power M Peak Pow MW Energy GWH	W 1139.3	81 160 29.2	81 160 13.6	81 160 17.5	81 161 58.6	122 162 91.0	163 164 117.3	149 163 110.6	148 162 110.1	136 161 98.0	122 161 90.7	122 160 43.8	122 160 20.4	135 160 25.9	145 159 108.2	145 158 107.6	144 157 96.8
GARRISON NAT INFLOW DEPLETION CHAN STOR	 11001 1062 -26	469 -8 26	219 -4	282 ~5	853 -6	1423 179 -31	2958 859 -39	2066 633 18	581 87	497 -140 9	454 -24 10	192 -122	89 - 57	102 -65 -10	253 -117 -10	237 -92	326 -57 0
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	501 16472 14421 2051 15334 1827.9 23.5	682 417 266 15599 1828.9 14.0	306 194 112 15711 1829.3 14.0	394 250 144 15855 1829.8 14.0	1216 952 264 16119 1830.7 16.0	1767 1660 107 16225 1831.1 27.0	2822 1309 1513 17738 1836.3 22.0	30 2097 1322 775 18513 1838.8 21.5	96 1074 1322 -248 18266 1838.0 21-5	120 1123 1140 -16 18250 1838.0	105 937 1045 -109 18141 1837.6 17.0	47 533 506 28 18168 1837.7 17.0	22 249 236 13 18181 1837.7 17.0	25 290 270 18202 1837.8	55 982 1107 -125 18077 1837.4 18 0	1005 1414 -409 17668 1836.0 23.0	994 1277 -283 17384 1835.1 23.0
POWER AVE POWER M PEAK POW MW ENERGY GWH	W 2137.0	165 436 59.3	165 438 27.8	166 440 35.8	190 443 136.9	320 445 238.3	266 464 191.8	267 473 198.5	268 470 199.6	239 470 171.8	212 469 157.6	212 469 76.2	212 469 35.6	212 469 40.7	224 468 166.6	284 463 211.2	282 459 189.3
OAHE NAT INFLOW DEPLETION CHAN STOR	2300 696 2	317 24 40	148 11	190 15	364 50 -8	236 72 -46	689 148 21	162 179 2	33 119	118 29 10	14 -11 9	5 1 0	2 0	3 1	-20 13 -4	18 -22	40 28
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	444 15582 16097 -514 16861 1600.9 12.9	749 402 347 17208 1602.1 13.5	331 265 66 17274 1602.3 19.1	425 372 53 17327 1602.5 20.9	1258 1202 56 17382 1602.7 20.2	1778 1677 101 17483 1603.0 27.3	1871 1503 367 17851 1604.3 25.3	29 1279 1836 -557 17294 1602.4 29.9	88 1148 1949 -801 16493 1599.5 31.7	107 1131 1746 -614 15879 1597.3 29.3	92 988 1237 -249 15630 1596.4 20.1	41 469 585 -116 15513 1595.9 19.7	19 219 270 -51 15462 1595.7 19.5	22 250 234 16 15478 1595.8 14.7	47 1022 1106 -84 15394 1595.5 18.0	1374 973 400 15795 1597.0 15.8	1289 738 552 16346 1599.0 13.3
Power Ave Power M Peak Pow MW Energy GWH	W 2414.1	169 679 61.0	239 680 40.2	262 681 56.6	254 682 182.9	343 684 255.0	319 691 229.7	376 681 279.7	393 666 292.7	359 655 258.8	245 650 182.4	239 648 85.9	236 647 39.6	179 647 34.3	218 646 162.1	192 653 143.2	163 663 109.8
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCES	 103 15994 15994 1621 1420.0	402 402 1621 1420.0	265 265 1621 1420.0	372 372 1621 1420.0	1202 1202 1621 1420.0	1677 1677 1621 1420.0	1503 1503 1621 1420.0	6 1830 1830 1621 1420.0	20 1929 1929 1621 1420.0	25 1721 1721 1621 1420.0	22 1216 1216 1621 1420.0	10 575 575 1621 1420.0	5 266 266 1621 1420.0	5 229 229 1621 1420.0	11 1095 1095 1621 1420.0	973 973 1621 1420.0	738 738 1621 1420.0
POWER AVE POWER M PEAK POW MW ENERGY GWH	921.8	64 517 23.1	89 509 15.0	98 509 21.1	95 509 68.1	128 509 95.0	118 509 85.2	139 509 103.6	147 509 109.2	137 517 98.7	97 538 72.1	97 538 34.9	96 538 16.2	73 538 13.9	88 538 65.5	13-0 77 538 57.4	13-3 64 529 42.9
FORT RANDA NAT INFLOW DEPLETION EVAPORATION	LL 900 79 118	122 1	57 1	73 1	115 3	140 9	185 12	74 18 8	57 15 25	42 7 31	2 1 25	2 1 10	1 0 4	1 1 4	10 3 10	3	19 3
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	16698 16698 0 3124 1350.0 9.6	523 232 291 3415 1353.6 7.8	321 187 134 3549 1355.2 13.5	445 445 3549 1355.2 24.9	1314 1314 3549 1355.2 22.1	1808 1808 3549 1355.2 29.4	1676 1676 3549 1355.2 28.2	1878 1878 0 3549 1355.2 30.5	1946 1946 0 3549 1355.2 31.6	1725 1869 -144 3405 1353.5 31.4	1192 1827 -635 2770 1345.1 29.7	566 871 -305 2465 1340.4 29.3	262 407 -145 2320 1337.9 29.3	225 248 -23 2297 1337.5 15.6	1092 726 366 2663 1343.5 11.8	970 713 257 2920 1347.2 11.6	754 550 204 3124 1350.0 9.9
AVE POWER M PEAK POW MW ENERGY GWH	W 1658.1	65 351 23.3	114 356 19.1	210 356 45.5	187 356 134.5	248 356 184.2	237 356 170.9	257 356 191.2	266 356 198.0	262 350 188.9	238 320 177.2	222 298 79.8	215 287 36.1	114 285 21.9	89 313 65.9	91 330 67.7	80 339 53.7
GAVINS POID NAT INFLOW DEPLETION CHAN STOR EVAPORATION	NT 1450 112 -2 38	92 0 3	43 0 -11	55 0 -22	148 4 5	174 19 -14	166 24 2	86 39 -5 2	103 10 -2 7	77 -5 0 9	122 1 3 8	50 5 1 4	23 2 0 2	27 3 25 2	77 10 7 4	79 1 0	127 3 [.]
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL	17996 17996 358 1206.0	328 328 358 1206,0	220 220 358	479 479 358	1464 1464 358	1949 1949 358	1821 1821 358	1918 1918 358	2030 2017 13 371	1942 1916 26 397	1943 1943 397	913 913 397	426 426 397	295 295 397	795 795 397	792 792 397	680 719 -39 358
DISCH KCFS POWER AVE POWER MI PEAK POW MW	12.5	11.0 39 114	15.8 55 114	25.8 91 114	24.6 84 114	31.7 105 114	30.6 102 114	31.2 104 114	32.8 108 115	32.2 108 117	107 107 117	30.7 105 117	1207.5 30.7 105 117	18.6 66 117	12.07.5 12.9 46 78	12.9 12.9 46 78	12.08.0 12.9 46 76
ENERGY GWH	737.2 TT - SIOU	13.9 IX CITY-	9.2	19.8	60.6	78.0	73.7	77.1	80.2	77.7	79.9	37.9	17.7	12.6	34.2	34.0	30.7
NAT INFLOW DEPLETION REGULATED FLO	1550 268 W AT SIC	169 7 UX CITY	79 3	102 4	199 22	310 36	224 31	129 39	96 37	60 24	42 11	16 6	7 3	9 3	21 13	5 14	82 15
kaf KCFS	19278	491 16.5	296 21.3	576 32.3	1641 27.6	2223 36.2	2014 33.8	2008 32.7	2076 33.8	1952 32.8	1974 32.1	923 31.0	431 31.0	301 18.9	803 13.1	783 12.7	786 14.2
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION	24601 2682 -26 1649	1435 0 70	669 0 -11	860 0 -22	2307 121 -3	3493 655 -91	6073 1671 -16	3346 1159 15 102	1194 226 -2 322	1113 -233 20 400	1032 -105 23 344	452 -150 1 153	211 -70 0 71	241 -80 16 81	651 -210 -7 175	582 -200 -22	943 -103 3
STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH	51520 1 9007.6	52533 583 2258 209.7	52895 744 2258 125.0	53157 909 2261 196.3	53700 891 2266 641.7	54224 1266 2271 941.6	56596 1207 2298 868.7	56688 1291 2297 960.8	55256 1330 2278 989.9	54269 1241 2270 893.8	53111 1021 2254 760.0	52637 996 2230 358.6	52416 986 2218 165.6	52371 778 2217 149.3	52247 810 2201 602.5	52224 835 2220 621.1	52487 778 2224 523.1
DAILY GWH	INI-SUM	14.0 15MAR	17.9 22MAR	21.8 31MAR	21.4 30APR	30.4 31MAY	29.0 30JUN	31.0 31JUL	31.9 31AUG	29.8 30SEP	24.5 310CT	23.9 15NOV	23.7 22NOV	18.7 30NOV	19.4 31DEC	20.0 31JAN	18.7 28FEB

•
TI

TIME OF STU	DY 10:25:	50				SHT N VALUE	V 0, SP S IN 10	MR 5 M 00 AF E	Y 16.00 XCEPT A	, FTPK S INDIC	-4.2 OA ATED	HE +3.0			STUDY	NO	13
28	FEB13 INI-SUM	15MAR	201. 22MAR	3 31MAR	30APR	31MAY	30 <i>J</i> UN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20: 30NOV	14 31DEC	31JAN	28FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATIO MOD INFLOW RELEASE STOR CHANG	K 7400 476 N 422 6502 7137 E -635	264 -24 288 179 109	123 -11 134 83 51	158 -14 173 107 66	628 48 580 357 223	1210 341 869 461 408	1851 601 1250 1083 167	829 259 27 543 676 -133	324 -37 82 279 676 -398	319 -148 102 365 567 -201	398 -85 88 395 492 -97	188 -42 39 190 238 -48	88 -20 18 89 111 -22	100 -22 21 101 143 -41	310 -133 45 398 676 -278	261 -145 406 676 -270	349 -92 441 611 -170
STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER	13653 2227.4 11.0	13763 2227.9 6.0 80	13814 2228.2 6.0 80	13879 2228.5 6.0 80	14102 2229.7 6.0 81	14510 2231.7 7.5 101	14677 2232.5 18.2 160	14544 2231.8 11.0 146	14147 2229.9 11.0 146	13945 2228.9 9.5 128	13849 2228.4 8.0	13801 2228.1 8.0	13778 2228.0 8.0	13737 2227.8 9.0	13459 2226.4 11.0	13188 2224.9 11.0	13018 2224.0 11.0
PEAK POW M ENERGY GWH GARRISO	W 1085.8 N	158 28.9	158 13.5	158 17.4	159 58.1	161 75.3	161 115.4	161 109.0	159 108.4	158 92.1	158 79.8	158 38.6	158 18.0	158 23.1	157 106.8	155 106.2	154 95.4
NAT INFLOW DEPLETION CHAN STOR EVAPORATION	11001 1075 -1 N 512	469 -8 50	219 -4	282 -5	853 -6	1423 179 -15	2958 868 -106	2066 649 70 32	581 92 101	497 -143 14 124	454 -28 15 106	192 -126 47	89 -59 22	102 -67 -10 25	253 -119 -20 54	237 -92	326 -58 0
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	16550 17344 E -794 17384 1835.1 23.0	706 476 230 17614 1835.9 16.0	306 222 84 17698 1836.1 16.0	393 286 108 17806 1836.5 16.0	1216 1101 115 17921 1836.9 18.5	1690 1722 -31 17889 1836.8 28.0	3067 1666 1400 19290 1841.2 28.0	2132 1722 410 19700 1842.5 28.0	1064 1722 -657 19042 1840.5 28.0	1097 1500 -403 18639 1839.2 25.2	883 1353 -470 18169 1837.7 22.0	508 655 -147 18022 1837.2 22.0	237 305 -68 17954 1837.0 22.0	277 349 -72 17882 1836.8 22.0	975 1230 -255 17627 1835.9 20.0	1005 1537 -532 17095 1834.1 25.0	995 1500 -505 16590 1832.4 27.0
AVE POWER I PEAK POW MI ENERGY GWH	₩W ₩ 2603.8	197 462 70.8	197 463 33.2	198 464 42.7	229 466 164.7	345 466 256.6	350 482 251.7	354 491 263.5	354 479 263.4	317 474 228.0	275 469 204.3	273 467 98.2	272 466 45.7	272 465 52.2	247 462 183.4	305 456 226.8	325 449 218.6
OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATION	- 2300 708 -16 N 469	317 24 30	148 11	190 15	364 50 -11	236 73 -40	689 151	162 182 29	33 122 90	118 29 12 112	14 -11 14 98	5 1 44	2 0 0 21	3 1 0 24	-20 13 8 51	18 -21	40 29 -8
REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER	18451 16544 3 1907 16346 1599.0 13.3	799 402 397 16743 1600.4 13.5	359 276 82 16825 1600.7 19.9	461 391 70 16895 1601.0 21.9	1404 1262 143 17038 1601.5 21.2	1844 1701 144 17182 1602.0 27.7	2204 1527 677 17859 1604.3 25.7	1673 1861 -188 17671 1603.7 30.3	1542 1973 -431 17240 1602.2 32.1	1488 1770 -281 16958 1601.2 29.7	1294 1262 32 16990 1601.3 20.5	614 597 17 17007 1601.4 20.1	287 276 11 17018 1601.4 19.9	328 233 95 17113 1601.7 14.7	1154 1174 -20 17093 1601.7 19.1	1498 1041 457 17550 1603.2 16.9	1502 799 703 18253 1605.6 14.4
AVE POWER N PEAK POW MU ENERGY GWH	nw ¥ 2509.5	168 671 60.4	248 672 41.6	273 673 58.9	265 676 190.5	345 679 256.9	323 691 232.7	382 688 284.4	403 680 299.6	371 675 267.1	256 675 190.6	251 675 90.2	248 676 41.7	184 677 35.3	239 677 177.9	213 685 158.5	183 698 123.1
BIG BENI EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS DOWER	16441 16441 16441 1621 1420.0 13.3	402 402 1621 1420.0 13.5	276 276 1621 1420.0 19.9	391 391 1621 1420.0 21.9	1262 1262 1621 1420.0 21.2	1701 1701 1621 1420.0 27.7	1527 1527 1621 1420.0 25.7	6 1855 1855 1621 1420.0 30.2	20 1954 1954 1621 1420.0 31.8	25 1745 1745 1621 1420.0 29.3	22 1240 1240 1621 1420.0 20.2	10 587 587 1621 1420.0 19.7	5 271 1621 1420.0 19.5	5 228 228 1621 1420.0 14.3	11 1163 1163 1621 1420.0 18.9	1041 1041 1621 1420.0 16.9	799 799 1621 1420.0 14.4
AVE POWER N PEAK POW MY ENERGY GWH	₩ I 947.6	64 517 23.1	93 509 15.7	102 509 22.1	99 509 71.5	129 509 96.3	120 509 86.5	141 509 105.0	149 509 110.6	139 517 100.0	99 538 73.6	99 538 35.6	98 538 16.5	72 538 13.9	93 538 69.5	82 538 61.3	69 529 46.4
FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	ALL 900 79 118 17145 17145 0 3124 1350.0	122 1 523 232 291 3415 1353.6	57 1 333 199 134 3549 1355.2	73 1 463 463 3549 1355.2	115 3 1374 1374 3549 1355.2	140 9 1832 1832 3549 1355.2	185 12 1700 1700 3549 1355.2	74 18 8 1903 1903 0 3549 1355.2	57 15 25 1970 1970 0 3549 1355.2	42 7 31 1748 1892 -144 3405 1353.5	2 1 25 1217 1852 -635 2770 1345.1	2 10 578 883 -305 2465 1340.4	1 0 268 413 ~145 2320 1337.9	1 4 224 247 -23 2297 1337.5	10 3 10 1159 793 366 2663 1343.5	3 1038 781 257 2920 1347.2	19 3 611 204 3124 1350.0
POWER AVE POWER M PEAK POW MW ENERGY GWH	₩ 1701.3	65 351 23.3	14.3 121 356 20.3	26.0 219 356 47.3	23.1 195 356 140.5	29.8 251 356 186.6	28.6 241 356 173.3	30.9 260 356 193.7	269 356 200.5	266 350 191.2	30.1 241 320 179.5	29.7 225 298 80.9	29.7 218 287 36.6	15.6 114 285 21.8	12.9 97 313 72.0	12.7 100 330 74.1	11.0 89 339 59.7
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE	NT 1450 112 -3 38 18441 18441	92 0 4 329 329	43 0 -12 230 230	55 0 -22 497 497	148 4 6 1523 1523	174 19 -13 1974 1974	166 24 2 1845 1845	86 39 -5 2 1943 1943	103 10 -2 7 2054 2041	77 -5 0 1966 1940	122 1 3 1968 1968	50 5 1 925 925	23 2 0 2 432 432	27 3 26 295 295	77 10 5 4 861 861	79 1 0 859	127 3 741 780
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	358 1206.0 12.9	358 1206.0 11.1	358 1206.0 16.5	358 1206.0 27.8	358 1206.0 25.6	358 1206.0 32.1	358 1206.0 31.0	358 1206.0 31.6	13 371 1206.5 33.2	26 397 1207.5 32.6	397 1207.5 32.0	397 1207.5 31.1	397 1207.5 31.1	397 1207.5 18.6	397 1207.5 14.0	397 1207.5 14.0	-39 358 1206.0 14.0
AVE POWER M PEAK POW MW ENERGY GWH	W 753.4	39 114 14.0	57 114 9.7	95 114 20.5	87 114 63.0	106 114 78.7	103 114 74.3	105 114 77.8	109 115 80.8	109 117 78.3	108 117 80.6	106 117 38.2	106 117 17.8	66 117 12.6	50 78 37.0	50 78 36.9	49 76 33.2
GAVINS POI NAT INFLOW DEPLETION REGULATED FL	NT - SIOU 1550 269 OW AT SIO	X CITY- 169 7 UX CITY	79 3	102 4	199 23	310 36	224 31	129 39	96 37	60 24	42 11	16 6	7 3	9 3	21 13	5 14	82 15
KAF KCFS	19722	492 16.5	305 22.0	594 33.3	1699 28.6	2248 36.6	2038 34.2	2033 33.1	2100 34.2	1976 33.2	1999 32.5	935 31.4	436 31.4	301 18.9	869 14.1	850 13.8	847 15.3
NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWE	24601 2719 -21 1661 52487 R	1435 0 85 53514	669 0 -12 53865	860 0 -22 54108	2307 122 -5 54589	3493 657 -68 55109	6073 1687 -104 57354	3346 1186 66 104 57442	1194 239 -2 325 55969	1113 -236 27 404 54966	1032 -111 32 346 53796	452 -155 1 154 53313	211 -72 0 71 53088	241 -82 17 81 53047	651 -213 -7 176 52859	-201 -21 52771	943 -103 -5 52965
AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH	9601.4	612 2273 220.5 14.7	797 2273 133.9 19.1	967 2276 208.9 23.2	956 2280 688.2 22.9	1277 2284 950.4 30.7	1297 2313 933.9 31.1	1389 2319 1033.5 33.3	1429 2298 1063.4 34.3	1329 2292 956.7 31.9	1087 2277 808.4 26.1	1060 2254 381.8 25.5	1050 2242 176.4 25.2	828 2241 158.9 19.9	869 2225 646.5 20.9	892 2242 663.8 21.4	858 2246 576.3 20.6
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	3 NULO E	31.JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	28FEB

