

Northwestern Division Missouri River Basin Water Management Division

Missouri River Mainstem System 2006-2007 Annual Operating Plan

Annual Operating Plan Process 54 Years Serving the Missouri River Basin

December 2006

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, NORTHWESTERN DIVISION PO BOX 2870 PORTLAND OR 97208-2870

REPLY TO ATTENTION OF

December 21, 2006

Office of the Commander

Dear Stakeholders and Concerned Citizens,

This Annual Operating Plan (AOP) presents information regarding the Corps of Engineers' regulation of the Missouri River Mainstem Reservoir System (System) through December 2007. The information provided in this AOP is based on water management guidelines designed to meet the regulation objectives of the Missouri River Master Water Control Manual (Master Manual). These guidelines are applied to computer simulations of System regulation, assuming inflow scenarios based on water supply records from 1898 to 1997. This approach provides a wide range of water management simulations for dry, average, and wet conditions.

The AOP provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year, to serve its Congressionally-authorized project purposes, meet our Tribal Trust and Treaty responsibilities, and comply with law to include the Endangered Species Act. In addition, 5-year extensions to the AOP water management simulations, through March 2013, are presented to serve as guides for longer range planning. System water management is provided by my staff at the Missouri River Basin Water Management Division, Northwestern Division, U.S. Army Corps of Engineers located in Omaha, Nebraska.

A draft of this AOP was made available to the public in September 2006. Six fall public meetings on the Draft 2006-2007 AOP were held as follows: October 10 in Omaha, Nebraska; October 11 in St. Louis and Kansas City, Missouri; October 12 in Fort Peck, Montana and Bismarck, North Dakota; and October 13 at Pierre, South Dakota. The primary purposes of these meetings were to present a synopsis of the Draft AOP and to allow those in attendance to make comments in person to Corps of Engineers' staff. Attendees included representatives from the Tribes, Missouri River basin states, public and industry interest groups and private citizens. In addition, during the summer and fall of 2006, three Tribal informational meetings were held as follows: August 15-16, 2006 in Pierre, South Dakota; September 12, 2006 in Rapid City, South Dakota; and November 9, 2006 in Pierre, South Dakota. A report presenting Draft AOP meeting comments and including copies of all the comment letters received is available upon request.

This year was the seventh consecutive year of drought in the Missouri River Basin, resulting in a record low System Storage level. At these low storage levels it is more important than ever to implement appropriate water conservation measures to ensure continued service to project purposes, should the drought continue. We realize that the benefits provided by the System are vitally important to the Nation and the people that live and work in the Basin. We believe that the continued implementation of the revised Master Manual, and more specifically this AOP, will result in an appropriate balance of benefits provided to all of the people who rely on the System. Thank you for your interest in the regulation of the System.

Sincerely,

Cruzz 7. Mat

Gregg F. Martin Brigadier General, U.S. Army Division Engineer

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2006 - 2007

List of	Tablesii Platesii
	Abbreviationsiii ion of Terms
I.	FOREWORD
II.	PURPOSE AND SCOPE2
III.	MAINSTEM MASTER MANUAL AND ESA CONSULTATIONS
IV.	FUTURE RUNOFF: AUGUST 2006 – DECEMBER 20074
V.	ANNUAL OPERATING PLAN FOR 2006-20075
	 A. General
	F. Regulation Activities for T&E Species and Fish Propagation22G. Regulation Activities for Historical and Cultural Properties25
VI.	SUMMARY OF RESULTS EXPECTED IN 200726
	A.Flood Control26B.Water Supply and Water Quality Control26C.Irrigation28D.Navigation28E.Power28F.Recreation, Fish and Wildlife28G.Historic and Cultural Properties30H.System Storage31I.Summary of Water Use by Functions31
VII.	TENTATIVE PROJECTION OF REGULATION THROUGH MARCH 2013
	 A. Median Runoff

TABLES

Natural and Net Runoff at Sioux City	5
Relation of System Storage to Navigation Service Level	7
Relation of System Storage to Navigation Season Length	7
Gavins Point Releases Needed to Meet Target Flows	9
Technical Criteria for Spring Pulses from Gavins Point Dam	10
Navigation Service Support for the 2007 Season	18
Reservoir Unbalancing Schedule	21
MRNRC Recommended Res. Elevation Guidelines for Unbalancing	21
Peaking Capability and Sales	29
Energy Generation and Sales	29
Anticipated December 31, 2007 System Storage	32
Missouri River Mainstem System Water Use for Calendar Years 2005,	
2006, and 2007 Above Sioux City, Iowa	33
Navigation Service Support, Spring Pulses, Unbalancing, AOP	
Extension Studies	35
Median Extension Studies Criteria	36
Lower Quartile Extension Studies Criteria	37
Lower Decile Extension Studies Criteria	38
	Relation of System Storage to Navigation Service Level

PLATES

- 1 Missouri River Basin Map
- 2 Summary of Engineering Data
- 3 System Storage and Fort Peck Elevations
- 4 Garrison and Oahe Elevations
- 5 System Storage
- 6 Gavins Point Releases
- 7 Fort Peck Elevations and Releases
- 8 Garrison Elevations and Releases
- 9 Oahe Elevations and Releases
- 10 Fort Randall Elevations and Releases
- 11 Reservoir Release and Unregulated Flow
- 12 System Gross Capability and Average Monthly Generation
- 13 Tentative Five Year Extensions of 2006-2007 AOP System Storage, Gavins Point, and System Peaking Capability
- 14 Tentative Five Year Extensions of 2006-2007 AOP Fort Peck, Garrison, Oahe and Fort Randall
- 15 American Indian Reservations

ABBREVIATIONS

AOP	-	annual operating plan
ac.ft.	-	acre-feet
ACHP	-	Advisory Council on Historic Preservation
AF	-	acre-feet
В	-	Billion
BiOp	-	Biological Opinion
BOR	-	Bureau of Reclamation
cfs	-	cubic feet per second
COE	_	Corps of Engineers
CY	_	calendar year (January 1 to December 31)
elev	_	elevation
ESA	_	Endangered Species Act
ft	-	feet
FTT	_	Flow-to-Target
FY	_	fiscal year (October 1 to September 30)
GIS	-	Geographic Information System
GWh	-	gigawatt hour
KAF	_	1,000 acre-feet
Kcfs	-	1,000 cubic feet per second
kW	_	kilowatt
kWh	_	kilowatt hour
M	-	million
MAF	-	million acre-feet
MRBA	-	Missouri River Basin Association
MRNRC	-	
msl	-	mean sea level
	-	
MW	-	megawatt
MWh	-	megawatt hour
NEPA	-	National Environmental Policy Act
plover	-	piping plover
pp	-	powerplant
PA	-	Programmatic Agreement
P-S MBP	-	Pick-Sloan Missouri Basin Program
RCC	-	Reservoir Control Center
RM	-	river mile
RPA	-	Reasonable and Prudent Alternative
SHPO	-	State Historic Preservation Officers
SR	-	Steady Release
tern	-	interior least tern
T&E	-	Threatened and Endangered

THPO	-	Tribal Historic Preservation Officers
tw	-	tailwater
USFWS	-	United States Fish and Wildlife Service
USGS	-	United States Geological Survey
WY	-	water year
yr	-	year

DEFINITION OF TERMS

<u>Acre-foot (AF, ac-ft)</u> is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

This page is intentionally left blank.

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2006 - 2007

I. FOREWORD

This Annual Operating Plan (AOP) presents pertinent information and plans for regulating the Missouri River Mainstem Reservoir System (System) through December 2007 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the coming year to serve the Congressionally authorized project purposes; to fulfill the Corps' responsibilities to Native American Tribes; and to comply with environmental laws, including the Endangered Species Act (ESA). Regulation is directed by the Reservoir Control Center in the Missouri River Basin Water Management Division, Northwestern Division, U. S. Army Corps of Engineers (Corps). A map of the Missouri River basin is shown on *Plate 1* and the summary of engineering data for the six individual Mainstem projects and System is shown on *Plate 2*.

This plan may require adjustments such as when substantial departures from expected runoff occur; to meet emergencies including short-term intrasystem adjustments to protect human health and safety during periods of extended drought to maintain minimum river or reservoir levels to keep intakes operational, and adjustments in reservoir releases or reservoir levels to prevent loss of historic and cultural properties; or to meet the provisions of applicable laws, including the ESA. These adjustments would be made to the extent possible after evaluating impacts to all System uses, would generally be short term in nature and would continue only until the issue is resolved.

Due to the current drought, virtually all comments received on the Draft AOP requested the Corps to conserve water to the extent possible. System storage is currently at a record low and the outlook for winter precipitation is below normal. Therefore, during the coming year the Corps will look at all available options to conserve water while meeting the authorized project purposes and the needs of the protected species. In particular, maintaining adequate river and reservoir levels to protect human health and safety will be a primary consideration. A wide variety of options will be examined including many that have been implemented in the past including the following: not supporting navigation target flows in river reaches where there is no commercial navigation, utilizing available flexibility to conserve water during the nesting season while meeting the needs of the species and staying within the incidental take identified in the BiOp, intrasystem adjustments, minimum releases

needed to meet downstream requirements and utilizing the Kansas River Reservoir System as appropriate to conserve System storage. Water conservation benefits all uses of the System (except flood control) through higher reservoir levels which result in increased service to authorized purposes. More normal reservoir levels also reduce potential impacts to water intakes, reduce exposure of some historic and cultural resources, provide better access to recreation sites, reduce noxious weeds, and reduce the likelihood of experiencing a non-navigation year in the future.

Prior to the 1998-1999 AOP, a System description and discussion of the typical System regulation, a historic summary of the previous year's regulation, and the plan for future System regulation was included in one document. Since the 1998-1999 AOP, this information has been published in separate reports available upon request. This document provides the plan for future regulation of the System. To receive a copy of either the "System Description and Operation," dated Spring 2002, or the "Summary of Actual Calendar Year 2005 Regulation," dated April 2006, contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports are currently available at the "Reports and Publications" link on our web site at: **www.nwd-mr.usace.army.mil/rcc**. The "Summary of Actual Calendar Year 2006 Regulation" will be available at the same site in May of 2007.

II. PURPOSE AND SCOPE

Beginning in 1953, projected System reservoir regulation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, State, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System regulation. The Coordinating Committee on Missouri River Mainstem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982, the Committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meeting is conducted to take public input on a draft of the AOP, which typically is published in early October each year. The spring meetings are conducted to update the public on the current hydrologic conditions and projected System regulation for the remainder of the year as it relates to implementing the Final AOP.

Under the terms of Stipulation 18 of the March 2004 "Programmatic Agreement for the Operation and Management of the Missouri River Main Stem System for Compliance with the National Historic Preservation Act, as amended" (PA) the Corps has agreed to consult/meet with the affected Tribes and Tribal Historic Preservation Officers (THPO's), State Historic Preservation Officers (SHPO's), the Advisory Council on Historic Preservation (ACHP) and other parties on the draft AOP. The purpose of this consultation/meeting is to determine whether operational changes are likely to cause changes to the nature, location or severity of adverse effects to historic properties or to the types of historic properties affected and whether amendments to the Corps Cultural Resources Management Plans and Five-Year Plan are warranted in order to better address such effects to historic properties. During 2006 the Corps worked with the affected Tribes to establish processes for consultation on AOP's under 36 CFR Part 800, the PA, and Executive Order 13175. The planning process for consultation on the Draft 2006-2007 AOP consisted of a series of informational meetings and government to government consultation with Tribes requesting such meetings. During the summer and fall of 2006 three informational meetings were held on August 15-16, 2006 in Pierre, South Dakota, September 12, 2006 in Rapid City, South Dakota, and November 9, 2006 in Pierre, South Dakota.

Last spring's public meetings were held at the following locations and dates: April 10, 2006 at Omaha, Nebraska; April 11, 2006 at St. Louis and Jefferson City, Missouri; April 12, 2006 at Williston, North Dakota and Pierre, South Dakota; and April 13, 2006 at St. Joseph, Missouri. The attendees were given an update regarding the outlook for 2006 runoff and projected System regulation for the remainder of 2006. Similar information was provided at a Fort Peck Advisory Committee meeting in Lewistown, Montana the following week on April, 18, 2006. Six 2006 fall public meetings on the Draft 2006-2007 AOP were held as follows: October 10 in Omaha, Nebraska; October 11 in St. Louis and Kansas City, Missouri; October 12 in Fort Peck, Montana and Bismarck, North Dakota; and October 13 in Pierre, South Dakota.

In the spring of 2007, public and Tribal meetings will be held to discuss the basin's hydrologic conditions and the effects those conditions are expected to have on the implementation of the Final 2006-2007 AOP.

III. MAINSTEM MASTER MANUAL AND ESA CONSULTATIONS

The Missouri River Master Water Control Manual (Master Manual) presents the water control plan and operational objectives for the integrated regulation of the System. First published in 1960 and subsequently revised during the 1970's, the Master Manual was revised again in March 2004 to include more stringent drought conservation measures. The 2003 Amendment to the 2000 Biological Opinion (2003 Amended BiOp) presented the USFWS' opinion that the regulation of the System would jeopardize the continued existence of the endangered pallid sturgeon. The USFWS provided a Reasonable and Prudent Alternative (RPA) to avoid jeopardy to the pallid sturgeon that included a provision for the Corps to develop a plan to implement a bimodal 'spring pulse' from Gavins Point Dam. Working with the USFWS, Tribes,

states and basin stakeholders, the Corps developed technical criteria for the bimodal spring pulse releases. In March 2006 the Master Manual was revised to include technical criteria for a spring pulse.

IV. FUTURE RUNOFF: AUGUST 2006 - DECEMBER 2007

Runoff into the six System reservoirs is typically low and relatively stable during the August-to-February period. The August 1 calendar year runoff forecast is used as input to the Basic reservoir regulation simulation (Simulation) in the AOP studies for the period August 2006 to February 2007. The August 1 runoff forecast for 2006 was 18.1 million acre-feet (MAF). Two other runoff scenarios based on the August 1 runoff forecast were developed for the same period. These are the 80 percent and 120 percent of the August 1 runoff forecast scenarios, which are input to the 80 percent and 120 percent of Basic Simulations for the August 2006 to February 2006 to February 2007 period.

Simulations for the March 1, 2007 to February 29, 2008 time period use five statistically derived inflow scenarios based on an analysis of historic water supply records from 1898 to 1997. This approach provides a good range of simulation for dry, average, and wet conditions, and eliminates the need to forecast future precipitation, which is very difficult.

The five statistically derived inflows are identified as the Upper Decile, Upper Quartile, Median, Lower Quartile and Lower Decile runoff conditions. Upper Decile runoff (34.5 MAF) has a 1 in 10 chance of being exceeded, Upper Quartile (30.6 MAF) has a 1 in 4 chance of being exceeded, and Median (24.6 MAF) has a 1 in 2 chance of being exceeded. Lower Quartile runoff (19.5 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile (15.5 MAF) has a 1 in 10 chance of the occurrence of less runoff. There is still a 20 percent chance that a runoff condition may occur that has not been simulated; i.e., a 10 percent chance that actual runoff could be lower than Lower Decile, and a 10 percent chance that actual runoff could be greater than Upper Decile.

The Upper Decile and Upper Quartile simulations extend from the end of the 120 percent of Basic simulation through February 2008. Likewise, the Median simulation extends from the end of the Basic simulation, and the Lower Quartile and Lower Decile simulations extend from the end of the 80 percent of Basic simulation through February 2008.

The estimated natural flow at Sioux City, the corresponding post-1949 water use effects, and the net flow available above Sioux City are shown in *Table I*, where water supply conditions are quantified for the period August 2006 through February 2008. The natural water supply for calendar year (CY) 2005 totaled 20.1 MAF.

TABLE I NATURAL AND NET RUNOFF AT SIOUX CITY (Volumes in 1,000 Acre-Feet)

	<u>Natural 1</u> /	Post-1949 Depletions	<u>Net 2</u> /
	(Vol	umes in 1,000 Acre-Feet)	
		· · ·	
August 2006 through February 2007	(Basic Runoff S	ocenario)	
Basic	5,600	300	5,900
120% Basic	6,700	300	7,000
80% Basic	4,500	300	4,800
Runoff Year March 2007 through Fel	bruary 2008 (St	atistical Analysis of Past Re	ecords)
Upper Decile	34,500	-2,600	31,900
Upper Quartile	30,600	-2,500	28,100
Median	24,600	-2,500	22,100
Lower Quartile	19,500	-2,800	16,700
Lower Decile	15,500	-2,700	12,800

1/ The word "Natural" is used to designate runoff adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck reservoir have also been eliminated during its period of regulation prior to 1949.

2/ The word "Net" represents the total runoff after deduction of the post-1949 irrigation, upstream storage, and other use effects.

V. ANNUAL OPERATING PLAN FOR 2006-2007

A. <u>General</u>. The anticipated regulation described in this AOP is designed to meet the regulation objectives presented in the current Master Manual. While some aspects of System and individual project regulation are clearly defined by technical criteria in the Master Manual, for example navigation service level and season length, others such as minimum releases for irrigation and water supply in the reaches between the reservoirs are based on regulation experience and will be adjusted as needed to respond to changing conditions. The paragraphs below summarize some of the specific technical criteria included in the Master Manual. Consideration has been given to all of the authorized project purposes, to historic and cultural resources and to the needs of threatened and endangered (T&E) species.

The plan relies on a wealth of regulation experience. Reservoir regulation experience available for preparation of the 2006-2007 AOP includes 13 years of

regulation at Fort Peck (1940) by itself, plus 53 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) have been brought progressively into System regulation. This regulation experience includes lessons learned during the six consecutive years of drought from 1987 through 1992, the high runoff period that followed, and the current seven-year drought that began in 2000. Runoff during the period 1993 to 1999 was greater than the Upper Quartile level in five of those seven years, including the record 49.0 MAF of runoff in 1997. In addition to the long period of actual System reservoir regulation experience, many background regulation studies for the completed System are available for reference.

As described in the Master Manual, flow support for navigation and other downstream purposes is defined based on service level. A "full-service" level of 35,000 cfs results in target flows of 31,000 cfs at Sioux City and Omaha, 37,000 cfs at Nebraska City and 41,000 cfs at Kansas City. Similarly, a "minimum service" level of 29,000 cfs results in target flow values of 6,000 cfs less than the full service levels. Selection of the appropriate service level is based on the actual volume of water-in-storage (storage) in the System on March 15 and July 1.

The relation of System storage to navigation service level is presented in *Table II*. The volumes presented in *Table II* were derived from long-range model simulations that helped identify how the System should be regulated to best serve the authorized purposes during significant multi-year droughts. Straight-line interpolation defines intermediate service levels between full and minimum service. These service level determinations are for conservation and normal System regulation. During years when flood evacuation is required, the service level is calculated monthly or more frequently if required to facilitate a smooth transition in System release adjustments.

As shown in *Table II*, the water control plan calls for suspension of Missouri River navigation if System storage is at or below 31 MAF on March 15 of any year. It should be noted that the occurrence of System storage at or below 31 MAF would likely coincide with a national drought emergency. If any of the reservoir regulation studies performed for the development of an AOP indicate that System storage will be at or below 31 MAF by the upcoming March 15, the Corps will notify the Secretary of the Army. Per the revised Master Manual, the Corps will obtain approval from the Secretary of the Army prior to implementation of back-to-back non-navigation years.

TABLE IIRELATION OF SYSTEM STORAGE TO NAVIGATION SERVICE LEVEL

Date	System Storage (MAF)	Navigation Service Level
March 15	54.5 or more	35,000 cfs (full-service)
March 15	49.0 to 31	29,000 cfs (minimum-service)
March 15	31.0 or less	No navigation service
July 1	57.0 or more	35,000 cfs (full-service)
July 1	50.5 or less	29,000 cfs (minimum-service)

The System storage check for navigation season length is made on July 1 of each year. Assuming the System storage is above 31 MAF on March 15, a navigation season will be supported. A full 8-month navigation season will be provided if System storage is 51.5 MAF or above on July 1, unless the navigation season is extended to evacuate flood control storage. However, if System storage falls below 51.5 MAF on July 1, a shortened navigation season will be provided to conserve water. The specific technical criteria for season length are shown in *Table III*. Straight-line interpolation between 51.5 and 46.8 MAF of storage on July 1 provides the closure date for a season length between 8 and 7 months. If System storage on July 1 is between 46.8 and 41.0 MAF, a 7-month navigation season is provided. A straight-line interpolation is again used between 41.0 and 36.5 MAF, providing for a season length between 7 and 6 months. For System storage on July 1 at or below 36.5 MAF, a 6-month season is provided.

TABLE III RELATION OF SYSTEM STORAGE TO NAVIGATION SEASON LENGTH

Date	System Storage (MAF)	Final Day of Navigation Support <u>at Mouth of the Missouri River</u>
July 1	51.5 or more	November 30 (8-month season)
July 1	46.8 through 41.0	October 31 (7-month season)
July 1	36.5 or less	September 30 (6-month season)

1 -

The System release required to meet minimum and full service target flows varies by month in response to downstream tributary flows. An analysis of the average monthly Gavins Point release needed to meet flow targets was completed in 1999. As part of that study, the relationship between annual runoff upstream of Sioux City and

the average Gavins Point release required for the navigation season was analyzed. The study showed that generally more water was needed downstream to meet flow targets during years with below normal upper basin runoff than during years with higher upper basin runoff. Therefore, regulation studies performed since 1999 use two levels of System release requirements; one for Median, Upper Quartile, and Upper Decile runoff scenarios, and another for Lower Quartile and Lower Decile scenarios. The updated release requirements for full and minimum service flow support are given in *Table IV*. Releases required for minimum service flow support are 6,000 cfs less than full service support. A final report detailing the procedures used in this study is available on our web site.

An examination of the data presented in *Table IV* reflects that, early in the season, the target location is generally at Sioux City with adequate tributary flows meeting the other downstream flow targets. Tributary contributions normally decline during the summer, and the target location moves from Sioux City to Nebraska City and then to Kansas City. This requires higher flow support from the System as the season progresses through summer. Often the target moves upstream during the fall when higher downstream tributary flows return. This seasonal tributary flow pattern is reflected in the Gavins Point release data presented below.

The releases presented in *Table IV* are average monthly values during the period studied for various runoff conditions and do not reflect the range of daily releases that may be required during any given month to meet flow targets. Actual regulation, therefore, requires daily adjustments to fully serve the Congressionally authorized project purpose of navigation.

In general, releases from Gavins Point are adjusted as needed to meet target flow levels on the lower Missouri River. However, during the nesting season of the endangered interior least tern (tern) and the threatened piping plover (plover), care must be taken to avoid impacts to nesting areas. These two bird species are listed as threatened and endangered under the ESA and are protected under that Act. Several scenarios have been used in past years to regulate the System during the nesting season. Under the Steady-Release (SR) scenario, when the birds begin to initiate nesting activities in early to mid-May, the release from Gavins Point is set to the level expected to be required to meet downstream flow targets through August and maintained at that level until the end of the nesting season. This regulation results in releases that exceed the amount necessary to meet downstream flow targets during the early portion of the nesting season, and may result in targets being missed if downstream basin conditions are drier than expected during the summer.

TABLE IV GAVINS POINT RELEASES NEEDED TO MEET TARGET FLOWS FOR INDICATED SERVICE LEVEL 1950 to 1996 Data (Discharges in 1,000 cfs)

<u>Median, Upper Quartile, Upper Decile Runoff</u>								
	Āpr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	26.7	28.0	27.9	31.6	33.2	32.6	32.0	31.1
Minimum Service	20.7	22.0	21.9	25.6	27.2	26.6	26.0	25.1
Lower Quartile, Lower Decile Runoff								
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	29.8	31.3	31.2	34.3	34.0	33.5	33.1	31.2

25.2

28.3

28.0

27.5

27.1

25.2

25.3

23.8

Minimum Service

Gavins Point releases, under the Flow-to-Target (FTT) scenario, are adjusted as needed throughout the nesting season to meet downstream flow targets and would typically result in increasing releases as the nesting season progresses. This is due to reduced tributary inflows downstream as the summer heat builds, evaporation increases, and precipitation wanes. Increasing releases as the nesting season progresses can inundate nests and chicks on low-lying emergent sandbar habitat. Compared to the SR scenario, this scenario conserves more water in the System, which keeps the pool levels at the upper three System projects at relatively higher levels. However, this scenario also increases the risk of inundating nests. The FTT scenario also ensures that targets on the lower river are met throughout the nesting season.

A third scenario for Gavins Point releases, which has been used during nesting seasons since 2003, combines features of the other two options. This scenario, called the Steady Release – Flow-to-Target (SR-FTT) scenario, sets Gavins Point releases at an initial steady rate, and then allows releases to be adjusted upward or downward during the nesting season to meet downstream flow targets, if necessary. Depending on where the initial steady release is set, this regulation makes a larger amount of habitat available early in the nesting season and saves additional water in the upper three reservoirs when compared to the SR scenario. The SR-FTT scenario also reduces the potential for flooding nests and exceeding the allowable incidental take for listed terms and plovers when compared to the FTT scenario.

During the late 1980 to early 1990 drought years, a two-day-down, one-day-up peaking cycle from Gavins Point was utilized during the nesting season. This regulation provided for lower flows for two out of three days to conserve water in the System while ensuring that T&E bird species did not nest on low-lying habitat. This

cycling was successfully utilized during nest initiation periods in 2004 through 2006 as a water conservation measure. Depending on hydrologic conditions, a peaking cycle may be used to conserve water at the beginning of the nesting season in 2007. It may also be necessary to cycle releases for flood control regulation during the T&E species' nesting season.

The 2003 Amended BiOp recommended the implementation of a bimodal Gavins Point spring pulse plan by 2006. Working with the USFWS, Tribes, states and basin stakeholders, the Corps developed technical criteria for the bimodal spring pulse releases. *Table V* summarizes the spring pulse technical criteria included in the March 2006 Master Manual revision. The spring pulse drought precludes for both the March and May spring rises were initially set at 36.5 MAF. After the first occurrence of each pulse, its respective preclude was to be increased to 40.0 MAF. In 2006 there was no March spring pulse due to the low System storage, so the March preclude remains at 36.5 MAF for 2007. However, there was a May spring pulse in 2006, therefore, the May spring preclude for the 2007 and beyond has been increased to 40.0 MAF.

TABLE V TECHNICAL CRITERIA FOR SPRING PULSES FROM GAVINS POINT DAM

Criteria Applicable to Both the March and May Spring Pulses						
Flood Control Constraints	No change from current levels					
<u>Criteria Ap</u>	plicable to the March Spring Pulse					
Drought Preclude	36.5 MAF or below measured on March 1.					
-						
Drought Proration of	None, 5 kcfs added to navigation releases,					
Pulse Magnitude*	but no greater than 35 kcfs.					
Initiation of Pulse	Extend the stepped System release increases that					
	precede the beginning of the navigation season.					
Rate of Rise before Peak	Approximately 5 kcfs for 1 day.					
Duration of Peak	Two days.					
Rate of Fall after Peak	Drop over 5 days to navigation target release.					
	o Time Period Between the Bimodal Pulses					
Release	Existing Master Manual criteria					

Criteria Applicable to the May Spring Pulse

Drought Preclude	40.0 MAF or below measured on May 1.
Proration of Pulse Magnitude Based On System Storage*	Prorated from 16 kcfs based on a May 1 System storage check; 100% at 54.5 MAF; straight line interpolation to 75% at 40.0 MAF.
Proration of Pulse Magnitude Based On Projected Runoff*	After the proration of the spring pulse magnitude for System storage, the resultant magnitude would be further adjusted either up or down based on the May CY runoff forecast; 100% for Median; straight-line interpolation to 125% at Upper Quartile runoff; 125% for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile.
Initiation of Pulse	Between May 1 to May 19, depending on Missouri River water temperature immediately below Gavins Point Dam. If possible, pulse will be initiated after the second daily occurrence of a 16 degree Celsius water temperature; however, this decision will be made with consideration for the potential 'take' of threatened and endangered bird species.
Rate of Rise before Peak	Approximately 6 kcfs per day.
Duration of Peak	Two days.
Rate of Fall after Peak	Approximately 30% drop over 2 days followed by a proportional reduction in releases back to the existing Master Manual criteria over an 8-day period.

* Spring pulse magnitudes will be determined by taking the difference between prepulse Gavins Point releases and the peak pulse Missouri River flows measured just downstream of the mouth of the James River.

Water for the spring pulses ultimately comes from storage in the upper three reservoirs. During normal to wet basin conditions, runoff into the System will be sufficient to maintain steady-to-rising pool levels at the upper three reservoirs. However, during periods of drought the spring rise could cause a pool level decline at one or more of the upper three reservoir(s). As in 2006, primary consideration will be given to withdrawing the water needed for the May spring pulse from Fort Randall reservoir in 2007, rather than from one or more of the upper three reservoirs.

would avoid further declines at Fort Peck, Garrison and Oahe reservoirs, which are already drawn down substantially due to the ongoing drought. If using Fort Randall in this manner is not feasible, the Corps would then give consideration to distributing the upstream storage reductions due to the May pulse equally among the upper three reservoirs. Prior to implementing the May pulse, the Corps will coordinate with the affected Tribes and States to evaluate the options and determine the best course of action to minimize adverse impacts, including those associated with water quality due to low reservoir levels, water intakes, historic and cultural sites and reservoir fisheries.

В. 2006-2007 AOP Simulations. AOP simulations for the five runoff scenarios are shown in the final section of this AOP as studies 4 through 8. The March 1 System storage is below the 36.5 MAF March spring pulse preclude for all five runoff scenarios, so no March pulses are shown. Under the two highest runoff scenarios, the Upper Decile and Upper Quartile, System storage on May 1 is above the 40.0 MAF May spring pulse drought preclude, so May pulses are shown for those runoff scenarios, but not for the Median, Lower Quartile or Lower Decile scenarios. It is important to note, however, that the actual System storage on March 1 and May 1, 2007 will determine whether or not spring pulses will be implemented. Results of the simulations are shown in *Plates 3* and 4 for the System storage and the Fort Peck, Garrison and Oahe pool elevations. The March 15 and July 1 System storage checks from Tables II and III were used to determine the level of downstream flow support for navigation and other purposes as well as the navigation season length. For modeling purposes in this AOP, the SR-FTT regulation scenario with an initial steady release of 25,000 cfs is shown during the 2007 nesting season for Median runoff or above. The monthly average May release used in the simulations was determined using the May minimum service release of 22,000 cfs for two-thirds of the days and 25,000 cfs for the other third to reflect an every third day peaking cycle from Gavins Point. The June release was modeled as a steady 25,000 cfs due to the presence of chicks along the river at that time, and the *Table IV* releases were used for July and August to indicate flowing to target. For the two lower runoff conditions, Lower Quartile and Lower Decile, the SR-FTT regulation scenario with an initial steady release of 28,000 cfs was shown during the nesting season. The monthly average May releases was determined using the May minimum service release of 25,300 cfs for two-thirds of the days and 28,000 cfs for the other third to reflect an every third day peaking cycle from Gavins Point. The June release was modeled as a steady 28,000 cfs due to the presence of chicks along the river at that time. Table IV values were used for July and August to indicate flowing to target. Once the majority of the birds have nested on the newly constructed, high elevation habitat, releases will be made to meet downstream targets. The purpose of this regulation is to continue to meet the project purposes while minimizing the loss of nesting T&E species and conserving water in the upper three reservoirs. Although these modeled Gavins Point releases represent our best estimate of required releases during 2007, actual releases will be based on hydrologic conditions and the availability of habitat at that time. In addition, due to the extended drought and record low storage, consideration will also be given to ensure

adequate river and reservoir levels to protect human health and safety. The Corps will be examining a wide variety of options to conserve water which may include utilizing available flexibility during the nesting season while meeting the needs of the species and staying within the incidental take identified in the BiOp. Water conservation benefits all uses of the System (except flood control) through higher reservoir levels which result in increased service to authorized purposes. More normal reservoir levels also reduce potential impacts to water intakes, reduce exposure of some historic and cultural resources, provide better access to recreation sites, and reduce the likelihood of experiencing a non-navigation year in the future.

Table IV values were used in all the AOP studies for navigation support during the spring and fall months. Winter 2006-2007 and winter 2007-2008 Gavins Point releases of 12,500 cfs are shown in the simulations. This is lower than actual winter releases required for downstream powerplants and water supply intakes prior to 2004, but completed and on-going modification of intakes will permit lower winter releases as a conservation measure when System storage is low. Non-winter, non-navigation Gavins Point releases were modeled at 9,000 cfs as a further water conservation measure as described in the Master Manual, provided downstream tributary flows are adequate to serve water supply requirements. Adequate tributary flows in the Missouri River reach below the System allowed this goal to be achieved in the fall of 2004 and spring of 2005 and 2006. However, during the late fall of 2005 and 2006 System releases had to be increased to meet downstream water supply requirements because of low downstream tributary flows in critical reaches.

The Gavins Point releases shown in this and previous AOPs are estimates based on historic averages and experience. Adjustments are made as necessary in real-time based on hydrologic conditions to meet the Missouri River target flows presented in the Master Manual.

Application of the July 1 System storage check shown on *Table III* indicates that the 2007 navigation season will be shortened 29 days for Upper Decile, 31 days for Upper Quartile, 31 days for Median, 59 days for Lower Quartile, and 61 days for Lower Decile runoff. Minimum service navigation flows are provided for all runoff conditions due to low System storage. None of the simulations reach the desired 57.0 MAF System storage level on March 1, 2008.

Intrasystem releases are adjusted to best serve the multiple purposes of the projects with special emphasis placed on regulation for non-listed fisheries starting in early April and for T&E bird species beginning in early May and continuing through August. The Median, Upper Quartile, and Upper Decile simulations include releases that provide a steady to rising pool level in the three large upper reservoirs during the spring forage fish spawn period. The Lower Quartile and Lower Decile simulations are based on favoring steady to rising reservoir levels at Fort Peck and Oahe during the

spring forage fish spawn as part of the overall plan to rotate emphasis among the upper three reservoirs during low runoff years. This regulation is discussed in more detail later in this document.

Actual System regulation from January 1 through July 31, 2006 and the regulating plans for each project through CY 2007 using the five runoff scenarios described on Page 5 are presented on *Plates 5 through 10*, inclusive. Big Bend regulation is omitted since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual regulation since 1953.

Plate 11 illustrates for Fort Peck, Garrison, Oahe, and Gavins Point the actual releases (Regulated Flow) as well as the Missouri River flows that would have resulted if the reservoirs were not in place (Unregulated Flow) during the period January 2005 through July 2006. *Plate 12* presents past and simulated gross average monthly power generation and gross peaking capability for the System.

C. <u>Regulation Plan for the Balance of the 2006 Navigation Season and Fall of</u> <u>2006.</u> The regulation of the System for the period of August though November 2006 is presented in the following paragraphs.

<u>Fort Peck Dam</u>. Releases averaged 8,000 cfs during August and the first half of September. In mid-September they were reduced to 6,000 cfs and were held at that level until early November when they were increased to 7,000 cfs. The Fort Peck pool rose slightly through the period ending at 2201.3 on the last day of November. The record low pool is 2198.3 feet msl set in January 2005. The lowest elevation during the previous drought was 2208.7 feet msl set in April 1991.

<u>Garrison Dam</u>. Releases were increased from 21,000 cfs to 24,000 cfs after mid-August, averaging 22,000 cfs for the month. They continued at 24,000 cfs until mid-September when irrigation ceased, and were then reduced to 12,000 cfs through late October to facilitate intrasystem balance. Releases were increased to 13,000 in late October and held at that level through November. The Garrison pool level declined to 1808.9 feet msl at the end of November. The record low pool is 1805.8 feet msl set in May 2005. The lowest elevation during the previous drought was 1815.0 feet msl in May 1991.

<u>Oahe Dam</u>. Releases averaged 29,500 cfs in August, and were reduced in September to initiate an early fall drawdown of the Fort Randall pool as the navigation season closed 44 days early in 2006. Low releases continued in October and November to complete the annual fall draw of Fort Randall. Releases will be increased in December for winter power production. The Oahe pool ended November at elevation 1573.2 feet msl. A new record low Oahe pool of 1570.6 feet msl was set in August 2006. The previous record low during the current drought was 1572.0 set in August 2004. The lowest elevation during the previous drought was 1580.7 feet msl set in November 1989.

<u>Big Bend Dam</u>. Releases will parallel those from Oahe. Big Bend will generally fluctuate between 1420.0 feet msl and 1421.0 feet msl for weekly cycling during high power load periods.

<u>Fort Randall Dam</u>. Releases averaged 29,500 cfs in August and 26,300 cfs in September to back up the releases from Gavins Point Dam. When the navigation season ended in mid-October, releases were gradually reduced to as low as 7,000 cfs in October and November. The majority of the Fort Randall fall pool drawdown occurred in September and October. The reservoir ended November at elevation 1337.8 feet msl.

Gavins Point Dam. Releases were scheduled to support downstream minimum service flows throughout the remainder of the navigation season, which was shortened 44 days in 2006 in accordance with the technical criteria for the July 1 System storage check presented in the Master Manual. The last day of flow support for the commercial navigation season ranged from October 8 at Sioux City to October 17 at the mouth near St. Louis. Releases were reduced by 3,000 cfs per day beginning on October 8 until they reached 10,000 cfs. The 10,000 cfs release was maintained for 9 days to allow sufficient travel time for the release changes to reach the critical downstream locations. Releases were then reduced to 9,500 cfs for 5 days, before being increased to 10,500 cfs due to low downstream tributary flows. Intakes were closely monitored during this period to ensure their operability. Downstream tributary flow was adequate to allow a reduction to the 9,000 cfs level in the fall of 2004 and from mid-October to early November 2005. System releases were increased in November 2005 and October and November 2006 to meet downstream water supply requirements because of low downstream tributary flows. The 9,000 cfs fall non-navigation season release rate is based on sufficient incremental downstream tributary flows. We believe that this 9,000 cfs minimum spring-fall release represents a reasonable long-term goal for water intake owners to strive for as they make improvements to their facilities. The Gavins Point pool level was raised 1.5 feet to elevation 1207.5 feet msl in August when it was determined that T&E species were not nesting along the reservoir. The pool level remained near that elevation during the fall and winter months.

D. <u>Regulation Plan for Winter 2006-2007</u>. The September 1 System storage check is used to determine the amount of the winter System release. During the winter of 2006-2007, we will strive to average a 12,000 cfs System release. If mild weather conditions prevail, System releases may be set lower than 12,000 cfs, but only if downstream water supply intakes can remain operable at those levels. Conversely, 12,000 cfs may be less than is required for downstream water supply intakes without sufficient incremental tributary inflow below the System, and therefore, releases may need to be set at levels higher than 12,000 cfs at times to ensure downstream water

supply intakes are operable. However, we believe that this minimum winter flow represents a reasonable long-term goal for water intake owners to strive for as they make improvements to their facilities. It may be necessary at times to increase Gavins Point releases to provide adequate downstream flows due to the forecast of excessive river ice formation or if ice jams or blockages form which temporarily restrict flows, therefore the model results indicate an average winter System release of 12,500 cfs to allow for these increases. Based on past experiences, these events are expected to occur infrequently and be of short duration. It is anticipated that this year's winter release will be adequate to serve all downstream water intakes except for very short periods during significant river ice formation or ice jamming.

<u>Fort Peck Dam</u>. Releases are expected to average 10,000 cfs to serve winter power loads and balance System storage from December through February. Average winter release rates are about 11,000 cfs. The Basic simulation shows that the Fort Peck pool level will drop from about 2201 feet msl to about 2197 feet msl during the winter period, ending February about 37 feet below the base of the annual flood control storage zone. Carryover multiple purpose storage in the three large upper reservoirs will be near a balanced condition on March 1, 2007. The pool level is expected to rise during March to near elevation 2199 feet msl.

<u>Garrison Dam</u>. Releases will be adjusted to serve winter power loads and balance System storage. Releases will be scheduled at 15,000 to 16,000 cfs at the time of freezein and will then be increased to 17,500 cfs as conditions improve. Releases may have to be reduced for a short period during any freeze-in in the Bismarck area since warmer temperatures can melt a significant portion of the downstream ice cover. This reduction in releases is scheduled to prevent exceeding a targeted 13-foot stage at the Bismarck gage. Flood stage is 16 feet. Average winter release rates for Garrison are 20,700 cfs in December, 23,300 cfs in January and 24,700 cfs in February. The Garrison pool level is expected to fall from near elevation 1810 feet msl to near elevation 1807 feet msl by March 1, 30.5 feet below the base of the annual flood control storage zone. The Median simulation indicates the pool level will rise to elevation 1809 feet msl by March 31.

<u>Oahe Dam</u>. Releases for the winter season will provide backup for the Fort Randall and Gavins Point releases plus fill the recapture space available in the Fort Randall reservoir consistent with anticipated winter power loads. Monthly average releases may vary substantially with fluctuations in power loads occasioned by weather conditions but, in general, are expected to average 15,000 cfs. Daily releases will vary widely to best meet power loads. Peak hourly releases, as well as daily energy generation, will be constrained to prevent urban flooding in the Pierre and Fort Pierre areas if severe ice problems develop downstream of Oahe Dam. This potential reduction has been coordinated with the Western Area Power Administration. The Oahe pool level is expected to gradually rise from elevation 1574.5 feet msl at the end of November to elevation 1576 feet msl by the beginning of March, 31.5 feet below the base of the annual flood control storage zone. The pool is expected to rise to elevation 1579 feet msl by the end of March.

<u>Big Bend Dam</u>. The Big Bend pool level will be maintained in the normal 1420.0 to 1421.0 feet msl range during the winter.

<u>Fort Randall Dam</u>. Releases will average near 11,000 cfs. The Fort Randall pool level is expected to rise from a low elevation of 1337.5 feet msl to near elevation 1350.0 feet msl, the seasonal base of flood control, by March 1. However, if the plains snowpack flood potential downstream of Oahe Dam remains quite low, measures will be taken to raise the Fort Randall pool level to near elevation 1353.0 feet msl by March 1. It is likely that a pool level above elevation 1353.0 feet msl, to as high as 1355.2 feet msl, will be reached by the end of the winter period on March 31, if runoff conditions permit. The Fort Randall pool level above the White River delta near Chamberlain, South Dakota will likely remain at a higher elevation than the pool level below the delta from early October through December, due to the damming effect of this delta area.

<u>Gavins Point Dam</u>. Gavins Point winter releases are discussed in the first paragraph of this section. The Gavins Point pool level will be near elevation 1207.5 feet msl until late February when it will be lowered to elevation 1206.0 feet msl to create additional capacity to store spring runoff, primarily from the Niobrara River along the Fort Randall to Gavins Point reach.

System storage for all runoff conditions will be substantially below the base of the annual flood control zone by March 1, 2007, the beginning of next year's runoff season.

E. Regulation During the 2007 Navigation Season. The Upper Decile, Upper Quartile, Median, Lower Quartile, and Lower Decile runoff scenarios modeled for this year's AOP follow the specific technical criteria presented in the current Master Manual for downstream flow support. The normal 8-month navigation season is shortened as a water conservation measure for all runoff scenarios as shown in *Table VI*. Releases from Garrison and Fort Randall will follow repetitive daily patterns from early May, at the beginning of the T&E species' nesting season, to the end of the nesting in late August. As previously stated, the planned regulation for the 2007 nesting season will be SR-FTT. The initial steady release, which is estimated to be 25,000 to 28,000 cfs, will be based on hydrologic conditions and the availability of habitat at that time. In addition, due to the extended drought and record low storage, consideration will also be given to ensure adequate river and reservoir levels to protect human health and safety. The Corps will be examining a wide variety of options to conserve water which may include utilizing available flexibility during the nesting season while meeting the needs of the species and staying within the incidental take identified in the BiOp.

Model runs included in this AOP have a Gavins Point release peaking cycle of two days down and one day up during May to keep birds from nesting at low elevations. Once the majority of the birds have nested, releases will be adjusted to meet downstream targets. The purpose of this regulation is to continue to meet the project purposes while minimizing the loss of nesting T&E species and conserving water in the upper three reservoirs.

TABLE VI NAVIGATION SERVICE SUPPORT FOR THE 2007 SEASON

	Runoff	System S	torage	Flow Lev	Flow Level Above or	
	Scenario	March 15	July 1	Below F	ull Service	Shortening
	<u>(MAF)</u>	<u>(MAF)</u>	(MAF)		(cfs)	
				<u>Spring</u>	Summer/F	<u>all</u>
U.D.*	34.5	37.8	47.0	-6,000	-6,000	29
U.Q.*	30.6	37.5	45.1	-6,000	-6,000	31
Med	24.6	35.9	41.3	-6,000	-6,000	31
L.Q.	19.5	34.3	36.9	-6,000	-6,000	59
L.D.	15.5	34.2	34.7	-6,000	-6,000	61

* Includes a May Spring Pulse

The reservoir regulation simulations presented in this AOP for the Upper Decile, Upper Quartile, and Median runoff scenarios show that steady to rising pool levels would occur during the spring fish spawn period for the upper three System reservoirs. The studies show that inflows are sufficient to maintain steady to rising pools at Fort Peck and Oahe in April and May for Lower Quartile and Lower Decile runoff scenarios, however Garrison may fall during this period. The ability to provide steady to rising pool levels in the upper three reservoirs in low runoff years is very dependent on the volume, timing, and distribution of runoff. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2007, the Corps will, to the extent reasonably possible, set releases to result in a steady to rising pools at Fort Peck and Oahe during April and May. This will be accomplished at Fort Peck by setting releases at a level that would maintain the rising pool, but no less than the minimum required to supply downstream irrigation. At Oahe this will accomplished through adjustments in Garrison releases, however, these adjustments may be restricted when the terns and plovers begin nesting in May. If the drought continues, emphasis during the fish spawn will be rotated with Garrison being favored one year, followed by Oahe and Fort Peck the next. The upper three reservoirs will be managed to benefit forage fish to the extent reasonably possible, while continuing to serve the other Congressionally authorized project purposes. The plan may also be adjusted to be opportunistic in regard to runoff potential, and will continue to evolve as additional information becomes available.

All five runoff scenarios studied for this year's AOP provide gradually increasing Gavins Point releases to provide Missouri River navigation season flow support at the mouth of the Missouri near St. Louis on April 1, 2007, the normal navigation season opening date. The corresponding dates at upstream locations are Sioux City, March 23; Omaha, March 25; Nebraska City, March 26; and Kansas City, March 28. However, if there is no commercial navigation scheduled to use the upper reaches of the navigation channel, we will consider eliminating navigation flow support in those reaches to conserve water in the System, as was done in 2004 through 2006. The studies illustrated on *Plates 5 through 10* and summarized in *Table VI* are based on providing a shortened navigation season and minimum service flows for all runoff scenarios, except May through July when flows may exceed minimum service due regulation for T&E species. The simulation of March spring pulses are not indicated for any runoff scenario, however the Upper Quartile and Upper Decile runoff scenarios include the simulation of a May spring pulse for the benefit of the endangered pallid sturgeon. The magnitude of the May pulses in the Upper Decile and Upper Quartile runoff scenarios are 15,300 cfs and 15,000 cfs, respectively. The actual System storage on March 1 and May 1, 2007 will be used to determine whether or not spring pulses will be implemented. If a May pulse is to be implemented, the actual May 1 System storage and the May 1 runoff forecast will be used to determine the magnitude of that pulse.

Navigation flow support for the 2007 season will be determined by actual System storage on March 15 and July 1. Although all runoff scenarios modeled indicate minimum service flow support throughout the navigation season, if the July 1 System storage check indicates an increase in service level, any increase may be delayed until the end of the T&E bird species' nesting season, depending on the potential for 'take' of those species. Gavins Point releases may be quite variable during the 2007 navigation season but are expected to range from 22,000 to 32,000 cfs. Release reductions necessary to minimize downstream flooding are not reflected in these monthly averages but will be instituted as conditions warrant. Reductions in System releases to integrate the use of downstream Missouri River flow support from the Kansas Reservoir System have not been included since they are based on downstream hydrologic conditions but this storage will be utilized to the extent possible to provided basin water conservation. Simulated storages and releases for the System and individual reservoirs within the System are shown on *Plates 5 through 10.* Ample storage space exists in the System to control flood inflows under all scenarios simulated for this AOP.

Two modified reservoir regulation plans shown in previous AOPs, the Fort Peck "mini-test" and unbalancing the upper three reservoirs, will not be implemented in 2007 due to low System storage. Both these plans may be implemented when System storage recovers to more normal levels.

The first of these two modified plans is a test of flow modifications for the endangered pallid sturgeon. When Fort Peck has adequate water above the spillway crest by mid to late-May of any year, a flow modification "mini-test" may be conducted in early June to monitor effects of higher spring releases and warmer water released from the spillway. The purposes of the "mini-test" are to allow for an evaluation of the integrity of the spillway structure, to test data collection methodology, and to gather information on river water temperatures with various combinations of flow from the spillway and powerhouse. Streambank erosion and fishing impacts will also be monitored. Stop protocol for the "mini-test" is identified in the Fort Peck Flow Modification Mini-Test Environmental Assessment, dated March 2004. Before either test is run, the Corps will fully coordinate with the Assiniboine and Sioux Tribes of the Fort Peck Reservation, the State of Montana, and potentially affected stakeholders.

During the Fort Peck "mini-test," which would last about four weeks, flows will vary from 8,000 to 15,000 cfs as various combinations of spillway and powerplant releases are monitored. The maximum spillway release of 11,000 cfs will combine with a minimum powerplant release of 4,000 cfs for six days. This test will be timed to avoid lowering the pool level during the forage fish spawn. The "mini-test" will not be conducted if sufficient flows will not pass over the spillway crest (elevation 2225 feet msl). A minimum pool level of about 2229 feet msl is needed during the test to avoid unstable flows over the spillway. Results of the AOP simulations show that this elevation will not be achieved in 2007 for any of the five runoff scenarios. A more extensive test with a combined 23,000 cfs release from Fort Peck is scheduled to be conducted beginning in early June in the year following the "mini-test" to allow further tests of the integrity of the spillway and to determine if warm water releases will benefit the native river fishery. Peak outflows during the full test would be maintained for two weeks within the four-week test period. The median extension studies included in this AOP indicate the soonest Fort Peck pool elevation would be sufficient to run the Fort Peck "mini-test" would be in 2011.

The second modified regulation plan involves unbalancing the three large upper reservoirs as shown on *Table VII* to benefit reservoir fishery and the three protected species. Reservoir unbalancing is computed based on the percentage of the carryover multiple purpose pool that remains in Fort Peck, Garrison and Oahe Reservoirs. The unbalancing would alternate at each project; high one year, float (normal regulation) the next year, and low the third year, as shown on *Table VII*. *Table VIII* shows the pool levels proposed by the MRNRC below which unbalancing would not be implemented. *Table VIII* indicates that the upper three projects should be balanced on March 1, 2007 and again on March 1, 2008. Due to the desire to conduct the Fort Peck mini-test as soon as possible, when the System begins to recover from the drought, Fort Peck will be the first reservoir to be favored in the reservoir unbalancing schedule. As indicated in *Table VII*, when Fort Peck is high, Garrison is low (approximately 3 feet) and Oahe is at the balanced elevation.

TABLE VIIRESERVOIR UNBALANCING SCHEDULE

	Fort	Peck	Garr	ison	Oahe		
Year	March 1	Rest of Year	March 1	Rest of Year	March 1	Rest of Year	
1	High	Float	Low	Hold Peak	Raise & hold during spawn	Float	
2	Raise & hold during spawn	Float	High	Float	Low	Hold peak	
3	Low	Hold peak	Raise & hold during spawn	Float	High	Float	

Notes: Float year: Normal regulation, then unbalance 1 foot during low pool years or 3 feet when System storage is near 57.0 MAF on March 1.

Low year: Begin low, then hold peak the remainder of the year.

High year: Begin high, raise and hold pool during spawn, then float.

TABLE VIII MRNRC RECOMMENDED RESERVOIR ELEVATION GUIDELINES FOR UNBALANCING

	Fort Peck	Garrison	Oahe
Implement unbalancing			
if March 1 pool is above	2234	1837.5	1607.5
this level.	feet msl	feet msl	feet msl
Implement unbalancing			
if March 1 pool level is			
in this range and the	2227-2234	1827-1837.5	1600-1607.5
pool is expected to raise	feet msl	feet msl	feet msl
more than 3 feet after			
March 1.			
Scheduling Criteria	Avoid pool level decline during spawn	Schedule after spawn period of April 20 –	Schedule after spawn period of
	period which ranges	May 20	April 8 – May 15
	from April 15 – May		
	30		

F. <u>**Regulation Activities for T&E Species and Fish Propagation Enhancement.</u>** As discussed in the previous section, the 2006-2007 AOP includes no provisions for unbalancing the Fort Peck, Garrison, and Oahe reservoirs on March 1, 2007 for any of the runoff scenarios. The criteria for unbalancing are based on recommendations provided by the MRNRC and the USFWS. Under all simulations, System storage will be below the minimum levels under which unbalancing is recommended by either the MRNRC or the USFWS.</u>

<u>Fort Peck Dam</u>. The repetitive daily pattern of releases from Fort Peck Dam has not been implemented since the 2004 tern and plover nesting season. This adaptive management decision was made based on data collected during previous nesting seasons. In recent years, birds in this reach have nested on available high habitat, and thus were not expected to be impacted by the potential range of releases from Fort Peck during the summer. Releases during the 2007 nesting season will not be restricted by the repetitive daily pattern unless habitat conditions or nesting patterns change. This regulation should result in habitat conditions for nesting terns and plovers that are similar to those that were available in 2006.

If flood flows enter the Missouri River below the project during the nesting season, hourly releases will be lowered to no less than 3,000 cfs in order to keep traditional riverine fish rearing areas continuously inundated, while helping to lower river stages at downstream nesting sites. When possible, releases will be maintained above 4,000 cfs as requested by the State of Montana for the protection of game and native river fish populations. April releases should be adequate for trout spawning below the project. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2007, the Corps will, to the extent reasonably possible while serving other Congressionally authorized project purposes, set releases to result in a steady to rising pool at Fort Peck during May and June. This will be accomplished by limiting the Fort Peck release during this time period. Maintaining a rising Fort Peck pool level will be dependent upon the daily inflow pattern to the reservoir, but appears possible under all the runoff scenarios. The T&E flow modification "mini-test" would not be run under any runoff scenario. The Fort Peck pool level must be at elevation 2229 feet msl to allow releases required for the "mini-test" through the spillway.

<u>Garrison Dam</u>. Daily average releases from Garrison will be much less than full powerplant capacity during the tern and plover nesting season under all runoff scenarios. Monthly average releases will decline 500 to 1,000 cfs during the summer nesting season. Hourly peaking will be restricted during the nesting season to limit peak stages below the project for nesting birds.

The Garrison pool level may again approach a level that jeopardizes the volume of cold-water habitat in 2007. The Corps will continue to work with the State of North Dakota to limit the release of cold water through the power plant using a combination of operational and physical means. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2007, the Corps will, to the extent reasonably possible while serving other Congressionally authorized project purposes, set releases to result in a steady to rising pool at Oahe during April and May and Fort Peck during May and June. Maintaining a rising pool at Oahe will be accomplished through increased releases from Garrison. Adjustments to Garrison's releases, however, may be necessary when the terns and plovers begin nesting in May. A rising pool at Garrison during the fish spawn in April and May will be dependent upon the daily inflow pattern to the reservoir but appears possible with all runoff simulations except the Lower Decile simulation.

<u>Oahe Dam</u>. Releases in the spring and summer will back up those from Gavins Point Dam. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2007, the Corps will, to the extent reasonably possible while serving other Congressionally authorized project purposes, set releases to result in a steady to rising pool at Oahe during April and May. Given Median or higher runoff, the pool level should be steady to rising in the spring; with Lower Quartile or Lower Decile runoff, it appears possible to maintain a steady pool during the forage fish spawn, but it will be dependent on the timing and distribution of runoff as well as the need to maintain reasonable releases from Garrison to avoid adverse impacts to other authorized purposes. Under all AOP simulations, the Oahe pool will fall during the remainder of the summer.

<u>Fort Randall Dam</u>. If System storage is high enough for the implementation of a May Gavins Point spring pulse, primary consideration will be being given to staging or storing extra water in Fort Randall reservoir prior to the pulse. This will reduce the risk of impacts at the upper three reservoirs including those associated with water quality due to lower reservoir levels, water intake access problems and historic and cultural site exposure. A May spring pulse is shown for the Upper Quartile and Upper Decile runoff scenarios.

To the extent possible, Fort Randall will be regulated to provide for a pool elevation near 1355 feet msl during the fish spawn period, provided water can be supplied from other reservoirs for downstream uses. The pool will not be drawn down below elevation 1337.5 feet msl in the fall to ensure adequate supply for water intakes. Hourly releases from Fort Randall during the 2007 nesting season will be restricted to limit peak stages below the project for nesting birds. Daily average flows may be increased every third day to preserve the capability of increasing releases later in the summer if drier downstream conditions occur. <u>Gavins Point Dam.</u> Assuming System storage is above the spring pulse precludes, March and May spring pulses will be made from Gavins Point Dam for the benefit of the endangered pallid sturgeon. Specific technical criteria related to the spring pulses, are presented in Table V. A May spring pulse is shown for the Upper Quartile and Upper Decile runoff scenarios. Although it is highly unlikely that a future spring rise will occur that will have a peak flow during the pulse at the same level as the initial steady release, as occurred in 2006, the Corps will consider the elimination of cycling releases in the recession limb of future spring pulses if such a regulation does not significantly increase the likelihood of exceeding the incidental take provided in the BiOp.

Based on 2003 through 2006 nesting season results with the SR-FTT regulation and planned habitat development activities, it is anticipated that sufficient habitat will be available above the planned release rates to provide for successful nesting. All reasonable measures to minimize the loss of nesting T&E bird species will be used. These measures include, but are not limited to, such things as a relatively high initial SR during the peak of nest initiation, the use of the Kansas River basin reservoirs, moving nests to higher ground when possible, and monitoring nest fledge dates to determine if delaying an increase a few days might allow threatened chicks to fledge. The location of tows and river conditions at intakes would also be monitored to determine if an increase could be temporarily delayed without impact. Cycling releases every third day may be used to conserve water early in the nesting season if extremely dry conditions develop. In addition, cycling may be used during downstream flood control regulation. The initial steady release, which is estimated to be 25,000 to 28,000 cfs, will be based on hydrologic conditions and the availability of habitat at that time. In addition, due to the extended drought and record low storage, consideration will also be given to ensure adequate river and reservoir levels to protect human health and safety. The Corps will be examining a wide variety of options to conserve water which may include utilizing available flexibility during the nesting season while meeting the needs of the species and staying within the incidental take identified in the BiOp.

The Gavins Point pool will be regulated near 1206.0 feet msl in the spring and early summer with day-to-day variations due to rainfall runoff. Greater fluctuations occur in the river, increasing the risk of nest inundation in the upper end of the Gavins Point pool. Several factors contribute to the increased risk of nest inundation in the upper end of the Gavins Point pool. First, because there are greater numbers of T&E bird species nesting below the Gavins Point project, Gavins Point releases are restricted during the nesting season to minimize loss of nests or chicks. Second, rainfall runoff between Fort Randall Dam and Gavins Point Dam can result in sudden pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs. Third, the regulation of Gavins Point for downstream flood control may necessitate sudden release reductions to prevent downstream T&E bird species losses. And finally, high releases required in wet years make nest inundation more likely. When combined, all these factors make it difficult and sometimes impossible to prevent inundation of nests in the upper end of the Gavins Point reservoir. It is anticipated that planned habitat creation projects in Lewis and Clark Lake may reduce these risks to T&E bird species by providing higher secure habitat for nesting. The pool will be increased to elevation 1207.5 feet msl when it is determined that there are no terns or plovers nesting along the reservoir.

G. Regulation Activities for Historic and Cultural Properties. As acknowledged in the 2004 Programmatic Agreement for the Operation and Management of the Missouri River Main Stem System (PA), wave action and fluctuation in the level of the System reservoir pools results in erosion along the banks of the reservoirs. With the recent drought conditions additional sites have become exposed as the pool levels have declined. The Corps will continue working with the Tribes utilizing 36 CFR Part 800 and the PA to address the exposure of these sites. The objective of a programmatic agreement is to deal "...with the potential adverse effects of complex projects or multiple undertakings..." The PA objective was to collaboratively develop a preservation program that would avoid, minimize and/or mitigate adverse effects along the System reservoirs. Under all simulations System storage will be below normal levels and pool elevation at the upper three reservoirs will remain low, continuing to expose cultural sites along the shorelines. Actions to avoid, minimize or mitigate adverse impacts and expected results of the actions are covered under Chapter VI of this AOP. *Plate* 15 shows the locations of the Tribal Reservations.

<u>Fort Peck Dam</u>. Depending on runoff in the Missouri River basin, System regulation during 2007 could result in a Fort Peck pool elevation variation from a high of 2225 feet msl to a low of 2188 feet msl. This is based on the Upper and Lower Decile runoff scenarios (see *Plate* 7 and the studies included at the end of this report). Based on a review of existing information, approximately 25 to 50 known sites could be affected during this period.

<u>Garrison Dam</u>. Based on the Upper and Lower Decile runoff scenarios (see *Plate 8* and the studies included at the end of this report), Garrison pool elevations could range between 1831 and 1800 feet msl during 2007. Based on a review of existing information, approximately 100 to 150 known sites could be affected during this period.

<u>Oahe Dam</u>. At the Oahe reservoir, the System regulation under the Upper and Lower Decile runoff scenarios could result in pool elevations between 1599 and 1565 feet msl (see *Plate 9* and the studies included at the end of this report). Based on a review of existing information, approximately 200 to 250 known sites could be affected during this period.

<u>Big Bend Dam</u>. System regulation will be adjusted to maintain the Big Bend pool level in the normal 1420 to 1421 feet msl range during 2007. Short-term increases above 1421 due to local rainfall may also occur. Based on a review of existing information, approximately 40 to 80 known sites could be affected during this period.

<u>Fort Randall Dam</u>. As part of the normal System regulation ,the Fort Randall pool elevations will vary between 1350 and 1355 feet msl during the spring and summer of 2007. Short-term increases above 1355 feet msl due to local rainfall may occur. The annual fall drawdown of the reservoir to elevation 1337.5 feet msl will begin prior to the close of the navigation season and will be accomplished by early December. The reservoir will then refill during the winter to elevation 1350 feet msl. Based on a review of existing information, approximately 75 to 100 known sites could be affected during this period.

<u>Gavins Point Dam</u>. System regulation will be adjusted to maintain the Gavins Point pool level in the normal 1206 to 1207.5 feet msl range during 2007. Short-term increases above 1207.5 feet msl may occur due to local rainfall. Based on a review of existing information, approximately 25 to 50 known sites could be affected during this period.

VI. SUMMARY OF RESULTS EXPECTED IN 2007

With regulation of the System in accordance with the 2006-2007 AOP outlined in the preceding pages, the following results can be expected.

A. <u>Flood Control</u>. All runoff scenarios studied will begin the March 1, 2007 runoff season substantially below the desired 57.0 MAF base of annual flood control and multiple use zone. Therefore, the entire System flood control zone, plus an additional 5.7 to 23.9 MAF of the carryover multiple use zone, will be available to store runoff. The System will be available to significantly reduce peak discharges and store a significant volume of water for all floods that may originate above the System.

Remaining storage in the carryover multiple use zone will be adequate to provide support for all of the other multiple purposes of the System, though at reduced levels.

B. <u>Water Supply and Water Quality Control</u>. Problems at intakes located in the river reaches and Mainstem reservoirs are related primarily to intake elevations or river access rather than inadequate water supply. In emergency situations, short-term adjustments to protect human health and safety would be considered to keep intakes operational.

Low reservoir levels during the current drought have contributed to both intake access and water quality problems for intakes on Garrison and Oahe reservoirs, including several Tribal intakes. The Standing Rock Sioux Tribe's intake at Fort Yates failed in November 2003 leaving the community without water for several days. The intake, which under normal circumstances is in Oahe reservoir, is presently in an open river situation due to Oahe reservoir receding as the pool level declined. The Bureau of Reclamation (BOR) has installed a temporary intake and drilled a well to ensure continued water supply for that community. The BOR has also lowered the intake at Wakpala on Oahe reservoir. The Corps has used its emergency authority to lower the intake at Parshall on Garrison reservoir. Other intakes that have been identified as having problems or potential problems include Mandaree, Twin Buttes, White Shield, Four Bears, Pick City and Garrison intakes on Garrison reservoir, and the Mni Waste' intake on Oahe reservoir. The Corps is working with the Cheyenne River Sioux Tribe to relocate the Mni Waste' water intake which serves over 14,000 residents of and near the Chevenne River Indian Reservation in Dewey, Ziebach, and Meade Counties in South Dakota. The new intake location will provide a more reliable water supply and will address many of the water quality issues that have occurred at the current location. If the drought continues, reservoir pool levels and releases may continue to fall below their previous historic lows creating the potential for additional intake access and water quality problems at both river and reservoir intakes. Under the Lower Decile runoff scenario, new record low pool levels would be set at each of the upper three reservoirs and significant efforts may be required to maintain access or identify alternative water supplies for several communities mentioned above.

Although below normal winter releases are being provided for all five runoff scenarios, all water supply and water quality requirements on the Missouri River both below Gavins Point Dam and between System reservoirs should be met for all flow conditions studied. Due to the low reservoir levels and releases many intake operators have experienced, and will continue to experience, additional water treatment costs. It is possible with the low winter releases that ice formation or ice jams may temporarily reduce river stages to levels below which some intakes can draw water. Therefore, during severe cold spells, experience has shown that for brief periods it may be necessary to increase Gavins Point releases to help alleviate downstream water supply problems.

During the non-navigation periods in the spring and fall, System releases as low as 9,000 cfs are possible with adequate downstream tributary flow, as was provided in the fall of 2004, the spring and fall of 2005, and the spring of 2006 to conserve water in the System for future use by all authorized purposes. If a non-navigation year would occur, summer releases as low as 18,000 cfs from the System are possible during the summer months. These lower release rates are expected to result in reduced river levels that may impact some downstream intakes that have marginal access to the Missouri River. Historically, water access problems have been associated with several of these intakes; however, in most cases the problems have been a matter of restricted access to the river or reservoir rather than insufficient water supply. In addition, the low summer release rate would likely result in higher water temperatures in the river which could impact the thermal discharge permits at power plants located along the lower

river. The Corps continues to encourage intake operators throughout the System and along the lower river reach to make necessary modifications to their intakes to allow efficient operation over the widest possible range of hydrologic conditions.

C. <u>Irrigation</u>. Scheduled releases from the System reservoirs will be sufficient to meet the volumes of flow required for irrigation diversions from the Missouri River. Some access problems may be experienced, however, if drought conditions persist. Due to the on going drought, many irrigators have made adjustments to their intakes and have experienced additional pumping costs. One example of the additional efforts put forth by irrigators is the purchase of a specialized dredge by conservation districts below Fort Peck that enables irrigators to operate over a wider range of flow conditions. Tributary irrigation water usage is fully accounted for in the estimates of water supply.

D. <u>Navigation</u>. Service to navigation in 2007 will be scheduled at minimum service flow support for all runoff scenarios. Although the AOP simulations provide a comparison of typical flow support under varying runoff conditions, the actual rate of flow support for the 2007 navigation season will be based on actual System storage on March 15 and July 1, 2007.

All simulations have minimum service flow support and a shortened navigation season. The anticipated service level and season length for all runoff conditions simulated are shown in *Table VI*. While navigation flows target are designed to provide the river depth and width necessary to maintain service to commercial navigation during the vast majority of runoff conditions experienced on the Missouri River, we have always realized that there can be problems during minimum service years when runoff downstream of the Kansas City flow target is low. The Corps has a contingency plan for these low runoff conditions. It includes escorting tows through identified problem areas (upon request); adjustments to river control structures; and dredging where appropriate.

E. <u>**Power.**</u> *Tables IX and X* give the estimated monthly System load requirements and hydropower supply of the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP), from August 2006 through December 2007. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments.

F. <u>Recreation, Fish and Wildlife</u>. The regulation of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a managed system. As a result of the drought, the upper three reservoir levels will remain well below normal and recreation access will be limited at several locations. Special regulation adjustments incorporating

TABLE IX PEAKING CAPABILITY AND SALES (1,000 kW at plant)

	Estimated Committed Sales*	E	rected	C of E C	anahility	,	Evo	ected B	ureau C	anahility	**			ected To m Capa		
2006	Culco		120%	Basic	80%		_	120%	Basic	80%			120%	Basic	80%	<u> </u>
			12070	<u>Dubio</u>	0070			12070	<u>Babio</u>	0070			12070	<u>Basic</u>	0070	
Aug	2259		2010	2008	2005			241	235	234			2251	2243	2239	
Sep	1844		1981	1977	1969			242	234	233			2223	2211	2202	
Oct	1808		1978	1968	1957			244	236	232			2222	2204	2189	
Nov	1889		1988	1973	1959			242	227	224			2230	2200	2183	
Dec	2055		2008	1981	1964			228	226	222			2236	2207	2186	
0007																
2007				1000	4074			004		004			0050		0405	
Jan	2240		2026	1999	1974			224	223	221			2250	2222	2195	
Feb	1993		2034	2009	1985			221	222	220			2255	2231	2205	
		<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>
Mar	1903	2077	2067	2032	1993	1991	232	234	237	229	229	2309	2301	2269	2222	2220
Apr	1778	2106	2092	2044	1993	1986	236	236	241	232	232	2342	2328	2285	2225	2218
May	1482	2131	2111	2061	1997	1982	247	244	251	239	239	2378	2355	2312	2236	2221
Jun	1723	2187	2159	2104	2026	1993	261	261	261	249	249	2448	2420	2365	2275	2242
Jul	2310	2209	2175	2109	2016	1973	261	261	261	250	249	2470	2436	2370	2266	2222
Aug	1858	2203	2173	2098	1994	1947	256	256	257	249	243	2459	2429	2355	2243	2190
Sep	1670	2206	2164	2087	1958	1909	256	255	255	249	242	2462	2419	2342	2207	2151
Oct	1488	2174	2137	2053	1964	1911	254	253	253	251	242	2428	2390	2306	2215	2153
Nov	1836	2188	2149	2061	1967	1913	251	250	242	242	244	2439	2399	2303	2209	2157
Dec	2039	2173	2133	2033	1944	1875	237	237	237	238	233	2410	2370	2270	2182	2108

* Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements will be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant.

TABLE X ENERGY GENERATION AND SALES (Million kWh at plant)

C	stimated ommitted Sales*	Fx	oected (C of E G	eneratio	n	Exp	ected Bi	ureau G	eneratior	ז **			ected To m Gene		
2005			<u>120%</u>	Basic	80%	<u></u>		120%	Basic	<u>80%</u>	<u>. </u>		120%	Basic	80%	
Aug Sep Oct Nov	846 718 722 783		834 529 436 289	840 536 438 293	846 520 446 289			75 70 64 63	75 67 47 43	76 62 47 41			909 598 500 352	915 603 485 336	922 581 492 331	
Dec	890		515	479	477			68	44	42			583	523	519	
2006 Jan Feb	903 867		485 403	487 437	467 456			67 63	52 46	43 38			552 465	539 483	510 494	
		<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>
Mar Apr May Jun Jul Aug Sep Oct Nov Dec	796 745 688 750 839 845 720 722 784 891	404 460 704 628 726 782 634 418 305 <u>540</u>	435 499 720 641 732 748 570 516 323 <u>534</u>	427 518 637 654 747 744 579 497 299 <u>484</u>	462 613 725 711 747 709 457 297 301 494	474 614 733 721 734 693 409 293 289 445	95 101 147 171 193 141 125 102 100 <u>100</u>	107 108 124 137 166 136 116 98 97 <u>98</u>	69 75 92 105 112 115 109 93 93 <u>97</u>	45 49 71 83 81 81 76 61 60 <u>73</u>	45 48 70 81 80 77 70 55 49 <u>50</u>	499 561 851 799 919 923 759 520 405 <u>640</u>	542 608 844 778 899 883 686 614 420 <u>632</u>	496 593 730 759 859 859 688 589 392 <u>581</u>	507 661 796 794 829 789 533 358 361 <u>567</u>	519 662 802 814 770 479 348 338 495
CY TOT	9550	6488	6605	6511	6440	6327	1404	1316	1058	761	705	7892	7922	7569	7200	7032

* Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase. ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant.

specific objectives for these purposes will be accomplished whenever possible. Conditions in the lower three reservoirs should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs.