DATE OF STU	DY 12/11/	07		20	07-2008	AOP EX	TENSION	S, LOWE	R QUART	ILE RUN	OFF SIM	ULATION	99001	9901	9901 P	AGE	1
TIME OF STU	DY 15:36:	21		ŝh	TN NAV	SEAS 40	DAYS,	SP MAR	O MAY O	S INDIC	ልሞፑስ				STUDY	NO	14
2	8FEB09 INI-SUM	I 15MAR	2009 22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	10 31DEC	31JAN	28FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATIO	K 6556 578 N 415	-264 3	123 1	158 2	574 84	1011 317	1589 582	692 218	287 -43 79	275 -141	354 -70	183 -33	85 -15	98 -17 21	322 -108	231 -122	309 -80
MOD INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS	5563 5089 E 473 8782 2198.6 8.5	261 149 113 8894 2199.3 5.0	122 69 52 8947 2199.7 5.0	157 89 67 9014 2200.1 5.0	490 357 133 9147 2201.0 6.0	694 492 202 9349 2202.3 8.0	1007 476 531 9880 2205.8 8.0	449 492 -43 9837 2205.5 8.0	251 492 -241 9596 2203.9 8.0	317 382 -65 9531 2203.5 6.4	337 307 307 9561 2203.7 5.0	176 149 27 9588 2203.9 5.0	82 69 13 9601 2204.0 5.0	94 79 15 9615 2204.1 5.0	384 492 -107 9508 2203.4 8.0	353 523 -170 9338 2202.3 8.5	389 472 -83 9255 2201.7 8.5
POWER AVE POWER PEAK POW M ENERGY GWH	MW W 735.6	59 127 21.1	59 127 9.9	59 128 12.7	71 129 51.0	95 130 70.5	96 134 69.1	97 134 72.0	96 132 71.6	77 132 55.4	60 132 44.7	60 132 21.6	60 132 10.1	60 132 11.5	96 132 71.3	101 130 75.3	101 130 67.8
GARRISO NAT INFLOW DEPLETION CHAN STOR	N 10069 1069 0	475 16 39	221 8	285 10	763 34 -11	1282 153 -22	2701 784	1891 588	532 87	446 -125 17	428 -7 15	175 -108	82 -50	93 - 58 0	238 -114 -33	177 -89 -5	280 -60
EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS	N 489 13601 13025 E 575 10545 1808.3 21.0	646 387 260 10804 1809.5 13.0	283 180 103 10907 1809.9 13.0	364 232 132 11039 1810.5 13.0	1075 1071 4 11043 1810.5 18.0	1599 1476 123 11166 1811.1 24.0	2393 1220 1173 12339 1816.2 20.5	30 1765 1230 535 12874 1818.4 20.0	94 843 1230 -387 12487 1816.8 20.0	118 852 982 -130 12357 1816.2 16.5	102 655 799 -144 12213 1815.6 13.0	46 386 387 -1 12212 1815.6 13.0	22 180 -1 12211 1815.6 13.0	25 206 206 -1 12211 1815.6 13.0	53 758 1045 -287 11924 1814.4 17.0	783 1261 -477 11447 1812.3 20.5	812 1139 -326 11120 1810.9 20.5
FOWER AVE POWER PEAK POW M ENERGY GWH	MW W 1671.9	133 366 48.0	134 367 22.5	135 369 29.1	186 370 134.1	248 372 184.4	217 390 156.1	217 398 161.6	218 392 161.9	179 390 128.7	141 388 104.5	140 388 50.5	140 388 23.6	140 388 26.9	182 384 135-4	216 376 161.0	214 371 143.5
OAHE- NAT INFLOW DEPLETION CHAN STOR	- 1761 652 3	187 23 43	87 11	112 14	278 48 -26	158 69 -32	701 138 18	124 164 3	29 109	79 27 19	11 -9 19	1	0	1	-42 12 -21	-7 17 -19	44 27
EVAPORATIO REG INFID RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS	N 415 13722 13133 E 589 11079 1577.0 16.4	593 411 182 11260 1577.8 13.8	257 250 7 11267 1577.9 18.0	330 352 -21 11246 1577.8 19.7	1275 1209 66 11312 1578.1 20.3	1533 1431 102 11414 1578.6 23.3	1801 1385 416 11830 1580.5 23.3	26 1166 1701 -534 11295 1578.0 27.7	79 1071 1491 -420 10875 1575.9 24.2	99 954 848 106 10982 1576.5 14.3	87 751 774 -23 10959 1576.4 12.6	39 346 233 113 11072 1576.9 7.8	18 162 118 43 11115 1577.1 8.5	21 185 134 51 11166 1577.4 8.4	46 924 890 34 11201 1577.5 14.5	1218 1004 214 11415 1578.6 16.3	1156 902 253 11668 1579.8 16.2
POWER AVE POWER I PEAK POW MI ENERGY GWH	ศพ ฟ 1735.7	151 555 54.3	196 555 33.0	215 555 46.4	222 556 159.7	254 559 189.2	256 570 184.6	304 556 225.8	263 545 195.4	154 548 111.1	137 547 101.6	85 550 30.7	93 551 15.6	92 553 17.7	158 554 117.5	179 559 132.9	179 565 120.3
BIG BEN EVAPORATIO REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH_KCFS	D N 129 13004 13004 1621 1420.0 16.4	411 411 1621 1420.0 13.8	250 250 1621 1420.0 18.0	352 352 1621 1420.0 19.7	1209 1209 1621 1420.0 20.3	1431 1431 1621 1420.0 23.3	1385 1385 1621 1420.0 23.3	8 1693 1693 1621 1420.0 27.5	24 1466 1466 1621 1420.0 23.8	31 817 817 1621 1420.0 13.7	27 747 747 1621 1420.0 12.1	12 221 221 1621 1420.0 7.4	6 112 112 1621 1420.0 8.1	7 127 127 1621 1420.0 8.0	14 876 876 1621 1420.0 14.2	1004 1004 1621 1420.0 16.3	902 902 1621 1420.0 16.2
POWER AVE POWER I PEAK POW MI ENERGY GWH	WW ¶ 754.3	65 517 23.6	84 510 14.2	92 509 19.9	95 509 68.5	109 509 81.0	109 509 78.5	129 509 95.9	113 519 83.9	69 538 49.4	61 538 45.7	38 538 13.6	41 538 6.9	41 538 7.8	72 538 53.4	80 538 59.7	78 529 52.4
FORT RANDA NAT INFLOW DEPLETION EVAPORATION	LL 643 79 V 131	88 1	41 1	53 1	82 3	66 9	167 12	33 18 10	63 15 31	30 7 34	2 1 24	1 10	05	1 5	6 3 12	-6 3	19 3
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	13437 13436 13123 1350.0 9.9	497 223 274 3397 1353.4 7.5	290 155 135 3532 1355.0 11.1	403 386 17 3549 1355.2 21.6	1288 1288 3549 1355.2 21.6	1488 1488 3549 1355.2 24.2	1540 1540 3549 1355.2 25.9	1698 1698 0 3549 1355.2 27.6	1483 1667 -184 3365 1353.0 27.1	806 1606 -800 2565 1342.0 27.0	724 992 -268 2297 1337.5 16.1	211 211 2297 1337.5 7.1	107 107 2297 1337.5 7.7	121 121 2297 1337.5 7.6	866 713 153 2450 1340.2 11.6	995 695 300 2750 1344.8 11.3	918 544 374 3124 1350.0 9.8
AVE POWER N PEAK POW MV ENERGY GWH	W 1 1323.4	62 350 22.4	94 355 15.8	183 356 39.5	183 356 131.8	204 356 152.1	218 356 157.3	233 356 173.2	227 349 168.6	213 305 153.7	120 285 89.2	52 285 18.7	57 285 9.5	56 285 10.8	86 297 63.8	86 319 64.3	78 339 52.6
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW	NT 1335 112 -1 1 47 14611	98 0 5 326	46 0 -7 193	59 0 -20 425	132 4 0 1416	147 19 -5 1611	153 24 -3 1666	87 39 -3 1740	85 10 1 9 1735	62 -5 0 11 1662	112 1 20 10 1113	50 5 17 5 268	23 2 -1 2 125	27 3 0 2 143	75 10 -7 5 766	73 1 1 767	107 3 654
RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCES	14611 358 1206.0	326 358 1206.0	193 358 1206.0 :	425 358 1206.0	1416 358 1206.0	1611 358 1206.0	1666 358 1206.0	1740 358 1206.0	1722 13 371 1206.5	1636 26 397 1207.5	1113 397 1207.5	268 397 1207.5	125 397 1207.5	143 397 1207.5	766 397 1207.5	767 397 1207.5	693 -39 358 1206.0
POWER AVE POWER M PEAK POW MW ENERGY GWH	611.3	38 114 13.8	49 114 8.2	82 114 17.6	82 114 58.7	89 114 66.6	20.0 95 114 68.6	28.3 96 114 71.6	96 115 71.3	95 117 68.7	64 117 47.6	32 117 11.6	9-0 32 117 5.4	32 117 6.2	12.5 44 78 32.9	44 78 33.0	44 76 29-6
GAVINS POI	NT - SIOU	X CITY-	- 68	87	112	210	159	05	70	44	••	16		•		_	~
DEPLETION REGULATED FL KAF KCFS	258 OW AT SIC 15488	UX CITY 465	258	4 508 78 5	1508	35 1795	1793	38 1797	36 1756	23	10 1134	278	3 130	3 148	770	-3 14 750	14 739
TOTAL	41 / 45	1000					****		20,0		20.3	2.4	2.4	2.4	***3	10.6	2.21
DEPLETION CHAN STOR EVAPORATION STORAGE	21499 2748 3 1627 35506	1256 50 86 36334	586 23 -7 36632	753 30 -20 36827	1942 194 -38 37029	2883 602 -59 37457	5469 1571 15 39577	2922 1065 -1 101 39535	1066 214 1 317 38315	936 -214 36 392 37452	938 -74 54 337 37047	424 -128 17 152 37186	198 -60 -1 71 37242	226 -68 0 81 37307	615 -185 -61 176 37100	465 -176 -23 36967	819 -96 3 37146
SISTEM POWE AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH	6832.2	509 2030 183.1 12.2	616 2030 103.6 14.8	765 2032 165.3 18.4	839 2034 603.9 20.1	1000 2041 743.9 24.0	992 2074 714.2 23.8	1075 2068 800.1 25.8	1012 2052 752.7 24.3	787 2030 566.9 18.9	582 2007 433.3 14 0	407 2011 146.7 9.8	423 2012 71.1 10.2	421 2013 80.8	638 1982 474.3 15.3	707 2000 526.3	694 2010 466.2
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	JOSEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

DATE	OF	STUDY	12/11/07
TIME	OF	STUDY	15:36:21

2007-2008 AOP EXTENSIONS, LOWER QUARTILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHTN NAV SEAS 30 DAYS, SP MAR 5 MAY 0 VALUES IN 1000 AF EXCEPT AS INDICATED

STUDY NO 15

2	8FEB10 INI-SUM	15MAR	201 22MAR	0 31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	11 31DEC	31JAN	28FEB
FORT PEC NAT INFLOW DEPLETION	K 6613 441	267 -21	124 -10	160 -12	579 37	1019 303	1603 572	698 221	289 ~45	278 -147	357 -75	185 -34	86 -16	98 -18	325 -110	233 -124	312 -81
EVAPORATION MOD INFLOW RELEASE	N 428 5744 5310	287	134	172	542	716	1031	26 451 533	82 252	102 323	89 343	41 177	19 83	22 95	47 388	357	393
STOR CHANG	E 434 9255	139 9394	65 9458	83 9542	185 9727	193 9920	506 525 10445	-72	-271 10103	-96 10006	35 10042	29 10070	13 10084	79 15 10099	523 -134 9965	-196 9768	4/2 -79 9689
BLEV FTMSL DISCH KCFS	2201.7 8.5	2202.6 5.0	2203.1 5.0	2203.6 5.0	2204.8 6.0	2206.0 8.5	2209.3 8.5	2208.8 8.5	2207.1 8.5	2206.5 7.0	2206.8 5.0	2206.9 5.0	2207.0 5.0	2207.1 5.0	2206.3 8.5	2205.0 9.0	2204.5 8.5
AVE POWER PEAK POW MI ENERGY GWH	₩W ₩ 780.1	60 131 21.4	60 131 10.0	60 132 12.9	72 133 52.0	103 135 76.3	104 138 74.7	105 138 77.8	104 136 77.4	86 135 61.7	61 135 45.3	61 136 22.0	61 136 10.3	61 136 11.7	103 135 76.9	109 133 80.9	102 133 68.7
GARRISON NAT INFLOW DEPLETION	N 10134 1027	478	223 -1	287 -1	768	1290 193	2718 777	1903 599	535 88	449 -133	431 2	176 -116	82 54	94 -62	240 -116	178 -90	282 -61
EVAPORATION REG INFLOW	N 504 13914	39 667	293	377	-11	-27 1592	0 2447	0 31 1796	97 873	16 121 895	22 105 653	47	22	0 25 210	-38 54 786	-5	5 971
RELEASE STOR CHANG	13382 3 532	446 221	194 99	250 127	982 129	1476 116	1250 1197	1291 505	1230 -357	1008 -113	861 -208	417 -23	194 -11	222 -12	1045 -259	1322 -506	1194 -374
STORAGE ELEV FTMSL	11120 1810.9 20 5	11341 1811.9	11440	11567	11696 1813.4	11812 1813.9	13010	13514 1820.9	13157	13045 1819.1	12837 1818.2	12814 1818.1	12803 1818.1	12791 1818.0	12532 1817.0	12026 1814.8	11652 1813.2
POWER AVE POWER	20.5 W	15.0	14.0	14.0	10.5	24.0	21.0	21.0	20.0	187	14.0	14.0	14.0	14.0	17.0	21.5	21.5
PEAK POW MU ENERGY GWH	1750.5	374 56.4	376 24.7	378 31.9	380 125.5	382 186.5	400 163.1	408 172.7	402 164.9	401 134.6	397 114.7	397 55.3	397 25.8	397 29.5	393 137.8	385 171.9	379 153.2
NAT INFLOW DEPLETION	1794 666	190 24	89 11	114 14	283 49	161 70	714 142	127 169	30 112	80 27	11 -10	1	C	1	-43 12	-7 17	45 27
EVAPORATION REG INFLOW	430 14075	29 641	277	350	-13	-39	15	27	5 83 1070	16 102 975	15 89 808	40	19	0 22 200	-16 48	-23	1010
RELEASE STOR CHANGE	13529 546	409 233	269	391 -41	1201	1429 99	1380 457	1700 -478	1672	931 44	878 -70	222 153	119 56	133	889 38	1005	901 311
STORAGE ELEV FTMSL	11668 1579.8	11901 1580.9	11909 1580.9	11868 1580.7	11869 1580.7	11968 1581.2	12425 1583.3	11947 1581.1	$11345 \\ 1578.2$	11390 1578.5	$11319 \\ 1578.1$	11473 1578.9	11529 1579.1	11595 1579.4	11633 1579.6	11903 1580.9	12214 1582.3
POWER AVE POWER N	16.2 W	13.7	215	21.9	20.2	23.2	23.2	27.6	27.2	15.6	14.3	7.5	8.6	8.4	14.5	16.3	16.2
PEAK POW MW ENERGY GWH	1815.3	571 54.9	571 36.2	570 52.5	570 161.4	573 192.1	584 186.9	572 229.8	557 222.6	558 123.4	557 116.5	560 29.6	562 15.9	564 17.8	565 118.8	571 134.8	579 121.9
BIG BENI)													-			
REG INFLOW RELEASE	13400 13399	409 409	269 269	391 391	1201 1201	1429 1429	1380 1380	1692 1692	24 1648 1648	16 900 900	851 851	12 210 209	113 113	7 127 127	14 875 975	1005	901
STORAGE ELEV FTMSL	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1621 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0
DISCH KCFS POWER	16.2	13.7	19.4	21.9	20.2	23.2	23.2	27.5	26.8	15.1	13.8	7.0	8.1	8.0	14.2	16.3	16.2
PEAK POW MW ENERGY GWH	775.5	517 23.4	510 15.3	509 22.2	509 68.1	509 80.9	509 78.2	509 95.8	509 93.3	538 53.3	538 52.0	538 12.8	538 6.9	41 538 7.8	538 53.4	538 59.8	78 529 52.3
FORT RANDA	LL		40	- 4													
DEPLETION	79 136	90 1	1	1	84 3	6/ 9	12	34 18 10	65 15 22	31 7 36	2 1 25	10	õ	1	7 3	-7 3	20 . 3
REG INFLOW RELEASE	13844 13844	497 223	310 175	444 427	1282 1282	1497 1487	1539 1539	1698 1698	1666 1666	887 1606	826 1360	198 198	108	121 121	866 713	995 695	918 544
STOR CHANGE STORAGE	3124	.273 3397	135 3532	17 3549	3549	0 3549	3549	0 3549	0 3549	-719 2830	-533 2297	0 2297	0 2296	2296	153 2449	300 2749	374 3123
DISCH KCFS POWER	1350.0 9.8	7.5	1355.0	23.9	1355.2	1355.2	1355.2	1355.2 27.6	1355.2 27.1	1346.0 27.0	1337.5 22.1	1337.5 6.7	1337.5 7.8	1337.5 7.6	1340.2 11.6	1344.8 11.3	1350.0 9.8
AVE POWER M PEAK POW MW ENERGY GWH	W 1368.0	62 350 22.4	106 355 17.9	202 356 43.6	182 356 131.3	204 356 152.0	218 356 157.2	233 356 173.2	229 356 170.0	219 324 157.8	167 284 124.0	49 285 17.6	57 285 9.6	56 285 10.7	86 297 63.8	86 319 64.3	78 339 52-6
GAVINS POI NAT INFLOW	NT 1342	98	46	59	133	148	154	87	86	62	112	51	24	27	75	73	108
CHAN STOR EVAPORATION	-1	4	-10	~ 22	4 5	-5	24 -3	-3	10	-5 0 11	1 9	29 29	-2	30	10 -7	1	3
REG INFLOW RELEASE	15026 15026	326 326	211 211	464 464	1416 1416	1611 1611	1666 1666	1740 1740	1735 1722	1652 1636	1470 1470	268 268	125 125	143 143	766 766	767 767	655 694
STOR CHANGE STORAGE	358	358	358	358	358	358	358	358	13 371	26 397	397	397	397	397	397	397	-39 358
DISCH KCFS POWER	12.5	1206.0	1206.0	26.0	23.8	1206.0	1206.0 28.0	1206.0 28.3	1206.5 28.0	1207.5 27.5	1207.5 23.9	1207.5 9.0	1207.5 9.0	1207.5 9.0	1207.5 12.5	1207.5 12.5	1206.0 12.5
AVE POWER M PEAK POW MW	W	38 114	53 114	89 114	82 114	89 114	95 114	96 114	96 115	95 117	84 117	32 117	32 117	32 117	44 78	44 78	44 76
ENERGY GWH	628.6 NT - 8100	13.8	8.9	19.2	58.7	66.6	68.6	71.6	71.3	68.7	62.5	11.6	5.4	6.2	32.9	33.0	29.6
NAT INFLOW DEPLETION	,1160 263	149 7	69 3	89 4	116 22	224 35	161 31	97 38	72 36	45 24	31 10	16	7	9	17	-3	61 14
REGULATED FL KAF	OW AT SIC 15923	UX CITY	277	550	1510	1800	1796	1799	1758	1657	1491	278	130	148	770	750	741
ACFS		15.7	20.0	30.8	25.4	29.3	30.2	29.3	28.6	27.9	24.2	9.3	9.3	9.3	12.5	12.2	13.3
NAT INFLOW DEPLETION	21702 2588	1271 9	593 4	762 6	1963 118	2909 629	5521 1558	2946 1084	1077 216	945 -227	944 -71	427 -137	199 -64	228	621 -188	467	828
CHAN STOR EVAPORATION	-5 1673	72	-5	-22	-19	-71	12	-3 104	6 326	32 404	46 347	29 155	-2 73	· 0 83	-61 181	-28	8
SYSTEM POWER	37146 R W	53012	35318 673	38504	38820	39229	41408	41363	40146	39289	38512	38672	38731	38800	38598	38466	38659
PEAK POW MW ENERGY GWH	7118.1	2058 192.4	2059 113.0	2060 182.3	2063 597.0	2069 756.4	2102 728.8	2097 820.9	2076 799.5	2073 599.6	2029 515.0	2033 148.8	439 2035 73.8	436 2036 83.7	50 2006 483 6	2025 544 7	2035 478.4
DAILY GWH	THT	12.8	16.1	20.3	19.9	24.4	24.3	26.5	25.8	20.0	16.6	9.9	10.5	10.5	15.6	17.6	17.1
	TNT-20W	1 SMAR	22MAR	3 IMAR	30APR	31MAY	3 OJUN	3130L	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

DATE OF STUDY	12/11/0	07		200	07-2008	AOP EX	TENSION	S, LOWEI	R QUART:	ILE RUN	OFF SIM	ULATION	99001	9901 9	9901 P	AGE	1
TIME OF STUDY	15:36:2	21		SH	EN NAV S	SEAS 30 VALUE	DAYS, S S IN 10	SP MAR (00 AF EX	MAY 9. KCEPT AS	.11 S INDIC	ATED				STUDY	NO :	16
28FI	EB11 INI-SUM	15MAR	2013 22MAR	1 31MAR	30APR	31MAY	30JUN	31JUL	31AUG	305EP	310CT	15NOV	22NOV	202 30NOV	12 31DEC	31JAN	29FEB
FORT PECK NAT INFLOW DEPLETION	- 6720 456	271	126	163 -13	588	1036	1629 577	709	294	282	363	188	88	100	330	237	317
EVAPORATION MOD INFLOW	439 5825	292	136	. 175	550	731	1052	27 453	84 250	105	92 345	42 179	19 84	22 96	48 391	359	407
RELEASE STOR CHANGE	5326 499	149 144	69 67	89 86	357 193	523 208	506 546	523 -69	523 -273	402 -78	307 38	149 31	69 14	95 0	523 -132	553 -194	489 -82
STORAGE ELEV FTMSL	9689 2204.5	9833 2205.5	9900 2205.9	9986 2206.4	10179	10387	10933	10864	10591	10513	10551	10581	10595	10596	10464	10270	10188
POWER AVE POWER MW	0.7	5.0	⊋.v 61	5.0	73	0.J	105	106	106	84	5.0	5.0	5.0	0.U 74	105	310	104
PEAK POW MW ENERGY GWH	794.3	134 21.8	134 10.2	135 13.1	136 52.7	138 77.5	142 75.8	141 78.9	139 78.5	139 60.2	139 46.1	139 22.3	139 10.4	139 14.3	138 78.0	137	136 72.3
GARRISON																	
DEPLETION CHAN STOR	10262	484 -1 38	226	-1	4	1306	2752	1927	542 94	455 -135	437	-120	-56	-64 -11	-117	-90	286
EVAPORATION REG INFLOW	516 14032	672	296	380	1119	1608	2471	31 1802	99 .871	124 886	108	49 399	23 186	26	56 800	818	847
RELEASE STOR CHANGE	13424 608	446 226	194 101	250 130	1041 78	1537 71	1220 1251	1261 542	1230 -358	1006 -120	861 -204	417 -18	194 -8	222	1045 -245	1291 -473	1208 -361
STORAGE ELEV FTMSL	11652 1813.2	11878 1814.2	11979 1814.6	12109 1815.2	12187 1815.5	12258	13509 1820.9	14051 1823.1	13693 1821.7	13573 1821.2	13369 1820.4	13351 1820.3	13343 1820.3	13339 1820.3	13094 1819.3	12620 1817.3	12260 1815.8
POWER	21.5	159	14.0	14.0	17.5	25.0	20.5	20.5	20.0	16.9	14.0	14.0	14.0	14.0	17.0	21.0	21.0
PEAK POW MW ENERGY GWH	1782.8	383 57.4	384 25.1	386 32.4	388 135.2	389 199.1	408 161.5	415 171.1	410 167.4	408 136.4	405 116.4	405 56.1	405 26.2	405 29.9	401 140.0	394 170.8	389 157.8
OAHE NAT INFLOW	1860	197	92	118	294	167	740	131	31	83	12				-45	-7	46
DEPLETION CHAN STOR	680 3	24 33	11 5	14	49 -18	71 -38	145 22	173	115 2	28 16	-10 15	1	0	1 0	12 -15	18 -20	28
EVAPORATION REG INFLOW	452 14156	653	280	354	1269	1596	1837	28 1190 1607	87 1062	107 970	94 804 976	43 373	20 174	23 199	50 923	1246	1226
STOR CHANGE	623 12214	249 12463	35 12497	7 12505	69 12573	1300 89 12663	469 13131	-507	-607	41 12059	-72 11987	153 12140	55 12195	66 12261	34 12295	241 12536	300 12837
ELEV FTMSL DISCH KCFS	1582.3 16.2	1583.4 13.6	1583.6 17.7	1583.6 19.4	1583.9 20.2	1584.3 24.5	1586.4 23.0	1584.2 27.6	1581.4 27.1	1581.6 15.6	1581.3 14.3	1582.0 7.4	1582.2	1582.5 8.4	1582.7 14.5	1583.8 16.3	1585.1 16.1
POWER AVE POWER MW		153	200	219	228	277	262	314	304	174	159	83	96	.94	163	184	183
ENERGY GWH	1849.6	55.2	33.6	47.4	164.2	206.3	188.9	233.6	226.4	125.6	118.5	29.9	16.1	18.1	121.1	137.3	127.3
BIG BEND EVAPORATION	129							8	24	31	27	12	6	7	14		
REG INFLOW RELEASE	13404	404	246 246	347 -347	1200 1200	1506 1506	1369 1369	1689 1689	1644	898 898	849 849	208	113	126 126	875 875	1005	925 925
ELEV FTMSL DISCH KOFS	1420.0	1420.0	1420.0	1622	1622 1420.0	1622	1622	1622 1420.0 27 5	1622	1622 1420.0	1622 1420.0	1622 1420.0 7 0	1622 1420.0	1622	1622 1420.0	1622 1420.0	1622
POWER AVE POWER MW	10.2	64	83	91	94	115	108	129	125	74	13.0	36	41	40	72	80	77
PEAK POW MW ENERGY GWH	775.9	518 23.2	511 14.0	509 19.6	509 68.0	509 85.3	509 77.5	509 95.7	509 93.1	538 53.2	538 51.9	538 12.8	538 6.9	538 7.8	538 53.4	538 59.8	529 53.7
FORT RANDALL NAT INFLOW	690	94	44	56	88	70	179	36	68	32	2				7	-7	21
DEPLETION EVAPORATION BEC INFLON	79 136	1	1	1	1005	9	12	18 10	15 32	36	25 25	10	5	1	3 12	3	3
RELEASE STOR CHANGE	13880	223 274	154 135	402 385 17	1285	1567	1536	1697	1665	1605	1358	198	108	121	713	695 300	943 569 374
STORAGE ELEV FTMSL	3123 1350.0	3397 1353.4	3532 1355.0	3549 1355.2	3549 1355.2	3549 1355.2	3549 1355.2	3549 1355.2	3549 1355.2	2830 1346.0	2297 1337.5	2297 1337.5	2296 1337.5	2296 1337.5	2449 1340.2	2749 1344.8	3123 1350-0
DISCH KCFS POWER	9.8	7.5	11.1	21.6	21.6	25.5	25.8	27.6	27.1	27.0	22.1	6.6	7.8	7.6	11.6	11.3	9.9
PEAK POWER MW PEAK POW MW ENERGY GWH	1371.5	350 22.4	355 15.8	356 39.4	183 356 131.5	215 356 160.1	218 356 156.8	233 356 173 1	228 356 169 9	219 324 157 7	166 284 123 8	49 285	285	285 10 7	297 63 8	86 319 64 3	79 339 55 1
GAVINS POINT	·					100.1	15070	1,311	105.5	137.77	120.0	17.0	2.0	10.7	05.0	04.5	JJ.1
NAT INFLOW DEPLETION	1359	100	47	60 0	135	150 19	155 24	88 39	67 10	63 - 5	114	51 5	24 2	27	76 10	74 1	109
EVAPORATION REG INFLOW	47 15078	328	- /	-20	1416	- /	1666	-3 3 1740	1735	11 1662	9 10 1470	49 5 268	-2 2 125	2 143	-7 5 767	768	3 691
RELEASE STOR CHANGE	15078	328	194	425	1416	1691	1666	1740	1722 13	1636 26	1470	268	125	143	767	768	720 -39
STORAGE ELEV FTMSL DISCH KCFS POWER	358 1206.0 12.5	358 1206.0 11.0	358 1206.0 14.0	358 1206.0 23.8	358 1206.0 23.8	358 1206.0 27.5	358 1206.0 28.0	358 1206.0 28.3	371 1206.5 28.0	397 1207.5 27.5	397 1207.5 23.9	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 12.5	397 1207.5 12.5	358 1206.0 12.5
AVE POWER MW PEAK POW MW ENERGY GWH	630.7	39 114 13.9	49 114 8.2	82 114 17.6	82 114 58.7	94 114 69.7	95 114 68.6	96 114 71.6	96 115 71.3	95 117 68.7	84 117 62.5	32 117 11.6	32 117 5-4	32 117 6.2	44 78 33.0	44 78 33.0	44 76 30.7
GAVINS POINT NAT INFLOW	- SIOU 1211	X CITY- 155	- 72	93	121	234	168	103	75	47	33	17	Ŕ	q	17	- 2	64
DEPLETION REGULATED FLOW	263 AT SIO	UX CITY	3	4	22	35	31	38	36	24	10	6	3	3	13	14	14
kaf KCFS	16026	476 16.0	263 18.9	514 28.8	1515 25.5	1890 30.7	1803 30.3	1803 29.3	1761 28.6	1659 27.9	1493 24.3	279 9-4	130 9.4	149 9.4	771 12.5	751 12.2	770 13.4
TOTAL NAT INFLOW	22102	1301	607	780	2003	2963	5623	2992	1097	962	961	434	203	231	628	474	843
CHAN STOR EVAPORATION	2831 2 1718	9 76	-2	-20	-29	-72	22	-3 107	230	-228 34 415	-74 42 254	-141 29	-66 -2 75	-75 -10	-188 -49	-176 -25	-112 8
STORAGE SYSTEM POWER	38659	39551	39888	40129	40468	40837	43103	43069	41844	40994	40222	40388	40449	40511	40321	40194	40387
AVE POWER MW PEAK POW MW		538 2084	636 2085	785 2087	848 2091	1073 2096	1013 2129	1108 2124	1084 2104	836 2101	698 2057	417 2051	444 2062	453 2064	658 2034	736 2052	714 2063
ENERGY GWH DAILY GWH	/204.8	193.8	106.8	169.6 18.8	610.4 20.3	798.0 25.7	729.1 24.3	824.1 26.6	806.5 26.0	601.8 20.1	519.1 16.7	150.3 10.0	74.6 10.7	87.0 10.9	489.3 15.8	547.4 17.7	497.1 17.1
I	NI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	29FEB