Boat ramps that were lowered and low water ramps that were constructed during the drought of the late 1980's to early 1990's and the further improvements made in 2003 through 2006 should provide adequate reservoir access in 2007 for runoff scenarios above the Lower Quartile. For the Lower Quartile runoff scenario, reservoir levels would be approaching the levels where many boat ramps become unusable. Under the Lower Decile runoff scenario, all three of the upper reservoirs would be at or below previous record lows during next summer's recreation season and significant efforts would be needed to maintain access. However, boat ramps in some areas where the ramps cannot be extended may become unusable. This will affect the normal use patterns as visitors will have to seek out areas with usable boat ramps.

The effects of the simulated System regulation during 2007 on fish and wildlife are included in Chapter V, Section F, entitled, "Regulation Activities for T&E Species and Fish Propagation Enhancement."

G. <u>Historic and Cultural Properties</u>. As mentioned in Chapter V of this AOP, the regulation of the System during 2006 and 2007 will expose cultural sites due to erosion from the normal fluctuation of pool elevations as well as the recent drought conditions which has exposed previously inundated sites as the waters have receded. The Corps will work with the Tribes utilizing 36 CFR Part 800 and the PA to address the exposure of these sites. The objective of a PA is to deal "…with the potential adverse effects of complex projects or multiple undertakings…" The PA objective was to collaboratively develop a preservation program that would avoid, minimize and/or mitigate the adverse affects of the System operation.</u>

The planned preservation program for this AOP is outlined by multiple stipulations in the PA. One of the stipulations, or program components, is the five-year plan. This plan outlines how the Corps will accomplish its responsibilities under the PA and the National Historic Preservation Act. The "Draft Five Year Plan, dated February 2005" (see <u>https://www.nwo.usace.army.mil/CR/</u>) is currently being implemented. The plan includes inventory, testing and evaluation, mitigation and other specific activities that will allow the Corps to avoid, minimize and/or mitigate the adverse effects to cultural sites on Corps lands within the System. Many of the actions listed in the plan are within the elevation ranges that will occur with the implementation of the Master Manual criteria in 2006-2007. Two critical components of the five year plan that are applicable to this AOP are monitoring and mitigation, which will be briefly discussed in the following paragraphs.

First, a collaboratively developed plan, entitled "Draft Monitoring and Enforcement Plan, dated April 2005" (see <u>https://www.nwo.usace.army.mil/CR/</u>) is in place. This monitoring plan outlines the sites that require monitoring and specifies a frequency for monitoring. The Corps plans to strategically monitor sites, those sites within the potential operating pool elevations, to document the effects of the implementation of the 2006-2007 AOP. Specific sites are identified in the draft Monitoring and Enforcement Plan for the monitoring team, comprised of Corps rangers and Tribal monitors, to visit and document impacts. This focused monitoring will result in more accurate data on the current impacts to sites along the river plus it will assist in the identification of sites for mitigation.

Secondly, it is expected that the monitoring of the implementation of the AOP will identify sites that will require immediate mitigation. The Corps plans to compile the data from the monitoring efforts and determine which sites will require immediate mitigation, most likely stabilization, during the implementation of this AOP. It is expected that there will be more sites than funding will allow, so the Corps will work with the affected Tribes, Tribal Historic Preservation Officers, the Advisory Council on Historic Preservation, State Historic Preservation Officers, and other consulting parties in the prioritization of those sites that need stabilization.

Results expected from the proposed monitoring and mitigation actions include more accurate horizontal and vertical data on existing cultural sites, detailed impact data, proactive protection and preservation of sites. The effects of the simulated System regulation during 2007 on cultural sites are included in the Chapter V, section G., entitled, "Regulation Activities for Historic and Cultural Properties."

H. <u>System Storage</u>. If presently anticipated runoff estimates based upon the August 1, 2006 Basic runoff forecast materialize, System storage will fall below the previous record low in December 2006 and total only 34.6 MAF by the close of CY 2006. This would be 0.2 MAF lower than the all-time record low storage of 34.8 MAF set on January 21, 2005, and 0.6 MAF lower than the previous record low end-of-year storage of 35.2 MAF set in 2004. This end-of-year storage is 19.0 MAF less than the 1967 to 2005 average. The record low storage during the 1988-1992 drought was 40.8 MAF in January 1991. The end-of-year System storages have ranged from a maximum of 60.9 MAF, in 1975, to the 2004 minimum of 35.2 MAF. Forecasted System storage on December 31, 2007 is presented in *Table XI* for the runoff scenarios simulated.

I. <u>Summary of Water Use by Functions</u>. Anticipated water use in CY 2006, under the regulation plan with the Basic forecast of water supply is shown in *Table XII*. Actual water use data for CY 2005 are included for information and comparison. Under the reservoir regulation simulations in this AOP, estimated water use in CY 2007 also is shown in *Table XII*.

		Carryover	Unfilled	Total
Water Supply	Total	Storage	Carryover	Change
Condition	(12/31/07)	Remaining 1/	Storage 2/	CY 2007
	(Volumes	s in 1,000 Acre-Fee	et)	
Upper Decile	49,200	31,200	7,800	13,600
Upper Quartile	46,200	28,200	10,800	10,600
Median	40,000	22,000	17,000	5,400
Lower Quartile	34,300	16,300	22,700	600
Lower Decile	31,100	13,100	25,900	-2,600

TABLE XIANTICIPATED DECEMBER 31, 2007 SYSTEM STORAGE

<u>1</u>/ Net usable storage above 18.0 MAF System minimum pool level established for power, recreation, irrigation diversions, and other purposes.

2/ System base of annual flood control zone containing 57.0 MAF.

TABLE XII MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2005, 2006, AND 2007 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF)

	CY 2005	CY 2006		_	mulations f endar Year	-	
	Actual	Basic	Upper	Upper		Lower	Lower
		Simulation	Decile	Quartile	Median	Quartile	Decile
Upstream Depletions (1) Irrigation, Tributary Reservoir							
Evaporation & Other Uses	2.2	2.3					
Tributary Reservoir Storage Change	0.2	- <u>0.2</u>					
Total Upstream Depletions	2.4	2.1	2.9	2.8	2.8	3.0	2.7
System Reservoir Evaporation (2)	2.4	1.9	1.1	1.1	1.4	1.6	1.4
Sioux City Flows Navigation Season							
Unregulated Flood Inflows Between							
Gavins Point & Sioux City (3)	0.0	0.0					
Navigation Service Requirement (4)	10.4	11.7	12.9	12.1	11.2	10.3	10.0
Supplementary Releases	10.4	11.7	12.7	12.1	11.4	10.5	10.0
T&E Species (5)	0.4	0.2	0.5	0.5	0.2	0.2	0.2
Flood Evacuation (6)	0.4	0.0	0.0	0.0	0.0	0.2	0.2
Non-navigation Season	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Flows	3.8	3.6	3.5	3.5	3.5	3.8	3.8
Flood Evacuation Releases (7)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ribbe Evictuation hereases (7)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
System Storage Change	0.7	<u>-1.4</u>	<u>13.6</u>	10.6	<u>5.4</u>	0.6	<u>-2.6</u>
Total	20.1	18.1	34.5	30.6	24.6	19.5	15.5
Project Releases							
Fort Peck	4.1	4.9	5.2	5.4	5.3	5.1	5.2
Garrison	10.6	12.1	12.6	12.7	12.2	12.2	11.8
Oahe	10.9	12.1	11.0	11.5	12.0	12.8	12.8
Big Bend	10.0	11.4	10.9	11.4	11.9	12.7	12.6
Fort Randall	11.1	12.1	12.2	12.5	12.7	12.8	12.8
Gavins Point	12.6	13.2	14.3	14.3	14.0	13.9	13.9

(1) Tributary uses above the 1949 level of development including agricultural depletions and tributary storage effects.

(2) Net evaporation is shown for 2007.

(3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point releases were held to as low as 6,000 cfs.

(4) Estimated requirement for downstream water supply and water quality in 2007 is approximately 6.0 MAF.

(5) Increased releases required for endangered species regulation.

(6) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River.

(7) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall release.

VII. TENTATIVE PROJECTION OF REGULATION THROUGH MARCH 2013

The 5-year extensions to the AOP (March 2008 to March 2013) have been prepared to serve as a guide for the Western Area Power Administration's marketing activities and to provide data to allow basin interests to conduct long-term planning. Three runoff conditions are modeled in the extension studies: Median, Lower Quartile, and Lower Decile.

The navigation service level and season length criteria described in Section V.A. were applied to the extensions. The March 15 and July 1 System storage checks shown in *Tables II and III* were used to determine the flow support for navigation and other downstream uses and the navigation season length. A steady release – flow to target (SR-FTT) regulation with cycling in May was modeled during the T&E bird species' nesting season. *Table IV* releases, as computed by the March 15 and July 1 System storage checks, were used prior to and following the nesting season. The September 1 System storage check was used to determine the winter System release. Navigation service support and season length, magnitudes of March and May spring pulses, March 1 reservoir unbalancing, end of year System storage, and the winter release rate for the extensions are shown on *Table XIII*. The criteria considered as each year of the extensions was modeled are listed, along with the results, in *Tables XIV through XVI* for the Median, Lower Quartile, and Lower Decile extension studies, respectively.

Median Runoff. Studies 9 through 13 present the results of simulating Α. Median runoff (24.6 MAF) from 2008 through 2012. The March 1, 2008 System storage would be 40.3 MAF and would rise to 52.9 MAF by March 1, 2012, 4.1 MAF below the desired March 1 storage of 57.0 MAF, the base of the annual flood control and multiple use pool. The navigation service level would gradually increase from minimum service in 2008 to full service after the July 1 storage check in 2012. The 2008 navigation season would be shortened 31 days; a full 8-month navigation season would be supported in 2009 through 2012. Winter System releases would increase slightly from an average of the minimum 12,500 cfs to 12,600 cfs beginning the winter of 2011-2012. The winter of 2012-2013 releases would be 13,900 cfs. March and May spring pulses would occur each year, with the magnitude of the May pulse increasing from 12,800 cfs in 2008 to 16,000 cfs in 2012. Fort Peck, Garrison, and Oahe pools rise to the elevations described in Table VII that permit unbalancing by March 1, 2011. The Fort Peck "mini-test" could be conducted in 2011 by unbalancing the upper three reservoirs as shown in *Table XIII*. The Fort Peck release would average 12,800 cfs in June 2011. Fort Peck would not have to be favored again in 2012 to accommodate the full test, which would have a monthly average release of 18,200 cfs in June 2012.

TABLE XIII NAVIGATION SERVICE SUPPORT, SPRING PULSES, UNBALANCING AOP EXTENSION STUDIES

	2008	2009	2010	2011	2012
MEDIAN					
Spring Pulse					
March (kcfs)	5.0	5.0	5.0	5.0	5.0
May (kcfs)	12.8	14.2	15.1	15.7	16.0
Flow Level Below Full Service					
Spring (kcfs)	-6.0	-6.0	-5.0	-2.5	-1.2
Summer/Fall (kcfs)	-6.0	-5.1	-2.2	-0.7	0.0
Season Length (Months)	8-31 days	8	8	8	8
Reservoir Unbalancing (ft)	,				
Fort Peck	0	0	0	+4.2	0
Garrison	0	0	0	-3.0	+3.0
Oahe	0	0	0	0	-3.0
Dec 31 Storage (MAF)	45.0	48.6	50.9	52.1	52.8
Winter Release (kcfs)	12.5	12.5	12.5	12.6	13.9
LOWER QUARTILE					
Spring Pulse					
March (kcfs)	0	0	0	5.0	5.0
May (kcfs)	0	0	0	9.4	9.8
Flow Level Below Full Service					
Spring (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Summer/Fall (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Season Length (Months)	8-48 days	8-33 days	8-31days	8-31 days	8-31 days
Reservoir Unbalancing (ft)	_				
Fort Peck	0	0	0	0	0
Garrison	0	0	0	0	0
Oahe	0	0	0	0	0
Dec 31 Storage (MAF)	36.4	38.1	39.9	41.6	44.1
Winter Release (kcfs)	12.5	12.5	12.5	12.5	12.5
LOWER DECILE					
Spring Pulse					
March (kcfs)	0	0	0	0	0
May (kcfs)	0	0	0	0	0
Flow Level Below Full Service					
Spring (kcfs)	-6.0	N/A	-6.0	-6.0	-6.0
Summer/Fall (kcfs)	-6.0	N/A	-6.0	-6.0	-6.0
Season Length (Months)	6	0	6	6	6
Reservoir Unbalancing (ft)					
Fort Peck	0	0	0	0	0
Garrison	0	0	0	0	0
Oahe	0	0	0	0	0
Dec 31 Storage (MAF)	29.6	33.5	33.2	33.6	34.3
Winter Release (kcfs)	12.5	12.5	12.5	12.5	12.5

		Table XIV					
	Median Ext	Extension Studies - Criteria Considered in the Modeling Effort	idered in the	Modeling E	ffort		
Study Number			6	10	11	12	13
	Units	Criteria	2008-2009	2009-2010	2010-2011	2011-2012	2012-2013
March 1 Storage	AAM	Initially 36.5/40	40.331	45.324	48.933	51.154	52.373
March Spring Pulse?	N/A		yes	yes	yes	yes	yes
March 15 Storage	AAF	31/49/54.5	41.305	46.327	49.949	52.162	53.412
Service Level	N/A or kcfs	No Sea/Min/Full Thresholds	Minimum	Minimum	Full -5.0	Full -2.5	Full -1.2
3rd Period March GP Q	kcfs		20.7+2.2	20.7+2.2	21.7+2.2	24.2+2.2	25.5+2.2
April Gavins Point Q	kcfs		20.7	20.7	21.7	24.2	25.5
May 1 Storage	MAF	40	42.809	47.841	51.375	53.379	54.499
May Spring Pulse?	N/A		yes	yes	yes	yes	yes
Pulse Magnitude	kcfs		12.77	14.16	15.14	15.69	16.00
Gavins Point Cycling Qs	kcfs		22.0/25.0	22.9/25.9	25.8/28.8	27.3/30.3	28.0/31.0
May Gavins Point Q	kcfs		25.5	26.7	29.7	31.4	32.1
June Gavins Point Q	kcfs		25.0	25.9	28.8	30.3	31.0
July 1 Storage	MAF	50.5/57	46.430	51.422	54.566	56.304	57.257
Service Level	N/A	Min/Full Thresholds	Minimum	Full -5.1	Full -2.2	Full -0.7	Full
July Gavins Point Q	kcfs		25.6	26.5	29.4	30.9	31.6
Aug Gavins Point Q	kcfs		27.2	28.1	31.0	32.5	33.2
Sept Gavins Point Q	kcfs		26.6	27.5	30.4	31.9	32.6
July 1 Storage	MAF	36.5/41&46.8/51.5	46.430	51.422	54.566	56.304	57.257
Season Length Shortening	days	61/31&31/0 Thresholds	31	0	0	0	0
Oct Gavins Point Q	kcfs		22.4	26.9	29.8	31.3	32.0
Nov Gavins Point Q	kcfs		9.0	26	28.9	30.4	31.1
Nov last period Gavins Q	kcfs		9.0	15.5	17.2	18.1	19.0
September 1 Storage	MAF	55/58	45.970	50.794	53.522	55.052	55.915
Winter Gavins Point Q	kcfs	12/17 Thresholds	12.5	12.5	12.5	12.6	13.9
December 31 Storage	MAF		45.040	48.644	50.870	52.118	52.809
Ft. Peck Level 2/28/end of WY	ft msl		2216.2	2222.0	2229.7	2227.3	2224.0
Garrison Level 2/28/end of WY	ft msl		1822.8	1827.6	1827.4	1832.0	1832.3
Oahe Level 2/28/end of WY	ft msl		1592.5	1597.4	1600.4	1601.9	1605.6
Balance/Unbalance	N/A	Bal <2227/1827/1600 ft msl	Balance	Balance	4.2 P -3.0 G	3.0 G -3.0 O	-4.2 P 3.0 O
Peck Rise 3/31-6/30 Odd Yrs	N/A		Yes	Yes	Yes	Yes	Yes
Garr Rise 3/31-6/30 Even Yrs	N/A		Yes	Yes	Yes	Yes	Yes
Oahe Rise 3/31-6/30 Odd Yrs	N/A		Yes	Yes	Yes	Yes	Yes
Special Information	N/A					Peck Mini T	Peck Full T

		Table XV					
Lower Q	er Quartile Ex	uartile Extension Studies - Criteria Considered in the Modeling Effort	isidered in t	he Modelin	g Effort		
Study Number			14	15	16	17	18
	Units	Criteria	2008-2009	2009-2010	2010-2011	2011-2012	2012-2013
March 1 Storage	MAF	Initially 36.5/40	34.152	36.410	38.146	40.015	41.708
March Spring Pulse?	N/A		No	No	Yes	Yes	Yes
March 15 Storage	MAF	31/49/54.5	34.969	37.288	39.054	40.933	42.671
Service Level	N/A or kcfs	No Sea/Min/Full Thresholds	Minimum	Minimum	Minimum	Minimum	Minimum
3rd Period March GP Q	kcfs		23.8	23.8	23.8	23.8+2.2	23.8+2.2
April Gavins Point Q	kcfs		23.8	23.8	23.8	23.8	24.8
May 1 Storage	MAF	40	35.738	38.116	39.878	41.763	43.659
May Spring Pulse?	N/A		No	No	No	Yes	Yes
Pulse Magnitude	kcfs		0	0	0	9.37	9.77
Gavins Point Cycling Qs	kcfs		25.3/28	25.3/28	25.3/28	25/28	25/29
May Gavins Point Q	kcfs		26.2	26.2	26.2	28.5	28.5
June Gavins Point Q	kcfs		28.0	28.0	28.0	28.0	28.0
July 1 Storage	MAF	50.5/57	38.446	40.726	42.597	44.39	46.569
Service Level	N/A	Min/Full Thresholds	Minimum	Minimum	Minimum	Minimum	Minimum
July Gavins Point Q	kcfs		28.3	28.3	28.3	28.3	28.3
Aug Gavins Point Q	kcfs		28	28	28	28	28
Sept Gavins Point Q	kcfs		27.5	27.5	27.5	27.5	27.5
July 1 Storage	MAF	36.5/41&46.8/51.5	38.446	40.726	42.597	44.390	46.569
Season Length Shortening	days	61/31&31/0 Thresholds	48	33	31	31	31
Oct Gavins Point Q	kcfs		13.4	22.1	23.3	23.3	23.3
Nov Gavins Point Q	kcfs		9	6	6	6	6
Nov last period Gavins Q	kcfs		9	6	6	6	6
September 1 Storage	MAF	55/58	37.250	39.493	41.369	43.128	45.394
Winter Gavins Point Q	kcfs	12/17 Thresholds	12.5	12.5	12.5	12.5	12.5
December 31 Storage	MAF		36.361	38.079	39.930	41.63	44.053
Ft. Peck Level 2/28/end of WY	ft msl		2200.3	2203.6	2207.0	2210.0	2214.3
Garrison Level 2/28/end of WY	ft msl		1809.7	1812.5	1815.3	1817.8	1821.3
Oahe Level 2/28/end of WY	ft msl		1578.5	1579.1	1584.5	1587.1	1590.8
Balance/Unbalance	N/A	Bal <2227/1827/1600 ft msl	Balance	Balance	Balance	Balance	Balance
Peck Rise 3/31-6/30 Odd Yrs	N/A		Yes	Yes	Yes	Yes	Yes
Garr Rise 3/31-6/30 Even Yrs	N/A		Yes	Yes	Yes	Yes	Yes
Oahe Rise 3/31-6/30 Odd Yrs	N/A		May down	Yes	May down	Yes	May down
Special Information	N/A						

		Table XVI					
Lowe	er Decile Ex	Lower Decile Extension Studies - Criteria Considered in the Modeling Effort	sidered in th	e Modeling	Effort		
Study Number			19	20		22	23
	Units	Criteria	2008-2009	2009-2010	2010-2011	2011-2012	2012-2013
March 1 Storage	MAF	Initially 36.5/40	30.757	29.420	33.426	33.191	33.664
March Spring Pulse?	N/A		No	No	No	No	No
March 15 Storage	MAF	31/49/54.5	31.362	30.181	34.117	33.981	34.459
Service Level	N/A or kcfs	No Sea/Min/Full Thresholds	Minimum	No Season	Minimum	Minimum	Minimum
3rd Period March GP Q	kcfs		23.8	6	23.8	23.8	23.8
April Gavins Point Q	kcfs		23.8	6	23.8	23.8	23.8
May 1 Storage	MAF	40	31.767	1	34.751	34.734	35.244
May Spring Pulse?	N/A		No	No	No	No	No
Pulse Magnitude	kcfs		0	0	0	0	0
Gavins Point Cycling Qs	kcfs		28/25.3	1	28/25.3	28/25.3	28/25.3
May Gavins Point Q	kcfs		26.2	15.0	26.2	26.2	26.2
June Gavins Point Q	kcfs		28.0	18.0	28.0	28.0	28.0
July 1 Storage	MAF	50.5/57	32.747	1	35.715	35.955	36.51
Service Level	N/A	Min/Full Thresholds	Minimum	No Season	Minimum	Minimum	Minimum
July Gavins Point Q	kcfs		28.3	18.0	28.3	28.3	28.3
Aug Gavins Point Q	kcfs		28	18.0	28	28	28
Sept Gavins Point Q	kcfs		24.2	12.0	24.2	24.2	24.2
July 1 Storage	AAF	36.5/41&46.8/51.5	32.747		35.715	35.955	36.510
Season Length Shortening	days	61/31&31/0 Thresholds	61	-	61	61	61
Oct Gavins Point Q	kcfs		6	6	ი	ი	6
Nov Gavins Point Q	kcfs		6	ი	ი	ი	6
Nov last period Gavins Q	kcfs		6	6	6	6	6
September 1 Storage	MAF	55/58	30.505	33.384	33.772	34.113	34.629
Winter Gavins Point Q	kcfs	12/17 Thresholds	12.5	12.5	12.5	12.5	12.5
December 31 Storage	MAF		29.551	33.453	33.199	33.638	34.290
Ft. Peck Level 2/28/end of WY	ft msl		2185.8	2193.7	2193.9	2194.9	2196.1
Garrison Level 2/28/end of WY	ft msl		1797.5	1804.1	1804.4	1805.2	1806.2
Oahe Level 2/28/end of WY	ft msl		1565.1	1572.5	1572.7	1573.6	1574.7
Balance/Unbalance	N/A	Bal <2227/1827/1600 ft msl	Balance	Balance	Balance	Balance	Balance
Peck Rise 3/31-6/30 Odd Yrs	N/A		Yes	Yes	Yes	Yes	Yes
Garr Rise 3/31-6/30 Even Yrs	N/A		Yes	Yes	Yes	Yes	Yes
Oahe Rise 3/31-6/30 Odd Yrs	N/A		May down	Yes	No	Yes	٥N
Special Information	N/A						

B. <u>Lower Quartile Runoff</u>. Studies 14 through 18 show the results of Lower Quartile runoff extensions. System storage on March 1, 2008 is 34.2 MAF and rises to 44.2 MAF by March 1, 2013, with navigation service levels remaining at minimum service during the simulation period. The navigation season is shortened 48 days in 2008, 33 days in 2009, and 31 days in 2010 through 2012, as System storage increases. A 12,500-cfs average winter release is shown for the entire study period. Spring pulses would occur in March 2010 and in both March and May 2011 and 2012. The magnitude of these two May pulses are about 75 percent of those in the early years of the Median runs because of the reduction in the magnitude made for the runoff forecasts at and below Lower Quartile. Since the upper three reservoirs do not refill enough to meet the criteria in *Table VII* under Lower Quartile runoff, the carryover multiple use storage is balanced each March 1.

C. <u>Lower Decile Runoff</u>. Studies 19 through 23 show the results of Lower Decile runoff extensions. System storage is 30.8 MAF on March 1, 2008, reaching a low of 29.3 MAF on February 1, 2009, and then rising through much of the remainder of the period, ending at 34.3 MAF on March 1, 2013. Since the System storage is only 30.2 MAF (less than 31.0 MAF) on March 15, 2009, there would be no navigation season in 2009 under the Lower Decile runoff extensions. The Gavins Point releases would average 9,000 cfs in the spring and fall months and 18,000 cfs in the summer months (early May through early September). The higher summer releases are required to ensure that thermal power generation downstream from Gavins Point Dam remains near full capacity in the heavy energy use summer period. In the other 4 years of the Lower Decile runoff extensions (2008, 2010, 2011, and 2012), the navigation service level remains at minimum service and the navigation season is shortened 2 months each year. A 12,500-cfs average winter release is shown for the entire study period. No spring pulses or intrasystem unbalancing are shown due to the low system storage.

Plate **13** presents System storage, Gavins Point, and System peaking capability for Median, Lower Quartile, and Lower Decile runoff for the period 2008 through February 2013. Peak power, or peaking capability, is the amount of power available when all powerplants are operating at maximum.

Plate 14 presents reservoir pool elevations for Fort Peck, Garrison, Oahe, and Fort Randall for Median, Lower Quartile, and Lower Decile runoff for the period 2008 through February 2013.

This page intentionally left blank.

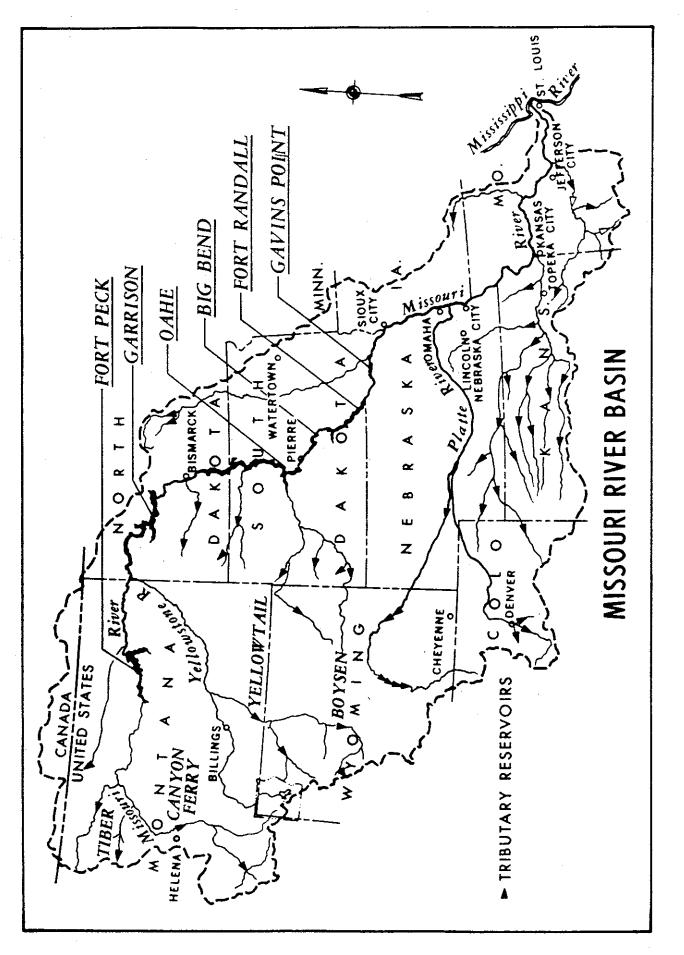
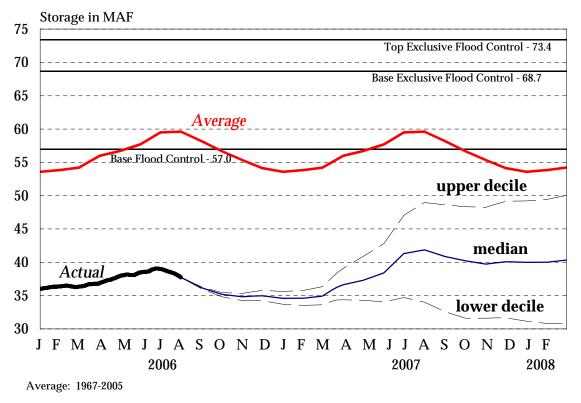



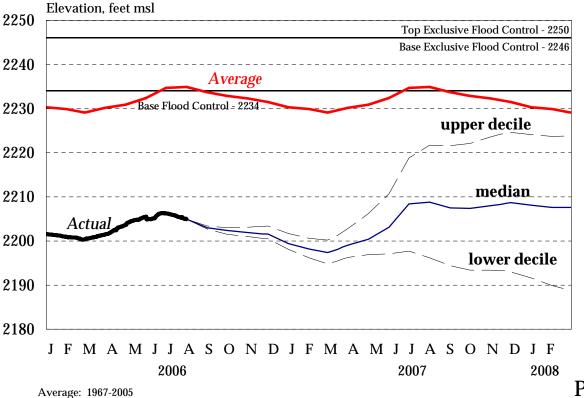
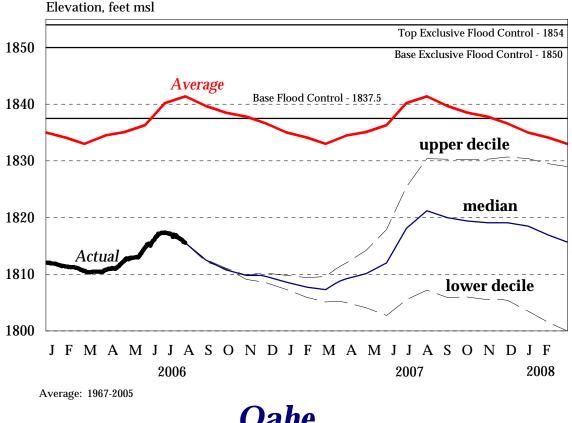
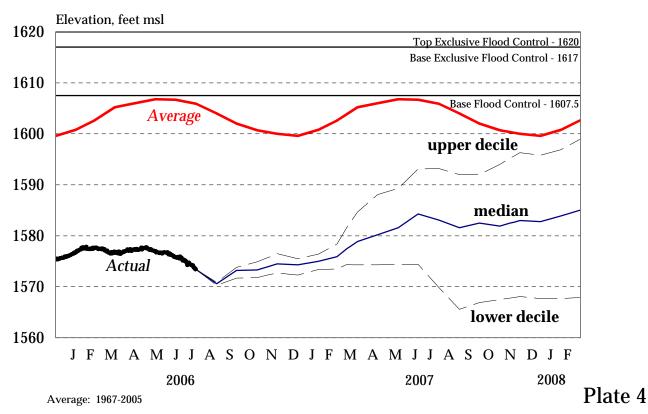
PLATE 1