DATE OF STUDY	12/11/	07		20	07-2008	AOP EX	TENSION	S, LOWE	R QUARTI	LE RUNG	OFF SIM	JLATION	99001	9901 9	9901 PZ	AGE	1
TIME OF STUDY	15:36:	21		SH	TN NAV 3	SEAS 31 VALUE:	DAYS, : 5 IN 10	SP MAR	5 MAY 9. XCEPT AS	46 1 NDICA	ATED				STUDY	NO I	17
29F	EB12	1 5 MA D	2013 22MAR	2 31 MA P	20200	31MAV	30.110	21.ПП.	31 11/2	20555	31007	15800	22100	201 30NOV	13 31080	31.TAN	28778
FORT PECK-	- 6751	272	127	163	50APK	1041	1636	712	295	284	31001	19800	88	100	332	238	318
EVAPORATION MOD INFLOW	449 5836	294	-10	176	554	735	1055	230 27 450	-36 86 245	108	94 348	-35 43 180	20	23	-112 49 395	-125	-82
RELEASE STOR CHANGE	5354 482	149 145	69 68	89 87	357 197	523 212	506 549	523 -73	523 -278	404 -80	307 41	149 32	69 15	79 17	553 -159	553 -190	500 -100
STORAGE ELEV FTMSL	10188 2207.7	10333 2208.6	10400 2209.0	10487 2209.5	10684 2210.7	10897 2212.0	11446 2215.2	11373 2214.8	11095 2213.2	11015 2212.7	11055 2212.9	11087 2213.1	11102 2213.2	11118 2213.3	10960 2212.4	10769 2211.2	10670 2210.6
DISCH KCFS POWER	8.5	5.0	5.0	5.0	6.0	8.5	8.5	8.5	8.5	6.8	5.0	5.0	5.0	5.0	9.0	9.0	9.0
AVE POWER MW PEAK POW MW	010.4	61 137	138	139	140	106	107	108	107	142	63 142	143	143	143	113	112	112
ANERGI GWH	. 010.4	44.1	10-3	13.3	53.5	/6./	77.0	80.1	/9./	61.3	40./	22-0	10.6	12.1	63.9	03.4	/5.0
NAT INFLOW DEPLETION	10290 1062	485 0	226 0	291 0	779 5	1310 194	2760 798	1932 632	543 99	456 -138	438 -7	179 -124	84 -58	95 -66	243 -119	181 -92	287 -62
CHAN STOR EVAPORATION	-5 528	38			-11	-27	0	0 32	102	18 127	19 110	50	23	0 26	-42 57		
REG INFLOW RELEASE	14048	673 446	296 194	381 250	1120 1012	1612 1506	2468 1220	1791 1261	865 1230	889 1025	661 922	402 446	187 208	214 238	816 1045	826 1291	849 1166
STOR CHANGE STORAGE	12260	12486	12588	12719	12827	12933	14180	14710	14345	14209	13948	13903	13862	13858	13629	-465 13164	-31/ 12847
DISCH KCFS POWER	21.0	15.0	14.0	14.0	17.0	24.5	20.5	20.5	20.0	17.2	15.0	15.0	15.0	15.0	17.0	21.0	21.0
AVE POWER MW PEAK POW MW	r	162 392	152 394	153 396	186 397	267 399	229 417	234 425	229 419	196 417	170 414	170 413	169 413	169 412	191 409	233 402	231 398
ENERGY GWH	1819.0	58.4	25.6	33.0	133.8	199.0	164.5	174.1	170.3	141.2	126.6	61.0	28.5	32.5	142.1	173.4	154.9
OAHE NAT INFLOW	1877	199	93	119	297	168	747	132	31	84	12	_			-45	-7	47
CHAN STOR	1 467	30	5	15	-15	-37	20	1/8	119 2 89	29 14	-11	1 44	0 21	1 24	-10	-20	28
REG INFLOW RELEASE	14176 13574	651 403	281 266	355 387	1244 1195	1566 1512	1838 1366	1185 1697	1055 1668	983 929	859 876	401 231	187 118	214 133	926 889	1246 1005	1185 900
STOR CHANGE STORAGE	602 12837	247 13084	15 13099	-32 13066	49 13116	54 13170	473 13643	-512 13131	-613 12518	54 12572	-17 12555	170 12725	69 12794	81 12875	37 12912	242 13154	285 13439
ELEV FTMSL DISCH KCFS	1585.1 16.1	1586.2 13.6	1586.2 19.2	1586.1 21.7	1586.3 20.1	1586.5 24.6	1588.5 22.9	1586.4 27.6	1583.7 27.1	1583.9 15.6	1583.8 14.3	1584.6 7.8	1584.9 8.5	1585.2 8.4	1585.4 14.5	1586.5 16.3	1587.7 16.2
POWER AVE POWER MW		155	220	249	230	282	265	318	308	177	162	88	97	96	165	187	167
ENERGY GWH	1881.7	56.0	36.9	53.7	165.8	209.8	190.8	236.7	229.4	127.3	120.3	31.9	16.3	18.4	123.0	139.5	125.8
BIG BEND- EVAPORATION	- 129							8	24	31	27	12	6	7	14		
REG INFLOW RELEASE	13445 13445	403 403	266 266	387 387	1195 1195	1512 1512	1366 1366	1689 1689	1644 1644	898 898	849 849	219 219	112 112	127 127	875 875	1005 1005	900 900
STORAGE ELEV FTMSL	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0	1622 1420.0
DISCH KCFS POWER	16.1	13.6	19.2	21.7	20.1	24.6	22.9	27.5	26.7	15.1	13.8	7.4	8.1	8.0	14.2	16.3	16.2
PEAK POWER MW ENERGY GWH	778.2	518 23.1	511 35.1	509	509 67.7	509	509 77.4	509 95.7	509 93.1	538 53.2	538 51.9	538	538	538 7.8	538 53.4	538 59.8	529 52.3
FORT RANDAL	Ļ												•		5011	55.0	55.5
NAT INFLOW DEPLETION	696 79	95 1	44 1	57 1	· 89	71 9	181 12	36 18	68 15	32 7	2 1	1	0	1	7 3	~7 3	21 3
EVAPORATION REG INFLOW	136 13926	497	310	443	1281	1574	1535	10 1697	32 1665	36 886	25 824	10 208	5 107	5 121	12 866	995	918
STOR CHANGE	13920	274	135	426 17 3549	3540	2546	1535	3540 1637	1003	-719	-533	208	2206	2205	153	300	544 374
ELEV FTMSL DISCH KCFS	1350.0	1353.4	1355.0	1355.2	1355.2	1355.2	1355.2	1355.2	1355.2 27.1	1346.0	1337.5	1337.5	1337.5	1337.5	1340.2	1344.6	1350.0
POWER AVE POWER MW		62	106	201	182	216	218	233	228	219	166	51	56	56	86	86	78
PEAK POW MW ENERGY GWH	1376.2	350 22.4	355 17.8	356 43.5	356 131.1	356 160.7	356 156.7	356 173.1	356 169.9	324 157.7	284 123.8	285 18.5	285 9.5	285 10.7	297 63.8	319 64.3	339 52.6
GAVINS POIN	I	100	47	60	136	150	156			67		51	74	22	70		110
DEPLETION CHAN STOR	112	0	0 -10	0	4	19	24	39	10	-5	1	5	2	3	10	1	3
EVAPORATION REG INFLOW	47 15128	328	212	464	1416	1697	1666	3 1740	9 1735	11 1662	10 1470	5 278	2 125	2 143	5 767	- 769	657
RELEASE STOR CHANGE	15128	328	212	464	1416	1697	1666	1740	1722 13	1636 26	1470	278	125	143	767	769	696 -39
STORAGE ELEV FTMSL	358	358	358	358 1206.0	358 1206.0	358 1206-0	358 1206.0	358 1206.0	371	397	397 1207.5	397	397 1207.5	397 1207.5	397 1207.5	397 1207.5	358 1206.0
POWER AVE DOWER MW	14.3		15.2	20.0	23.0	27.0	28.U 95	28.3	28.0	47.5	23.9	9.3 77	9-U	9.0	12.5	12.5	12.5
PEAK POW MW ENERGY GWH	632.7	114 13.9	114 8.9	114 19.2	114 58.7	114 69.9	114 68.6	114 71.6	115 71.3	117 68.7	117 62.5	117 12.0	117 5.4	117 6.2	78 33.0	78 33.1	76
GAVINS POIN	r - SIOU	X CITY-	-						/ - 10				2.1				
NAT INFLOW DEPLETION	1223 268	157 7	73 3	94 4	122 22	236 36	170 31	102 39	75 37	47 24	33 11	17 6	.8 3	9 3	18 13	-3 14	65 15
KEGULATED FLOW	N AT SIO 16083	UX CITY 478	282	554	1516	1897	1805	1803	1760	1659	1492	289	130	149	772	752	746
асга ТОТАТ		10.1	20.3	1,10	20.0	30.9	50.5	29.3	28.6	21.9	24.3	9.7	У.4	9.4	12.5	12.2	13.4
NAT INFLOW DEPLETION	22199 2683	1308	610 5	785 6	2013 121	2976 636	5650 1594	3002 1141	1099 244	966 -230	964 - 82	435 -146	203 -68	232	631 ~192	477	848 - 98
CHAN STOR EVAPORATION	-5 1756	72	-5	-22	-21	-72	19	109	3 342	32 424	39 364	29 163	-1 76	0 87	-60 190	-19	3
STORAGE SYSTEM POWER	40387	41280	41599	41801	42156	42528	44798	44743	43500	42645	41873	42031	42094	42167	41969	41855	42058
AVE POWER MW PEAK POW MW	7700 7	544 2111	683 2111	855 2113	848 2117	1080	1021 2153	1117 2149	1094 2128	847 2125	715 2082	443 2086	459 2088	457 2089	671 2059	744 2078	730 2088
DAILY GWH	1478.2	13.1	16.4	20.5	20.4	25.9	24.5	26.8	26.2	20.3	17.2	10.6	//.1 11.0	87.7 11.0	499.1 16.1	17.9	490.4

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 310CT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB

.

TIME OF STUDY 15:36:22

2007-2008 AOP EXTENSIONS, LOWER QUARTILE RUNOFF SIMULATION 99001 9901 9901 PAGE SHIN NAV SEAS 29 DAYS, SP MAR 5 MAY 9.84 VALUES IN 1000 AF EXCEPT AS INDICATED

2	8FEB13 INI-SUM	15MAR	201. 22MAR	3 31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	14 31DEC	31JAN	28FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATION MOD INFLOW	K 7022 465 N 467 6090	283 -22 305	132 -10 142	170 -13 183	615 42 573	1083 316 767	1702 577 1125	741 239 28 474	307 -36 89 254	295 -149 112 332	379 -78 98 359	196 -38 44 189	91 -18 21 88	104 -20 24 101	345 -114 51 408	248 -125 373	331 -87 418
RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER	5384 E 706 10670 2210.6 9.0	149 156 10826 2211.6 5.0	69 73 10899 2212.0 5.0	89 94 10992 2212.6 5.0	357 216 11208 2213.8 6.0	523 244 11453 2215.3 8.5	506 619 12072 2218.8 8.5	523 -49 12023 2218.5 8.5	523 -269 11754 2217.0 8.5	404 -72 11682 2216.6 6.8	338 21 11703 2216.7 5.5	164 25 11728 2216.8 5.5	76 12 11740 2216.9 5.5	87 13 11753 2217.0 5.5	523 -115 11638 2216.3 8.5	553 -180 11458 2215.3 9.0	500 -82 11376 2214.8 9.0
AVE POWER 1 PEAK POW M ENERGY GWH	MW W 829.4	62 141 22.4	63 141 10.5	63 142 13.5	75 143 54.3	107 145 79.9	109 149 78.2	109 149 81.5	109 147 81.1	87 147 62.5	70 147 52.3	70 147 25.3	70 147 11.8	70 147 13.5	108 146 80.7	114 145 85.1	114 145 76.6
GARRISON NAT INPLOW DEPLETION CHAN STOR EVAPORATION	N 10598 1067 0 N 548	500 -3 43	233 -2	300 -2	803 44 -11	1349 235 -27	2842 771 0	1990 650 0 33	559 88 106	470 -149 18 132	451 -19 13 115	185 -129 52	86 -60 0 24	98 -69 0 27	251 -125 -31 59	186 -97 -5	295 -67
REG INFLOW RELEASE STOR CHANGI STORAGE ELEV FTMSL DISCH KCFS DOWER	14367 13507 E 860 12847 1818.3 21.0	695 446 249 13096 1819.3 15.0	304 194 110 13205 1819.7 14.0	391 250 141 13347 1820.3 14.0	1105 1012 94 13440 1820.7 17.0	1610 1537 73 13513 1820.9 25.0	2577 1220 1357 14870 1826.2 20.5	1829 1261 569 15439 1828.3 20.5	888 1230 -342 15097 1827.0 20.0	909 1040 -131 14966 1826.5 17.5	707 922 -215 14751 1825.7 15.0	425 446 -21 14730 1825.7 15.0	198 208 -10 14720 1825.6 15.0	227 238 -11 14709 1825.6 15.0	808 1045 -237 14472 1824.7 17.0	831 1291 -460 14011 1822.9 21.0	862 1166 -304 13707 1821.7 21.0
AVE POWER M PEAK POW MU ENERGY GWH	WW N 1860.8	165 401 59.5	155 403 26.0	156 405 33.6	189 406 136.2	277 408 206.4	232 427 167.3	238 434 177.2	233 430 173.4	203 428 146.0	174 425 129.2	173 425 62.3	173 425 29.1	173 424 33.2	195 421 145.2	238 415 177.4	236 410 158.6
OAHE NAT INFLOW DEPLETION CHAN STOR EVADORATION	- 2048 696 1	217 24 29	101 11 5	130 15	324 50 -14	183 72 -38	815 148 21	144 178	34 119 2	92 29 12	13 -11 12	1	0	1	-49 13 -10	-8 18 -19	51 28
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	14368 13486 881 13439 1587.7 15.2	668 524 144 13583 1588.3 17.6	289 141 148 13731 1588.9 10.2	366 362 4 13735 1588.9 20.3	1271 1180 92 13826 1589.3 19.8	1610 1505 105 13931 1589.7 24.5	1908 1339 569 14500 1592.0 22.5	1196 1689 -493 14007 1590.0 27.5	1053 1658 -605 13402 1587.5 27.0	998 923 75 13477 1587.8 15.5	856 911 -55 13422 1587.6 14.8	399 218 181 13603 1588.4 7.3	186 118 68 13671 1588.6 8.5	212 132 80 13752 1589.0 8.3	919 888 31 13783 1589.1 14.4	1246 1006 240 14023 1590.1 16.4	1189 893 297 14320 1591.3 16.1
Power Ave Power M Peak Pow My Energy Gwh	1W 1907.0	204 610 73.6	119 613 20.0	236 613 51.0	231 615 166.5	286 617 212.7	265 629 190.8	323 619 240.4	313 606 233.1	180 608 129.4	172 606 127.9	85 610 30.7	99 612 16.7	97 614 18.7	169 614 125.6	192 619 142.6	190 625 127.4
BIG BENI EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH_KCFS	2 13357 13357 1622 1420.0 16.2	524 524 1622 1420.0 17.6	141 141 1622 1420.0 10.2	362 362 1622 1420.0 20.3	1180 1180 1622 1420.0 19.8	1505 1505 1622 1420.0 24.5	1339 1339 1622 1420.0 22.5	8 1681 1622 1420.0 27.3	24 1634 1634 1622 1420.0 26.6	31 892 892 1622 1420.0 15.0	27 884 884 1622 1420.0 14.4	12 205 205 1622 1420.0 6.9	6 112 112 1622 1420.0 8.1	7 126 126 1622 1420.0 7.9	14 874 874 1622 1420.0 14.2	1006 1006 1622 1420.0 16.4	893 893 1622 1420.0 16.1
Power Ave Power M Peak Pow MW Energy GWH	W 7 773.1	83 511 29.8	48 509 8.0	95 509 20.5	93 509 66.8	115 509 85.3	105 509 75.9	128 509 95.2	124 509 92.6	73 538 52.9	73 538 54.0	35 538 12.6	41 538 6-9	40 538 7.7	72 538 53.3	80 538 59.9	77 529 51.8
FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW DELEASE	LL 779 79 136 13922	106 1 629	49 1 190	64 1 424	100 3 1277	79 9 1575	203 12 1530	41 18 10 1694	76 15 32 1663	36 7 36 884	2 1 25 859	1 10 195	0 5 107	1 5 120	8 3 12 866	-8 3 995	23 3 913
STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS DOWER	3123 3123 1350.0 9.8	409 3532 1355.0 7.4	17 3549 1355.2 12.5	3549 1355.2 23.8	3549 1355.2 21.5	3549 1355.2 25.6	3549 1355-2 25.7	1594 0 3549 1355.2 27.6	1063 0 3549 1355.2 27.0	-719 2830 1346.0 26.9	-533 2297 1337.5 22.6	195 0 2297 1337.5 6.6	107 0 2296 1337.5 7.7	120 0 2296 1337.5 7.5	713 153 2449 1340.2 11.6	695 300 2749 1344.8 11.3	539 374 3123 1350.0 9.7
AVE POWER M PEAK POW MW ENERGY GWH	W 1375.9	62 355 22.3	106 356 17.8	201 356 43.4	181 356 130.7	216 356 160.9	217 356 156.3	232 356 172.8	228 356 169.7	219 324 157.5	171 284 126.9	48 285 17.3	57 285 9.5	55 285 10.6	86 297 63.8	86 319 64.3	78 339 52.1
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVADOBATION	NT 1401 112 -1	103 0 5	48 0 -10	62 0 -22	139 4 4	155 19 -8	160 24 0	91 39 -4	89 10 1	65 -5 0	117 1 8	53 5 30	25 2 -2	28 3 0	78 10 -8	77 1 1	113 3
REG INFLOW RELEASE STOR CHANGE STORAGE	15163 15163 358	328 328 358	212 212 358	464 464 358	1416 1416 358	1703 1703 358	1666 1666 358	1740 1740 358	1735 1722 13 371	1662 1636 26 397	1506 1506 397	268 268 397	2 125 125 397	2 143 143 397	5 768 768 397	771 771 397	655 694 -39 358
ELEV FTMSL DISCH KCFS POWER AVE POWER M	1206.0 12.5 W	1206.0 11.0 39	1206.0 15.2 53	1206.0 26.0 89	1206.0 23.8 82	1206.0 27.7 94	1206.0 28.0 95	1206.0 28.3 96	1206.5 28.0 96	1207.5 27.5 95	1207.5 24.5 86	1207.5 9.0 32	1207.5 9.0 32	1207.5 9.0 32	1207.5 12.5 44	1207.5 12.5 45	1206.0 12.5 44
GAVINS POI	634.1 NT - SIQU	13.9 X CITY-	114 8.9	114 19.2	114 58.7	114 70.2	114 68.6	114 71.6	115	117 68.7	117 64.0	117 11.6	117 5.4	117 6.2	78 33-0	78 33.2	76 29.6
DEPLETION REGULATED FL KAF KCFS	268 OW AT SIO 16251	174 7 UX CITY 495 16.6	289 20.8	104 4 565 31.6	135 22 1529 25.7	262 36 1929 31.4	188 31 1823 30.6	113 39 1814 29.5	84 37 1769 28.8	52 24 1664 28.0	37 11 1532 24,9	19 6 281 9.4	9 3 131 9.4	10 3 150 9 4	20 13 775	-4 14 753	72 15 751
TOTAL NAT INFLOW DEPLETION CHAN STOR	23204 2687 1	1383 7 77	645 3 ~5	829 4 -22	2116 165 -21	3111 687 -73	5910 1563 21	3120 1163 -4	1149 233 3	1010 -243 30	999 -95 33	452 +153 31	211 -71 -2	241 -82 0	653 -200 -48	491 -186 -24	885 -108
EVAPORATION STORAGE SYSTEM POWER AVE POWER M	1819 42058 R W	43016 615	43364 543	43602 839	44004 852	44426 1096	46971 1024	112 46998 1127	353 45795 1104	439 44974 857	377 44192 745	169 44377 444	79 44446 472	91 44529 469	197 44361 674	44261 756	44506 738
PEAK POW MW ENERGY GWH DAILY GWH	7380.3	2133 221.4 14.8	2137 91.3 13.0	2140 181.2 20.1	2145 613.3 20.4	2150 815.3 26.3	2184 737.2 24.6	2192 838.8 27.1	2163 821.2 26.5	2161 617.0 20.6	2118 554.3 17.9	2122 159.9 10.7	2123 79.3 11.3	2125 90.0 11.2	2095 501.7 16.2	2114 562.4 18.1	2124 496.1 17.7
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	28FEB

TIME OF STUDY 09:28:59

2007-2008 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHTN NAV SEAS 61 DAYS, SP MAR 0 MAY 0 VALUES IN 1000 AF EXCEPT AS INDICATED