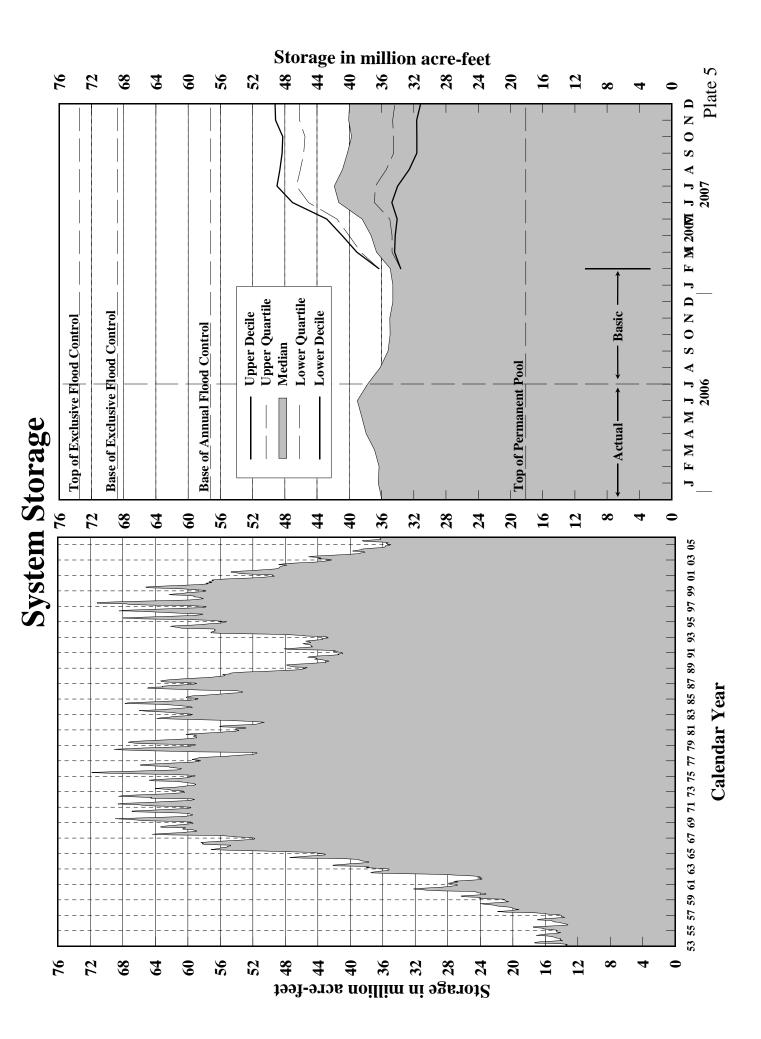
	Summ	ary of Engineering Data	Missouri River Mainstem S	System
Item No.	Subject	Fort Peck Dam - Fort Peck Lake	Garrison Dam - Lake Sakakawea	Oahe Dam - Lake Oahe
1	Location of Dam	Near Glasgow, Montana	Near Garrison, ND	Near Pierre, SD
2 3	River Mile - 1960 Mileage Total & incremental drainage areas in square miles	Mile 1771.5 57,500	Mile 1389.9 181,400 (2) 123,900	Mile 1072.3 243,490 (1) 62,090
4	Approximate length of full reservoir (in valley miles)	134, ending near Zortman, MT	178, ending near Trenton, ND	231, ending near Bismarck, ND
5 6	Shoreline in miles (3) Average total & incremental	1520 (elevation 2234) 10,200	1340 (elevation 1837.5) 25,600 15,400	2250 (elevation 1607.5) 28,900 3,300
7	inflow in cfs Max. discharge of record	137,000 (June 1953)	348,000 (April 1952)	440,000 (April 1952)
8 9	near damsite in cfs Construction started - calendar yr. In operation (4) calendar yr.	1933 1940	1946 1955	1948 1962
	Dam and Embankment			
10	Top of dam, elevation in feet msl	2280.5	1875	1660
11	Length of dam in feet	21,026 (excluding spillway)	11,300 (including spillway)	9,300 (excluding spillway)
12	Damming height in feet (5)	220	180	200
13	Maximum height in feet (5)	250.5	210	245
14	Max. base width, total & w/o	3500, 2700	3400, 2050	3500, 1500
15	berms in feet Abutment formations (under dam & embankment)	Bearpaw shale and glacial fill	Fort Union clay shale	Pierre shale
16	Type of fill	Hydraulic & rolled earth fill	Rolled earth filled	Rolled earth fill & shale berms
17	Fill quantity, cubic yards	125,628,000	66,500,000	55,000,000 & 37,000,000
18	Volume of concrete, cubic yards	1,200,000	1,500,000	1,045,000
19	Date of closure	24 June 1937	15 April 1953	3 August 1958
20	Spillway Data			District and the second
20	Location	Right bank - remote	Left bank - adjacent	Right bank - remote
21	Crest elevation in feet msl	2225	1825	1596.5
22	Width (including piers) in feet	820 gated	1336 gated	456 gated
23 24	No., size and type of gates	16 - 40' x 25' vertical lift gates 275,000 at elev 2253.3	28 - 40' x 29' Tainter 827,000 at elev 1858.5	8 - 50' x 23.5' Tainter 304,000 at elev 1644.4
24 25	Design discharge capacity, cfs Discharge capacity at maximum	275,000 at elev 2255.5 230,000	660,000	80,000 at elev 1644.4
25	operating pool in cfs	230,000	660,000	80,000
	Reservoir Data (6)	ł		
26	Max. operating pool elev. & area	2250 msl 246,000 acres	1854 msl 380,000 acres	1620 msl 374,000 acres
27	Max. normal op. pool elev. & area	2246 msl 240,000 acres		· · · · · · · · · · · · · · · · · · ·
28	Base flood control elev & area	2234 msl 212,000 acres		
29	Min. operating pool elev. & area Storage allocation & capacity	2160 msl 90,000 acres		
30	Exclusive flood control	2250-2246 975,000 a.f.		
31	Flood control & multiple use	2246-2234 2,717,000 a.f.		· · · ·
32	Carryover multiple use	2234-2160 10,785,000 a.f.		
33	Permanent	2160-2030 4,211,000 a.f.		· · · ·
34 35	Gross Reservoir filling initiated	2250-2030 18,688,000 a.f. November 1937	1854-1673 23,821,000 a.f. December 1953	
35 36	Initially reached min. operating pool	27 May 1942	7 August 1955	August 1958 3 April 1962
37	Estimated annual sediment inflow			19,800 a.f. 1170 yrs.
	Outlet Works Data			
38 39	Location Number and size of conduits	Right bank 2 - 24' 8" diameter (nos. 3 & 4)	Right Bank 1 - 26' dia. and 2 - 22' dia.	Right Bank 6 - 19.75' dia. upstream, 18.25'
40	Length of conduits in fact (2)	No. 3 6615 No. 4 7.240	1529	dia. downstream
40 41	Length of conduits in feet (8) No., size, and type of service gates	No. 3 - 6,615, No. 4 - 7,240 1 - 28' dia. cylindrical gate	1 - 18' x 24.5' Tainter gate per	3496 to 3659 1 - 13' x 22' per conduit, vertical
41	No., size, and type of service gates	6 ports, 7.6' x 8.5' high (net opening) in each control shaft	conduit for fine regulation	lift, 4 cable suspension and 2 hydraulic suspension (fine
		1	1	regulation)
42	Entrance invert elevation (msl)	2095	1672	1425
43	Avg. discharge capacity per conduit	Elev. 2250	Elev. 1854	Elev. 1620
44	& total Present tailwater elevation (ft msl)	22,500 cfs - 45,000 cfs 2032-2036 5,000 - 35,000 cfs	30,400 cfs - 98,000 cfs 1670-1680 15,000- 60,000 cfs	
45	Power Facilities and Data Avg. gross head available in feet (14)	194	161	174
45 46	Number and size of conduits	194 No. 1-24'8" dia., No. 2-22'4" dia.	5 - 29' dia., 25' penstocks	7 - 24' dia., imbedded penstocks
40	Length of conduits in feet (8)	No. 1 - 5,653, No. 2 - 6,355	1829	From 3,280 to 4,005
48	Surge tanks	PH#1: 3-40' dia., PH#2: 2-65' dia.	65' dia 2 per penstock	70' dia., 2 per penstock
49	No., type and speed of turbines	5 Francis, PH#1-2: 128.5 rpm, 1-164 rpm , PH#2-2: 128.6 rpm	5 Francis, 90 rpm	7 Francis, 100 rpm
50	Discharge cap. at rated head in cfs	PH#1, units 1&3 170', 2-140' 8,800 cfs, PH#2-4&5 170'-7,200 cfs	150' 41,000 cfs	
51	Generator nameplate rating in kW	1&3: 43,500; 2: 18,250; 4&5: 40,000	3 - 121,600, 2 - 109,250	112,290
52	Plant capacity in kW	185,250	583,300	786,030
53	Dependable capacity in kW (9)	181,000	388,000	534,000
54 55	Avg. annual energy, million kWh (12) Initial generation, first and last unit Estimated cost September 1999	1,097 July 1943 - June 1961	2,339 January 1956 - October 1960	2,749 April 1962 - June 1963
56	completed project (13)	\$158,428,000	\$305,274,000	\$346,521,000
	completed project (15)	ψ150, 4 20,000	φ303,27 4 ,000	ψ5+0,521,000

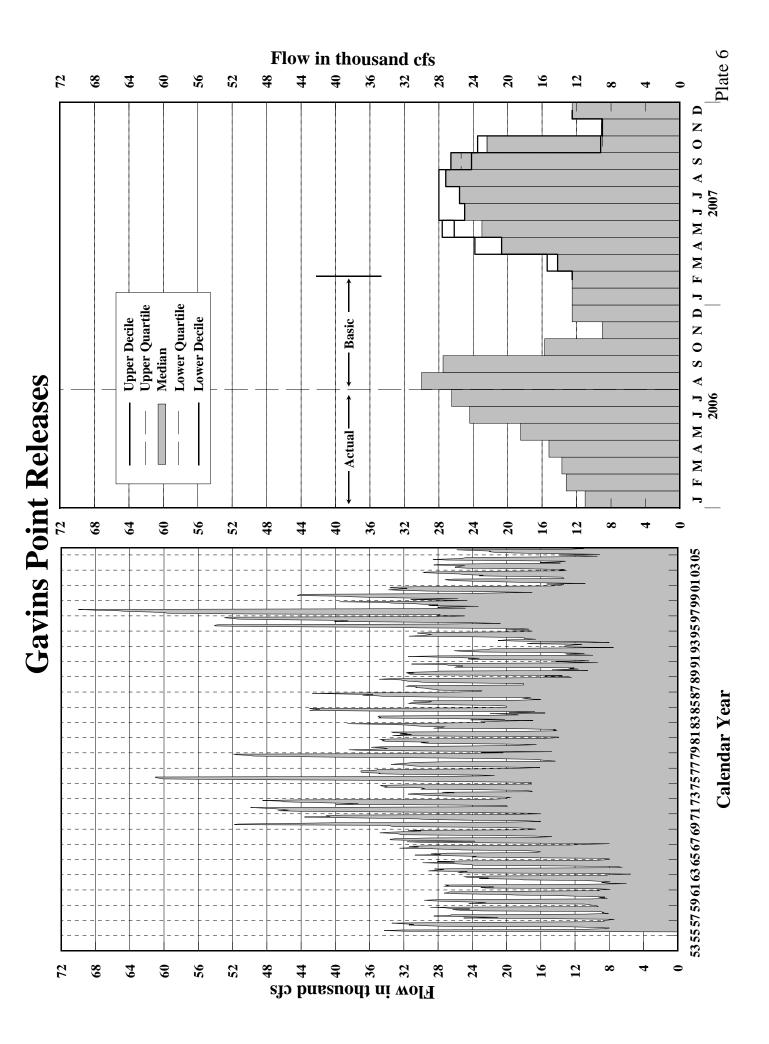
	S	Summary of Engi	ineering I	Data Missouri	River Ma	instem System		
	nd Dam - Sharpe	Fort Randall I Lake Francis		Gavins Point Lewis & Clar		Total	Item No.	Remarks
21 miles upstream	n Chamberlain, SD	Near Lake Andes, SD		Near Yankton, SD				(1) Includes 4,280 square
Mile 987.4 249,330 (1)	5,840	Mile 880.0 263,480 (1)	14,150	Mile 811.1 279,480 (1)	16,000		2 3	miles of non-contributing areas.
80, ending near P	ierre, SD	107, ending at Big Bend	l Dam	25, ending near Niobra	ıra, NE	755 miles	4	 Includes 1,350 square miles of non-contributing areas.
200 (elevation 14 28,900	20)	540 (elevation 1350) 30,000	1,100	90 (elevation 1204.5) 32,000	2,000	5,940 miles	5 6	(3) With pool at base of flood control.
440,000 (April 19	952)	447,000 (April 1952)		480,000 (April 1952)			7	(4) Storage first available for regulation of flows.(5) Damming height is height
1959 1964		1946 1953		1952 1955			8 9	from low water to maximum operating pool. Maximum
1440 10,570 (including 78 95 1200, 700	spillway)	1395 10,700 (including spillw 140 165 4300, 1250	vay)	1234 8,700 (including spillw 45 74 850, 450	ray)	71,596 863 feet	10 11 12 13 14	 height is from average streambed to top of dam. (6) Based on latest available storage data. (7) River regulation is attained by flows over low-crested
Pierre shale & Ni	obrara chalk	Niobrara chalk		Niobrara chalk & Carl	ile shale		15	spillway and through turbines.
Rolled earth, shal 17,000,000 540,000 24 July 1963	e, chalk fill	Rolled earth fill & chall 28,000,000 & 22,000,00 961,000 20 July 1952		Rolled earth & chalk fr 7,000,000 308,000 31 July 1955	ill	358,128,000 cu. yds 5,554,000 cu. yds.	16 17 18 19	 (8) Length from upstream face of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985).
Left bank - adjaco 1385 376 gated 8 - 40' x 38' Taint 390,000 at elev 1 270,000	er	Left bank - adjacent 1346 1000 gated 21 - 40' x 29' Tainter 620,000 at elev 1379.3 508,000		Right bank - adjacent 1180 664 gated 14 - 40' x 30' Tainter 584,000 at elev 1221.4 345,000			20 21 22 23	 (10) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2005 Average (13) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract
1423 msl 1422 msl 1420 msl 1415 msl	61,000 acres 60,000 acres 57,000 acres 51,000 acres	1365 msl 1350 msl	102,000 acres 95,000 acres 77,000 acres 38,000 acres	1208 msl 1204.5 msl			26 27 28 29	Report Fiscal Year 1999. (14) Based on Study 8-83-1985
1423-1422 1422-1420 1420-1345 1423-1345 November 1963 25 March 1964 4,300 a.f.	117,000 a.f. 1,621,000 a.f. 1,798,000 a.f.	1350-1320 1320-1240		1208-1204.5 1204.5-1160	59,000 a.f. 90,000 a.f. 321,000 a.f. 470,000 a.f. 180 yrs.		30 31 32 33 34 35 36 37	
4,500 a.i.	450 yis.	Left Bank	250 yis.	2,000 a.i.	180 yrs.	92,500 a.i.	38	
None (7)		 4 - 22' diameter 1013 2 - 11' x 23' per conduit, lift, cable suspension 	, vertical	None (7)			39 40 41	
1385 (11)			- 128,000 cfs				42 43	
1351-1355(10)	25,000-100,000 cfs	1228-1239 5,00	00-60,000 cfs	1155-1163 15,0	000-60,000 cfs		44	
70 None: direct intal None 8 Fixed blade, 81		117 8 - 28' dia., 22' penstock 1,074 59' dia, 2 per alternate p 8 Francis, 85.7 rpm		48 None: direct intake None 3 Kaplan, 75 rpm		764 feet 55,083 36 units	45 46 47 48 49	
67'	103,000 cfs	112'	44,500 cfs	48'	36,000 cfs		50	
3 - 67,276, 5 - 58 494,320 497,000 1,010 October 1964 - Ju		40,000 320,000 293,000 1,793 March 1954 - January 1	956	44,100 132,300 74,000 744 September 1956 - Janu	ary 1957	2,435,650 kw 1,967,000 kw 9,731 million kWh July 1943 - July 1966	54 55	Corps of Engineers, U.S. Army Compiled by Northwestern Division
\$107,	498,000	\$199,066,00	00	\$49,617,0	00	\$1,166,404,000		Missouri River Region February 2006

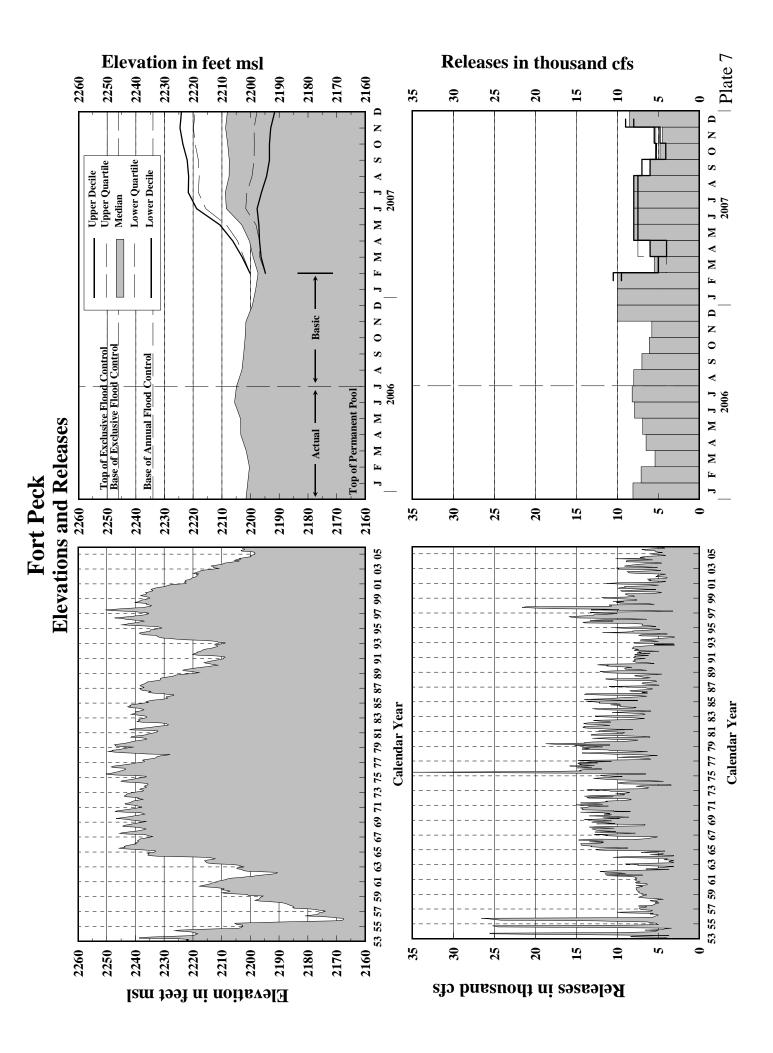
System Storage 2006-2007 Final AOP

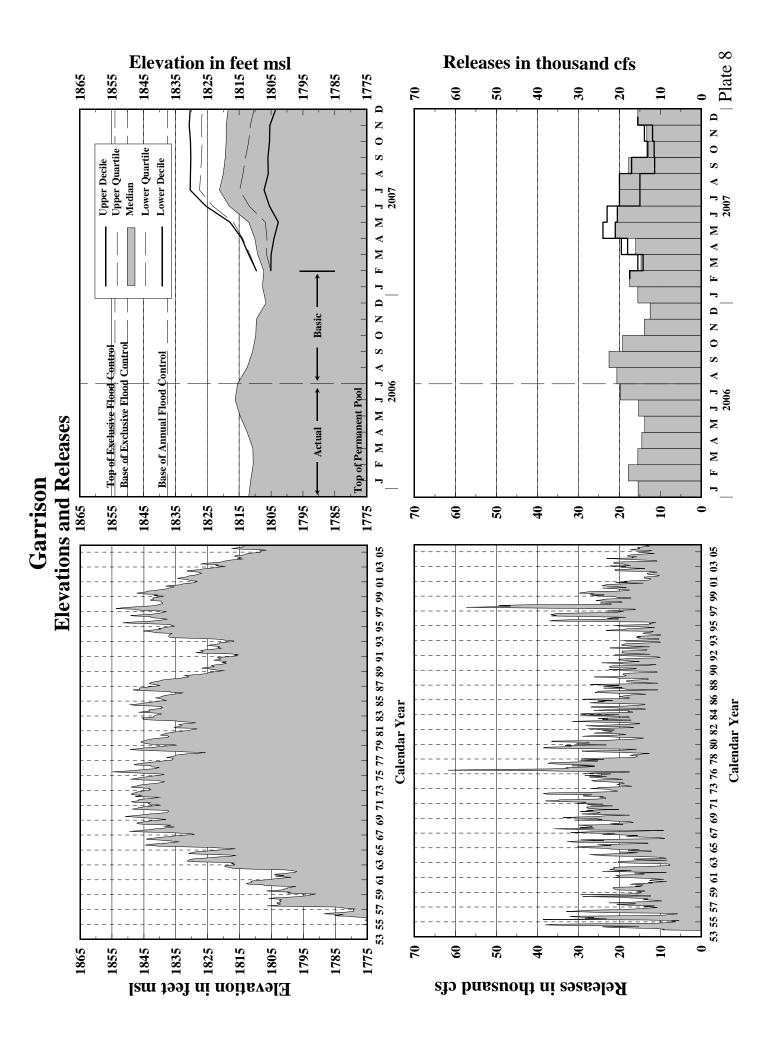
Fort Peck 2006-2007 Final AOP

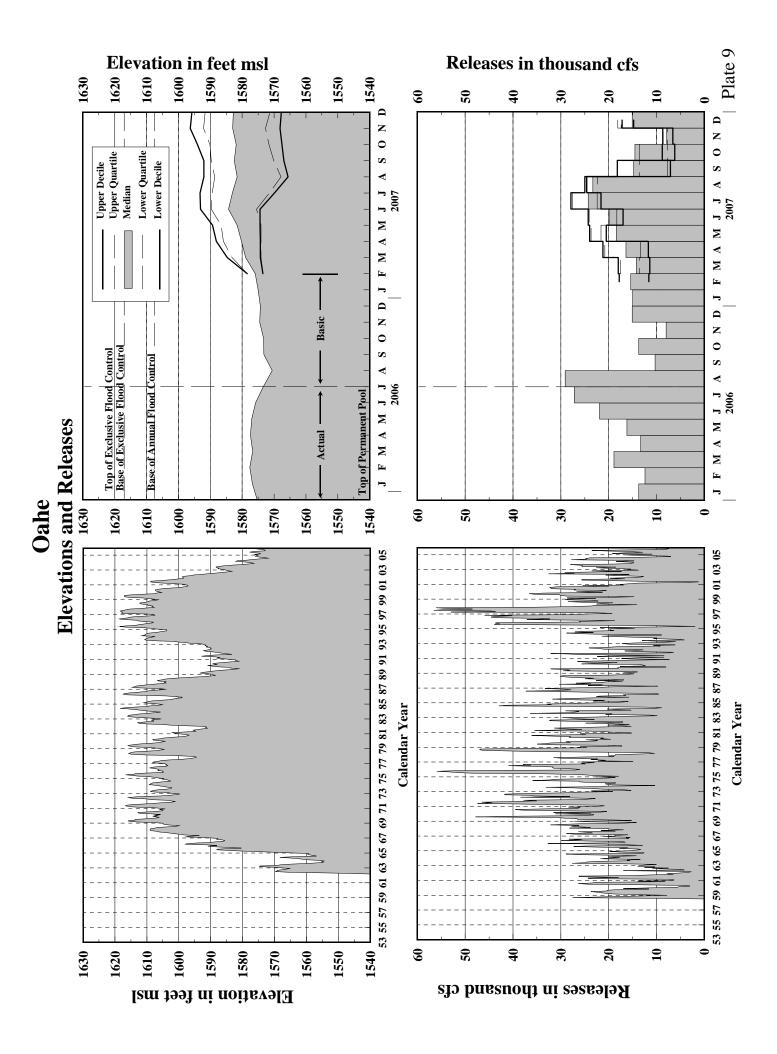




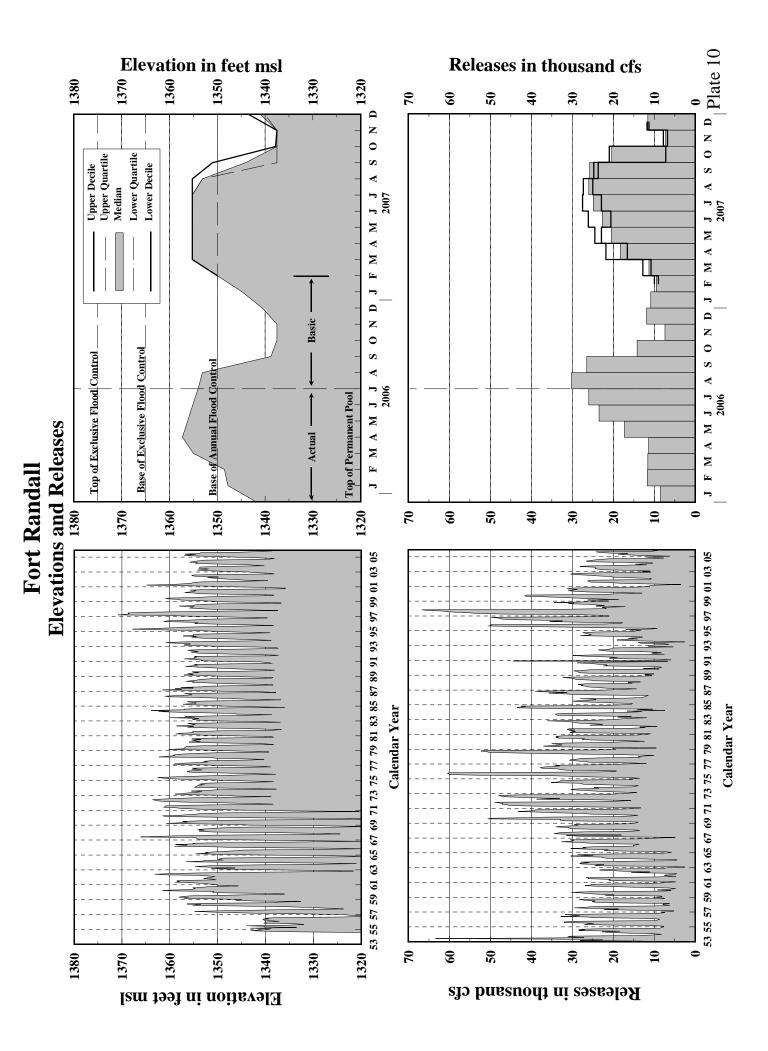

Plate 3

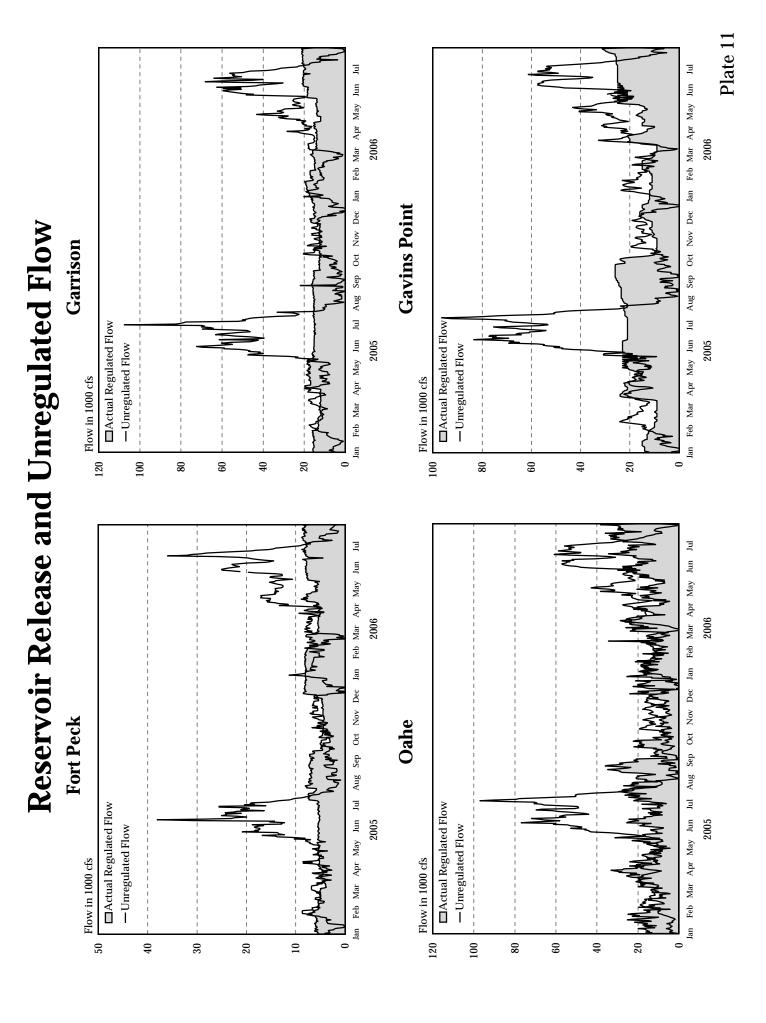

Garrison 2006-2007 Final AOP

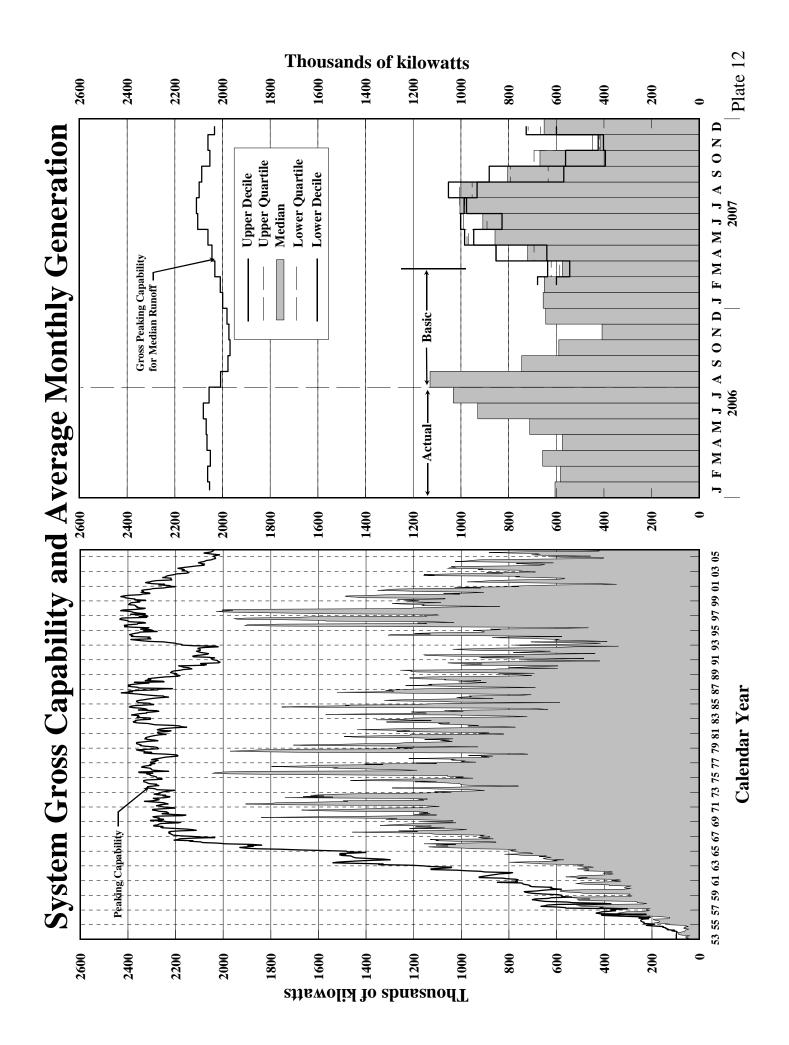


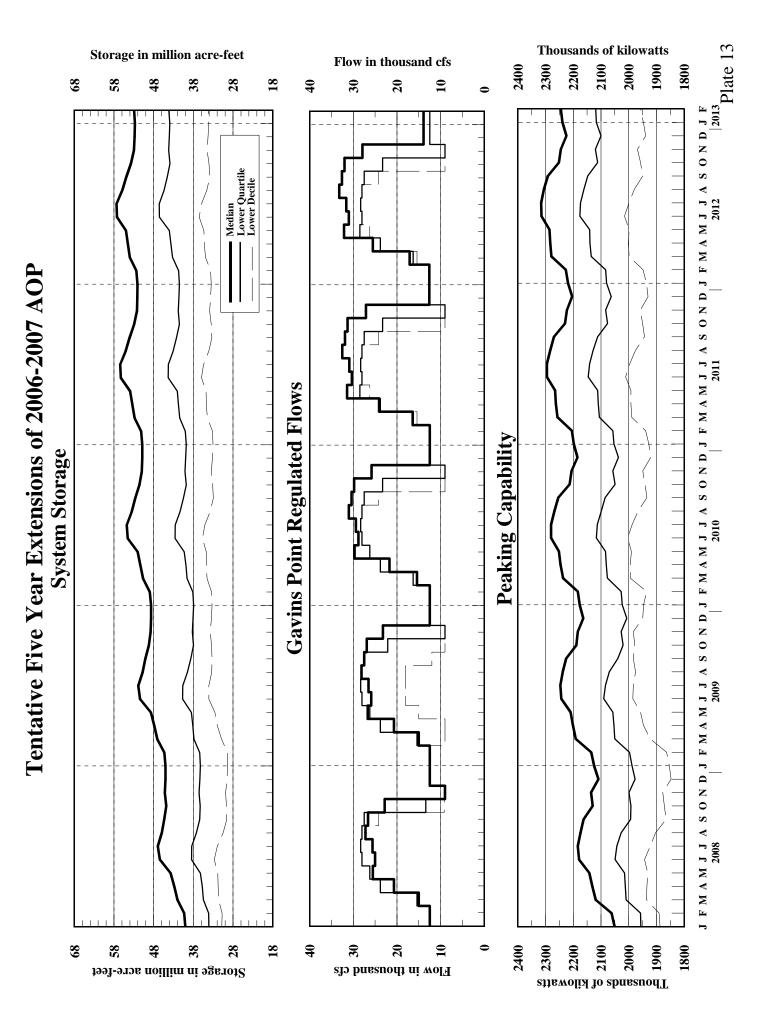

Oahe 2006-2007 Final AOP

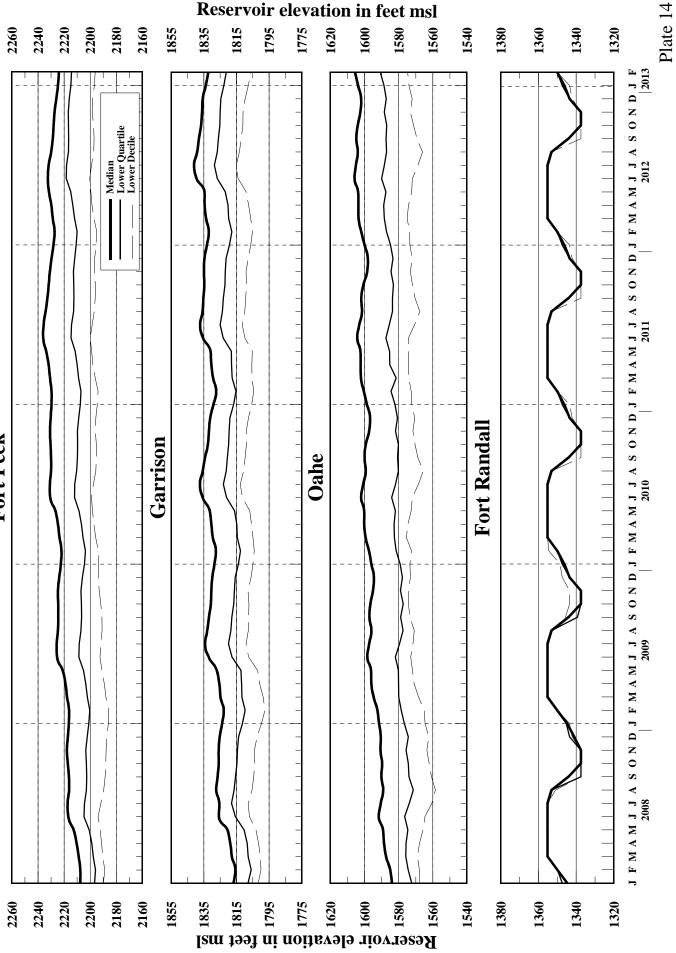


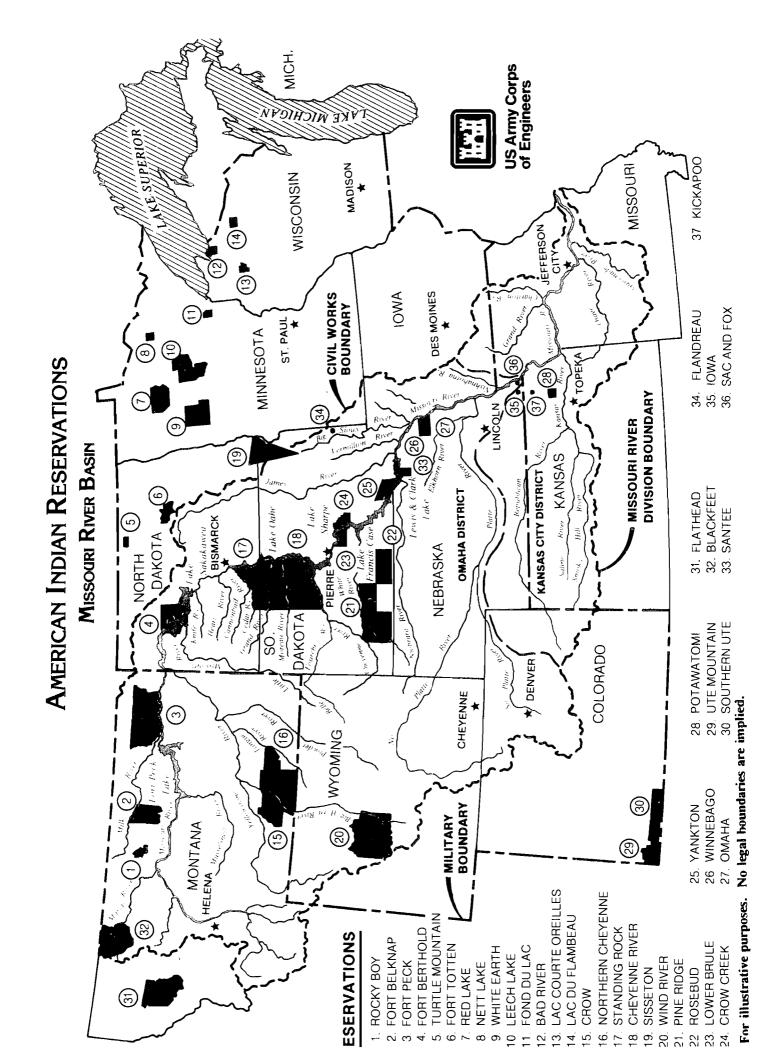












DATE OF STUDY 11/30/06

TIME OF STUDY 08:32:01

2006-2007 AOP BASIC SIMULATION

SR-FTT SHORTEN NAVIGATION SEASON 44 DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

^

.