	28F	EB09 INI-SUM	15MAR	200 22MAR	9 31MAR	30APR	31MAY	S IN IU 30JUN	31JUL	31AUG	S INDIC 30SEP	ATED 310CT	15NOV	22NOV	20 30NOV	10 31DEC	31JAN	28FEB
	FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE	 5435 346 368 4721 5138 -417	250 -1 251 149 102	116 0 117 69 48	150 -1 150 89 61	549 59 490 387 103	834 195 639 492 147	1061 354 707 476 231	468 239 23 206 492 -286	270 20 71 179 492 -313	258 -81 88 251 400 -149	341 -57 76 322 307 14	169 -49 35 183 149 34	79 -23 16 85 69 16	90 -26 19 97 79 18	289 -141 40 390 492 -102	218 -100 318 523 -205	293 -43 336 472 -136
	ELEV FTMSL DISCH KCFS POWER	2192.3 8.0	7983 2193.0 5.0	8030 2193.3 5.0	8091 2193.8 5.0	8195 2194.5 6.5	8342 2195.5 8.0	8573 2197.1 8.0	8287 2195.2 8.0	7974 2192.9 8.0	7825 2191.8 6.7	7839 2192.0 5.0	7873 2192.2 5.0	7889 2192.3 5.0	7907 2192.4 5.0	7805 2191.7 8.0	7600 2190.2 8.5	7464 2189.2 8.5
	AVE POWER M PEAK POW MW ENERGY GWH	W 699.0	56 118 20.2	56 119 9.5	57 119 12.2	74 120 53.0	91 122 67.7	92 124 66.2	92 121 68.3	90 118 67.3	75 116 54.1	56 116 41.6	56 117 20.1	56 117 9.4	56 117 10.8	89 116 66.3	94 114 69.8	93 112 62.5
	GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION	8026 1168 -6 420	297 27 34	138 13	178 16	770 51 -17	993 109 -17	2221 744	1404 579	397 117	305 -111 14	429 4 20	177 -100	83 -46	94 ~53 0	119 -86 -34	176 -60 -6	245 -36 0
	REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS DOWED	11570 12078 -508 9448 1802.9 18.5	453 357 96 9543 1803.4 12.0	195 167 29 9572 1803.6 12.0	251 214 37 9609 1803.8 12.0	1089 1131 -42 9567 1803.5 19.0	1359 1476 -117 9450 1802.9 24.0	1953 1339 614 10064 1806.0 22.5	1291 1015 277 10341 1807.3 16.5	691 1015 -324 10017 1805.8 16.5	730 854 -125 9892 1805.1 14.4	664 738 -73 9819 1804.8 12.0	386 357 29 9847 1804.9 12.0	180 167 13 9861 1805.0 12.0	206 190 15 9876 1805.1 12.0	45 618 953 -336 9540 1803.4 15.5	753 1107 -354 9187 1801.6 18.0	753 1000 -247 8940 1800.3 18.0
	AVE POWER M PEAK POW MW ENERGY GWH	9 1436.0	117 344 42.3	118 344 19.8	118 345 25.5	186 344 133.6	233 342 173.2	221 353 159.0	166 358 123.2	165 352 123.1	143 350 102.9	119 349 88.7	119 349 42.9	119 349 20.0	119 350 22.9	153 344 113.6	174 337 129.7	172 332 115.6
	OAHE NAT INFLOW DEPLETION CHAN STOR	1184 652 3	223 23 36	104 11	134 14	206 48 -39	113 69 -28	242 139 8	92 164 33	24 109	72 27 13	6 -9 14	-6 1	-3 0	-3 1	-54 12 -20	-13 17 -14	47 27
	EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	357 12256 12778 -522 9954 1571.2 16.6	593 431 161 10115 1572.0 14.5	260 277 -17 10098 1571.9 19.9	334 369 -35 10063 1571.7 20.7	1250 1248 2 10065 1571.8 21.0	1492 1468 24 10088 1571.9 23.9	1451 1418 33 10121 1572.1 23.8	22 953 1727 -773 9348 1567.8 28.1	67 862 1351 -489 8859 1565.0 22.0	84 828 593 235 9094 1566.4 10.0	75 692 549 143 9237 1567.2 8.9	34 316 259 57 9294 1567.5 8.7	16 148 120 27 9321 1567.7 8.7	18 169 137 31 9353 1567.9 8.7	40 827 902 -74 9278 1567.4 14.7	1062 1011 51 9330 1567.7 16.4	1020 917 102 9432 1568.3 16.5
•	POWER AVE POWER MV PEAK POW MW ENERGY GWH	7 1598.8	152 525 54.9	209 524 35.2	217 523 46.9	220 523 158.4	250 524 186.3	250 525 180.1	290 503 216.0	222 489 165.5	101 496 72.7	91 500 67.8	89 501 32.1	89 502 14.9	89 503 17.1	150 501 111.8	168 502 125.1	169 505 113.9
	BIG BEND- EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS DONED	129 12649 12649 1621 1420.0 16.6	431 431 1621 1420.0 14.5	277 277 1621 1420.0 19.9	369 369 1621 1420.0 20.7	1248 1248 1621 1420.0 21.0	1468 1468 1621 1420.0 23.9	1418 1418 1621 1420.0 23.8	8 1719 1719 1621 1420.0 28.0	24 1326 1326 1621 1420.0 21.6	31 562 562 1621 1420.0 9.4	27 522 522 1621 1420.0 8.5	12 247 247 1621 1420.0 8.3	6 114 114 1621 1420.0 8.2	7 131 131 1621 1420.0 8.3	14 888 888 1621 1420.0 14.4	1011 1011 1621 1420.0 16.4	917 917 1621 1420.0 16.5
: 	AVE POWER MW PEAK POW MW ENERGY GWH	733.5	69 518 24.7	93 510 15.7	97 509 20.9	98 509 70.7	112 509 83.2	112 509 80.3	131 509 97.3	103 525 76.5	48 538 34.5	43 538 32.0	42 538 15.1	42 538 7.0	42 538 8.0	73 538 54.1	81 538 60-2	79 529 53.3
	-FORT RANDAI NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS DAWPE	L 366 79 126 12804 12803 1 3122 1350.0 10.0	67 1 235 262 3384 1353.2 7.9	31 1 159 148 3532 1355.0 11.5	40 1 408 391 17 3549 1355.2 21.9	52 3 1297 1297 3549 1355.2 21.8	42 9 1501 1501 3549 1355.2 24.4	146 12 1552 1552 0 3549 1355.2 26.1	16 18 10 1707 1707 0 3549 1355.2 27.8	44 15 30 1325 1674 -349 3200 1351.0 27.2	-12 7 31 506 1410 -903 2296 1337.5 23.7	-62 1 22 437 437 0 2296 1337.5 7.1	-3 1 233 233 0 2296 1337.5 7.8	-1 05 108 108 0 2296 1337.5 7.8	-2 1 5 123 123 0 2296 1337.5 7.8	3 12 872 719 153 2449 1340.1 11.7	-7 3 1001 701 300 2749 1344.8 11.4	15 3 929 555 374 3123 1350.0 10.0
J M H	AVE POWER MW PEAK POW MW ENERGY GWH	1260.6	66 350 23.6	97 355 16.3	185 356 40.0	184 356 132.7	206 356 153.4	220 356 158.5	234 356 174.1	226 342 167.9	182 284 131.3	52 285 38.8	57 285 20.6	57 285 9.6	57 285 10.9	87 297 64.4	87 319 64.9	80 339 53.7
 Lic Fr Syfi	-GAVINS FOIN NAT INFLOW DEPLETION CHAN STOR TVAPORATION REG INFLOW REGINFLOW RELEASE STORAGE STORAGE STORAGE LLEV FIMSL DISCH KCFS	T 1229 112 -1 47 13872 13872 358 1206.0 12.5	89 0 4 329 329 358 1206.0 11.0	42 0 -7 194 194 358 1206.0 14.0	53 0 -20 425 425 358 1206.0 23.8	123 4 0 1416 1416 358 1206.0 23.8	134 19 -5 1611 1611 358 1206.0 26.2	141 24 -3 1666 1666 358 1206.0 28.0	78 39 -3 1740 1740 358 1206.0 28.3	78 10 1 1735 1722 13 371 1206.5 28.0	56 -5 11 1466 1440 26 397 1207.5 24.2	107 1 31 564 564 397 1207.5 9.2	46 5 -1 268 268 397 1207.5 9.0	21 2 125 125 125 125 1207.5 9.0	25 3 0 2 143 143 397 1207.5 9.0	69 10 -7 5 766 766 397 1207.5 12.5	67 1 1 768 768 397 1207.5	100 3 658 697 -39 358 1206.0 12.5
A F E	PONER MW AVE POWER MW PEAK POW MW INERGY GWH	580.5	39 114 13.9	49 114 8.2	82 114 17.6	82 114 58.7	89 114 66.6	95 114 68.6	96 114 71.6	96 115 71.3	84 117 60.8	33 117 24.3	32 117 11.6	32 117 5.4	32 117 6.2	44 78 32.9	44 78 33.0	44 76 29.7
N L RE	GAVINS POIN IAT INFLOW DEPLETION GULATED FLO KAF KCFS	T - SIOU 664 258 WAT SIO 14278	X CITY- 44 6 UX CITY 366 12 3	21 3 212 15 2	26 4 448 25 1	93 21 1488 25 0	173 35 1749	128 31 1763	57 38 1759	26 36 1712	18 23 1435	17 10 571	12 6 274	5 3 128	6 3 146	12 12 766	-6 14 748	32 14 715
	TOTAL JAT INFLOW DEPLETION HAN STOR VAPORATION	16904 2615 -9 1447	969 57 75	452 26 -7	581 34 -20	1793 186 -56	2289 436 -50	3939 1303 5	2115 1077 30 92	839 307 1 283	697 -140 28 346	838 -50 64 298	395 -136 -1 135	184 -63 0 63	9.2 211 -72 0 72	435 -190 -61 157	435 -125 -19	732 -35 3
S S P E D	VSTEM POWER VE POWER MW EAK POW MW NERGY GWH AILY GWH	32384 6308.4	499 1968 179.6 12.0	53211 623 1967 104.6 14.9	33290 755 1967 163.2 18.1	33354 843 1967 607.3 20.2	33408 982 1967 730.3 23.6	34286 990 1982 712.7 23.8	33503 1009 1961 750.6 24.2	32041 902 1941 671.4 21.7	31125 634 1901 456.3 15.2	31208 394 1905 293.2 9.5	31328 396 1907 142.5 9.5	31385 395 1908 66.4 9.5	31449 395 1910 75.9 9.5	31090 596 1874 443.1 14.3	30883 649 1888 482.7 15.6	30938 638 1894 428.7 15.3
	:	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG,	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

2007-2008 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHTN NAV SEAS 61 DAYS, SP MAR 0 MAY 0

.

.

TIME OF STUI	OY 09:28:	59			SHTN NA	V SEAS	61 DAYS	, SP MA	R O MAY		ልጥፑኮ				STUDY	NO	20
281	TEB10 INI-SUM	I 15MAR	201 22MAR	0 . 31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	11 31DEC	31JAN	28FEB
FORT PECI NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS DOWED	(5615 443 354 4818 5012 2 -194 7464 2189.2 8.5	258 -2 260 149 112 7576 2190.0 5.0	120 -1 121 52 7628 2190.4 5.0	155 -1 156 89 67 7695 2190.9 5.0	567 84 387 96 7791 2191.6 6.5	862 320 542 492 50 7841 2192.0 8.0	1097 544 553 476 77 7918 2192.5 8.0	483 190 22 271 492 -221 7697 2190.9 8.0	279 -31 68 242 461 -219 7478 2189.3 7.5	266 -136 84 318 364 -46 7432 2158.9 6.1	352 -62 74 340 307 33 7465 2189.2 5.0	175 -67 34 207 149 59 7523 2189.6 5.0	81 -31 16 97 69 27 7551 2189.8 5.0	93 -35 18 111 79 31 7582 2190.0 5.0	298 -178 39 437 492 -55 7527 2189.6 8.0	226 -104 330 492 -162 7365 2188-4 8.0	303 -46 349 444 -95 7270 2187.7 8.0
AVE POWER N PEAK POW MW ENERGY GWH	₩ 7 667.4	55 114 19.8	55 114 9.3	55 115 12.0	72 116 51.9	89 117 66.2	89 117 64.2	89 115 66.1	82 113 61.3	67 112 48.1	55 112 40.7	55 113 19.7	55 113 9.2	55 114 10.6	88 113 65.2	87 111 64.8	87 110 58.2
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION DEC INCLOM	I 8444 1063 6 1 421	312 11 40	146	187 6	810 24 -17	1045 196 -17	2337 758	1477 566 26	418 93 6 82	320 -136 16 101	451 -16 13 87	187 -112 39	87 -52 18	99 -60 0 . 21	125 -99 -34 45	185 -73	258 -48
RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	12216 -237 8940 1800.3 18.0	387 104 9044 1800.9 13.0	180 30 9073 1801.0 13.0	232 38 9111 1801.2 13.0	893 263 9374 1802.6 15.0	1199 125 9499 1803.2 19.5	1160 895 10394 1807.6 19.5	1199 178 10572 1808.4 19.5	1199 -489 10082 1806.1 19.5	957 -223 9860 1805.0 16.1	769 -59 9791 1804.6 12.5	408 372 36 9827 1804.8 12.5	190 174 17 9843 1804.9 12.5	217 198 19 9863 1805.0 12.5	984 -347 9515 1803.3 16.0	1230 -480 9035 1800.8 20.0	1083 -333 8703 1799.1 19.5
POWER AVE POWER M PEAK POW MW ENERGY GWH	W 1450.9	124 334 44.8	125 335 21.0	125 336 27.0	145 341 104.3	189 343 140.8	193 359 139.1	197 362 146.9	196 353 146.0	160 349 115.2	124 348 92.2	124 349 44.6	124 349 20.8	124 349 23.8	157 343 117.1	193 334 143.3	185 328 124.0
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION	1263 665 -8 337	238 24 28	111 11	143 14	220 49 -11	120 70 -26	259 141	99 169 21	25 112 62	77 27 21 79	6 -10 21 71	-6 1 33	~3 0 15	-3 1 18	-58 12 -20 38	-14 17 -23	50 27 3
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	12469 12711 -242 9432 1568.3 16.5	629 455 174 9606 1569.3 15.3	280 239 41 9647 1569.5 17.2	360 364 9644 1569.5 20.4	1052 1241 -189 9455 1568.4 20.9	1223 1461 -238 9217 1567.1 23.8	1278 1401 -123 9094 1566.4 23.6	1108 1724 -615 8479 1562.7 28.0	1050 1346 -296 8183 1560.8 21.9	949 593 355 8538 1563.0 10.0	735 545 190 8728 1564.2 8.9	332 259 73 8801 1564.6 8.7	155 120 35 8835 1564.9 8.7	177 138 40 8875 1565-1 8.7	855 902 -47 8828 1564.8 14.7	1175 1012 163 8992 1565.8 16.5	1109 911 198 9190 1566.9 16.4
AVE POWER M PEAK POW MW ENERGY GWH	W 1550.8	158 510 56.8	178 511 30.0	211 511 45.5	215 506 154.7	243 499 180.5	239 496 171.9	279 477 207.7	214 468 159.3	98 479 70.7	88 485 65.8	88 487 31.5	87 488 14.6	87 489 16.8	147 488 109.7	166 493 123.3	166 498 111.8
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	 129 12583 12583 1621 1420.0 16.5	455 455 1621 1420.0 15.3	239 239 1621 1420.0 17.2	364 364 1621 1420.0 20.4	1241 1241 1621 1420.0 20.9	1461 1461 1621 1420.0 23.8	1401 1401 1621 1420.0 23.6	8 1716 1716 1621 1420.0 27.9	24 1322 1322 1621 1420.0 21.5	31 562 562 1621 1420.0 9.5	27 518 518 1621 1420.0 8.4	12 247 247 1621 1420.0 8.3	6 114 1621 1420.0 8.2	7 131 1621 1420.0 8.3	14 888 888 1621 1420.0 14.4	1012 1012 1621 1420.0 16.5	911 911 1621 1420.0 16.4
AVE POWER M PEAK POW MW ENERGY GWH	W 729.7	72 517 26.1	81 510 13.6	95 509 20.6	98 509 70.3	111 509 82.8	110 509 79.4	131 509 97.2	102 525 76.2	48 538 34.5	43 538 31.8	42 538 15.2	42 538 7.0	42 538 8.0	73 538 54.1	81 538 60.2	79 529 52.9
FORT RANDA NAT INFLOW DEPLETION EVAPORATION REGUINFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS DOWED	LL 404 79 126 12775 12774 1 3123 1350.0 10.0	74 1 232 295 3418 1353.7 7.8	35 1 273 160 114 3532 1355.0 11.5	44 1 390 17 3549 1355.2 21.9	58 3 1296 1296 0 3549 1355.2 21.8	47 9 1499 1499 0 3549 1355.2 24.4	161 12 1550 1550 3549 1355.2 26.1	18 18 10 1706 1706 3549 1355.2 27.7	48 15 30 1324 1673 -349 3200 1351.0 27.2	-13 7 505 1409 -903 2297 1337.5 23.7	~69 1 22 426 426 0 2297 1337.5 6.9	-4 10 233 233 0 2297 1337.5 7.8	-2 0 5 108 0 2297 1337.5 7.8	-2 1 5 123 123 0 2297 1337.5 7.8	3 12 873 719 153 2450 1340.2 11.7	-8 3 1001 701 300 2750 1344.8 11.4	16 3 550 374 3124 1350.0 9.9
AVE POWER M PEAK POW MW ENERGY GWH	W 1258.0	65 351 23.3	97 355 16.3	185 356 39.9	184 356 132.7	206 356 153.2	220 356 158-3	234 356 174.0	225 342 167.8	182 284 131.2	51 285 37.8	57 285 20.6	57 285 9.6	57 285 10.9	87 297 64.4	87 319 64.9	79 339 53.2
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE	1242 112 -1 47 13857 13857	90 0 4 327 327	42 0 -7 195 195	54 0 -20 425 425	124 4 0 1416 1416	136 19 -5 1611 1611	143 24 ~3 1666 1666	79 39 -3 3 1740 1740	79 10 1 1735 1722	57 -5 7 11 1466 1440	108 1 10 553 553	47 5 -2 268 268 268	22 2 0 2 125 125	25 3 0 2 143 143	69 10 -7 5 766 766	67 1 1 768 768	101 3 654 693
STOR CHANGE STORAGE BLEV FTMSL DISCH KCFS POWER	358 1206.0 12.5	358 1206.0 11.0	358 1206.0 14.0	358 1206.0 23.8	358 1206.0 23.8	358 1206.0 26.2	358 1206.0 28.0	358 1206.0 28.3	13 371 1206.5 28.0	26 397 1207.5 24.2	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 12.5	397 1207.5 12.5	-39 358 1206.0 12.5
AVE POWER MU PEAK POW MW ENERGY GWH	579.8	39 114 13.9	49 114 8.2	82 114 17.6	82 114 58.8	89 114 66.6	95 114 68.6	96 114 71.6	96 115 71.3	84 117 60.8	32 117 23.9	32 117 11.6	32 117 5.4	32 117 6.2	44 78 32.9	44 78 33.0	44 76 29.6
GAVINS POIN NAT INFLOW DEPLETION REGULATED FLC KAF KCFS	730 730 258 W AT SIO 14329	48 6 00X CITY 369 12.4	23 3 214	29 4 450	102 21 1497 25 2	191 35 1767	141 31 1776	63 38 1765	29 36 1715	20 23 1437	18 10 561	13 6 275	6 3 128	7 3 147	13 12 767	-7 14 747	35 14 714
TOTAL NAT INFLOW DEPLETION CHAN STOR	17698 2620 -8	1020 39 73	476 18 -7	612 24 -20	1881 185 -28	2401 649 -48	4138 1510 -3	2219 1020 -3	878 235 7	727 -220 37	866 -76 65	411 -166 -2	9.2 192 -77 0	9.2 219 -89 0	447 -240 -62	449 -142 -23	12.8 763 -50
EVAPORATION STORAGE SYSTEM POWER	1414 30938	31623	31859	31978	32148	32085	32934	89 32275	275 30935	338 30144	292 30298	13 <u>3</u> 30466	62 30544	71 30634	154 30339	30160	30265
AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH	6236.6	513 1940 184.6 12.3	585 1941 98.4 14.1	753 1941 162.6 18.1	795 1942 572.7 19.1	927 1938 689.9 22.3	947 1951 681.6 22.7	1026 1933 763.5 24.6	916 1916 681.8 22.0	640 1880 460.6 15.4	393 1885 292.2 9.4	398 1889 143.2 9.5	397 1890 66.7 9.5	397 1892 76.3 9.5	596 1857 443.5 14.3	658 1873 489.5 15.8	639 1880 429.6 15.3
	TNT-SOW	TOWAK	∠ 4MAR	TMAR د	SUAPR	3⊥MAY	SUJUN	3TJÛL	31AUG	JUSEP	310CT	15NOV	22NOV	3 0NOV	31DEC	31JAN	28FEB

,

2007-2008 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHTN NAV SEAS 61 DAYS, SP MAR O MAY O

STUDY NO 21

TIME OF STU	DY 09:28:	59			SHTN NA	V SEAS	61 DAYS	, SP MA	R O MAY		משידה				STUDY	NÖ	21
28	FEB11 INI-SUM	I 15MAR	201 22MAR	1 31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	12 31DEC	31JAN	29FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS POWER	K 5748 445 352 4951 4990 3 -40 7270 2187.7 8.0	264 -3 268 119 149 7418 2188.8 4.0	123 -2 125 56 69 7488 2189.3 4.0	158 -2 161 71 89 7577 2190.0 4.0	580 83 497 357 140 7717 2191.0 6.0	882 322 560 492 68 7785 2191.6 8.0	1123 550 573 4766 97 7882 2192.3 8.0	495 197 22 276 492 -216 7656 2190.7 8.0	285 -27 67 245 492 -247 7419 2188.8 8.0	273 -136 84 325 387 -62 7357 2188.4 6.5	361 -64 73 352 307 44 7401 2188.7 5.0	179 -67 33 212 149 63 7465 2189.2 5.0	83 -31 99 69 30 7494 2189.4 5.0	95 -36 18 113 79 34 7528 2189.6 5.0	305 -179 39 445 492 -47 7481 2189.3 8.0	231 -104 335 492 -157 7324 2188.1 8.0	310 -56 460 -94 7230 2187.4 8.0
AVE POWER I PEAK POW MI ENERGY GWH	1W ∛ 662.2	44 112 15.7	44 113 7.4	44 114 9.5	66 115 47.7	89 116 65.9	89 117 64.1	89 115 66.0	88 112 65.2	71 111 50.9	54 112 40.5	55 112 19.7	55 113 9.2	55 113 10.5	87 113 65.1	87 111 64.7	86 110 60.1
GARRISO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANGI STORAGE ELEV FIMSL	8762 1042 0 12301 12349 12349 3 -48 8703 1799.1	324 5 46 484 417 69 8771 1799.4	151 2 204 167 38 8808 1799.6	194 3 263 214 48 8857 1799.9	840 14 -23 1160 1131 29 8886 1800.0	1084 185 -23 1368 1476 -108 8778 1799.5	2425 756 2145 1309 836 9614 1803.8	1533 584 25 1416 1045 371 9985 1805.6	433 106 79 740 1045 -305 9679 1804.1	332 -137 98 775 878 -103 9576 1803.6	468 -20 17 85 727 769 -41 9534 1803.4	194 -116 39 419 372 47 9582 1803.6	90 -54 196 174 22 9604 1803.7	103 -62 0 21 223 198 25 9629 1803.9	130 -100 -34 643 953 -310 9319 1802.3	192 -73 757 1138 -381 8938 1800.3	268 -53 781 1064 -283 8655 1798.8
POWER AVE POWER M PEAK POW M ENERGY GWH	19.5 W 1440.5	14.0 132 329 47.6	12.0 114 330 19.1	12.0 114 331 24.6	19.0 180 331 129.5	24.0 226 329 168.1	22.0 211 345 151.8	17.0 168 352 124.9	17.0 168 346 125.0	14.8 145 344 104.3	12.5 123 343 91.2	12.5 123 344 44.1	12.5 123 345 20.6	12.5 123 345 23.6	15.5 151 339 112,4	18.5 177 332 131.9	18.5 175 327 121.5
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS DOWED	1323 680 6 1343 12655 12703 12703 2-49 9190 1566.9 16.4	249 24 32 674 415 259 9449 1568.4 13.9	116 11 283 268 15 9463 1568.5 19.3	149 14 349 361 -11 9452 1568.4 20.2	231 49 -40 1273 1236 37 9489 1568.6 20.8	126 71 -28 1502 1458 44 9534 1568.9 23.7	271 145 11 1446 1388 58 9592 1569.2 23.3	103 173 28 21 982 1723 -741 8851 1564.9 28.0	26 115 64 892 1342 -450 8401 1562.2 21.8	81 28 13 864 595 269 8670 1563.8 10.0	7 -10 13 72 727 551 176 8846 1564.9 9.0	-7 1 33 259 72 8918 1565.3 8.7	-3 0 155 120 34 8953 1565.5 8.7	-3 1 18 177 137 39 8992 1565.8 8.7	-61 12 -17 38 824 902 -78 8914 1565.3 14.7	-15 18 -17 1087 1013 74 8988 1565.7 16.5	52 28 1088 935 153 9141 1566.6 16.3
AVE POWER M PEAK POW MW ENERGY GWH	W 1560.2	143 506 51.4	199 506 33.4	`208 506 44.8	213 507 153.6	244 508 181.3	240 510 173.0	284 488 211.5	216 475 161.0	99 483 71.5	90 488 66.9	88 490 31.7	88 491 14.7	88 493 16.9	148 490 110.2	166 493 123.6	165 497 114.7
BIG BENL EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER M PEAK POW MM	129 12574 12574 1621 1420.0 16.4	415 415 1621 1420.0 13.9 66 518	268 268 1621 1420.0 19.3 91 510	361 361 1621 1420.0 20.2 95 509	1236 1236 1621 1420.0 20.8 97 509	1458 1458 1621 1420.0 23.7 111 509	1388 1388 1621 1420.0 23.3 109 509	8 1715 1715 1621 1420.0 27.9 131 509	24 1317 1317 1621 1420.0 21.4 102 525	31 564 564 1621 1420.0 9.5 48 538	27 524 524 1621 1420.0 8.5 43 538	12 247 247 1621 1420.0 8.3 42 538	6 114 114 1621 1420.0 8.2 42 538	7 131 131 1621 1420.0 8.3 42 538	14 888 888 1621 1420-0 14.4 73 538	1013 1013 1621 1420.0 16.5 81 538	935 935 1621 1420.0 16.3 78 529
ENERGY GWH FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STOR CHANGE ELEV FTMSL DISCH KCPS	729.3 LL 433 79 126 12796 12797 -1 3124 1350.0 9.9	23.8 80 1 232 261 3385 1353.3 7.8	15.2 37 1 305 158 147 3532 1355.0 11.4	20.4 48 1 408 391 17 3549 1355.2 21.9	70.0 62 3 1295 1295 0 3549 1355.2 21.8	82.6 50 9 1499 1499 3549 1355.2 24.4	78.6 174 12 1550 1550 3549 1355.2 26.1	97.1 19 18 10 1706 1706 1706 1355.2 27.7	75.9 52 15 30 1324 1673 -349 3200 1351.0 27.2	34.6 -15 7 31 505 1409 -903 2296 1337.5 23.7	32.1 -75 1 22 425 426 0 2296 1337-5 6.9	15.2 -4 10 232 233 0 2296 1337.5 7.8	7.0 -2 0 5 108 0 2296 1337.5 7.8	8.0 -2 123 123 2296 1337.5 7.8	54.1 3 12 872 153 2449 1340.1 11.7	60.3 -9 3 1001 701 300 2749 1344.8 11.4	54.3 17 3 949 575 374 3123 1350.0 10.0
Power Ave Power M Peak Pow MW Energy Gwh	W 1260.1	65 350 23.3	96 355 16.2	185 356 39.9	184 356 132.5	206 356 153.2	220 356 158.3	234 356 174.0	225 342 167.8	182 284 131.2	51 285 37.8	57 285 20.6	57 285 9.6	57 285 10.9	87 297 64.4	87 319 64.9	80 339 55.6
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL	NT 1246 112 -1 47 13883 13883 13883 13883 13883	91 0 4 327 327 358 1206.0	42 0 -7 194 194 358 1206.0	54 0 -20 425 425 358 1206.0	125 4 0 1416 1416 358 1206.0	136 19 -5 1611 1611 358 1206.0	143 24 -3 1666 1666 358 1206.0	79 39 -3 1740 1740 358 1206.0	79 10 1 1735 1722 13 371 1206 5	57 -5 11 1466 1440 26 397 1207 5	108 1 31 553 553 397 1207,5	47 5 -2 268 268 397 1207 - 5	22 2 0 125 125 397 1207 5	25 3 0 2 143 143 397 1207 5	70 10 -7 5 767 767 397 1207 5	68 1 769 769 397 1207 5	101 3 679 718 -39 358
DISCH KCFS POWER AVE POWER M PEAK POW MW	12.5 W	11.0 39 114	14.0 49 114	23.8 82 114	23.8 82 114	26.2 89 114	28.0 95 114	28.3 96 114	28.0 96 115	24.2 84 117	9.0 32 117	9.0 32 117	9.0 32 117	9.0 32 117	12.5 12.5 44 78	12.5 12.5 44 78	12.5 12.5 44 76
GAVINS POI NAT INFLOW DEPLETION REGULATED FLA KAF KCFS	581.0 785 263 263 263 263 263 263 263 263 263 263	13.9 X CITY- 52 7 UX CITY 372 12.5	8.2 - 24 3 215 15.5	17.6 31 4 452 25.3	110 22 1504 25.3	205 35 1781 29.0	58.6 151 31 1786 30.0	71.6 68 38 1770 28.8	71.3 31 36 1717 27.9	60.8 21 24 1437 24.1	23.9 20 10 563 9.2	11.6 14 6 275 9.3	5.4 6 3 128 9.3	6.2 7 3 147 9.3	33.0 14 13 768 12.5	33.0 -7 14 748 12.2	30.6 38 14 742 12.9
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWEI	18297 2621 0 1407 30265	1060 33 82 31002	494 16 4 31270	636 20 -20 31414	1948 175 -63 31620	2483 641 -57 31624	4287 1518 8 32615	2297 1049 25 88 32030	906 255 1 274 30691	749 ~219 31 336 29917	889 -82 62 290 30096	422 -170 -2 132 30279	197 -79 62 30365	225 -90 0 71 30463	458 -241 -59 154 30181	460 -141 -17 30018	786 -64 3 30129
AVE POWER MY PEAK POW MW ENERGY GWH DAILY GWH	6233.4	488 1929 175.7 11.7	592 1929 99.4 14.2	727 1930 157.0 17.4	822 1933 592.2 19.7	965 1933 717.7 23.2	964 1951 694.4 23.1	1001 1934 745.1 24.0	895 1915 666.2 21.5	630 1878 453.3 15.1	393 1883 292.5 9.4	397 1887 142.8 9.5	396 1889 66.5 9.5	396 1891 76.1 9.5	590 1856 439.2 14.2	643 1870 478.4 15.4	628 1878 436.9 15.1
	INI-SUM	15MAR	22MAR	31MAR	30APR	31 MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB

•

TIME OF STUDY 09:28:59

2007-2008 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 NO NAVIGATION SEASON, SP MAR 0 MAY 0