STUDY NO 1

2007

TIME OF STUD	2 08:32:	01				SR-FT VALUES				SEASON 44 S INDICAT	
31Л	U106 INI-SUM	31AUG	2000 30SEP		15NOV		30NOV	31DEC	31JAN		
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	1980 -599 308 2271 3409 -1138 9750 2204.9	-61 63 198 492 -294 9456	-161 79 322 417 -94 9362	69 295 375 -79 9283	-26 31 145 177 -32 9250	-12 14 68 76 -9 9242	16 77 87 -10 9232	270 -59 35 294 615 -321 8911 2199.4 10.0	315 -113 428 615 -187 8724 2198.2 10.0	-79 444 555 -111 8612	
Power Ave Power Mi Peak Pow Mw Energy Gwh		96 131 71.4	83 131 60.1	72 130 53.9	130	130	65 130 12.5	115 127 85.9	114 126 85.0	124	
-GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE ELEV FIMSL DISCH KCFS POWER	2170 -73 -20 340 5291 7125 -1834 12172 1815.5	11486	1140 -386 11100	10 75 631 855 -223 10876	-59 1 353 357 -4 10873	-27 5 163 163 167 -4 10869 1809.8	0 18 180 222 -42 10828	751 953 -202 10626	868 1076 -208 10417	23 892 972 -80 10338	
AVE POWER MU PEAK POW MW ENERGY GWH	890.7		200 370 143.9	144 367 107.2	124 367 44.6	124 367 20.8	144 366 27.7	159 363 118.2	178 359 132.2	177 358 118.8	
- OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	488 10378	58 1254 1788 -534 9844	498 10342	14 10356	3 10 350 229 121 10477	1 14	8 -11 202 129 72 10594 1574_5 8.2	-8 35 896 930 -34 10560	-11 1055 923 132 10692	90 31 1031 857 174 10866 1575.9 15.4	
POWER AVE POWER MW PEAK POW MW ENERGY GWH		305 517 226.6	109 531 78.3	145 531 108.1	82 535 29.6	88 536 14.8	87 538 16.8	162 537 120-4	161 540 119.7	166 545 111.6	
BIG BEND- EVAPORATION REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS POWER	97 6327 6358 1652 1420.5 23.7	29.3	9.9	13.3	7.4	5 110 1621 1420.0 7.9	7.8	14.9	15.0	15.4	
AVE POWER MU PEAK POW MW ENERGY GWH		138 518 102.8	50 538 36.1	67 538 50.0	37 538 13.4	40 538 6.7	40 538 7.6	75 538 55.9	74 538 55:0	74 529 49.7	
FORT RANDAI NAT INFLOW DEPLETION EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER AVE FOWER MW	135 34 95 6353 6677 -325 3448 1354-0 26.0	-73 3375 1353.1 30.2	-1007 2368 1338.8 26.5	18 804 873 -68 2299 1337.5 14.2	213 0 2299 1337.5 7.2	4 106 107 0 2299 1337.5 7.7	121 121 2299 1337.5 7.6	911 732 179 2477 1340.6 11.9	940 670 270 2747 1344.8 10.9		
PEAK POWER MW PEAK POW MW ENERGY GWH GAVINS POIN	630.9	251 349 186.7	207 290 148.8	104 285 77.5	53 285 19.0	56 285 9.5	56 285 10.7	88 299 65.6	84 318 62.2	76 339 51.0	
NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	595 28 30 7239 7217 22 336 1205.1	10 -8 7 1893 1845 48 384	1649 1636 13 397	80 2 23 965 965 965 1207.5 15.7	5 13 268 268 397 1207.5	-1 2 125 125 397 1207.5	2 143 143 397	60 10 -8 4 769 769 769 1207.5 12.5	100 1 2 771 771 397 1207.5 12.5	125 3 655 694 -39 358 1206.0 12.5	
AVE POWER MW PEAK POW MW ENERGY GWH		101 116 75.1	96 117 69.1	56 117 41.4	32 117 11.6	32 117 5.4	32 117 6.2	44 117 33.1	45 117 33.1	44 114 29.6	
GAVINS POIN NAT INFLOW DEPLETION REGULATED FLC KAF KCFS	430 115	90 34 XUX CITY	70 22	60 10 1015 16.5	30 6 292 9.8	14 3 136 9.8	16 3 156 9.8	30 12 787 12.8	35 13 793 12.9	85 13 766 13.8	
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER AVE POWER MW		760 169 -16 244 36166 1129	775 -207 25 300 35189 745	835 -20 62 258 34832 589	398 ~71 26 116 34917 399	186 -33 4 54 34949	212 -38 -11 62 34970 425	575 -35 -66 135 34592	740 -69 -9 34599	1075 -9 3 34919	
PEAK POW MW ENERGY GWH DAILY GWH	3510.9	2008 839.9 27.1	1977 536.2 17.9	1968 438.0 14.1	1971 143.7 9.6	406 1972 68.2 9.7	1973 81.5 10.2	644 1981 479.1 15.5	655 1999 487.2 15.7	650 2009 437.0 15.6	
	INI-SUM	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB	

DATE OF STUDY 08/06/06

TIME OF STUDY 11:33:00

2006-2007 AOP 120 PERCENT SIMULATION

99001 9901 9901 PAGE 1

SHORTEN NAVIGATION SEASON 44-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

STUDY	NO	:	2
2007			

TIME OF STUD:	11:33:	00			VALUES IN 1000 AF EXCEPT AS I								
	JL06 INI-SUM	31AUG	200 30SEP		15NOV								
FORT PECK. NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE FLEV FIMEL	2376 -610	240 -62	288 -132	348 -86	180 -27	84 -13	96 -14	324 -95	378 -97				
MOD INFLOW RELEASE	2775 3506	255 492	361 417	382 369	195 176	91 83	104 95	392 646	475 646	583			
STOR CHANGE STORAGE ELEV FTMSL	9750 2204.9	-237 9513 2203.4	-56 9457 2203.0	9470 2203.1	9489 2203.3	9496 2203.3	9505 2203.4	-254 9251 2201.7	-171 9081 2200.6	9020			
STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER MU	8.2	8.0 96	7.0 84	6.0 72		6.0 72		121	120	10.5 120			
AVE POWER MW PEAK POW MW ENERGY GWH	496.1	71.4	131 60.3	131 53.3	131 25.4	132 12.1	132 13.8	130 90.1	128 89.4	128 80.3			
GARRISON- NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL	2604 -54	420 147	384 -44 11	444 66	180 -74	84 -35 -1	96 -39	252	312 -26	432			
EVAPORATION REG INFLOW	233 5905	54 713	66 789	57 701	13 417	6 194	7 223	30 867	984	1015			
RELEASE STOR CHANGE STORAGE ELEV FTMSL	7243 -1338 12172	1383 -670 11502	1135 -346 11156	977 -276 10880	357 60 10940	167 28 10968	222 1 10969	953 -86 10883	1076 -92 10791	972 43 10834			
ELEV FTMSL DISCH KCFS POWER			1811.1 19.1	1809.8	1810.1 12.0	1810.2	1810.2 14.0	1809.8 15.5	1809.4 17.5	1809.6 17.5			
AVE POWER MY PEAK POW MW ENERGY GWH	910.3	238 377 177.3	371	165 367 122.5	124 368 44.7	124 368 20.9	145 368 27.8	160 367 119.1	365	366			
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOP CHANGE	294 183 18	42 96 ~10	60 24 19	36 -7 17	18 3 21	8 1	10 1 -11	14 -8	12 20 -11	108 31			
EVAPORATION REG INFLOW RELEASE	202 7169 6172 997	44 1275 1758	56 1134 580	50 987 776	12 381 213	6 168 103	7 213 121	27 904 1093	1057 882	1049 647			
STOR CHANGE STORAGE ELEV FTMSL	10378	9895	10450	10661	10829	10895	10987	10798	10973	11375			
DISCH KCFS	27.2	28.6	9.7	12.6	7.2	7.4	7.6	17.8	14.3	11.6			
Power Ave Power MW Peak Pow MW Energy GWH	798.6	300 519 223.0	103 534 74.2	135 540 100.5		80 546 13.5	83 548 15.9	192 543 142.8	155 548 115.3	558			
BIG BEND- EVAPORATION REG INFLOW	66 6106	15 1743	19 561	16 760	4 210	2 101		9 1085	862	647			
RELEASE STORAGE	6137 1652	1774 1621	561 1621	760 1621	210 1621	101 1621	119 1621	1085 1621	882 1621	1621			
ELEV FTMSL DISCH KCFS POWER													
AVE POWER MW PEAK POW MW ENERGY GWH		136 518 101.4	48 538 34.4	62 538 46.4	36 538 12.9	37 538 6.2	38 538 7.3	87 538 64.9	70 538 52.0	529			
FORT RANDAL NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE FLEW FIMMEL	لل 162 34	30 15	30 7	6 1	3	1	2 1	6 3	24 3	60 3			
EVAPORATION REG INFLOW	66 6188	18 1771	20 553	14 751	3 209	1 100	2 118	1080	903	704			
STOR CHANGE	-326 3448	-73 3375	-1007 2368	-72 2296	209 0 2295	100 0 2295	114 4 2299	718 362 2661	646 257 2918	500 204 3122			
ELEV FTMSL DISCH KCFS POWER	1354.0 26.0	1353.1 30.0	1338.8 26.2	1337.5 13.4	1337.5 7.0	1337.5 7.2	1337.5 7.2	1343.5 11.7	1347.2 10.5	1350.0 9.0			
AVE POWER MW PEAK POW MW ENERGY GWH		249 349 185.3	205 290 147.3	98 285 73.1	52 285 18.6	53 285 8.9		88 313 65.3	82 330 61.3	73 339 48.9			
GAVINS POIN NAT INFLOW DEPLETION	T 714 28	72 10	84 - 5	96 2	60 5	28 2	32 3	72 10	120 1	150			
CHAN STOR EVAPORATION	31 24	-8	777	24 6	12 1	0 1	0 1	-8 3	2	3			
REG INFLOW RELEASE STOR CHANGE	7207 7185 22	1893 1845 48	1649 1636 13	935 935	274 274	125 125	143 143	769 769	767 767	653 692 -39			
STORAGE ELEV FTMSL DISCH KCFS POWER	336 1205.1 26.5	384 1207.0 30.0	397 1207.5 27.5	397 1207.5 15.2	397 1207.5 9.2	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 12.5	397 1207.5 12.5	358 1206.0 12.5			
AVE POWER MW PEAK POW MW ENERGY GWH	303.2	101 116 75.1	96 117 69.1	54 117 40.1	33 117 11.8	32 117 5.4	32 117 6.2	44 117 33.0	44 117 33.0	44 114 29.5			
-~GAVINS POIN NAT INFLOW DEPLETION	516 115	108 34	84 22	72 10	36 6	17 3	19 3	36 12	42 13	102 13			
REGULATED FLO KAF KCFS	W AT SIC 7586	UX CITY 1919 31.2	1698 28.5	997 16.2	305 10.2	139 10.0	159 10.0	793 12.9	796 12.9	781 14.1			
TOTAL NAT INFLOW DEPLETION	6666 -304	912 240	930 -128	1002 -14	477 -87	223 -41	254 -46	690 -105	888 86	1290 -37			
CHAN STOR EVAPORATION	12 802	-16 184	26 226	52 195	34 46	-1 22	-11 25	-66 103	-9	3			
STORAGE SYSTEM POWER AVE POWER MW		36289 1120	35448 734	35325 586	35572 392	35673 398	35779 423	35612 692	35781 652	36330 599			
PEAK POW MW ENERGY GWH DAILY GWH		2010 833.6 26.9	1981 528.6 17.6	1978 435.9 14.1	1983 141.3 9.4	1985 66.9 9.6	1986 81.1 10.1	2008 515.2 16.6	2026 484.7 15.6	2034 402.5 14.4			
	INI-SUM	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	28FEB			

DATE OF STUDY 11/30/06

TIME OF STUDY 11:06:05

SR-FTT SHORTEN NAVIGATION SEASON 44 DAYS VALUES IN 1000 AF EXCEPT AS INDICATED 99001 9901 9901 PAGE 1

STUDY NO 3

2007

TIME OF STUD		05								SEASON 4 S INDICA	
	UL06 INI-SUM	31AUG	2006 30SEP		15NOV	22NOV	30NOV	31DEC	31JAN	28FEB	
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	1584 -518 381 1721 3230 -1510 9750 2204.9	-339 9411	-186 9225	85 245 328 -83 9142	-30 38 112 149 -37 9105	-14 18 52 69 -17	20 60 79 -20 9068	-55 44 227 584 -357 8711	-63 315 584 -269 8442 2196.2	-34 326 528 -202 8240 2194.8	
POWER AVE POWER M PEAK POW MW ENERGY GWH		96 131 71.3	83 129 59.9	63 129 47.1	129	128	59 128 11.3	110 125 82.1	123	121	
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	1738 -164 -15 426 4691 6977 -2286 12172 1815.5	11423	11147	10730	-64 42 295 357 -62 10668 1808.8	-30 20 136 167 -31	0 22 155 190 -35 10602	-50 48 682 953 -271 10331	797 1076 -279 10052	9 972 -165 9886	
AVE POWER MU PEAK POW MW ENERGY GWH		238 376 177.1	167 371 120.4	156 364 115.8	363		123 362 23.6	157 358 117.0	175 353 130.5	174 350 116.9	
OAHE NAT INFLOW DEFLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	6645 6620 25 10378	9792	913 647 266 10058	10070	3 17 37 347 245 102 10171 1572.3	1	20 176 138 38 10242	-19 43 877 948 -72 10170	1053 846 207 10377		
Power Ave Power M Peak Pow Mw Energy Gwh		309 516 230.2	114 523 82.1	149 523 110.7	87 526 31.3	93 527 15.6	92 528 17.7	163 526 121.3	146 532 108.5	189 533 126.9	
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	121 6499 6529 1652 1420.5 23.7	1420.0 29.7	616 1621 1420.0 10.4	1420.0 13.7	233 1621 1420.0 7.8	1420.0 8.3	8.3	15.2	13.8	17.8	
AVE POWER MI PEAK POW MW ENERGY GWH	387.8	140 518 104.3	52 538 37.7	69 538 51.4	40 538 14.3	42 538 7.1	42 538 8.1	76 538 56.8	68 538 50.8	85 529 57.3	
FORT RANDAJ NAT INFLOW DEPLETION EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER MI	108 34 119 6474 6804 -330 3448 1354.0 26.0	3375 1353.1 30.4	2367	2299 1337.5 14.5	1 10 224 225 0 2298 1337.5 7.5	0 5 112 112 0 2298 1337.5 8.0	1 5 126 126 2298 1337:5 8.0	3 12 923 744 179 2477 1340.6 12.1	859 689 170 2647 1343.3 11.2	553 471 3118 1349.9	
PEAK POW MW ENERGY GWH	641.8	253 349 188.1	290 150.3	106 285 79.0	55 285 19.9	59 285 9.9	58 285 11.2	90 299 66.7	85 312 63.4	339 53.1	
GAVINS POIN NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	476 28 29 45 7237 7215 22 336	48 10 -9 9 1893 1893 48 384 1207.0 30.0	12 1649 1636 13 397 1207.5	23 10 965 965 397	5 13 268 268 268 397	-1 2 125 125 397 1207.5	3 0 143 143 397 1207.5		80 1 2 769 769 1207.5 12.5	100 2 655 694 -39 358 1206.0 12.5	
POWER AVE POWER MW PEAK POW MW ENERGY GWH		101 116 75.1	96 117 69.1	56 117 41.4	32 117 11.6	32 117 5.4	32 117 6.2	44 117 33.1	44 117 33.1	44 114 29.5	
GAVINS POIN NAT INFLOW DEPLETION REGULATED FLO KAF KCFS	344 115	72 34 OUX CITY	56 22	48 10 1003 16.3	24 6 286 9.6	11 3 134 9.6	13 3 153 9.6	24 12 781 12.7	28 13 784 12.8	68 13 749 13.5	
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER	37736	608 133 -17 306 36006	622 -189 43 374 34815	668 -53 46 320 34259	318 -80 34 144 34261	148 -37 -1 67 34244	170 -43 0 77 34227	460 -44 -77 166 33707	592 -31 -9 33536	860 22 2 33627	
AVE POWER MU PEAK POW MW ENERGY GWH DAILY GWH		1137 2005 846.1 27.3 31AUG	722 1969 519.6 17.3 30SEP	599 1957 445.5 14.4 310CT	396 1958 142.7 9.5 15NOV	408 1958 68.6 9.8 22NOV	407 1959 78.1 9.8 30NOV	641 1964 477.0 15.4 31DEC	628 1974 467.1 15.1 31JAN	678 1985 455.8 16.3 28FBB	
						• •					

•

DATE OF STUDY 08/06/06

TIME OF STUDY 11:33:00

TIME OF STU		00				SR-FT VALUE			S 29-DAT XCEPT AS		MAR 0/M ATED	AY 15.3			STUDY	NO	4
26	FEB07 INI-SUN	15MAR	200 22MAR	7 31MAR	30APR	31 MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV		08 31DEC	31JAN	29FEB
FORT PEO NAT INFLOW DEPLETION EVAPORATIO MOD INFLOW RELEASE	7 9600 364 0N 267 7 8969 5019	-30 349	149 -14 163 56	-18 210	797 52 745 238	1604 371 1233 492	2491 628 1863 476	1219 179 17 1023 492	456 -73 55 474 492	379 -129 70 438 357	-57 62 526	210 -40 15 235 123	-19 7	112 -21 8 125 95	346 ~156 33 469 553	297 -176 473 553	400 -133 533 518
STOR CHANC STORAGE ELEV FTMSI DISCH KCFS POWER AVE POWER	9020 2200.2 10.5	9190 2201.3	107 9298 2202.0 4.0 48	2202.9	507 9943 2206.2 4.0 48	741 10684 2210.7 8.0 98	1387 12071 2218.8 8.0 101	531 12602 2221.7 8.0 104		81 12665 2222.1 6.0 79	2223.6 4.1	112 13049 2224.2 4.1 55	13090 2224.4	30 13120 2224.6 6.0 79		-80 12955 2223.7 9.0 119	15 12970
PEAK POW M ENERGY GWH GARRISC	1 781.6	129	130 8.0	131	135 34.8	140 73.0	149 72.9	152 77.2	152 77.7	152 56.6	154	155 19.7	155 11.1	155 15.3	155 88.4	154 88.2	154 82.5
NAT INFLOW DEPLETION CHAN STOR EVAPORATIO	14199 1135 18 NN 312	-18 50	240 -9 22	309 -11	1376 26	1934 225 -44	3530 869	2647 534 20	841 57 65	574 -105 20 82	652 7 19 72	260 -100 17	121 -46 -9 8	139 -53 -10 9	278 -100 -31 38	348 -87	434 -54
REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSI DISCH KCFS POWER	12980 E 4809 10834 , 1809.6	476 286 11121 1810.9	327 208 118 11239 1811.4 15.0	11363	1588 1071 517 11880 1814.2 18.0	2157 1291 866 12746 1817.9 21.0	3137 1220 1917 14663 1825.4 20.5	2585 1230 1355 16018 1830.4 20.0	1211 1230 -19 15999 1830.3 20.0	974 1012 -38 15961 1830.2 17.0		465 394 71 16064 1830.5 13.2		268 238 30 16120 1830.7 15.0	863 953 -90 16029 1830.4 15.5	988 1230 -241 15788 1829.5 20.0	1006 1150 -145 15643 1829.0 20.0
AVE POWER PEAK POW M ENERGY GWH	W 1799.4	165 371 59.6	156 373 26.3	157 375 33.9	190 383 136.8	226 396 168.1	229 424 165.1	233 442 173.7	237 442 176.5	202 441 145.4	158 442 117.3	158 443 56.8	167 443 28.1	179 443 34.4	185 442 137.4	237 439 176.1	236 437 164.0
OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATIC	3850 626 -11	23 8	261 11 5	335 14 0	474 47 -15	347 67 -14	881 132 2	297 156 2 19	123 103 59	163 25 14 74	102 -9 17 66	109 2 16	51 1 -3 8	58 1 -4 9	22 12 -2 36	10 17 -20	59 26
REG INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS POWER	10978 E 4930 11375 1578.4	321 699 12074 1581.7	463 173 290 12364 1583.0 12.5	589 209 380 12744 1584.7 11.7	1483 694 789 13533 1588.1 11.7	1557 1259 298 13831 1589.3 20.5	1971 1014 957 14788 1593.1 17.0	1354 1326 29 14816	1191 1511 -321 14496	1089 1085 5 14500 1592.0 18.2	877 381 496 14996	486 172 313 15310	234 103 130 15440 1595.7 7.4	282 116 167 15607	925 1057 -132 15475	1203 914 289 15763 1596.9 14.9	1183 641 542 16305 1598.9 11.1
AVE POWER PEAK POW M ENERGY GWH	W	120 575 43.1	140 582 23.6	133 591 28.7	134 609 96.8	238 615 177.3	202 634 145.1	257 635 191.4	292 628 217.3	216 629 155.8	74 638 55.3	70 644 25.2	90 647 15.2	89 650 17.0	209 647 155.3	181 653 134.6	137 662 95.4
BIG BEN EVAPORATIO REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	N 71 10907 10907 1621 1420.0	321 321 1621	173 173 1621 1420.0 12.5	209 209 1621 1420.0 11.7	694 694 1621 1420.0 11.7	1259 1259 1621 1420.0 20.5	1014 1014 1621 1420.0 17.0	5 1321 1321 1621 1420.0 21.5	15 1496 1496 1621 1420.0 24.3	19 1066 1066 1621 1420.0 17.9	16 365 365 1621 1420.0 5.9	4 168 168 1621 1420.0 5.7	2 102 1621 1420.0 7.3	2 114 114 1621 1420.0 7.2	9 1049 1049 1621 1420.0 17.1	914 914 1621 1420.0 14.9	641 641 1621 1420.0 11.1
AVE POWER PEAK POW M ENERGY GWH	W	51 517 18.4	58 509 9.8	55 509 11.8	55 509 39.3	96 509 71.3	80 509 57.5	101 509 74.8	114 509 84.8	85 525 61.5	30 538 22.4	29 538 10.4	37 538 6.2	36 538 7.0	84 538 62.7	72 538 53.9	54 529 37.3
FORT RAND NAT INFLOW DEPLETION EVAPORATIO	1501 80 N 78	190 1	89 1	114 1	298 4	159 9	224 12	111 18 6	72 15 19	92 7 23	60 1 16	5 1 3	2 0 1	3 1 2	23 3 8	10 3	49 3
REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER	12244 12242 E 2 3122 1350.0 9.0	510 217 293 3415 1353.6 7.3	261 127 134 3549 1355.2 9.2	322 322 3549 1355.2 18.0	988 988 3549 1355.2 16.6	1409 1409 3549 1355.2 22.9	1226 1226 3549 1355.2 20.6	1408 1408 0 3549 1355.2 22.9	1535 1535 0 3549 1355.2 25.0	1128 1475 -347 3202 1351.0 24.8	402 1289 -887 2315 1337.8 21.0	169 187 -18 2297 1337.5 6.3	102 102 2297 1337.5 7.3	114 114 2297 1337.5 7.2	1061 695 366 2663 1343.5 11.3	921 664 257 2920 1347.2 10.8	687 483 204 3124 1350.0 8.4
ave power Peak pow m Energy gwh	W 1217.9	61 351 21.9	78 356 13.1	153 356 33.1	141 356 101.5	194 356 144.1	174 356 125.6	194 356 144.0	211 356 156.8	206 342 148.2	162 286 120.4	46 285 16.7	54 285 9.0	53 285 10.1	85 313 63.2	85 330 63.1	68 339 47.3
GAVINS PO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO	2252 114 0	107 0 3	50 0 -4	64 0 -17	246 5 3	319 19 -12	281 24 4	211 39 -4 2	170 10 -4 5	135 -5 0 7	157 2 7	60 5 27	28 2 -2	32 3 0	95 10 -8	106 1 1	191 4
REG INFLOW RELEASE STOR CHANG STORAGE	14355 14355	328 328 358	174 174 358	370 370 358	1232 1232 358	1697 1697 358	1488 1488 358	1574 1574 358	1685 1672 13 371	1609 1583 26 397	6 1445 1445 397	1 268 268 -397	1 125 125 397	143 143 143 397	3 769 769 397	770 770 397	679 718 -39 358
ELEV FTMSL DISCH KCFS POWER AVE POWER	12.5 WW	1205.0 11.0 39	12.5 44	1206.0 20.7 71	1206.0 20.7 71	1206.0 27.6 94	1206.0 25.0 86	1206.0 25.6 88	1206.5 27.2 93	1207.5 26.6 92	1207.5 23.5 83	1207.5 9.0 32	1207.5 9.0 32	1207.5 9.0 32	1207.5 12.5 44	1207.5 12.5 44	1206.0 12.5 44
PEAK POW M ENERGY GWH GAVINS PO: NAT INFLOW	601.9 INT - SIOI	114 13.9 JX CITY-		114 15.4	114 51.4	114 69.9	114 61.6	114 65.1	115 69.3	117 66.6	117 61.4	117 11.6	117 5.4	117 6.2	78 33.1	78 33.1	76 30.6
DEPLETION REGULATED FI KAF KCFS	3100 254 LOW AT SIC 17201	195 6 OUX CITY 516 17.3	91 3 262 18.9	117 4 493 27.0	1006 21 2217 37.3	553 35 2215 36.0	318 30 1776 29.8	246 37 1783 29,0	184 35 1821 29.6	127 23 1687 28.3	66 10 1501 24.4	26 6 288 9.7	12 3 134 9.7	14 3 154	30 12 787	12 13 769	105 14 809
TOTAL NAT INFLOW DEPLETION CHAN STOR	34502 2573 2	1885 -18 61	879 -9 24	1131 -11 -17	4197 155 -12	4916 726 -70	29.8 7725 1695 7	4731 963 -2	1846 147 -4	1470 -184 35	1568 -46 38	670 -127 27	312 -59 -14	9.7 357 -67 -14	12.8 794 -219 -40	12.5 783 -229 -19	14.1 1238 -144 4
EVAPORATION STORAGE SYSTEM POWN	36330	37779	38429	39071	40884	42789	47050	68 48964	218 48620	275 48347	238 48259	57 48738	26 48935	30 49161	126 49220	49444	50022
AVE POWER N PEAK POW MI ENERGY GWH DAILY GWH	1W	507 2058 182.4 12.2	525 2065 88.1 12.6	617 2077 133.3 14.8	639 2106 460.4 15.3	946 2131 703.8 22.7	872 2187 627.7 20.9	976 2209 726.4 23.4	1052 2203 782.4 25.2	881 2206 634.0 21.1	561 2174 417.5 13.5	390 2181 140.3 9.4	447 2184 75.0 10.7	468 2108 89.9 11.2	726 2173 540.0 17.4	738 2191 549.0 17.7	657 2198 457.0 15.8
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB

DATE OF STUDY 08/06/06

TIME OF STUDY 11:33:54

SR-FTT SHTN NAV SEAS 31-DAYS, SP MAR 0 MAY 15.0 STUDY NO 5 VALUES IN 1000 AF EXCEPT AS INDICATED

281	EB07 INI-SUM	15MAR	200' 22MAR		30APR	VALUES 31MAY		00 AF EX 31JUL				15NOV	22NOV	200 30NOV	31DEC	31JAN	29FEB
FORT PECH NAT INFLOW DEPLETION EVAPORATION MOD_INFLOW	8900 339 1 284 8277	296 -30 326	138 -14 152	178 -18 196	738 52 686	1487 371 1116	2309 628 1681	1130 172 17 941	423 -78 54 447	351 -128 68 411	492 -82 60 514	195 -41 27 209	91 -19 13 97	104 -22 14 111	321 -149 31 439	276 -171 447	371 -132 503
RELEASE STOR CHANGI STORAGE ELEV FTMSL DISCH KCFS POWER	5263 3014 9020 2200.2 10.5	179 148 9167 2201.1 6.0	69 83 9250 2201.7 5.0	89 106 9356 2202.4 5.0	357 329 9685 2204.5 6.0	492 624 10309 2208.4 8.0	476 1205 11514 2215.6 8.0	492 449 11964 2218.2 8.0	492 -45 11919 2217.9 8.0	357 54 11973 2218.2 6.0	322 192 12165 2219.3 5.2	149 60 12225 2219.7 5.0	69 28 12253 2219.8 5.0	95 16 12269 2219.9 6.0	553 -115 12154 2219.3 9.0	553 -106 12048 2218.7 9.0	518 -15 12033 2218.6 9.0
AVE POWER M PEAK POW MW ENERGY GWH		71 129 25.5	59 130 10.0	60 130 12.9	72 133 51.8	97 137 72.3	100 146 71.9	102 148 76.1	103 148 76.5	77 148 55.6	68 150 50.4	65 150 23.3	65 150 10.9	78 150 14.9	116 150 86.6	116 149 86.3	116 149 80.6
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION	12900 1104 18 1 329	482 -2 50	225 -1 11	289 -1	1250 -2 -11	1723 197 -22	3207 886	2405 536 19	763 40 63	522 -111 21 79	593 10 8 69	236 -101 3 31	110 -47 15	126 -54 -10 17	260 -105 -31 36	316 -87	394 - 55
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	10834	712 476 236 11070 1810.7 16.0	306 208 98 11168 1811.1 15.0	379 268 111 11280 1811.6 15.0	1598 1071 527 11806 1813.9 18.0	1996 1291 705 12511 1816.9 21.0	2797 1220 1577 14088 1823.2 20.5	2342 1230 1112 15200 1827.4 20.0	1152 1230 -78 15122 1827.1 20.0	932 1012 -80 15042 1826.8 17.0	844 891 -47 14995 1826.6 14.5	457 417 15035 1826.8 14.0	212 194 17 15053 1826.9 14.0	248 238 10 15062 1826.9 15.0	851 953 -102 14960 1826.5 15.5	956 1230 ~273 14687 1825.5 20.0	967 1150 -184 14503 1824.8 20.0
AVE POWER M PEAK POW MW ENERGY GWH	1782.6	165 370 59.5	156 372 26.2	157 373 33.8	189 382 136.4	225 393 167.3	227 416 163.3	229 431 170.7	233 430 173.0	198 429 142.3	169 428 125.4	163 429 58.6	163 429 27.4	175 429 33.5	180 428 134.0	231 424 171.5	229 422 159.6
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION	3200 625 -11	460 23 8	214 11 5	276 14 0	394 47 -15	285 67 -15	749 132 2	246 156 2 18	103 103 57	135 25 14 72	85 -9 12 63	91 2 2 29	42 1 14	48 1 -5 16	18 12 -2 34	5 16 -21	49 26
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	15341 11581 3761 11375	921 501 419 11795 1580.4 16.9	417 86 332 12126 1581.9 6.2	530 246 284 12410 1583.2 13.8	1403 792 611 13021 1585.9 13.3	1494 1331 164 13185 1586.6 21.6	1839 1087 753 13937 1589.7 18.3	1304 1380 -76 13861 1589.4 22.4	1173 1370 -196 13665	1064 804 261 13925	934 835 99 14024	479 219 260 14284 1591.1 7.4	222 112 111 14395	265 126 139 14534 1592.1 8.0	923 1068 -145 14388	1198 918 280 14668 1592.7 14.9	1173 706 468 15136 1594.5 12.3
POWER AVE POWER M PEAK POW MW ENERGY GWH		186 569 66.9	69 577 11.6	155 583 33.5	152 598 109.2	248 601 184.7	212 617 152.7	262 616 195.2	260 612 193.1	158 617 113.8	160 619 118.8	87 624 31.4	96 626 16.1	95 629 18.2	206 626 153.3	177 632 132.0	147 641 102.5
BIG BENI EVAPORATION REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS	78 11503 11503 1621	501 501 1621 1420.0 16.9	86 86 1621 1420.0 6.2	246 246 1621 1420.0 13.8	792 792 1621 1420.0 13.3	1331 1331 1621 1420.0 21.6	1087 1087 1621 1420.0 18.3	5 1376 1376 1621 1420.0 22.4	15 1355 1355 1621 1420.0 22.0	19 785 785 1621 1420.0 13.2	16 819 819 1621 1420.0 13.3	7 212 212 1621 1420.0 7.1	3 108 1621 1420.0 7.8	4 122 1621 1420.0 7.7	9 1060 1060 1621 1420.0 17.2	918 918 1621 1420.0 14.9	706 706 1621 1420.0 12.3
POWER AVE POWER N PEAK POW MU ENERGY GWH		79 510 28.5	29 509 4.9	65 509 13.9	62 509 44.9	101 509 75.4	86 509 61.6	105 509 77.9	104 518 77.6	65 538 46.9	67 538 50.0	36 538 13.0	40 538 6.6	39 538 7.5	85 538 63.4	73 538 54.2	59 529 41.0
FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	1200 80 12544 12542 12542 2 3122	142 1 642 232 410 3532 1355.0	66 1 151 134 17 3549 1355.2	85 1 330 330 3549 1355.2	239 4 1027 1027 3549 1355.2	150 9 1472 1472 3549 1355.2	195 12 1270 1270 3549 1355.2	89 18 6 1441 1441 0 3549 1355.2	65 15 19 1386 1560 -174 3375 1353.1	64 7 21 821 1496 -675 2700 1344.1	38 1 15 841 1244 -403 2297 1337.5	3 1 208 208 0 2297 1337.5	1 0 3 106 106 2297 1337.5	1 3 120 120 0 2297 1337.5	18 3 1067 701 366 2663 1343.5	5 3 920 683 237 2900 1347.0	39 3 742 518 224 3124 1350.0
DISCH KCFS POWER AVE POWER N PEAK POW MW	ſ	7.8 65 355	9.7 82 356	18.5 157 356	17.3 146 356	23.9 202 356	21.3 181 356	23.4 198 356	25.4 212 349	25.1 201 315	20.2 151 285	7.0 51 285	7.6 56 285	7.6 55 285	11.4 86 313	11.1 87 328	9.0 73 339
ENERGY GWH GAVINS POJ NAT INFLOW DEPLETION	1237.2 NT 1899 114	23.5 93 0	13.8 44 0	33.9 56 0	105.5 207 5	150.5 257 19	130.0 237 24	147.3 178 39	158.0 144 10	144.7 114 -5	112.6 132 2	18.5 51 5	9.4 24 2	10.6 27 3	63.7 86 10	64.7 89 1	50.6 161
CHAN STOR EVAPORATION REG INFLOW RELEASE	-1 28 14298 14298	2 328 328	-4 174 174	-17 370 370	2 1232 1232	-13 1697 1697	5 1488 1488	-4 2 1574 1574	-4 5 1685 1672	0 7 1609 1583	9 6 1377 1377	25 3 275 275	-1 1 125 125	0 1 143 143	-7 3 767 767	1 771 771	4 683 722
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	358	358 1206.0 11.0	358 1206.0 12.6	358 1206.0 20.7	358 1206.0 20.7	358 1206.0 27.6	358 1206.0 25.0	358 1206.0 25.6	13 371 1206.5 27.2	26 397 1207.5 26.6	397 1207.5 22.4	397 1207.5 9.2	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 12.5	397 1207.5 12.5	-39 358 1206.0 12.5
AVE POWER M PEAK POW MW ENERGY GWH	599.6	39 114 13.9	44 114 7.4	71 114 15.4	71 114 51.4	94 114 69.9	86 114 61.6	88 114 65.1	93 115 69.3	92 117 66.6	79 117 58.6	33 117 11.9	32 117 5.4	32 117 6.2	44 78 33.0	45 78 33.1	44 76 30.8
GAVINS POI NAT INFLOW DEPLETION REGULATED FI	2500 254 OW AT SIG	181 6 DUX CITY	85 3	109 4	811 21	406 35	252 30	199 37	148 35	97 23	53 10	21 6	10 3	11 3	24 12	10 13	84 14
KAF KCFS TOTAL	16544	503 16.9	256 18.4	475 26.6	2022 34.0	2068 33:6	1710 28.7	1736 28.2	1785 29.0	1657 27.8	1420 23.1	290 9.8	132 9.5	151 9.5	779 12.7	768 12.5	792 13.8
NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE	30599 2516 6 1101 36330	1654 -2 60 37544	772 -1 13 38073	992 -1 -17 38574	3639 127 -24 40041	4308 698 -49 41533	6949 1712 7 45068	4247 958 -2 66 46553	1646 125 -4 212 46073	1283 -189 36 265 45659	1393 -68 29 229 45499	595 -129 30 103 45859	278 -60 -1 48 46015	317 -69 -15 55 46180	727 -217 -41 121 46184	701 -225 -20 46321	1098 -144 4 46775
SYSTEM POWE AVE POWER M PEAK POW MW ENERGY GWH	R W	605 2048 217.8	440 2057 73.8	664 2067 143.4	693 2092 499.1	968 2111 720.1	890 2159 641.1	984 2175 732.4	1005 2173 747.5	791 2164 569.8	693 2137 515.9	435 2143 156.6	451 2146 75.8	474 2149 91.0	718 2133 533.9	728 2149 541.9	668 2155 465.0
DAILY GWH	INI-SUM	14.5 15MAR	10.5 22MAR	15.9 31MAR	16.6 30APR	23.2 31MAY	21.4 30JUN	23.6 31JUL	24.1 31AUG	19.0 30SEP	16.6 310CT	10.4 15NOV	10.8 22NOV	11.4 30NOV	17.2 31DEC	17.5 31JAN	16.0 29FEB

DATE OF STUDY 11/30/06

TIME OF STUDY 08:32:01

2006-2007 AOP MEDIAN RUNOFF SIMULATION 99001 9901 4 PAGE 1 SHTN NAV SEAS 31 DAYS, SP MAR 0 MAY 0 VALUES IN 1000 AF EXCEPT AS INDICATED

STUDY NO 6

TIME OF STO		01		VALUES IN 1000 AF EXCEPT AS INDICATED											2000			
28	FEB07 INI-SUM	15MAR	200 22MAR		30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	200 30NOV	31DEC	31JAN	29FEB	
FORT PEC NAT INFLOW DEPLETION EVAPORATIO MOD INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS	7400 391 N 345 6664 5102 E 1562 8612 2197.4	264 -18 283 179 104 8717 2198.1 6.0	123 -9 132 69 62 8779 2198.6 5.0	158 -11 170 89 80 8859 2199.1 5.0	628 73 555 357 198 9057 2200.4 6.0	1210 315 895 492 403 9460 2203.1 8.0	1851 535 1316 476 840 10300 2208.4 8.0	829 244 21 564 492 72 10373 2208.8 8.0	324 -17 66 275 492 -217 10156 2207.5 8.0	319 -102 82 339 357 -18 10138 2207.4 6.0	398 -73 72 399 297 101 10239 2208.0 4.8	188 -36 33 191 134 57 10296 2208.3 4.5	88 -17 15 89 62 26 10322 2208.5 4.5	100 -19 18 102 71 30 10352 2208.7 4.5	310 -152 38 424 523 -99 10254 2208.1 8.5	261 -178 439 523 -84 10170 2207.6 8.5	349 -144 493 489 4 10174 -2207.6 8.5	
POWER AVE POWER PEAK POW M ENERGY GWH	W	70 126 25.1	58 126 9.8	59 127 12.6	71 128 50.8	95 131 70.5	97 137 69.7	98 138 73.1	98 136 72.9	73 136 52.8	59 137 44.1	55 137 19.9	55 137 9.3	55 138 10.6	104 137 77.5	104 136 77.3	104 136 72.2	
GARRISO NAT INFLOW DEFLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS	11001 1066 17 N 403 14652 12751 E 1901 10338 1807.3	469 41 45 652 417 235 10573 1808.4 14.0	219 19 11 280 194 86 10659 1808.8 14.0	282 25 346 250 96 10755 1809.2 14.0	853 47 -11 1152 952 200 10955 1810.1 16.0	1423 199 -22 1694 1291 402 11358 1812.0 21.0	2958 756 2678 1220 1458 12816 1818.1 20.5	2066 548 1986 1230 756 13572 1821.2 20.0	581 68 77 928 1230 -302 13270 1820.0 20.0	497 -144 21 97 923 1054 -132 13138 1819.4 17.7	454 -19 12 84 699 790 -92 13046 1819.1 12.9	192 -108 4 38 399 387 12 13058 1819.1 13.0	89 -50 18 184 180 4 13062 1819.1 13.0	102 -58 20 211 222 -11 13051 1819.1 1819.1 14.0	253 -112 -43 44 801 953 -152 12899 1818.5 15.5	237 -88 1230 -382 12517 1816.9 20.0	326 -58 0 873 1150 -277 12239 1815.7 20.0	
POWER AVE POWER PEAK POW M ENERGY GWH	W	142 362 51.2	143 363 24.0	144 365 31.0	165 368 118.6	218 375 162.0	219 397 157.7	221 408 164.3	222 404 165.3	196 402 141.1	142 401 105.8	144 401 51.7	144 401 24.1	155 401 29.7	171 398 126.9	218 393 162.0	216 388 150.1	
OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER	2300 625 -12 N 360 14053 12104 E 1949 10866 1575.9		148 11 331 212 120 11312 1578.1 15.3	190 14 426 258 168 11480 1578.9 14.5	364 47 -10 1259 977 281 11761 1580.2 16.4	236 67 -26 1434 1133 302 12063 1581.6 18.4	689 132 3 1779 1177 603 12666 1584.3 19.8	162 156 2 1216 1492 -275 12390 1583.1 24.3	33 103 68 1091 1430 -338 12052 1581.6 23.3	118 25 12 86 1073 878 195 12247 1582.5 14.8	14 -9 25 763 893 -130 12117 1581.9 14.5	5 2 -1 355 226 130 12247 1582.5 7.6	2 16 166 115 51 12298 1582.7 8.3	3 -5 18 201 130 71 12368 1583.0 8.2	-20 12 -8 40 874 931 -57 12311 1582.8 15.1	16 -23 1191 942 249 12561 1583.9 15.3	40 26 1164 910 254 12815 1585.0 15.8	
AVE POWER (PEAK POW M ENERGY GWH	W 1641.7	147 554 52.9	167 556 28.0	159 561 34.3	181 568 130.6	205 575 152.5	223 589 160.3	274 583 203.8	260 575 193.8	165 579 119.1	163 576 121.3	85 579 30.7	93 581 15.7	93 582 17.6	171 581 126.9	173 587 128.8	180 593 125.3	
BIG BEN EVAPORATIC REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER	N 103 12001 12001 1621 1420.0 15.4	403 403 1621 1420.0 13.5 64	212 212 1621 1420.0 15.3 71	258 258 1621 1420.0 14.5 68	977 977 1621 1420.0 16.4 77	1133 1133 1621 1420.0 18.4 86	1177 1177 1621 1420.0 19.8 93	6 1486 1486 1621 1420.0 24.2 113	20 1410 1410 1621 1420.0 22.9 108	25 853 853 1621 1420.0 14.3 71	22 871 871 1621 1420.0 14.2 71	10 216 216 1621 1420.0 7.3 37	5 110 1621 1420.0 8.0 40	5 125 125 1621 1420.0 7.9 40	11 919 919 1621 1420.0 14.9 75	942 942 1621 1420.0 15.3 75	910 910 1621 1420.0 15.8 76	
PEAK POW M ENERGY GWH	N.	517 23.1	509 12.0	509 14.6	509 55.4	509 64.2	509 66.7	509 84.1	518 80.7	538 51.0	538 53.2	538 13.2	538 6.8	538 7.7	538 55.8	538 56.1	529 52.8	
FORT RAND NAT INFLOW DEPLETION EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCPS POMER AVE POWER DEAK POW MI ENERGY GWH	900 80 107 12715 12715 6 0 3123 1350.0 9.5	122 1 524 232 292 3415 1353.6 7.8 65 351 23.3	57 1 268 134 134 3549 1355.2 9.7 82 356 13.8	73 1 331 3549 1355.2 18.5 157 356 33.9	115 4 1088 3549 1355.2 18.3 155 356 111.6	140 9 1264 1264 3549 1355.2 20.5 174 356 129.4	185 12 1350 3549 1355.2 22.7 192 356 138.1	24.9 211 356	57 15 25 1427 1601 -174 3375 1353.1 26.0 218 349 162.1	42 7 28 860 1535 -675 2700 1344.1 25.8 206 315 148.4	2 1 20 852 1256 -403 2297 1337.5 20.4 153 285 113.6	2 1 8 209 209 0 2297 1337.5 7.0 52 285 18.6	1 0 4 107 2296 1337.5 7.7 7.7 56 285 9.5	1 4 121 121 0 2296 1337.5 7.6 56 285 10.7	10 3 916 713 203 2499 1341.0 11.6 86 301 64.1	3 939 689 250 2749 1344.8 11.2 86 319 64.0	19 3 926 552 374 3123 1350.0 9.6 77 339 53.4	
GAVINS PO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS	INT 1450 114 -1 N 38 14012 14012 3 358	92 0 3 328 328 328	43 0 -4 174 174 358	55 0 -17 370 370 358	148 5 0 1232 1232 358	174 19 -4 1414 1414 358 1206.0 23.0	166 24 -4 1488 1488 358	86 39 -4 2 1574 1574 358	103 10 -2 7 1685 1672 13 371 1206.5 27.2	77 -5 0 9 1609 1583 26 397	122 2 10 8 1377 1377 397	50 5 25 4 275 275 397	23 2 -1 125 125 397	27 3 0 2 143 143 397	77 10 -7 4 769 769 397	79 1 1 767 767 397	127 3 682 721 -39 358 1206.0 12.5	
POWER AVE POWER I PEAK POW M ENERGY GWH	41W V	39 114 13.9	44 114 7.4	71 114 15.4	71 114 51.4	79 114 58.7	86 114 61.6	88 114 65.1	93 115 69.3	92 117 66.6	79 117 58.6	33 117 11.9	32 117 5.4	32 117 6.2	44 78 33.0	44 78 33.0	44 76 30.8	
GAVINS PO NAT INFLOW DEPLETION REGULATED FI KAF KCFS	1550 253 LOW AT SIC 15309	169 6	79 3	102 4 467 26.2	199 21 1410 23.7	310 35 1689 27.5	224 30 1682 28.3	129 37 1666 27.1	96 35 1733 28.2	60 23 1620 27.2	42 10 1409 22.9	16 6 286 9.6	7 3 130 9.4	9 3 148 9.4	21 12 778 12.6	5 13 759 12.4	82 13 790 13.7	
TOTAL- NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWI AVE POWER 1	24601 2529 4 1356 34919 SR	1435 53 67 35877 527	669 25 8 36279 566	860 32 -17 36623 657	2307 197 -21 37302 720	3493 644 -52 38409 857	6073 1489 -2 41310 908	3346 1042 -2 83 41863 1004	1194 214 -2 263 40845 1000	1113 -196 33 327 40240 804	1032 -88 47 282 39716 668	452 -131 28 127 39915 406	211 -61 -1 59 39997 421	241 -70 -5 68 40086 430	651 -227 -58 147 39981 651	582 -233 -22 40015 700	943 -160 3 40331 696	
PEAK POW M ENERGY GWH DAILY GWH	4	2023 189.6 12.6	2025 95.0 13.6	2032 142.0 15.8	2044 518.3 17.3	2061 637.3 20.6	2104 654.0 21.8	2109 747.0 24.1	2098 744.2 24.0	2087 579.0 19.3	2053 496.7 16.0	2057 146.0 9.7	2059 70.8 10.1	2061 82.6 10.3	2033 484.3 15.6	2051 521.1 16.8	2062 484.7 16.7 29FEB	

DATE OF STUDY 11/16/06

TIME OF STUDY 17:02:18

2006-2007 AOP LOWER QUARTILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHIN NAV SEAS 59 DAYS, SP MAR 0 MAY 0 STUDY NO 7

TIME OF STUDY 17:02:	18						S 59 DA1 00 AF E1							STUDY	NO	7
28FEB07 INI-SUM	15MAR	200 22MAR		30ÅPR	31MAY						15NOV	22NOV	20 30NOV	08 31DEC	31JAN	29FEB
FORT PECK NAT INFLOW 6000 DEPLETION 514 EVAPORATION 396 MOD INFLOW 5090 RELERASE 4939 STOR CHANGE 151 STORAGE 2240 ELEV FIMSL 2194.8 DISCH KCFS 9.5	257 119 136 8378	113 -7 120 56 64 8442 2196.2 4.0	145 -9 154 71 82 8524 2196.8 4.0	525 72 453 446 7 8531 2196.9 7.5	925 281 644 461 183 8714 2198.1 7.5	1454 474 980 446 534 9248 2201.7 7.5	633 206 24 403 461 -58 9189 2201.3 7.5	263 -9 76 196 461 -265 8924 2199.5 7.5	252 -93 95 250 357 -107 8817 2198.8 6.0	324 -65 83 306 318 -12 8805 2198.7 5.2	167 -27 37 156 149 7 8812 2198.8 5.0	69 3 8815 2198.8	89 -14 20 83 79 4 8819 2198.8 5.0	295 -91 43 343 492 -149 8670 2197.8 8.0	212 -99 311 492 -181 8489 2196.6 8.0	283 -79 362 460 -98 8391 2195.9 8.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 696.2	46 122 16.5	46 123 7.7	46 124 10.0	87 124 62.3	87 126 64.7	89 130 63.4	89 129 66.1	88 127 65.7	70 126 50.6	61 126 45.1	59 126 21.1	59 126 9.8	59 126 11.2	93 125 69.3	92 123 68.8	92 122 63.9
GARRISON NAT INFLOW 9400 DEPLETION 1251 CHAN STOR 17 EVAPORATION 467 REG INFLOW 12638 RELEASE 12457 STOR CHANGE 126 STORAGE 9886 ELEV FTMSL 1805.1 DISCH KCFS 17.5 POWER	443 32 62 592 417 176 10062 1806.0 14.0	207 15 247 180 67 10129 1806.3 13.0	266 19 318 303 14 10143 1806.4 17.0	712 69 -40 1050 1071 -21 10122 1806.3 18.0	1197 138 1520 1414 106 10228 1806.8 23.0	2521 630 2337 1250 1088 11315 1811.8 21.0	1765 517 28 1681 984 697 12013 1814.8 16.0	496 122 91 745 984 -239 11773 1813.8 16.0	417 -73 16 113 750 932 -181 11592 1813.0 15.7	400 55 9 98 575 799 -224 11368 1812.0 13.0	164 -64 2 44 335 387 -52 11316 1811.8 13.0		87 -34 0 23 177 222 -45 11246 1811.5 14.0	222 -72 -33 50 703 953 -250 10995 1810.3 15.5	165 -46 703 1230 -527 10468 1807.9 20.0	262 -28 750 1150 -400 10068 1806.0 20.0
AVE POWER MW PEAK POW MW ENERGY GWH 1549.7	140 353 50.2	130 354 21.9	170 354 36.7	180 354 129.6	230 356 170.8	215 374 154.5	169 385 126.0	171 381 126.9	166 378 119.4	137 375 102.0	136 374 49.1	136 374 22.9	147 373 28.1	161 369 119.9	204 360 152.0	201 353 139.7
OAHE NAT INFLOW 1449 DEPLETION 626 CHAN STOR -14 EVAPORATION 379 REG INFLOW 12887 RELEASE 12700 STOR CHANGE 187 STORAGE 10403 ELEV FINSL 1573.5 DISCH KCFS 17.8 POWER	154 23 19 567 442 125 10528 1574.2 14.9	72 11 5 247 264 -17 10511 1574.1 19.0	92 14 -22 360 367 -7 10504 1574.1 20.6	229 47 -5 1248 1236 12 10516 1574.1 20.8	130 67 -27 1450 1455 -5 10511 1574.1 23.7	577 132 11 1705 1432 273 10784 1575.5 24.1	102 156 27 24 933 1695 -762 10023 1571.5 27.6	24 103 71 834 1520 -686 9336 1567.8 24.7	65 25 88 885 460 425 9762 1570.1 7.7	9 -9 15 80 752 476 276 10038 1571.6 7.7	2 37 349 255 93 10131 1572.1 8.6	1 163 118 44 10176 1572.3 8.5	1 20 196 135 61 10236 1572.7 8.5	-35 12 -8 43 855 1110 -255 9981 1571.3 18.1	-6 17 -25 1182 981 201 10182 1572.4 16.0	36 26 1160 752 408 10590 1574.5 13.1
AVE POWER MW PEAK POW MW ENERGY GWH 1623.8	159 536 57.1	203 536 34.1	219 535 47.3	221 536 159.3	252 536 187.4	257 543 185.2	292 522 217.0	256 502 190.1	80 515 57.6	81 523 60.5	91 525 32.6	90 526 15.1	90 528 17.4	190 521 141.4	168 527 124.9	139 538 96.9
BIG BEND EVAPORATION 129 REG INFLOW 12571 RELEASE 12571 STORAGE 1621 ELEV FIMSL 1420.0 DISCH KCFS 17.8 POWER AVE FOWER MW	442 442 1621 1420.0 14.9 70	19.0 89	367 367 1621 1420.0 20.6 96	1236 1236 1621 1420.0 20.8 97	1455 1455 1621 1420.0 23.7 111	1432 1432 1621 1420.0 24.1 113	8 1687 1687 1621 1420.0 27.4 128	24 1496 1496 1621 1420.0 24.3 115	31 429 429 1621 1420.0 7.2 37	27 449 449 1621 1420.0 7.3 37	12 243 243 1621 1420.0 8.2 41	6 113 113 1621 1420.0 8.1 41	7 129 129 1621 1420.0 8.1 41	14 1096 1096 1621 1420.0 17.8 88	981 981 1621 1420.0 16.0 78	752 752 1621 1420.0 13.1 63
PEAK POW MW ENERGY GWH 726.5	518 25.3	510 15.0	509 20.8	509 70.0	509 82.4	509 81.1	509 95.5	518 85.6	538 26.3	538 27.6	538 14.9	538 6.9	538 7.9	538 65.5	538 57.8	529 43.7
DISCH KCFS 10.0 POWER AVE POWER MW PEAK POW MW	7.8 65 350	32 1 295 158 137 3532 1355.0 11.4 96 355	21.8 185 356	21.8 184 356	51 9 1497 1497 1355.2 24.3 206 356	26.1 220 356	27.4 231 356	27.2 227 349	24.9 193 284	1 22 427 427 0 2296 1337.5 6.9 51 285	7.8 57 285	7.7 57 285	7.7 57 285	11.7 88 313	-5 3 701 272 2934 1347.4 11.4 90 330	15 3 764 575 189 3123 1350.0 10.0 81 339
ENERGY GWH 1270.7 GAVINS POINT NAT INFLOW 1251	23.3 91	16.2 43	39.9 55	132.6 124	153.0	158.3 143	171.9	169.2 80	139.2 58	38.0 105	20.6 47	9.5 22	10.9	65.4 70	66.6	56.3
DEPLETION 113 CHAN STOR -1 EVAPORATION 47 REG INFLOW 13937 RELEASE 13937 STOR CHANGE STORAGE 358 ELEV FTMSL 1206.0	0 4 328 328 358 1206.0	0 -7 194 194 358	0 -20 425 425 358	4 0 1416 1416 358	19 -5 1611 1611 358	24 -3 1666 1666 358	39 -3 3 1722 1722 358	10 9 1735 1722 13 371	-5 4 11 1537 1511 26 397	2 33 10 553 553	5 -2 268 268 268	2 0 125 125	25 3 0 143 143 397 1207,5	10 -7 5 767 767 397	68 1 769 769 397 1207.5	101 3 679 718 -39 358 1206-0
DISCH KCFS 12.5 POWER AVE POWER MW PEAK POW MW ENERGY GWH 583.2	11.0 39 114 13.9	14.0 49 114 8.2	23.8 82 114 17.6	23.8 82 114 58.7	26.2 89 114 66.6	28.0 95 114	28.0 95 114	28.0 96 115	25.4 88 117	9.0 32 117	9.0 32 117	9.0 32 117	9.0 32 117	12.5 44 78	12.5 44 78	12.5 44 76
GAVINS POINT - SIOU NAT INFLOW 900 DEPLETION 254 REGULATED FLOW AT SIO KAF 14583 KCFS	X CITY- 115 6		69 4 490 27.5	90 21 1485 25.0	174 35 1750 28.5	68.6 125 30 1761 29.6	70.9 75 37 1760 28.6	71.3 56 35 1743 28.3	63.7 35 23 1523 25.6	23.9 24 10 567 9.2	11.6 13 6 275 9.2	5.4 6 3 128 9.2	6.2 7 3 147 9.2	33.0 13 12 768 12.5	33.0 -3 13 753 12.2	30.6 48 14 752 13.1
TOTAL NAT INFLOW 19500 DEPLETION 2838 CHAN STOR -8 EVAPORATION 1546 STORAGE 33627 SYSTEM POWER AVE POWER MW	1114 48 86 34342 518	520 22 -1 34593	668 29 -42 34700	1744 217 -45 34697	2615 549 -32 34981	4950 1302 8 36876	2682 973 24 97 36753	968 276 0 302 35401	850 -116 13 371 34486	863 -6 57 320 34525	390 -78 0 145 34573	182 -36 0 68 34595	208 -41 -6 77 34615	570 -126 -49 168 34327	431 -111 -24 34092	745 -64 3 34152
PEAK POW MW ENERGY GWH 6450.0 DAILY GWH	518 1993 186.4 12.4	613 1993 103.0 14.7	798 1993 172.4 19.2	851 1993 512.6 20.4	974 1997 724.7 23.4	988 2026 711.2 23.7	1005 2016 747.4 24.1	953 1994 708.8 22.9	634 1958 456.8 15.2	399 1964 297.0 9.6	416 1965 149.8 10.0	415 1966 69.7 10.0	425 1967 81.7 10.2	665 1944 494.4 15.9	676 1956 503.1 16.2	619 1957 431.0 14.9
INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	29FEB

TIME OF STUDY 11:06:05

2006-2007 AOP LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHTN NAV SEAS 61 DAYS, SP MAR 0 MAY 0 VALUES IN 1000 AF EXCEPT AS INDICATED

TIME OF STODE 1.	1:00:0	22						OCAFE	KCEPT A						010D1	10	0
28FEB0 IN		15MAR	200 22MAR		30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	08 31DEC	31JAN	29FEB
DISCH KCFS	5100 539 374 4187 5012 -825 8240 194.8 9,5	234 -15 249 149 100 8340 2195.5 5.0	109 -7 116 69 47 8387 2195-9 5.0	140 -9 149 89 60 8447 2196.3 5.0	515 72 443 357 86 8533 2196.9 6.0		996 474 522 446 76 8649 2197.7 7.5	439 174 23 242 461 -219 8430 2196.2 7.5	253 -37 72 218 461 -243 8187 2194.4 7.5	242 -124 90 276 417 -140 8046 2193.4 7.0	320 -75 78 317 328 -11 8035 2193.4 5.3	159 -17 35 140 149 -9 8026 2193.3 5.0	-8 16 65 -4 8022	85 -9 19 75 111 -37 7985 2193.0 7.0	271 -64 40 295 492 -197 7788 2191.6 8.0	205 -58 263 492 -229 7559 2189.9 8.0	275 -41 316 460 -144 7415 2188.8 8.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH	687.1	57 122 20.6	57 122 9.6	58 123 12.4	69 124 49.8	87 124 64.4	87 125 62.5	87 123 64.4	86 120 63.7	79 119 57.0	60 119 44.8	56 118 20.3	56 118 9.5	79 118 15.1	89 116 66.4	88 113 65.7	87 112 60.8
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION	7299 1124 17 423	270 32 51	126 15	162 19	700 71 -11	903 146 -17	2020 538	1277 429 26	361 89 81	277 -91 6 102	390 38 19 89	161 ~70 4 40		86 -37 -23 21	108 -28 -11 46	160 -2	223 7
REG INFLOW RELEASE STOR CHANGE STORAGE	10781 11795 -1014 9886 805.1 17.5	437 417 21 9907 1805.2 14.0	180 180 9907 1805.2 13.0	232 277 -45 9862 1805.0 15.5	975 1160 -186 9676 1804.1 19.5	1201 1476 -275 9402 1802.7 24.0	1928 1369 560 9961 1805.5 23.0	1284 922 361 10323	652 922 -270 10052 1805.9 15.0	688 681 8 10060 1806.0 11.4	610 707 -97 9963 1805.5 11.5	344 342 9965 1805.5 11.5	159 160 -1 9963 1805.5 11.5	190 206 -16 9948 1805.4 13.0	571 953 -382 9566 1803.5 15.5	654 1045 -391 9174 1801.5 17.0	676 978 -302 8872 1800.0 17.0
AVE POWER MW PEAK POW MW ENERGY GWH 14	405.5	139 350 50.1	129 350 21.7	154 349 33.2	192 346 138.1	233 341 173.5	225 351 161.9	150 357 111.9	151 353 112.1	115 353 82.5	115 351 85.6	115 351 41.3	115 351 19.3	130 351 24.9	153 344 113.8	165 337 122.6	162 331 113.0
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION	1049 625 3 361	197 23 19	92 11 5	118 14 -14	183 47 -22	100 67 -24	215 132 5	82 156 43 23	21 103 69	64 25 21 85	5 -9 0 75	-5 2 34	-2 1 16	-3 1 -9 18	-48 12 -14 40	-12 16 -9	41 26 0
RELEASE 1 STOR CHANGE - STORAGE 1 ELEV FTMSL 19 DISCH KCFS	11861 12897 1036 10403 573.5 17.8	610 446 165 10568 1574.4 15.0	267 285 -17 10551 1574.3 20.5	368 377 -10 10541 1574.3 21.1	1275 1261 14 10555 1574.3 21.2	1484 1478 6 10561 1574.4 24.0	1457 1447 10 10571 1574.4 24.3	868 1713 -844 9727 1569.9 27.9	772 1537 -766 8961 1565.6 25.0	655 422 233 9195 1566.9 7.1	645 543 102 9297 1567.5 8.8	301 259 42 9339 1567.8 8.7	141 120 9359 1567.9 8.7	176 138 38 9397 1568.1 8.7	839 908 -69 9328 1567.7 14.8	1009 1016 -7 9321 1567.7 16.5	993 946 47 9368 1567.9 16.4
POWER AVE POWER MW PEAK POW MW ENERGY GWH 16	529.7	160 537 57.5	219 537 36.7	225 536 48.7	226 537 162.7	256 537 190.6	259 537 186.6	292 514 217.4	255 492 189.8	72 498 52.0	91 501 67.3	89 503 32.2	89 503 15.0	89 504 17.1	152 502 112.7	169 502 125.9	168 504 117.3
RELEASE 1 STORAGE ELEV FTMSL 14	129 12768 12768 1621 120.0 17.8	446 446 1621 1420.0 15.0	285 285 1621 1420.0 20.5	377 377 1621 1420.0 21.1	1261 1261 1621 1420.0 21.2	1478 1478 1621 1420.0 24.0	1447 1447 1621 1420.0 24.3	8 1705 1705 1621 1420.0 27.7	24 1513 1513 1621 1420.0 24.6	31 391 391 1621 1420.0 6.6	27 516 516 1621 1420.0 8.4	12 247 247 1621 1420.0 8.3	6 115 115 1621 1420.0 8.3	7 131 131 1621 1420.0 8.3	14 894 1621 1420.0 14.5	1016 1016 1621 1420.0 16.5	946 946 1621 1420.0 16.4
AVE POWER MW PEAK POW MW ENERGY GWH 7	739.2	71 518 25.5	96 510 16.2	99 509 21.4	99 509 71.4	113 509 83.7	114 509 82.0	130 509 96.6	116 518 86.6	33 538 24.0	43 538 31.7	42 538 15.2	42 530 7.0	42 538 8.0	73 538 54.5	81 538 60.5	79 529 54.9
RELEASE 1 STOR CHANGE STORAGE ELEV FTMSL 13 DISCH KCFS	300 80 128 2849 2845 5 3118 49.9 10.0	55 1 235 264 3382 1353.2 7.9	26 1 160 150 3532 1355.0 11.5	33 1 410 393 17 3549 1355.2 22.0	43 4 1300 1300 3549 1355.2 21.8	35 9 1504 1504 3549 1355.2 24.5	120 12 1555 1555 0 3549 1355.2 26.1	13 18 10 1690 0 3549 1355.2 27.5	36 15 31 1503 1677 -174 3375 1353.1 27.3	-10 7 32 1411 -1079 2296 1337.5 23.7	-52 1 22 441 441 0 2296 1337.5 7.2	-3 10 233 234 0 2296 1337.5 7.9	-1 0 5 108 0 2295 1337.5 7.8	-1 124 124 2295 1337-5 7.8	3 12 878 726 153 2448 1340-1 11.8	-6 3 1007 707 300 2748 1344-8 11.5	12 3 955 581 374 3122 1350.0 10.1
POWER AVE POWER MW PEAK POW MW ENERGY GWH 12	867.2	66 350 23.6	97 355 16.3	186 356 40.2	185 356 133.0	207 356 153.7	221 356 158.8	232 356 172.4	228 349 169.6	184 284 132.6	53 285 39.2	58 285 20.7	57 285 9.6	57 285 11.0	87 297 64.9	88 319 65.4	81 339 56.2
DEPLETION CHAN STOR EVAPORATION REG INFLOW 1 RELEASE 1 STOR CHANGE STORAGE ELEV FIMSL 12	1200 113 -1 47 .3883 .3883 358	87 0 4 327 327 358 1206.0 11.0	41 0 -7 194 194 358 1206.0 14.0	52 0 -20 425 425 358 1206.0 23.8	120 4 0 1416 1416 358 1206.0 23.8	131 19 -5 1611 1611 358 1206.0 26.2	138 24 -3 1666 1666 358 1206.0 28.0	76 39 -3 1722 1722 358 1206.0 28.0	76 10 9 1735 1722 13 371 1206.5 28.0	55 -5 11 1466 1440 26 397 1207.5 24.2	104 2 31 564 564 1207.5 9.2	45 5 268 268 397 1207.5 9.0	21 2 125 125 125 1207.5 9.0	24 3 0 143 143 143 1207-5 9.0	67 10 -7 5 770 770 397 1207.5 12.5	65 1 772 772 397 1207.5 12.5	98 3 682 721 -39 358 1206.0 12.5
Power Ave power MW Peak pow MW Energy GWH 5	81.0	38 114 13.9	49 114 8.2	82 114 17.6	82 114 58.7	89 114 66.6	95 114 68.6	95 114 70.9	96 115 71.3	84 117 60.8	33 117 24.3	32 117 11.6	32 117 5.4	32 117 6.2	44 78 33.1	45 78 33.2	44 76 30.8
GAVINS POINT - NAT INFLOW DEPLETION REGULATED FLOW A KAF 1 KCFS	550 254	36 6	- 17 3 208 15.0	22 4 443 24.8	77 21 1472 24.7	144 35 1720 28.0	106 30 1742 29.3	47 37 1732 28.2	22 35 1709 27.8	15 23 1432 24.1	14 10 568 9.2	10 6 272 9.1	4 3 127 9.1	5 3 145 9.1	10 12 768 -12.5	-5 13 754 12.3	26 14 733 12.7
DEPLETION CHAN STOR EVAPORATION STORAGE 3	5498 2735 8 1462 3627	880 48 74 34177	411 22 -1 34356	528 29 -34 34379	1638 219 -33 34293	2096 557 -47 34065	3595 1210 2 34710	1934 853 41 92 34008	769 215 0 286 32568	643 -165 23 351 31616	781 -33 49 302 31609	367 -74 3 137 31643	171 -34 0 64 31658	195 -39 -31 73 31644	408 -55 -33 157 31149	407 -27 -8 30821	675 9 3 30757
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 63 DAILY GWH	09.7	531 1991 191.2 12.7	648 1989 108.8 15.5	803 1988 173.5 19.3	853 1986 613.9 20.5	984 1982 732.5 23.6	1001 1993 720.5 24.0	986 1973 733.6 23.7	932 1947 693.0 22.4	568 1909 409.0 13.6	394 1911 292.9 9.4	392 1912 141.3 9.4	392 1913 65.8 9.4	429 1913 82.3 10.3	599 1875 445.4 14.4	636 1887 473.2 15.3	622 1890 432.9 14.9
INI	- Sum	15MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB

TIME OF STUDY 08:32:01

TIME OF STODY 08:32:0	1						CEPT AS						31001	10	3
28FEB08 INI-SUM		008 AR 31MAR	30APR						310CT	15NOV	22NOV	200 30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 7400 DEPLETION 531 EVAPORATION 373 MOD INFLOW 6496 RELEASE 5055 STOR CHANGE 1440 STORAGE 10174 ELEV FTMSL 2207.6	5 259 1 179 80 10254 103 2208.1 2208	.4 2208.8 2	2210.4 2			829 221 586 492 94 11800 2217.3			398 -83 78 403 267 136 11776 2217.1		2217.6	100 -21 19 102 71 30 11890 2217.8		261 -140 401 523 -122 11643 2216.4	349 -94 443 472 -29 11614 2216.2
DISCH KCFS 8.5 POWER AVE POWER MW PEAK POW MW ENERGY GWH 775.1	74	.0 5.0 51 62 37 138 .3 13.3	6.0 74 140 53.4	8.0 [.] 100 142 74.1	8.0 101 147 72.8	8.0 102 147 76.1	8.0 102 146 76.0	6.0 77 146 55.1	4.3 56 147 41.4	4.5 58 148 20.8	4.5 58 148 9.7	4.5 58 148 11.1	8.5 109 147 81.0	8.5 108 146 80.7	8.5 108 146 72.8
GARRISON NAT INFLOW 11001 DEPLETION 1046 CHAN STOR 0	-6	19 282 -3 -4 11	853 -3 -11	1423 196 -21	2958 830	2066 578	581 64	497 -130 21	454 -6 17	192 -108 -2	89 -50	102 -58	253 -110 -42	237 -89	326 -55 0
EVAPORATION 436 REG INFLOW 14574 RELEASE 12820 STOR CHANGE 1754 STORAGE 12239	681 3 417 1	02 375 94 250 08 125 12 12736 .3 1817.8 1	1202 952 250 12987	1697 1291 406 13393	2604 1220 1384 14777 1825.8 20.5	26 1954 1230 724 15501 1828.5 20.0	84 925 1230 -305 15196 1827.4 20.0	105 900 1116 ~217 14979	91 653 837 -184 14795	41 391 387 4 14799	19 183 180 3 14802 1825.9 13.0	22 209 222 -13 14789 1825.9 14.0	47 797 953 -156 14632	849 1230 -381 14251 1823.8 20.0	853 1111 ~258 13993 1822.8 20.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1765.4		52 153 94 396 .6 33.0	175 400 126.4	232 406 172.4	232 426 166.9	232 435 172.9	234 431 173.8	218 428 156.9	158 426 117.4	150 426 54.2	150 426 25.3	162 426 31.1	179 423 133.0	228 418 169.9	226 414 152.2
OAHE NAT INFLOW 2300 DEPLETION 640 CHAN STOR 1 EVAPORATION 400		48 190 L1 14	364 48 -10	236 68 -24	689 135 2	162 160 2 24	33 106 76	118 26 6 95	14 -9 24 84	5 1 3 38	2 0 18	3 1 -5 20	-20 12 -7 44	17 -21	40 27
REG INFLOW 14081 RELEASE 12283 STOR CHANGE 1798 STORAGE 12815 ELEV FTMSL 1585.0 DISCH KCFS 15.8	403 2	9 1587.4 1		1435 1291 144 13814 1589.2 21.0	1776 1172 605 14418 1591.7 19.7	1210 1492 -282 14136	1081 1430 -349 13787	1119 878 241 14028	801 892 -91 13937	356 226 130 14067	165 115 50 14117	199 130 69 14186 1590.7 8.2	870 931 -61 14125	1192 942 250 14375 1591.5 15.3	1124 886 238 14613 1592.5 15.9
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1743.1		88 194 03 606 .7 42.0	189 612 136.4	245 615 182.1	232 627 166.7	286 621 212.7	272 614 202.5	173 619 124.6	170 617 126.8	89 620 32.2	98 621 16.4	97 622 18.6	178 621 132.6	181 626 134.6	189 631 127.3
BIG BEND EVAPORATION 103 REG INFLOW 12180 RELEASE 12180 STORAGE 1621 ELEV FTMSL 1420.0 1 DISCH KCFS 15.8 POWER		.0 1420.0 1	971 971 1621 .420.0 1 16.3	1291 1291 1621 1420.0 21.0	1172 1172 1621 1420.0 19.7	6 1486 1486 1621 1420.0 24.2	20 1410 1410 1621 1420.0 22.9	25 853 853 1621 1420.0 14.3	22 870 870 1621 1420.0 14.2	10 216 1621 1420.0 7.3	5 110 1621 1420.0 8.0	5 125 125 1621 1420.0 7.9	11 919 919 1621 1420.0 14.9	942 942 1621 1420.0 15.3	886 886 1621 1420.0 15.9
AVE POWER MW PEAK POW MW ENERGY GWH 707.4		77 79 09 509 .9 17.0	76 509 55.0	98 509 73.2	92 509 66.4	113 509 84.2	108 518 80.7	71 538 51.0	71 538 53.1	37 538 13.3	40 538 6.8	40 538 7.7	75 538 55.8	75 538 56.1	77 529 51.4
FORT RANDALL NAT INFLOW 900 DEPLETION 79 EVAPORATION 107 REG INFLOW 12895 RELEASE 12895 STOR CHANGE 0 STORAGE 3123 ELEV FIMSL 1350.0 : DISCH KCFS 9.6	1 524 2 232 1 292 1 3415 35	34 19 3549 2 1355.2 1	115 3 1083 1083 3549 355.2 1 18.2	140 9 1422 1422 3549 1355.2 23.1	185 12 1345 1345 0 3549 1355.2 22.6	74 18 1534 1534 0 3549 1355.2 24.9	57 15 25 1427 1601 -174 3375 1353.1 26.0	42 7 28 860 1535 -675 2700 1344.1 25.8	2 20 851 1254 -403 2297 1337.5 20.4	2 1 209 209 2297 1337.5 7.0	1 0 4 107 0 2297 1337.5 7.7	1 4 121 121 0 2297 1337.5 7.6	10 3 916 713 203 2500 1341.0 11.6	3 939 689 250 2750 1344.8 11.2	19 3 528 374 3124 1350.0 9.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1269.4	65 3 351 3 23.3 15		154 356 111.0	196 356 145.5	191 356 137.6	211 356 156.7	218 349 162.1	206 315 148.4	153 285 113.5	52 285 18.6	56 285 9.5	56 285 10.7	86 301 64.1	86 319 64.0	76 339 51.1
	0 328 1 328 1 358 3 1206.0 1206	37 409 58 358 50 1206.0 1									23 2 -1 125 125 125 397 1207.5				127 3 658 697 -39 358 1206.0
DISCH KCFS 12.5 Power Ave Power MW Peak Pow MW Energy GWH 595.5	11.0 13 39 114 1 13.9 7	7 79 4 114	20.7 71 114 51.4	25.5 87 114 64.9	25.0 86 114 61.6	25.6 88 114 65.1	27.2 93 115 69.3	26.6 92 117 66.6	22.4 79 117 58.6	9.2 33 117 11.9	9.0 32 117 5.4	9.0 32 117 6.2	12.5 44 78 33.0	12.5 44 78 33.0	12.5 44 76 29.7
GAVINS POINT - SIOU NAT INFLOW 1550 DEPLETION 255 REGULATED FLOW AT SIOU	169 ·	9 102 3 4	199 21	310 35	224 30	129 38	96 35	60 23	42 10	16 6	7 3	9 3	21 12	5 13	82 14
KAF 15489 KCFS	492 20 16.5 19		1410 23.7	1843 30.0	1682 28.3	1665 27.1	1733 28.2	1620 27.2	1409 22.9	286 9.6	130 9.4	148 9.4	778 12.6	759 12.4	765 13.8
	1435 60 30 5 60 41305 4170	4 18 5 -19	2307 91 -15 42809	3493 676 -55 43728	6073 1693 3 46430	3346 1054 -2 89 46966	1194 172 -2 282 45970	1113 -227 27 351 45366	1032 -86 52 303 44823	452 -135 27 136 45014	211 -63 -1 64 45093	241 -72 -5 73 45180	651 -202 -56 158 45040	582 -195 -20 45038	943 ~105 3 45324
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 6856.0 DAILY GWH	548 63 2112 213 197.3 103 13.2 14	.4 2119 7 160.4	741 2131 533.5 17.8	957 2142 712.1 23.0	933 2179 671.9 22.4	1032 2184 767.7 24.8	1027 2174 764.4 24.7	837 2163 602.5 20.1	687 2130 510.9 16.5	419 2133 150.8 10.1	435 2134 73.1 10.4	444 2136 85.3 10.7	672 2109 499.6 16.1	723 2125 538.3 17.4	721 2135 484.4 17.3
INI-SUM	15MAR 22M	R 31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30nov	31DEC	31JAN	28FEB

TIME OF STUDY 08:32:01

.