STUDY NO 22

TIME OF SI	001 09.20				NO NAVI	VALUE	S IN 10	00 AF E	XCEPT A	S INDIC	ATED				51001	NU	22
2	8FEB12 INI-SUN	1 15MAR	201 22MAR	.2 31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	13 31DEC	31JAN	28FEB
FORT PE NAT INFLC DEPLETION EVAPORATI MOD INFLC RELEASE STOR CHAN STORAGE ELEV FTMS	CK W 5919 472 ON 382 W 5065 3612 GE 1452 7230 L 2187.4	272 3 -3 5 275 2 119 3 156 2 7386 4 2188.6	127 -1 128 56 73 7459 2189.1	163 -2 165 71 93 7552 2189.8	598 85 238 275 7827 2191.9	909 325 584 338 246 8073 2193.6	1156 557 599 327 272 8345 2195.6	509 204 23 282 338 -56 8289 2195.2	294 -22 72 244 338 -94 8195 2194.5	281 -136 91 326 290 37 8231 2194.8	371 -66 80 357 246 111 8343 2195.5	184 -68 36 215 119 96 8439 2196.2	86 -32 17 100 56 45 8483 2196.5	98 -36 20 115 63 51 8535 2196.9	314 -181 43 452 338 114 8649 2197.7	238 -105 343 369 -26 8623 2197.5	319 -47 366 305 61 8683 2197.9
DISCH KCF POWER AVE POWER PEAK POW ENERGY GW	S 8.(MW MW H 498.6) 4.0 43 112 5 15.7	4.0 44 112 7.4	4.0 44 113 9,5	4.0 44 116 32.0	5.5 62 119 46.0	5.5 63 122 45.1	5.5 63 121 46.8	5.5 63 120 46.7	4.9 56 121 40.0	4.0 46 122 34.1	4.0 46 123 15.6	4.0 46 123 7.8	4.0 46 124 8.9	5.5 64 125 47.5	6.0 70 125 51.9	5.5 64 125 43 0
GARRIS NAT INFLO DEPLETION CHAN STOR	ON W 9188 1064	340 6	158 3	204 3	881 16	1136 186	2542 767	1607 600	454 111	349 -139	491 -25	203 -119	95 -56	108 -63	136 -103	201 -74	281
EVAPORATI REG INFLO RELEASE STOR CHAN STORAGE ELEV FTMS DISCH KCF	ON 453 W 11309 9563 GE 1746 8655 L 1798.6 S 18.5	499 387 113 8768 1799.4 13.0	211 167 45 8813 1799.7 12.0	272 196 75 8888 1800.1 11.0	1103 655 448 9336 1802.4 11.0	1271 892 379 9716 1804.3 14.5	2102 863 1239 10955 1810.1 14.5	27 1318 892 426 11381 1812.1 14.5	87 594 892 -297 11084 1810.7 14.5	108 676 762 -86 10998 1810.3 12.8	95 677 646 31 11029 1810.5 10.5	43 397 312 85 11115 1810.9 10.5	20 185 146 40 11154 1811.0 10.5	23 212 167 45 11199 1811.2 10.5	-17 50 511 892 -381 10819 1809.5 14.5	638 892 -253 10566 1808.4 14.5	641 805 -164 10401 1807.6 14.5
POWER AVE POWER PEAK POW 1 ENERGY GW	MW MW H 1175.8	123 329 44.2	114 330 19.1	105 331 22.6	106 340 76.3	142 347 105.5	146 368 105.5	151 375 112.5	151 370 112.7	133 369 95.8	109 369 81.2	109 371 39.4	110 371 18.4	110 372 21.1	150 366 111.8	149 362 110.5	147 359 99.0
OAHE NAT INFLOT DEPLETION CHAN STOR	 N 1408 696 24	265 24 32	123 11 6	159 15 6	245 50	134 72 -19	288 148	110 178	28 119	86 29 9	7 -11 12	-7 1	-3 0	-3 1	-64 13 -21	-16 18	56 28
REG INFLO RELEASE STOR CHAN STORAGE ELEV FTMSI DISCH KCF: POWER	412 9888 8100 3E 1787 9141 1566.6 16.3	659 351 308 9449 1568.4 11.8	285 185 100 9549 1568.9 13.3	346 71 275 9824 1570.5 4.0	850 352 498 10322 1573.1 5.9	934 770 164 10486 1574.0 12.5	1003 777 225 10711 1575.1 13.1	24 800 1087 -287 10424 1573.6 17.7	76 725 522 203 10627 1574.7 8.5	98 731 364 366 10993 1576.5 6.1	88 588 363 225 11219 1577.6 5.9	40 265 176 89 11308 1578.1 5.9	19 124 121 3 11311 1578.1 8.7	21 141 138 4 11314 1578.1 8.7	46 747 902 -155 11160 1577.3 14.7	858 1014 -156 11003 1576.6 16.5	833 908 -75 10929 1576.2 16.3
AVE POWER PEAK POW I ENERGY GWI	MW WW 1053.7	121 506 43.5	137 509 23.1	42 517 9.0	62 530 44.9	133 535 99.3	140 541 100.8	189 533 140-5	91 539 67.6	66 548 47.7	64 554 48.0	65 556 23.4	95 556 16.0	95 556 18.3	160 553 119.2	179 549 133.3	177 547 118.9
BIG BE EVAPORATIO REG INFLOG RELEASE STORAGE ELEV FTMSJ DISCH KCFS POWER	ND NN 129 7971 7971 1621 1420.0 16.3	351 351 1621 1420.0 11.8	185 185 1621 1420.0 13.3	71 71 1621 1420.0 4.0	352 352 1621 1420.0 5.9	770 770 1621 1420.0 12.5	777 777 1621 1420.0 13.1	8 1079 1079 1621 1420.0 17.5	24 497 1621 1420.0 8.1	31 333 333 1621 1420.0 5.6	27 336 336 1621 1420.0 5.5	12 164 164 1621 1420.0 5.5	6 115 1621 1420.0 8.3	7 131 131 1621 1420.0 8.3	14 888 888 1621 1420.0 14.4	1014 1014 1621 1420.0 16.5	908 908 1621 1420.0 16.3
AVE POWER PEAK POW M ENERGY GWI	MW IW I 465.7	56 518 20.1	62 510 10.5	19 509 4.0	28 509 19.9	59 509 43.6	61 509 44.0	82 509 61.1	39 535 29.2	28 538 20.2	28 538 20.7	28 538 10.1	42 538 7.0	42 538 8.0	73 538 54.1	81 538 60.3	78 529 52.7
FORT RANI NAT INFLOW DEPLETION EVAPORATIC REG INFLOW RELEASE STOR CHAN(STORAGE ELEV FIMSI DISCH KOEP	ALL 476 79 18239 8239 8238 8238 82 13123 1350.0 10.0	88 1 437 173 265 3388 1353.3 5.8	41 225 81 144 3532 1355.0 5.8	53 1 106 17 3549 1355.2 5.9	68 3 417 417 3549 1355.2 7.0	55 9 816 816 3549 1355.2 13.3	191 12 956 956 3549 1355.2 16.1	21 18 10 1072 1072 0 3549 1355.2 17.4	57 15 29 510 1059 -549 3000 1348.3 17.2	-16 7 278 678 -400 2600 1342.6 11.4	-82 1 25 228 448 -220 2380 1339.0 7.3	-4 10 148 231 -83 2297 1337.5 7.8	-2 0 5 107 2297 1337.5 7.7	-2 1 123 123 0 2297 1337.5 7.7	3 12 873 719 153 2450 1340.2 11.7	-10 3 1001 701 300 2750 1344.8 11.4	19 3 924 550 374 3124 1350.0 9.9
AVE POWER PEAK POW M ENERGY GWH	MW W 806.8	48 350 17.4	49 355 8.3	51 356 11.0	60 356 43.1	113 356 84.0	136 356 98.3	148 356 110.0	142 333 105.7	89 308 64.4	55 291 41.0	57 285 20.7	57 285 9.5	57 285 10.9	87 297 64.4	87 319 64.9	79 339 53.2
GAVINS PC NAT INFLOW DEPLETION CHAN STOR EVAPORATIC REG INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS	1117 1252 112 0 N 47 9330 9330 E 358 1206.0 12.5	91 0 8 272 272 358 1206.0 9.1	42 0 123 123 358 1206.0 8.9	55 0 161 161 1206.0 9.0	125 4 -2 536 536 358 1206.0 9.0	137 19 -12 922 922 358 1206.0 15.0	144 24 -5 1071 1071 358 1206.0 18-0	79 39 -3 31107 1107 358 1206.0 18.0	79 10 9 1120 1107 13 371 1206.5 18.0	57 -5 11 740 714 26 397 1207.5 12.0	109 1 553 553 397 1207.5 9.0	47 5 -1 268 268 397 1207.5	22 2 125 125 125 1207.5	25 3 2 143 143 143 397 1207.5 9.0	70 10 -7 5 767 767 397 1207.5 12.5	68 1 769 769 397 1207.5	102 3 655 694 -39 358 1206.0
Power Ave Power Peak Pow M Energy Gwh	MW W 396.3	32 114 11.6	31 114 5.2	32 114 6.8	32 114 22.8	52 114 38.9	62 114 44.9	62 114 46.4	63 115 46.6	42 117 30.6	32 117 23.9	32 117 11.6	32 117 5.4	32 117 6.2	44 78 33.0	44 78 33.0	44 76 29.6
GAVINS PC NAT INFLOW DEPLETION REGULATED F KAF KCFS	INT - SIO 862 268 LOW AT SIC 9924	JX CITY- 57 7 DUX CITY 322 10.8	27 3 147 10.6	34 4 191- 10.7	121 22 635 10.7	225 36 1111 18.1	166 31 1206 20.3	74 39 1142 18.6	34 37 1104 18.0	23 24 713 12.0	22 11 564 9.2	15 6 277 9.3	7 3 129 9.3	8 3 148 9.3	16 13 770 12.5	-8 14 747 12.1	41 15 720 13.0
TOTAL- NAT INFLOW DEPLETION CHAN STOR EVAPORATIO STORAGE SYSTEM POW	- 19102 2692 53 N 1551 30129 ER	1112 35 86 30970	519 16 6 31331	667 21 5 31792	2038 180 -2 33013	2596 647 -48 33803	4487 1539 ~5 35539	2400 1078 -3 95 35622	946 270 0 297 34898	780 -220 27 371 34841	918 -89 30 324 34989	438 -174 -1 147 35176	204 -81 0 69 35263	234 -93 0 78 35363	472 -245 -45 170 35095	473 -143 -5 34960	818 -50 8 35117
AVE POWER PEAK POW M ENERGY GWH DAILY GWH	MW W 4396.8	423 1928 152.4 10.2	438 1931 73.5 10.5	292 1941 63.0 7.0	332 1966 239.0 8.0	561 1980 417.3 13.5	609 2010 438.6 14.6	695 2009 517.4 16.7	549 2013 408.5 13.2	415 2000 298.7 10.0	334 1992 248.8 8.0	338 1990 121.6 8.1	382 1991 64.2 9.2	382 1992 73.3 9.2	578 1957 430.0 13.9	610 1969 453.9 14.6	590 1974 396.5 14.2
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

2007-2008 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 PAGE SHITN NAV SEAS 51 DAYS, SP MAR 0 MAY 0 STUDY NO

SHTN NAV SEAS 51 DAYS, SP MAR 0 MAY 0 VALUES IN 1000 AF EXCEPT AS INDICATED TIME OF STUDY 09:28:59 2013 2013 2013 2013 201 INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 28FEB13 31DEC 31JAN 28FEB FORT PECK -182 44 455 523 477 371 5113 5076 -32 11 -36 13 -105 -48 212 NAT INFLOW DEPLETION -2 324 -3 -2 -18 76 -136 -68 -68 24 229 149 277 492 -215 EVAPORATION MOD INFLOW 238 492 -254 8931 199.6 8.0 69 37 506 100 523 -178 472 -103 398 307 RELEASE 158 74 95 221 68 STOR CHANGE -74 -68 8842 8915 2199.0 2199.5 4.0 4.0 2202.7 8.5 2199.1 6.7 2199.4 5.0 200.2 5.0 2200.5 5.0 2198.9 8.5 98.2 8.5 STORAGE ELEV FTMSL 2201.3 2200.0 2197.9 2200.1 4.0 2202.0 8.5 200.0 2201.6 DISCH KCFS 5.0 8.5 POWER AVE POWER MW PEAK POW MW 131 72.7 129 127 127 127 128 128 7.9 66.5 ENERGY GWH 723.2 16.8 10.2 42.6 74.9 70.6 70.1 56.4 43.6 21.2 9.9 11.3 74.3 74.0 -- GARRISON-15 -11 -61 0 -86 -39 51 -33 0 NAT INFLOW DEPLETION 3 185 -39 -29 -57 1127 776 620 95 -114 -143 14 112 - 53 17 CHAN STOR -34 98 EVAPORATION REG INFLOW RELEASE 767 1107 12773 1309 993 971 -175 984 -328 . 789 1111 -322 167 214 1131 1414 1107 799 387 180 206 1230 STOR CHANGE -446 10792 1809.4 10535 808.2 12.0 10660 808.8 23.0 -340 11681 .813.4 STORAGE ELEV FTMSL DISCH KCFS 1807.6 14.5 808.5 12.0 813.2 22.0 1812.6 16.3 1812.4 13.0 814.8 812.6 812.7 812.9 811.4 807.9 808.0 18.0 13.0 13.0 19.0 18.0 13.0 13.0 16.0 20.0 20.0 POWER AVE POWER MW 363 173.9 376 102.0 378 26.4 365 153.6 360 136.8 361 PEAK POW MW 124.9 ENERGY GWH 139.2 142.3 1596.5 47.6 20.6 26.5 164.1 124.1 23.1 -OAHE-708 -29 370 73 -21 -16 18 -22 NAT INFLOW 29 -7 1 - 3 -65 -4 1 -11 18 83 DEPLETION CHAN STOR EVAPORATION 8 5 -37 5 21 25 9 94 ō -16 44 355 244 111 12951 74 1335 -397 10268 116 50 REG INFLOW RELEASE 405 263 354 1228 1451 1366 1721 797 717 231 11352 1578.3 STOR CHANGE -688 -56 10612 10772 1577.5 18.9 1577.5 19.8 1577.4 13.6 1574.9 28.0 1573.8 11.7 STORAGE ELEV FTMSL DISCH KCFS 1576.2 74.4 75.4 7.8 1572.8 1573.6 1574.9 574.6 14.7 576.6 577.8 23.6 23.0 20.6 8.3 8.3 21.7 13.4 POWER AVE POWER MW PEAK POW MW ENERGY GWH 553 34.6 555 161.9 540 224.7 553 558 529 533 102.5 534 92.5 31.6 46.7 191.3 15.1 17.2 131.7 118.5 117.0 1690.6 180.4 171.7 53.3 BIG BEND EVAPORATION REG INFLOW RELEASE 236 236 1621 112 112 1621 888 1621 12832 405 1621 263 1621 354 1621 1228 1621 1451 1621 1366 1621 1713 1621 1310 1621 766 690 1621 128 1621 1014 1621 907 STORAGE ELEV FTMSL DISCH KCFS 1420.0 1420.0 20.0 20.0 20.0 1420.0 20.0 20.0 20.0 20.0 1420.0 20.0 20.0 120.0 8.1 120.0 420.0 1420.0 19.8 23.6 23.0 12.9 16.5 20.6 POWER AVE POWER MW PEAK POW MW ENERGY GWH 23.2 14.9 69.6 82.2 77.4 97-0 14.5 7.9 60.3 52.6 745.3 20.1 54.1 46.8 42.2 6.9 75.5 -FORT RANDALI 15 30 NAT INFLOW DEPLETION 18 10 1 1 3 9 -16 7 - 84 -4 -2 0 3 -2 1 3 -10 3 119 22 872 719 153 EVAPORATION 232 261 390 17 1673 -349 3200 351.0 27.2 REG INFLOW RELEASE 13120 158 146 1706 583 225 107 701 300 550 374 1295 1498 1549 $122 \\ 122$ -903 STOR CHANGE -1 Ó ā Ō Ó STORAGE ELEV FTMSL DISCH KCFS 1353.3 7.8 1355.0 11.4 55.2 21.9 355.2 21.8 355.2 26.0 355.2 27.7 337.5 27.1 1337.5 9.5 1337.5 7.6 337.5 7.7 337.5 7.7 344.8 11.4 1350.0 355.2 24.4 1350.0 340.1 11.7 9.9 9.9 POWER AVE POWER MW PEAK POW MW 356 356 356 342 284 285 9.5 53.2 132.5 51.6 ENERGY GWH 1289.0 23.3 16.2 39.9 153.1 158.2 174.0 167.8 149 7 20.0 10.8 64.4 64 9 GAVINS POINT NAT INFLOW DEPLETION CHAN STOR EVAPORATION 0 -7 24 - 3 39 -3 10 -7 10 5 4 -5 ō -20 -5 33 10 1 -1 44 $1\overline{1}$ EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS DOWED 1722 13 371 96.5 14216 328 194 $1740 \\ 1740$ 1636 26 268 767 769 425 1416 1611 1666 713 125 143 -39 1206.0 12.5 1206.0 11.0 207.5 11.6 07.5 9.0 1207.5 12.5 206.0 14.0 07.5 206.0 206.0 9.0 7.5 206.0 06.0 0ĕ.ō 207.5 12.5 23.8 28.0 28.3 28.0 27.5 9.0 POWER AVE POWER MW PEAK POW MW ENERGY GWH 115 71.3 117 68.7 117 30.7 117 6.2 76 29.6 78 78 114 8.2 594.7 13.9 11.6 5.4 33.0 33.0 -GAVINS POINT -SIOUX CITY--NAT INFLOW DEPLETION 39 37 11 6 13 -8 14 15 269 7 4 23 36 31 24 3 3 REGULATED FLOW AT SIOUX CITY KAF 14826 379 KCFS 12.7 15.7 25.5 29.4 30.3 28.9 25.5 27.5 11.8 9.3 9.3 9.3 12.5 12.1 13.0 --TOTAL-NAT INFLOW -95 70 -79 0 -34 3 261 -169 -229 DEPLETION CHAN STOR EVAPORATION 29 -20 -48 -65 2 -224 20 375 -90 -126 -21 98 -62 171 5Ô STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW 1977 362.7 11.7 1952 467.8 69.8 10.0 178.0 11.9 741.9 23.9 721.4 24.0 517.5 16.7 457.2 16.3 160.9 780.2 698.7 548.3 79.7 ENERGY GWH DAILY GWH 102.4 604.5 6639.3 148.1 17.9 25.2 9.9 10.0 22.5 18.3 15.1 INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 3 OJUN 31JUL 30SEP 15NOV 22NOV 30NOV 31AUG 310CT 31DEC 31JAN 28FEB