	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
FORT PECI NAT INFLOW DEFLETION MOD INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER	7400 432 399 6569 5526 1043 11614	264 -25 289 179 110 11725 2216.8 6.0	123 -12 135 69 65 11790 2217.2 5.0	158 -15 173 89 84 11874 2217.7 5.0	628 49 579 357 222 12096 2218.9 6.0	1210 350 492 368 12464 2221.0 8.0		829 232 24 573 492 81 13334 2225.7 8.0	324 -57 76 305 492 -187 13147 2224.7 8.0	319 -149 96 372 417 -44 13103 2224.5 7.0	398 -78 84 392 380 12 13115 2224.5 6.2	188 -41 38 190 179 12 13127 2224.6 6.0	88 -19 18 89 83 13132 2224.6 6.0	100 -22 20 101 95 6 13138 2224.7 6.0	310 -131 44 397 584 -187 12951 2223.7 9.5	261 -142 403 615 -212 12740 2222.5 10.0	
AVE POWER 1 PEAK POW MI ENERGY GWH	877.5	77 147 27.6	64 147 10.8	64 148 13.9	77 149 55.7	104 151 77.1	105 156 75.7	106 156 79.0	106 155 78.9	93 155 66.7	82 155 60.9	79 155 28.6	79 155 13.4	79 155 15.3	125 154 93.2	131 153 97.4	124 152 83.5
GARRISO NAT INFLOW DEFLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANGI STORAGE ELEV FTMSL DISCH KCFS POWER	11001 1013 -10 1 463 15041 13774 1268 13993	469 -9 26 683 417 267 14260 1823.9 14.0	219 -4 11 303 194 109 14369 1824.3 14.0	282 -5 376 250 126 14495 1824.8 1824.8 14.0	853 -8 -10 1208 1012 196 14691 1825.5 17.0	1423 179 -21 1715 1291 424 15114 1827.1 21.0	2958 829 2605 1250 1355 16470 1632.0 21.0	2066 585 1945 1291 654 17123 1834.2 21.0	581 69 90 114 1291 -377 16746 1832.9 21.0	497 -133 10 112 945 1230 -285 16461 1831.9 20.7	454 -10 8 97 756 1094 -338 16123 1830.7 17.8	192 -112 2 43 440 491 -51 16072 1830.6 16.5	89 -52 20 204 229 -25 16047 1830.5 16.5	102 -59 234 262 -28 16019 1830.4 16.5	253 -112 -36 50 863 1015 -151 15868 1829.8 16.5	237 -90 -5 937 1291 -355 15513 1828-5 21.0	326 -55 5 1166 -253 15261 1827.6 21.0
AVE POWER N PEAK POW MY ENERGY GWH	W 1 1969.0	159 418 57.3	160 420 26.9	160 421 34.7	195 424 140.6	242 430 180.4	248 448 178.3	253 456 188.6	254 451 189.2	249 448 178.9	213 443 158.3	197 443 70.8	196 442 33.0	196 442 37.7	196 440 145.7	247 435 183.9	245 432 164-9
OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATION RELEASE STOR CHANGH STORAGE ELEV FTMSL DISCH KCFS	2300 652 4 1 433 14985 13686 1299 14613	317 23 28 403 335 14948 1593.8 13.5	148 11 331 227 104 15053 1594.2 16.4	190 14 426 300 126 15178 1594.7 16.8	364 48 -14 1314 971 343 15522 1596.0 16.3	236 69 -18 1368 73 15595 1596.2 22.2	689 138 1801 1224 576 16171 1598.4 20.6	162 164 27 1263 1547 -285 15886 1597.3 25.2	33 109 83 1133 1485 -352 15534 1596.0 24.2	118 27 1 104 1218 932 287 15821 15821 1597.1 15.7	14 -9 13 92 1038 1175 -137 15684 1596.6 19.1	5 41 460 750 -290 15394 1595.5 25.2	2 0 212 350 -138 15256 1595.0 25.2	3 1 242 242 210 32 15289 1595.1 13.2	-20 12 936 1082 -146 15143 1594.5 17.6	17 -20 1254 879 375 15518 1596.0 14.3	40 27 1179 786 394 15912 1597.4 14.1
Power Ave Power M Peak Pow M Energy Gwh		162 637 58.3	196 639 33.0	202 642 43.7	197 648 142.1	270 650 200.6	251 660 180.9	308 655 229.0	294 648 218.4	191 654 137.3	233 651 173.2	305 646 109-8	304 643 51.0	160 644 30.7	212 641 157.8	173 648 128.7	173 655 116.0
BIG BENI EVAPORATION REGINFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER N PEAK POW MY	I 103 13583 13583 1621 1420.0 15.9	13.5 64 517	227 227 1621 1420.0 16.4 77 509	300 300 1621 1420.0 16.8 79 509	971 971 1621 1420.0 16.3 76 509	1368 1368 1621 1420.0 22.2 104 509	20.6 96 509	6 1541 1541 1621 1420.0 25.1 117 509	23.8 113 518	25 907 907 1621 1420.0 15.2 75 538	22 1153 1153 1621 1420.0 18.8 94 538	10 740 740 1621 1420.0 24.9 124 538	24.9 124 538	5 205 205 1621 1420.0 12.9 65 538	17.4 86 538	14.3 70 538	14.1 68 529
ENERGY GWH FORT RANDA NAT INFLOW DEPLETION EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	900 79 107 14298 14298	23.1 122 1 524 232 291 3415 1353.6 7.8	12.9 57 1 283 149 134 3549 1355.2 10.8	17.0 73 1 373 373 0 3549 1355.2 20.9	55.0 115 3 1083 1083 3549 1355.2 18.2	77.5 140 9 1499 1499 3549 1355.2 24.4	59.4 185 12 1397 1397 3549 1355.2 23.5	87.3 74 18 1589 1589 0 3549 1355.2 25.8	83.9 57 15 25 1483 1657 -174 3375 1353.1 26.9	54.1 42 7 28 914 1589 -675 2700 1344.1 26.7	70.1 2 1 135 1538 -403 2297 1337.5 25.0	44.8 2 8 731 731 0 2297 1337.5 24.6	20.9 1 0 4 342 342 0 2297 1337.5 24.6	12.5 1 4 202 202 0 2297 1337.5 12.7	64.0 10 1067 701 366 2663 1343.5 11.4	52.0 3 876 689 187 2850 1346.3 11.2	45.6 19 3 802 528 274 3124 1350.0 9.5
POWER AVE POWER M PEAK POW M ENERGY GWH		65 351 23.3	91 356 15.3	177 356 38.2	154 356 111.0	206 356 153.1	198 356 142.9	218 356 162.3	225 349 167.6	213 315 153-5	187 285 138.8	178 285 64.0	178 285 29.9	93 285 17.8	86 313 63.7	88 325 65.1	76 339 51.4
GAVINS POJ NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INPLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	1450 112 -1 38 15597 15597 ; 358 1206.0	92 0 3 328 328 328 1206.0				174 19 -12 1642 1642 358 1206.0					122 1 3 1654 1654 1654 397 1207.5			27 3 22 246 246 246 397 1207.5			127 3 658 697 -39 358 1206.0
DISCH KCFS POWER AVE POWER N PEAK POW MW ENERGY GWH		11.0 39 114 13.9	13.5 47 114 7.9	22.9 79 114 17.0	20.7 71 114 51.4	26.7 91 114 67.8	25.9 88 114 63.7	26.5 90 114 67.3	28.1 96 115 71.5	27.5 95 117 68.7	26.9 94 117 70.1	26.0 91 117 32.8	26.0 91 117 15.3	15.5 55 117 10.5	12.5 44 78 32.9	12.5 44 78 33.0	12.5 44 76 29.7
GAVINS POI NAT INFLOW DEPLETION	NT - SIOU 1550		 79 3	102 4	199 21	310 35	224 31	129 38	96 36 1788	60 23 1673	42 10 1686	16 6 784	7 3 366	9 3 252	21 12 775	5 14	82 14 765
REGULATED FI KAF KCFS	258 OW AT SIC 16889		263 19.0	507 28.4	1410 23.7	1917 31.2	1734 29.1	1720 28.0	29.1	28.1	27.4	26.4	26.4	15.9	12.6	758 12.3	13.8
REGULATED FI KAF KCFS TOTAL NAT INFLOW DEFLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER N AVE POWER N	OW AT SIC 16889 24601 2546 -14 1543 45324 R W	X CITY 491 16.5 1435 -3 57 46327 565	263 19.0 669 -1 5 46740 635	28.4 860 -2 -19 47075 761	23.7 2307 117 -19 47837 772	31.2 3493 661 -51 48701 1017	29.1 6073 1620 2 51422 987	28.0 3346 1076 -5 95 51872 1093	29.1 1194 182 -2 300 50794 1088	28.1 1113 -230 12 373 50103 916	27.4 1032 -85 25 322 49237 902	452 -140 8 144 48908 975	211 -65 0 67 48751 973	241 -74 23 76 48761 649	12.6 651 -206 -33 166 48644 749	12.3 582 -197 -25 48639 753	13.8 943 -107 8 48933 731
REGULATED FI KAF KCFS TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWE	OW AT SIC 16889 24601 2546 -14 1543 45324 R W	DUX CITY 491 16.5 1435 -3 57 46327 565 2184 203.5 13.6	263 19.0 669 -1 5 46740	28.4 860 -2 -19 47075	23.7 2307 117 -19 47837 772 2201 555.7 18.5	31.2 3493 661 -51 48701	29.1 6073 1620 2 51422 987 2243 710.9 23.7	28.0 3346 1076 -5 95 51872	29.1 1194 182 -2 300 50794	28.1 1113 -230 12 373 50103	27.4 1032 -85 25 322 49237	452 -140 8 144 48908	211 -65 0 67 48751	241 -74 23 76 48761	12.6 651 -206 -33 166 48644	12.3 582 -197 -25 48639	13.8 943 -107 8 48933

TIME OF STUDY 08:32:02

TIME OF STUDY	08:32:0	2						MR 5 M) 00 AF E2				er -3.0			STUDY	NU .	11
26FEB I	10 NI-SUM	15MAR	2010 22MAR		30APR			31JUL				15NOV	22NOV	201 30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL	7400 442 430 6528 5074 1454 12657 2222.0	264 -26 290 179 111 12768	123 -12 135 69 66 12834 2223.0	158 -15 174 89 85 12919 2223.5	628 49 579 357 222 13141 2224.7	1210 352 858 492 366 13507 2226.6	1851 591 1260 476 784 14291 2230.6	829 240 26 563 492 71 14362 2230,9	324 -53 82 295 492 -197 14165	319 -150 103 366 357 9 14174		188 -42 41 188 149 39 14285 2230 6	88 -19 19 88 69 18 14303 2230.7	100 -22 22 100 79 21 14324 2230.8	310 -133 47 396 492 -96 14228 2230 3	261 -143 404 523 -119 14109 2229.7	349 -97 446 444 2 14111 2229.7
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH	9.5	6.0 79 153 28.3	5.0 66 153 11.1	5.0 66 154 14.2	6.0 79 155 57.1	8.0 106 157 79.0	8.0 107 160 77.2	8.0 108 160 80.3	8.0 108 159 80.2	6.0 81 159 58.2	5.1 69 160 51.3	5.0 68 160 24.3	5.0 68 160 11.4	5.0 68 160 13.0	8.0 108 159 80.3	8.5 114 159 85.1	8.0 108 159 72.3
GARRISON NAT INFLOW DEPLETION CHAN STOR	11001 1030 15	469 -8 36	219 -4 10	282 - 5	853 -7 -10	1423 179 -20	2958 839	2066 601	581 75	497 -135 20	454 -15 9	192 -115 1	89 -54	102 -61 0	253 -114 -30	237 -90 -5	326 - 56 5
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	475 14585 14635 -50 15261 1827.6 21.0	692 417 276 15537 1828.6 14.0	303 194 108 15645 1829.0 14.0	376 250 126 15771 1829.5 14.0	1207 952 255 16026 1830.4 16.0	1715 1414 301 16327 1831.4 23.0	2595 1369 1226 17553 1835.7 23.0	29 1927 1414 513 18066 1837.4 23.0	93 905 1414 -510 17557 1835.7 23.0	115 894 1309 -415 17142 1834.3 22.0	99 694 1214 -520 16622 1832.5 19.7	44 412 -79 16543 1832.2 16.5	21 192 229 -37 16506 1832.1 16.5	23 219 262 -42 16463 1831.9 16.5	51 778 1015 -237 16226 1831.1 16.5	845 1414 -570 15657 1829.1 23.0	831 1277 -446 15211 1827.4 23.0
Power Ave Power MW Peak Pow MW Energy Gwh	2128.9	164 436 59.2	165 437 27.7	166 439 35.8	190 442 136.7	273 446 203.5	278 462 200.3	283 468 210.9	283 461 210.9	269 456 193.4	239 450 177.7	199 449 71.6	198 448 33.3	198 448 38 1	198 445 147.1	272 437 202.4	269 431 180.6
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION	2300 665 -9 452	317 24 31	148 11	190 14	364 49 -9	236 70 -30	689 141	162 169 28	33 112 87	118 27 4 109	14 -10 10 96	5 1 14 43	2 0 20	3 1 22	-20 12 48	17 -29	40 27
REG INFLOW RELEASE STOR CHANGE STORAGE	15809 14992 817 15912	740 402 338 16250 1598.7 13.5	331 236 95 16345 1599.0 17.0	426 319 107 16452 1599.4 17.9	1258 1030 229 16680 1600.2 17.3	1550 1556 -6 16674 1600.2 25.3	1917 1397 520 17194 1602.0 23.5	1379 1726 -346 16848 1600.8 28.1	1248 1663 -415 16433	1295 1104 191 16624	1152 1353 -201 16422	466 836 -369 16053	211 390 -179 15874	242 234 7 15882	934 1082 -147 15734	1368 879 490 16224 1598.6 14.3	1290 786 505 16729 1600.4 14.1
AVE POWER MW PEAK POW MW ENERGY GWH	2242.8	166 661 59.8	210 663 35.2	221 665 47.7	215 669 154.5	314 669 233.3	293 679 210.6	350 672 260.2	335 665 249.1	230 668 165.5	272 664 202.5	345 658 124.1	343 655 57.6	181 655 34-7	215 652 159.8	175 661 130.4	175 670 117.8
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS POWER	103 14889 14889 1621 1420.0 14.1	402 402 1621 1420.0 13.5	236 236 1621 1420.0 17.0	319 319 1621 1420.0 17.9	1030 1030 1621 1420.0 17.3	1556 1556 1621 1420.0 25.3	1397 1397 1621 1420.0 23.5	6 1719 1719 1621 1420.0 28.0	20 1644 1644 1621 1420.0 26.7	25 1079 1079 1621 1420.0 18.1	22 1332 1332 1621 1420.0 21.7	10 826 826 1621 1420.0 27.8	5 386 386 1621 1420.0 27.8	5 229 229 1621 1420.0 14.4	11 1070 1070 1621 1420.0 17.4	879 879 1621 1420.0 14.3	786 786 1621 1420.0 14.1
AVE POWER MW PEAK POW MW ENERGY GWH	865.6	64 517 23.1	. 80 509 13.4	84 509 18.1	81 509 58.3	118 509 88.1	110 509 79.1	131 509 97.4	127 518 94.1	89 538 64.3	109 538 80.8	139 538 49.9	139 538 23,3	73 538 14.0	86 538 64.0	70 538 52.0	68 529 45.6
DISCH KCFS POWER	900 79 107 15604 15604 0 3124 1350.0 9.5	7.8	11.4	21.9	19.2	27.4	26.4	74 18 8 1767 1767 3549 1355.2 28.7	29.8	29.6	27.9	27.5	27.5	14.3	11.4	3 876 689 187 2850 1346.3 11.2	9.5
	1524.0	65 351 23.3	97 356 16.2	185 356 40.0	163 356 117.1	231 356 172.1	223 356 160.2	242 356 180.2	249 349 185.4	236 315 169.8	208 285 154.6	199 285 71.5	199 285 33.4	104 285 20.0	86 313 63.7	88 325 65.1	76 339 51.4
DISCH KCFS	1450 112 -1 38 16903 16903 358 1206.0 12.5	92 0 328 328 328 1206.0 11.0	43 0 -7 195 195 358 1206.0 14.0	55 0 -20 427 427 358 1206.0 23.9	148 4 5 1291 1291 358 1206.0 21.7	174 19 -16 1826 1826 1826 1206.0 29.7	166 24 2 1714 1714 1714 358 1206.0 28.8	86 39 -5 2 1808 1808 358 1206.0 29,4	103 10 -2 7 1919 1906 13 371 1206.5 31.0	77 -5 9 1835 1809 26 397 1207.5 30.4	122 1 3 1832 1832 1832 1832 1832 1207.5 29.8	50 5 4 860 860 397 1207.5 28.9	23 2 0 2 401 401 397 1207.5 28.9	27 3 25 273 273 397 1207.5 17.2	77 10 5 4 769 769 397 1207-5 12.5	79 1 0 767 767 397 1207-5 12.5	127 3 658 697 -39 358 1206.0 12.5
Power Ave Power MW Peak Pow MW Energy GWH	701.9	39 114 13.9	49 114 8.2	82 114 17.7	75 114 53.8	100 114 74.5	98 114 70.5	99 114 74.0	104 115 77.2	104 117 74.5	103 117 76.7	101 117 36.3	101 117 17.0	61 117 11.7	44 78 33.1	44 78 33.0	44 76 29.7
GAVINS POINT NAT INFLOW DEPLETION REGULATED FLOW KAF KCFS	1550 263	169 7	79 3	102 4 524 29.4	199 22 1468 24.7	310 35 2101 34.2	224 31 1907 32.0	129 38 1899 30.9	96 36 1966 32.0	60 24 1845 31.0	42 10 1864 30.3	16 6 870 29.2	7 3 406 29.2	9 3 278 17.5	21 13 777 12.6	5 14 758 12.3	82 14 765 13.8
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION	24601 2591 7 1606	1435 -2 70	669 -1 3	860 -1 -20	2307 120 -14	3493 664 -66	6073 1638 2	3346 1105 -5 100	1194 195 -2 313	1113 -232 25 389	1032 -91 22 334	452 -144 15 149	211 -67 0 69	241 -77 26 79	651 -209 -25 172	582 -198 -34	943 -109 8
STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW	48933 8286.7	49949 577 2232 207.7 13.8	50352 666 2233 111.9 16.0	50669 803 2237 173.5 19.3	51375 802 2246 577.4 19.2	52036 1143 2252 850.6 27.4	54566 1108 2280 797.9 26.6	54804 1214 2280 903.0 29.1	53522 1205 2268 896.8 28.9	52658 1008 2254 725.9 24.2	51605 1000 2213 743.7 24.0	51196 1049 2206 377.7 25.2	50998 1047 2203 175.9 25.1	50984 684 2202 131.4 16.4	50870 736 2185 547.9 17.7	50858 763 2198 568.0 18.3	51154 740 2205 497.4 17.8
11	NI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	28FEB

DATE OF STUDY 11/30/06 TIME OF STUDY 08:32:02 DATE OF STUDY 11/30/06

FORT PEC	101-30M	1 SPIRIN	P SILPLUY	2 al 100	JUNER	<i>~</i>	2000	51001	51000	50041							
NAT INFLOW DEPLETION	7400 454	264 -26	123 -12	158 -15	628 49	1210 353	1851 595	829 247	324	319 -150	398 -78 93	188 -41	88 -19	100 -22	310 -131 47	261 -141	349 -107
EVAPORATION MOD INFLOW RELEASE	N 445 6501 6965	290 179	135 83	174 107	579 357	857 492	1256 762	28 554 615	87 285 615	108 361 653	383 590	42 187 268	19 87 132	22 100 159	394 646	402 676	
STOR CHANG STORAGE ELEV FTMSL	5 -464 14111 2229.7	111 14222	52 14274 2230.5		222 14563 2231.9	365 14928 2233.7	494 15422 2236.0	-60 15362 2235.7	-329 15032 2234.2		-207 14534 2231.8	-81 14453 2221 4	-45 14409 2231.2	-59 14350 2230 9	-252 14098 2229 6	-274 13824 2228 2	13647
DISCH KCFS POWER	8.0	6.0	6.0	6.0	6.0	8.0	12.8	10.0	10.0	11.0	9.6	9.0	9.5	10.0	10.5	11.0	11.0
AVE POWER I PEAK POW MI ENERGY GWH	N	81 159 29.1	81 160 13.6	81 160 17.5	81 161 58.5	109 162 80.8	163 164 117.2	137 163 101.7	136 162 101.4	147 161 105.7	130 161 96.7	122 160 43.8	128 160 21.6	135 160 25.9	140 159 104.1	145 158 107.6	144 157 100.2
GARRISON NAT INFLOW DEPLETION	11001 1042	469 -8	219 ~4	282 ~5	853 -6	1423 179	2958 849	2065 619	581 80	497 -138	454 -20	192 -119	89 -55	102 -63	253 -114 -5	237 - 90	326 -62
CHAN STOR EVAPORATIO REG INFLOW	16410	21 677	306	394	1216	-20 1715	-49 2822	28 29 2062	93 1023	-10 116 1162	14 101 977	6 45 538	-5 21 250	24 295	53 955	-5 998	1021
RELEASE STOR CHANGI STORAGE	15151 5 1259 15211	417 260 15471	194 112 15583	250 144 15727	922 294 16020	1568 147 16168	1468 1334 17502	1506 555 18057	1476 -453 17604	1320 -158 17446	1157 -180 17266	506 33 17299	236 14 17313	270 25 17338	1045 -90 17248	1445 -447 16801	1352 -331 16470
ELEV FTMSL DISCH KCFS									1835.8 24.0		1834.7					1833.1 23.5	
Power Ave Power I Peak Pow Mi Energy Gwh	Ŵ	164 435 59.1	165 436 27.7	165 438 35.7	184 442 132.4	302 444 224.9	301 461 217.0	301 468 224.3	296 462 220.0	272 460 195.8	230 458 171.2	208 458 74.8	208 458 34.9	208 459 39.9	208 458 154.7	285 452 211 8	282 448 196.5
OAHE- NAT INFLOW	2300	317	148	190	364	236	689	162	33	118	14	5	2	3	-20		40
DEPLETION CHAN STOR EVAPORATIO	680 -2 N 463	24 39	11	14	49 -6	71 -42	145 2	173 2 29	115 2 90	28 8 112	-10 14 96	1 8 43	0 20	1 23	12 0 49	18 -28	28
REG INFLOW RELEASE STOR CHANG	16305 15881	748 402 346	331 259 72	426 363 62	1231 1172 59	1691 1659 32	2034 1486 548	1469 1818 ~349	1306 1756 -449	1306 1193 112	1097 1445 -348	474 880 -406	218 411 -193	249 247 2	964 1088 -124	1398 885 514	1364 816 548
STORAGE ELEV FTMSL DISCH KCFS	16729	17074 1601.6 13.5	17146	17209	17267 1602.3 19.7	17299	17847	17498 1603.1 29.6	17048 1601.5 28.6	17161	16812 1600.7 23.5	16406	16213 1598.5 29.6	16215	16091	16605 1600.0 14.4	17153
POWER AVE POWER I PEAK POW MI ENERGY GWH	MW W	169 677 60.8	234 678 39.3	255 679 55.1	247 680 178-1	338 681 251.6	315 691 226.6	373 684 277.4	358 676 266.0	251 678 180.8	293 672 218.2	366 664 131.6	364 661 61.1	192 661 36,9	218 659 161.8	178 668 132.3	177 678 123.3
BIG BENN	D		55.5	5511	1,011	551.0	220.0		20		22		5	5		10210	
EVAPORATION REG INFLOW RELEASE	N 103 15778 15778	402 402	259 259	363 363	1172 1172	1659 1659	1486 1486	6 1812 1812	1736 1736	25 1169 1169	1424 1424	10 871 871	406 406	242 242	11 1076 1076	885 885	816 816
STORAGE ELEV FTMSL DISCH KCFS POWER	1621 1420.0 14.1	1621 1420.0 13.5	1621 1420.0 18.7	1621 1420.0 20.4	1621 1420.0 19.7	1621 1420.0 27.0	1621 1420.0 25.0	1621 1420.0 29.5	1621 1420.0 28.2	1621 1420.0 19.6	1621 1420.0 23.2	1621 1420.0 29.3	1621 1420.0 29.3	1621 1420.0 15.3	1621 1420.0 17.5	1621 1420.0 14.4	1621 1420.0 14.2
AVE POWER I PEAK POW MI ENERGY GWH		64 517 23.1	87 509 14.7	95 509 20.6	92 509 66.4	126 509 94.0	117 509 84.2	138 509 102.6	134 518 99.4	97 538 69.6	116 538 86.3	146 538 52.6	146 538 24.5	77 538 14.8	87 538 64.4	70 538 52.4	68 529 47.4
FORT RANDA	900	122	57	73	115	140	185	74	57	42 7	2	2	1	1	10		19
DEPLETION EVAPORATION REG INFLOW	16494	1 523	1 315	1 436	3 1284	9 1790	12 1659	18 8 1860	15 25 1753	28 1176	20 1405	862 862	0 4 403	1 4 240	10 1073	3 882	3 832
RELEASE STOR CHANGE STORAGE	16494 E 0 3124	232 291 3415	181 134 3549	436 3549	1284 3549	1790 3549	1659 35 4 9	1860 0 3549	1927 -174 3375	1851 -675 2700	1809 -403 2297	862 0 2297	403 0 2297	239 0 2297	707 366 2663	695 187 2850	558 274 3124
ELEV FTMSL DISCH KCFS	1350.0 9.5	1353.6 7.8		1355.2 24.4						1344.1 31.1						1346.3 11.3	1350.0 9.7
POWER AVE POWER N PEAK POW MI ENERGY GWH		65 351 23.3	111 356 18.6	206 356 44.5	183 356 131-5	245 356 182.4	235 356 169.2	255 356 189.4	261 349 194.5	248 315 178.3	219 285 162.7	209 285 75.3	209 285 35.2	110 285 21.1	86 313 64.3	88 325 65.7	78 339 54.3
GAVINS PO: NAT INFLOW	INT 1450	92	43	55	148	174	166	86	103	77	122	50	23	27	77	79	127
DEPLETION CHAN STOR EVAPORATION	112 -2 V 38	0 3	-10	-22	4 5	19 -14	24 2	39 -5 2	10 -2 7	-5 0 9	1 3 8	5 1 4	2 0 2	3 26 2	10 7 4	1	3
REG INFLOW RELEASE	17792 17792	328 328	215 215	470 470	1434 1434	1931 1931	1803 1803	1900 1900	2011 1998	1924 1898	1925 1925	904 904	422 422	287 287	777 777	773 773	688 727
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	358	358 1206.0 11.0	358 1206.0 15.5	358 1206.0 26.3	358 1206.0 24.1	358 1206.0 31.4	358 1206.0 30.3	358 1206.0 30.9	13 371 1206.5 32.5	26 397 1207.5 31.9	397 1207.5 31.3	397 1207.5 30.4	397 1207.5 30.4	397 1207.5 18.1	397 1207.5 12.6	397 1207.5 12.6	-39 358 1206.0 12.6
POWER AVE POWER M PEAK POW MU ENERGY GWH		39 114 13.9	54 114 9.0	90 114 19.4	83 114 59.5	104 114 77.5	102 114 73.2	103 114 76.6	107 115 79.7	107 117 77.2	107 117 79.4	105 117 37.7	105 117 17.6	64 117 12.3	45 78 33.4	45 78 33.2	45 76 31.0
GAVINS PO: NAT INFLOW	1550	169	79	102	199	310	224	129	96	60	42	16	7	9	21	5	82
DEPLETION REGULATED FI KAF	263 LOW AT SIC 19079	7 00X CITY 491	291 3	4 567	22 1611	35 2206	31 1996	38 1991	36 2058	24 1934	10 1957	6 914	3 427	3 293	13 785	14 764	14 795
KCFS		16.5	20.9	31.8	27.1	35.9	33.5	32.4	33.5	32.5	31.8	30.7	30.7	18.4	12.8	12.4	13.8
NAT INFLOW DEPLETION	24601 2630	1435 -2	669 -1	860 -1	2307 121	3493 666	6073 1656	3346 1133	1194 208	1113 -234	1032 -96	452 -147	211 -68	241 -78	651 -207	582 -195	943 -124
CHAN STOR EVAPORATION STORAGE	-33 1639 51154	63 52162	-10 52532	-22 52804	-1 53379	-77 53923	-45 56299	26 102 56445	0 321 55052	-2 398 54066	32 341 52928	14 152 52473	-5 71 52250	22 80 52218	2 175 52118	-33 52098	3 52373
SYSTEM POWE AVE POWER N	ir W	582	731	893	870	1225	1232	1307	1292	1121	1095	1155	1160	786	783	811	794
PEAK POW MY ENERGY GWH DAILY GWH	9004.6	2253 209.4 14.0	2254 122.9 17.6	2257 192.9 21.4	2263 626.2 20.9	2266 911.2 29.4	2295 887.3 29.6	2295 972.0 31.4	2283 961.1 31.0	2270 807.3 26.9	2230 814.6 26.3	2223 415.8 27.7	2220 194.9 27.8	2219 150.8 18.9	2204 582.6 18.8	2219 603.1 19.5	2227 552.7 19.1
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB

DATE OF STUDY 11/30/06		2006-2007	7 AOP EXTENSI	IONS, MEDIAN	RUNOFF SIMULAT	99001 9901	4 PAGE 1
TIME OF STUDY 08:32:02 28FEB12	2012			16.00, FTPK CEPT AS INDIC	-4.2 OAHE +3.0 ATED	20:	STUDY NO 13
INI-SUM 15MAR		APR 31MAY 30	OJUN 31JUL	31AUG 30SEP	310CT 15NOV		
FORT PECK NAT INFLOW 264 DEPLETION 466 -26 EVAPORATION 421	-12 -15	49 353	1851 829 599 254 26	324 319 -44 -150 82 102	398 188 -82 -43 87 39	88 100 -20 -23 18 21	310 261 349 -134 -144 -97 45
MOD INFLOW 6513 290 RELEASE 7151 179 STOR CHANGE -638 111 STORAGE 13647 13758 ELEV FIMSL 2227.3 2227.9	69 89 66 85	357 492 1 222 365 L31 14496 14	1252 549 1083 676 169 -128 4665 14537 32.4 2231.8 2	286 367 676 592 -391 -224 14146 13922 2229.9 2228.7	393 191 535 253 -142 -62 13780 13718 2228.0 2227.7	89 102 125 151 -36 -49 13682 13633 2227.5 2227.3	399 405 446 646 646 583 -246 -241 -137 13387 13146 13009 2226.0 2224.7 2224.0
DISCH KCFS 11.0 6.0 POWER AVE POWER MW 80 PEAK POW MW 158	5.0 5.0 67 67	5.0 8.0 1 81 108	18.2 11.0 160 146 160 161	11.0 9.9 146 133 159 158	8.7 8.5 116 114 158 158	9.0 9.5 120 127 157 157	10.5 10.5 10.5 138 137 137 156 155 154
ENERGY GWH 1090.7 28.9 GARRISON				108.4 96.0	86.6 40.9	20.2 24.3	102.8 102.3 91.9
NAT INFLOW 11001 469 DEPLETION 1063 -8 CHAN STOR 4 51 EVAPORATION 503	-4 -5	-5 180	2958 2066 860 634 -102 71 31	581 497 86 -141 10 99 122	454 192 -24 -123 12 2 104 47	89 102 -57 -65 -5 -5 22 25	253 237 326 -117 -92 -57 -10 53
REG INFLOW 16590 707 RELEASE 16483 417 STOR CHANGE 107 290 STORAGE 16470 16760	208 286 94 90	952 1660 1 253 55 1	3079 2148 1607 1660 1472 488 3723 19211	1073 1118 1660 1483 -588 -365 18623 18258	921 522 1299 625 -379 -103 17880 17777	245 289 292 333 -47 -45 17730 17686	952 975 966 1076 1537 1388 -124 -563 -422 17562 16999 16577
	1833.3 1833.6 1834	1.5 1834.6 183		18623 18258 1839.1 1838.0 27.0 24.9			17562 16999 16577 1835.7 1833.8 1832.3 17.5 25.0 25.0
AVE FOWER MW 169 PEAK POW MW 451 ENERGY GWH 2457.0 60.9		458 458	333 340 475 481 39.9 252.7	339 311 474 470 252.5 223.8	262 259 465 464 195.0 93.3	259 259 464 463 43.5 49.6	215 304 301 462 455 449 160.3 226.4 202.3
OAHE NAT INFLOW 2300 317 DEPLETION 696 24 CHAN STOR -6 40 EVAPORATION 482	148 190 1 11 15 -4 -4		689 162 148 178	33 118 119 29 9	14 5 -11 1 15 1	2 3 0 1	-20 40 13 18 28 15 -32
REG INFLOW 17599 749 RELEASE 16513 402 STOR CHANGE 1086 347		256 1701 1	30 2148 1615 1527 1861 620 -246	92 116 1482 1464 1799 1235 -317 229	102 45 1238 584 1488 901 -250 -317	21 24 272 311 421 262 -148 49	52 1006 1488 1400 1168 965 863 -162 523 537
STORAGE 17153 17500 BLEV FIMSL 1601.9 1603.1 DISCH KCFS 14.2 13.5 POWER	17565 17633 176 1603.3 1603.5 1603 19.8 21.8 21	.6 1603.8 160		17778 18007 1604.0 1604.8 29.3 20.8	17757 17440 1604.0 1602.9 24.2 30.3	17291 17341 1602.4 1602.5 30.3 16.5	17179 17702 18239 1602.0 1603.8 1605.6 19.0 15.7 15.5
AVE POWER MW 170 PEAK POW MW 684 ENERGY GWH 2529.2 61.3		87 688	326 385 699 695 34.9 286.7	371 264 689 694 275.9 189.8	307 381 689 683 228.4 137.3	380 208 681 682 63.8 39.9	239 198 198 679 688 698 177.5 147.3 133.1
BIG BEND EVAPORATION 103 REG_INFLOW 16410 402			6 1527 1855	20 25 1779 1210	22 10 1467 891	5 5 416 257	11 1256 965 863
DISCH KCFS 14.2 13.5	1621 1621 16 1420.0 1420.0 1420	21 1621 1 .0 1420.0 142	L527 1855 L621 1621 20.0 1420.0 1 25.7 30.2	1779 1210 1621 1621 .420.0 1420.0 28.9 20.3	1467 891 1621 1621 1420.0 1420.0 23.9 30.0	416 257 1621 1621 1420.0 1420.0 30.0 16.2	1156 965 863 1621 1621 1621 1420.0 1420.0 1420.0 18.8 15.7 15.5
POWER AVE POWER MW 64 PEAK POW MW 517 ENERGY GWH 953.4 23.1		09 509	120 141 509 509 6.5 105.0	137 100 518 538 101.9 72.1	119 149 538 538 88.9 53.8	149 82 538 538 25.1 15.7	93 77 75 538 538 529 69.1 57.1 50.1
FORT RANDALL NAT INFLOW 900 122 DEPLETION 79 1	57 73 1 1 1	15 140 3 9	185 74 12 18	57 42 15 7	2 2 1 1	1 1 0 1	10 19 3 3 3
EVAPORATION 107 REG INFLOW 17125 523 RELEASE 17125 232 STOR CHANGE 0 291			.700 1903 .700 1903 .700 1903	25 28 1796 1217 1970 1892 -174 -675	20 8 1449 883 1852 883 -403 0	4 4 413 254 413 254 0 0	10 1153 962 879 787 775 605
STORAGE 3124 3415	3549 3549 35 1355.2 1355.2 1355	.2 1355.2 135	549 3549	3375 2700	2297 2297 1337.5 1337.5 30.1 29.7	2297 2297	366 187 274 2663 2850 3124 1343.5 1346.3 1350.0 12.8 12.6 10.9
AVE POWER MW 65 PEAK POW MW 351 ENERGY GWH 1670.7 23.3		56 356 3	241 260 356 356 73.3 193.7	267 253 349 315 198.8 182.2	224 214 285 285 166.5 77.1	214 117 285 285 36.0 22.4	96 98 88 313 325 339 71.5 73.2 58.9
GAVINS POINT NAT INFLOW 1450 92 DEPLETION 112 0 CHAN STOR -4 4	43 55 1 0 0 ~12 -22	48 174 : 4 19 5 -13	166 86 24 39 2 -5	103 77 10 -5 -2 0	122 50 1 5 3 1	23 27 2 3 0 25	77 79 127 10 1 6 0 3
EVAPORATION 38 REG INFLOW 18422 329 RELEASE 18422 329 STOR CHANGE	229 495 15 229 495 15		2 .845 1943 .845 1943	7 9 2054 1966 2041 1940	8 4 1968 925 1968 925	2 2 432 302 432 302	4 856 853 736 856 853 775
STORAGE 358 358 ELEV FTMSL 1206.0 1206.0 DISCH KCFS 12.6 11.0 POWER 12.6 11.0	1206.0 1206.0 1206	.0 1206.0 1200	358 358 6.0 1206.0 1 1.0 31.6	13 26 371 397 206.5 1207.5 33.2 32.6	397 397 1207.5 1207.5 32.0 31.1	397 397 1207.5 1207.5 31.1 19.0	-39 397 397 358 1207.5 1207.5 1206.0 13.9 13.9 13.9
AVE POWER MW 39 PEAK POW MW 114 ENERGY GWH 752.6 13.9		14 114 :	103 105 114 114 4.3 77.8	109 109 115 117 80.8 78.3	108 106 117 117 80.6 38.2	106 67 117 117 17.8 12.9	49 49 49 78 78 76 36.7 36.6 33.0
GAVINS POINT - SIOUX CITY- NAT INFLOW 1550 169 DEPLETION 268 7	79 102 1 3 4	99 310 2 22 36	224 129 31 39	96 60 37 24	42 16 11 6	7 9 3 3	21 5 82 13 14 15
REGULATED FLOW AT SIOUX CITY KAF 19704 491 KCFS 16.5	304 592 16 21.9 33.2 28		038 2033 4.2 33.1	2100 1976 34.2 33.2	1999 935 32.5 31.4	436 307 31.4 19.3	864 844 842 14.0 13.7 15.2
TOTAL NAT INFLOW 24601 1435 DEPLETION 2684 -1 CHAN STOR -5 94		23 669 16	073 3346 674 1162 100 66	1194 1113 223 -236 -2 19	1032 452 -104 -152 32 3	211 241 -71 -81 -5 22	651 582 943 -212 -200 -108 11 -31 3
EVAPORATION 1654 STORAGE 52373 53412 SYSTEM POWER	53771 54013 544			325 401 55915 54906	343 153 53732 53250	71 81 53019 52975	176 52809 52715 52928
AVE POWER MW 587 PEAK POW MW 2276 ENERGY GWH 9453.7 211.4 DAILY GWH 14.1	769 951 9 2276 2279 22 129.2 205.4 664 18.5 22.8 22	83 2286 23 .2 945.7 924	284 1378 315 2316 4.3 1025.0 10 0.8 33.1	1369 1170 2306 2292 018.3 842.1 32.8 28.1	1137 1224 2252 2245 846.1 440.6 27.3 29.4	1229 858 2242 2242 206.4 164.8 29.5 20.6	830 864 847 2225 2239 2245 617.8 642.9 569.4 19.9 20.7 20.3
INI-SUM 15MAR	22MAR 31MAR 30A	PR 31MAY 303	JUN 31JUL I	31AUG 30SEP	310CT 15NOV	22NOV 30NOV	31DEC 31JAN 28FEB

DATE OF STUD					06-2007 In NAV S					LE RUNC	FF SIM	JLATION .	99001	9901 9	901 PA		1 14
TIME OF STUD 281	FEB08		2008	3		VALUES	S IN 100	0 AF EX	CEPT AS	S INDICA		15NOV	22NOV	200	9	31JAN	
FORT PECK					30APR 574	1011	1589	692	287	275	31001	183	85	30100	31020	231	30
NAT INFLOW DEPLETION EVAPORATION	6556 405 411	264 -6 270	123 -3	158 -3 162	52 522	286	1084	215 25 452	-48 79 256	-143 98 320	-68 86 336	-34 39 178	-16 18 83	-18 21 95	-109 45 386	-121	- 84
MOD INFLOW RELEASE STOR CHANGE	5740 5090 650	149 121	126 69 57	89 73	357 165	430 295	476 608 9709	492 -40	492 -235	359 -40 9394	302 34 9429	134 44 9473	62 21 9493	71 23 9517	553 -168 9349	553 -201 9148	50 -10 904
STORAGE ELEV FTMSL DISCH KCFS	8391 2195.9 8.0	8513 2196.7 5.0	8569 2197.1 5.0	8642 2197.6 5.0	8807 2198.7 6.0	9101 2200.7 7.0		9669 2204.4 8.0	9434 2202.9 8.0			2203.1 4.5				2201.0 9.0	
POWER AVE POWER MU PEAK POW MW ENERGY GWH	9 730.5	58 123 20.8	58 124 9.7	58 125 12.5	70 126 50.3	82 129 61.1	95 133 68.6	96 133 71.6	96 131 71.2	72 131 51.9	59 131 43.6	54 131 19.4	54 131 9.1	54 132 10.4	107 130 79.8	107 129 79.3	10 12 71.
GARRISON NAT INFLOW DEPLETION CHAN STOR	10069 919 -11	475 15 34	221 7	285 9	763 24 -11	1282 135 -11	2701 745 -11	1891 564	532 66	446 -138 21	428 12	175 -114 4	82 -53	93 -61	238 -119 -49	177 -95	28 -6
EVAPORATION REG INFLOW RELEASE	485 13744 12949	642 446	284 208	365 268	1085 952	1566 1138	2421 1190	30 1789 1230	94 864 1230	117 847 1066	101 641 861	45 382 417	21 176 194	24 201 222	52 809 953	825 1353	84 122
STOR CHANGE STORAGE ELEV FTMSL	795 10068 1806.0	196 10264	76 10340	97 10437 1807.8	133 10570 1808.4	429 10999	1231 12229	560 12789 1818.0	-366 12423	-219 12205	-220 11984	-35 11950 1814.5	-18 11931	-21 11910	-144 11766	-527 11239 1811.4	-37 1086
DISCH KCFS POWER	20.0	15.0	15.0	15.0	16.0	18.5	20.0	20.0	20.0	17.9	14.0	14.0	14.0	14.0	15.5	22.0	22.
AVE POWER MU PEAK POW MW ENERGY GWH	1650.5	151 356 54.2	151 358 25.4	152 359 32.8	362 117.0	369 141.0	389 151.7	397 161.1	391 161.6	388 139.1	384 111.9	384 53.9	384 25.1	383 28.7	381 122.8	373 171.6	36 152.
OAHE NAT INFLOW DEPLETION	1761 640	187 23	87 11	112 14 0	278 48 -5	158 68	701 135 -8	124 160	29 106	79 26 12	11 -9 21	1	o	1	-42 12 -8	-7 17 -35	4 2
CHAN STOR EVAPORATION REG INFLOW	-10 397 13663	27 637	285	366	1177	-13 1214	1748	24 1169	74 1079	94 1037	84 818	38 377	18 176	21 201	44 847	1293	123
RELEASE STOR CHANGE STORAGE	12849 814 10590	411 226 10816	250 35 10851	352 14 10865	1209 -32 10833	1431 -217 10616	1385 363 10979	1701 -531 10447	1501 -422 10025	577 460 10485	743 76 10561	243 134 10696	118 58 10754	134 67 10821	1103 -257 10565	821 473 11037	
ELEV FTMSL DISCH KCFS POWER	1574.5 13.1	13.8	18.0	19.7	1575.7 20.3	23.3	23.3	27.7	24.4	1574.0 9.7	12.1	8.2	8.5	8.4	1574.4	13.3	15.
AVE POWER MU PEAK POW MW ENERGY GWH	1666.6	149 544 53.5	194 545 32.6	212 545 45.9	219 544 157.6	249 538 185.5	250 548 180.0	296 534 220.1	257 522 191.4	103 535 74.1	129 537 96.1	88 540 31.6	91 542 15.3	91 544 17.5	193 537 143.2	144 550 107.1	17 55 115 .
BIG BEND- EVAPORATION REG INFLOW	 129 12720	411	250	352	1209	1431	1385	8 1693	24 1476	31 546	27 716	12 231	6 112	7 127	14 1089	821	87
RELEASE STORAGE ELEV FTMSL	12720 1621	411 1621	250 1621 1420.0	352 1621 1420.0	1209 1621	1431 1621 1420.0	1385 1621 1420.0	1693 1621 1420.0	1476 1621 1420.0	546 1621 1420.0	716 1621 1420.0	231 1621 1420.0	112 1621 1420.0	127 1621 1420.0	1089 1621 1420.0	821 1621 1420.0	81 162 1420
DISCH KCFS POWER AVE POWER M	13.1	13.8	18.0	19.7	20.3	23.3	23.3	27.5	24.0	9.2 46	11.6	7.8	8.1	8.0	17.7	13.3	15.
PEAK POW MW ENERGY GWH	736.8	517 23.6	510 14.2	509 19.9	509 68.5	509 81.1	509 78.5	509 95.9	518 84.5	538 33.5	538 43.8	538 14.2	538 6.9	538 7.8	538 65.1	538 48.8	52 50
-FORT RANDAL NAT INFLOW DEPLETION	643 79	88 1	41 1	53 1	82 3	66 9	167 12	33 18	63 15	30 7	2	1 10	0 5	1	6 3 13	-6 3	:
EVAPORATION REG INFLOW RELEASE	129 13147 13147	497 223	290 155	403 386	1288 1288	1488 1488	1540 1540	10 1698 1698	31 1493 1667	32 528 1606	22 694 694	220 220	107 107	121 121	1079 713	812 695	88 54
STOR CHANGE STORAGE ELEV FTMSL		274 3397 1353.4						3549 1355.2								117 2779 1345.3	34 312 1350.
DISCH KCFS POWER AVE POWER MW	10.0 1	7.5 62	11.1 94	21.6 183	21.6 183	24.2 204	25.9 218	27.6 233	27.1 227 349	27.0 209 284	11.3 82 285	7.4 54 285	7.7 56 285	7.6 56 285	11.6 87 313	11.3 88 320	9. 33
PEAK POW MW ENERGY GWH -GAVINS POIN	1295.6	350 22.4	355 15.8	356 39.5	356 131.8	356 152.1	356 157.3	356 173.2	168.7	150.7	61.4	19.5	9.5	10.8	64.8	65.4	52
NAT INFLOW DEPLETION CHAN STOR	1335 112 -1	98 0 5	46 0 -7	59 0 -20	132 4 0	147 19 -5	153 24 -3	87 39 -3	85 10 1	62 -5 0	112 1 29	50 5 7	23 2 -1	27 3 0	75 10 -7	73 1 1	10
EVAPORATION REG INFLOW RELEASE	47 14322 14322	326 326	193 193	425 425	1416 1416	1611 1611	1666 1666	3 1740 1740	9 1735 1722	- 11 1662 1636	10 824 824	5 268 268	2 125 125	2 143 143	5 766 766	767 767	65
STOR CHANGE STORAGE ELEV FTMSL	358 1206.0	358 1206.0	358 1206-0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	13 371 1206.5	26 397 1207.5	397 1207.5	397 1207.5	397 1207.5	397 1207.5	397 1207.5	397 1207.5	-3 35 1206.
DISCH KCFS POWER AVE POWER MW PEAK POW MW	12.5 1	11.0 38 114	13.9 49 114	23.8 82 114	23.8 82 114	26.2 89 114	28.0 95 114	28.3 96 114	28.0 96 115	27.5 95 117	13.4 48 117	9.0 32 117	9.0 32 117	9.0 32 117	12.5 44 78	12.5 44 78	12. 4 7
ENERGY GWH GAVINS POIN		13.8 JX CITY-		17.6	58.7	66.6	68.6	71.6	71.3	68.7	35.4	11.6	5.4	6.2	32.9	33.0	29.
NAT INFLOW DEPLETION REGULATED FLO				87 4	113 21	219 35	158 30	95 38	70 35	44 23	31 10	16 6	7 3	9 3	16 12	-3 13	6
KAF KCFS	15202	465 15.6	258 18.6	508 28.5	1508 25.3	1795 29.2	1794 30.2	1797 29.2	1757 28.6	1657 27.9	845 13.7	278 9.4	130 9.4	148 9.4	770 12.5	751 12.2	73 13.
TOTAL NAT INFLOW DEPLETION	21499 2410	1256 40	586 19	753 24	1942 152	2883 552	5469 1451	2922 1034	1066 184	936 - 230	938 -65	424 -136	198 -63	226 -72	615 -191	465 -182	81 -10
CHAN STOR EVAPORATION STORAGE	-30 1598 34152	66 34969	-7 35271	-20 35472	-17 35738	-30 36244	-22 38446	-3 99 38434	1 311 37250	24 384 36399	62 331 36289	12 150 36433	-1 70 36493	0 80 36563	-65 174 36361	-35 36222	3641
SYSTEM POWER MU PEAK POW MW	1	523 2006	630 2007	779 2009	811 2012	924 2015	979 2049	1066 2043	1006 2027	719 1993	527 1992	417 1996	424 1997	423 1999	684 1977	679 1988	70 199
ENERGY GWH DAILY GWH	6679.2	188.2 12.5	105.9 15.1	168.3 18.7	584.1 19.5	687.4 22.2	704.7 23.5	793.5 25.6	748.6 24.1	517.9 17.3	392.1 12.6	150.2 10.0	71.2 10.2	81.3 10.2	508.6 16.4	505.2 16.3	472. 16.
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FE

•

DATE OF STUDY	11/16/0	06		200	06~2007	AOP EXT	ensions	, LOWEF	QUARTI	LE RUNC	OFF SIMU	JLATION	99001	9901 9			1
TIME OF STUDY		19			IN NAV S		DAYS, S IN 100			INDIC	TED			201	STUDY	NO I	.5
	EB09 INI-SUM	15MAR	2009 22MAR		30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	201 30NOV	31DEC	31JAN	28FEB
FORT PECK- NAT INFLOW DEPLETION	- 6613 432	267 -20	124 -9	160 -12	579 42	1019 313	1603 563	698 218	289 -49	278 -148	357 ~74	185 -35	86 -16	98 -19	325 -112	233 ~123	312 -86
EVAPORATION MOD INFLOW RELEASE	427 5754 5254	287 149	134 69	172 89	537 357	706 430	1040 476	26 454 492	82 256 492	102 324 387	89 342 315	40 179 153	19 84 69	22 95 79	47 390 584	356 584	398 528
STOR CHANGE STORAGE	500 9041	138 9179	64 9244	83 9326	180 9506	276 9782	564 10346	-38 10308	-236 10073	-63 10010	26 10036	26 10062	14 10076	16 10093	-194 9899	-228 9671	-130 9541
ELEV FTMSL DISCH KCFS POWER	2200.3 9.0	2201.2 5.0	2201.7 5.0	2202.2	2203.4 6.0	2205.1 7.0	2208.7 8.0	2208.4 8.0	2207.0 8.0	2206.6	2206.7 5.1	2206.9	2207.0	2207.1 5.0	2205.9 9.5	9.5	9.5
AVE POWER MW PEAK POW MW ENERGY GWH	769.1	59 129 21.3	59 130 10.0	59 130 12.9	72 132 51.6	84 134 62.6	97 138 70.1	98 137 73.0	98 136 72.7	79 135 57.0	62 135 46.5	63 136 22.5	61 136 10.3	61 136 11.7	115 134 85.7	114 133 85.0	114 132 76.3
GARRISON- NAT INFLOW DEPLETION	- 10134 1008	478 -5	223 -2	287 -3	768 42	1290 234	2718 732	1903 601	535 72	449 -140	431 -4	176 -118	82 - 55	94 -63	240 -121	178 -96	282 -66
CHAN STOR EVAPORATION	-5 496	45			-11	-11	-11	30	96 859	16 120 872	15 104	47 400	1 22 186	0 25 211	-49 54 843	858	876
REG INFLOW RELEASE STOR CHANGE	13879 13269 610	676 476 200	295 194 100	379 250 129	1072 1012 60	1475 1383 92	2451 1190 1261	1764 1230 534	1230 -371	1012 -139	661 928 -266	449 -49	208 -22	238 -27	953 -110	1322 -464	1194 -318
STORAGE ELEV FTMSL DISCH KCFS	10863 1809.7 22.0		11164 1811.1 14.0	11293 1611.7 14.0	11353 1811.9 17.0	11445 1812.3 22.5	12706 1817.7 20.0	13240 1819.9 20.0	12869 1818.4 20.0	12730 1817.8 17.0	12463 1816.7 15.1	12414 1816.5 15.1	12392 1816.4 15.0		12255 1815.8 15.5	11791 1813.8 21.5	11473 1812.5 21.5
POWER AVE POWER MW PEAK POW MW		165 370	146 371	146 374	178 375	235 376	214 396	219 404	220 398	186 396	164 392	164 391	162 391	162 390	167 389	229 381	226 376
ENERGY GWH	1720.1	59.5	24.5	31.6	128.0	174.9	153.9	163.3	163.7	133.9	122.3	58.9	27.3	31.2	124.5	170.5	152.2
NAT INFLOW DEPLETION CHAN STOR	1794 652 3	190 23 31	89 11 10	114 14	283 48 -16	161 69 -28	714 138 13	127 164	30 109	80 27 16	11 -9 10	1	0	1	-43 12 -3	-7 17 -32	45 27
EVAPORATIÓN REG INFLOW	426 13988	674	283	350	1231	1447	1779	27 1166	81 1070	102 979	89 869	40 408	19 189 119	22 216 133	47 849	1266	1212 716
RELEASE STOR CHANGE STORAGE	13362 626 11404	409 266 11670	248 34 11704	350 0 11704	1206 25 11729	1429 18 11747	1380 399 12145	1700 -534 11612	1498 -428 11184	679 300 11484	1192 -323 11161	224 184 11345	71 11416	83 11498	1102 -254 11245	290 11534	496 12030
ELEV FTMSL DISCH KCFS POWER	1578.5 15.7	1579.8 13.7	1580.0 17.9	1580.0 19.6	1580.1 20.3	1580.2 23.2	1582.0 23.2	1579.5 27.6	1577.5 24.4	1578.9 11.4	1577.4 19.4	1578.2 7.5	1578.6 8.5	1579.0 8.4	1577.B 17.9	1579.1 15.9	1581.5 12.9
AVE POWER MW PEAK POW MW ENERGY GWH	1781.8	151 566 54.5	198 566 33.2	217 566 46.8	224 567 161.4	257 567 191.1	258 577 185.7	306 564 227.8	266 553 198-2	125 561 90.1	212 553 157.7	83 557 29.7	94 559 15.8	93 561 17.8	196 555 146.1	174 562 129.7	143 574 96.3
BIG BEND- EVAPORATION	129							8	24	31	27	12	6	7	14		
REG INFLOW RELEASE STORAGE	13233 13233 1621	409 409 1621	248 248 1621	350 350 1621	1206 1206 1621	1429 1429 1621	1380 1380 1621	1692 1692 1621	1473 1473 1621	648 648 1621	1165 1165 1621	212 212 1621	113 113 1621	127 127 1621	1088 1088 1621	977 977 1621	716 716 1621
ELEV FTMSL DISCH KCFS POWER	1420.0 15.7	1420.0 13.7	1420.0 17.9	1420.0 19.6	1420.0 20.3		1420.0 23.2				1420.0 18.9		1420.0 8.1		1420.0 17.7	1420.0 15.9	1420.0 12.9
AVE POWER MW PEAK POW MW ENERGY GWH	767.4	65 517 23.4	84 510 14.1	92 509 19.8	95 509 68.3	109 509 80.9	109 509 78.2	129 509 95.8	113 518 84.3	55 538 39.6	95 538 70.8	36 538 13.0	41 538 6.9	41 538 7.8	87 538 65.1	77 538 57.5	62 529 41.6
FORT RANDAL NAT INFLOW		90	42	54	84	67	171	34	65	31	2				7	-7	20
DEPLETION EVAPORATION	79 130	1	1	1	3	9	12 1539	18 10	15 31	-7 33 631	1 23 1142	1 10 202	0 5 107	1 5 121	3 13 1079	3 967	3 733
REG INFLOW RELEASE STOR CHANGE	13676 13676 0	497 223 274	290 154 135	403 386 17	1287 1287	1487 1487	1539	1698 1698 0	1492 1666 -174	1606 -975	1246 -103	202 0	108 0	121 0	713 366	695 272	544 189
STORAGE ELEV FTMSL DISCH KCFS	3123 1350.0 9.8		3532 1355.0 11.1	3549 1355.2 21.6	3549 1355.2 21.6	3549 1355.2 24.2		3549 1355.2 27.6	3375 1353.1 27.1	2400 1339.3 27.0	2297 1337.5 20.3	2296 1337.5 6.8	2296 1337.5 7.8	2296 1337.5 7.6	2662 1343.5 11.6	2934 1347.4 11.3	3123 1350.0 9.8
POWER AVE POWER MW PEAK POW MW		62 350	94 355	183 356	183 356	204 356	218 356	233 356	227 349	211 292	148 285	50 285	57 285	56 285	87 313	89 330	79 339
ENERGY GWH	1344.9 T	22.4	15.8	39.5	131.7	152.0	157.2	173.2	168.6	151.9	110.3	17.9	9.6	10.7	64.8	66.0	53.2
NAT INFLOW DEPLETION CHAN STOR	1342 112 -1	98 0	46 0 -7	59 0 -20	133 4 0	148 19 -5	154 24 -3	87 39 -3	86 10 1	62 -5 0	112 1 12	51 5 25	24 2 -2	27 3 0	75 10 -7	73 1 1	108 3
EVAPORATION REG INFLOW	47 14858	4 326	194	425	1416	1611	1666	3 1740	9 1735	11 1662	10 1359	5 268	2 125	2 143	5 766	767	655
RELEASE STOR CHANGE STORAGE	14858 358	3 <u>26</u> 358	194 358	425 358	1416 358	1611 358	1666 358	1740 358	1722 13 371	1636 26 397	1359 397	268 397	125 397	143 397	766 397	767 397	694 -39 358
ELEV FTMSL DISCH KCFS POWER	1206.0 12.5	1206.0 11.0	1206.0 13.9		1206.0 23.8												
AVE POWER MW PEAK POW MW ENERGY GWH	621.7	36 114 13.8	49 114 8.2	82 114 17.6	82 114 58.7	89 114 66.6	95 114 68.6	96 114 71.6	96 115 71.3	95 117 68.7	78 117 57.9	32 117 11.6	32 117 5.4	32 117 6.2	44 78 32.9	44 78 33.0	44 75 29.6
GAVINS POIN NAT INFLOW DEPLETION	T - SIOU 1160 258	X CITY- 149 6	 69 3	89 4	116 21	224 35	161 31	97 38	72 36	45 23	31 10	16 6	7 3	9 3	17 12	-3 14	61 14
REGULATED FLO KAF		UX CITY 469	260	510	1511	1800	1796	1799	1758	1658	1380	278	130	148	771	750	741
KCFS TOTAL NAT INFLOW	21702	15.7 1271	18.7 593	28.6	25.4 1963	29.3 2909	30.2	29.3 2946	28.6	27.9 945	22.4 944	9.4 427	9.4 199	9.4 228	12.5 621	12.2 467	13.3 828
DEPLETION CHAN STOR	2541 -10	5 80	2	762 3 -20	160 -27	2909 679 -44	1500 -1	1078 -3 103	193 1 323	-236 25 399	-75 37 342	-141 26 154	-66 0 72	-75 0 83	-196 -59 180	-184 -31	-108 3
EVAPORATION STORAGE SYSTEM POWER		37288	37622	37851		38502	40726	40688	39493	38641	37975	38136	38199	38271	38079	37949	38146
AVE POWER MW PEAK POW MW ENERGY GWH	7005.0	542 2047 195.0	630 2048 105.8	779 2050 168.3	833 2053 599.8	979 2057 728.0	991 2090 713.6	1082 2084 804.8	1020 2070 758.7	752 2039 541.3	760 2020 565.4	427 2024 153.6	448 2025 75.2	444 2027 85.3	698 2007 519.1	728 2023 541.8	668 2027 449.2
DAILY GWH	INI-SUM	13.0	15.1	18.7	20.0	23.5	23.8	26.0	24.5	18.0	18.2	10.2	10.7	10.7 30NOV	16.7	17.5	16.0 28FEB
	**** - 90M	TOWAR	22MAK	9 IPAK	JUAPK	STURI	SUCON	τψ Ψ	τ MUG	÷49₽₽	PIOCI	TONOV	2 2 INO V	JUNOV	STORC.	9 TO AIN	LUFED

TIME OF STU	DY 17:02:	19		SH		SEAS 31	DAYS, S	SP MAR	R QUART: 5 MAY 0 XCEPT AS				,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9901 P. STUDY		
2:	FEB10 INI-SUM	15MAR	2010 22MAR		30APR				31AUG			15NOV	22NOV	20 30NOV		31JAN	N
FORT PEC NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE	6720 442	-22 293	126 -10 137 69	163 -13 176 89	588 43 545 357	1036 314 722 430	1629 568 1061 476	709 225 27 457 492	294 -45 84 255 492	282 -149 105 326 417	363 -74 92 345 393	188 - 36 42 182 164	88 -17 19 85 76	100 -19 22 97 87	330 -113 48 395 553	237 -124 363 553	4
STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER 1	2 541 9541 2203.6 9.5	144	67 9752	86 9839 2205.5 5.0 61	188 10026	292 10318 2208.5 7.0 86	585 10903	-35 10868 2211.8 8.0 100	-237 10632	-91 10541	-48 10493	18 10511	9 10520	10 10529 2209.8	-158 10371	-192 10179	2960
PEAK POW M ENERGY GWH	788.7	133 21.7	133 10.1	134 13.1	135 52.5	137 63.7	141 71.3	141 74.3	140 74.0	139 62.4	139 58.8	139 24.5	139 11.4	139 13.1	138 82.4	136 82.0	
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION	10262 1029 6 7 513	484 -5 50		290 -3	777 43 -11	1306 234 -11	2752 748 -11	1927 618 31	542 77 99	455 -143 11 124	437 -9 6 107	179 -122 10 48	83 - 57 0 22	95 -65 0 26	243 -122 -37 56	180 -97	7
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	11473	687 446 241 11714 1813.5 15.0	297 194 103 11817 1814.0 14.0	382 250 132 11949 1814-5 14.0	1080 1012 69 12018 1814.8 17.0	1492 1168 323 12341 1816.2 19.0	2469 1250 1220 13561 1821.1 21.0	1770 1291 478 14039 1823.0 21.0	858 1291 -433 13606 1821.3 21.0	902 1071 -170 13436 1820.6 18.0	738 957 -219 13217 1819.8 15.6	425 463 -38 13179 1819.6 15.6	194 208 -14 13164 1819.6 15.0		825 953 -128 13020 1819.0 15.5		32333
AVE POWER M PEAK POW M ENERGY GWH		159 380 57.1	149 382 25.0	149 384 32.3	182 385 130.7	204 390 151.7	230 408 165.7	236 415 175.3	236 409 175.4	201 406 144.6	173 403 128.8	172 403 62.1	166 402 27.9	166 402 31.9	171 400 127.3	240 392 178.3	2
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE	1860 665 -2 443 14118 13446 5 672	197 24 33 653 404 249	92 11 5 280 266 14	118 14 354 388 -34	294 49 -15 1241 1196 46	167 70 -10 1255 1424 -169	740 141 -10 1838 1371 467	131 169 27 1226 1697 -471	31 112 84 1126 1494 -368	83 27 16 105 1037 971 66	12 -10 13 92 900 967 -68	1 420 221 199	0 3 20 191 118 72	1 23 215 133 82	-45 12 -3 49 844 1102 -258	-7 17 -33 1295 977 318	573
STORAGE ELEV FTMSL DISCH KCFS FOWER AVE POWER M	12.9 W	12279 1582.6 13.6	19.2 216	21.7 244	20.1 226	12136 1582.0 23.2 259	23.0 259	27.6 310	24.3 270	16.3 181	15.7 175	7.4 83	8.5 96	8.4 94	11858 1580.7 17.9 200	12176 1582.1 15.9 177	L }
PEAK POW MP ENERGY GWH	1820.3	580 54.9	581 36.2	580 52.6	581 162.5	577 193.0	588 186.6	577 230.5	568 200.8	569 130.4	568 130.0	573 29.9	574 16.0	576 18.1	570 148.7	578 132.0	
BIG BENI EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	129 13317 13317 1621	404 404 1621 1420.0 13.6	266 266 1621 1420.0 19.2	388 388 1621 1420.0 21.7	1196 1196 1621 1420.0 20.1	1424 1424 1621 1420.0 23.2	1371 1371 1621 1420.0 23.0	8 1689 1689 1621 1420.0 27.5	24 1469 1469 1621 1420.0 23.9	31 940 940 1621 1420-0 15.8	27 940 940 1621 1420.0 15.3	12 209 209 1621 1420.0 7.0	6 113 1621 1420.0 8.1	7 126 126 1621 1420.0 8.0	14 1088 1088 1621 1420.0 17.7	977 977 1621 1420.0 15.9	7
ave power M Peak Pow MW Energy Gwh		64 517 23.2	90 510 15.1	102 509 22.0	94 509 67.7	108 509 80.7	108 509 77.7	129 509 95.7	113 518 84.1	78 538 56.1	77 538 57.4	36 538 12.9	41 538 6.9	40 538 7.8	87 538 65.1	77 538 57.5	ļ
FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	690 79 134 13795 13795 0 3123	94 1 223 274 3397 1353.4 7.5	44 1 310 175 3532 1355.0 12.6	56 1 443 426 17 3549 1355.2 23.9	88 3 1281 1281 3549 1355.2 21.5	70 9 1485 1485 3549 1355.2 24.2	179 12 1538 1538 0 3549 1355.2 25.9	36 18 10 1697 1697 0 3549 1355.2 27.6	68 15 31 1491 1665 -174 3375 1353.1 27.1	32 7 35 930 1605 -675 2700 1344.1 27.0	2 916 1320 -403 2297 1337.5 21.5	1 10 199 199 0 2297 1337.5 6.7	0 5 107 108 2297 1337.5 7.7	1 5 121 121 0 2297 1337.5 7.6	7 13 1079 713 366 2663 1343.5 11.6	-7 3 967 695 272 2935 1347.4 11.3	
AVE POWER M PEAK POW MW ENERGY GWH		62 350 22.4	106 355 17.8	201 356 43.5	182 356 131.1	204 356 151.8	218 356 157.1	233 356 173.1	226 349 168.5	215 315 155.0	160 285 119.3	49 285 17.7	57 285 9.5	56 285 10.7	87 313 64.8	89 330 66.0	
- GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOP CHANCE	NT 1359 112 -1 47 14993 14993	100 4 328 328	47 0 -10 212 212	60 0 -22 464 464	135 4 5 1416 1416	150 19 -5 1611 1611	155 24 -3 1666 1666	88 39 -3 3 1740 1740	87 10 1 9 1735 1722	63 -5 0 11 1662 1636	114 10 10 1433 1433	51 5 27 5 268 268	24 2 -2 125 125	27 3 0 2 143 143	76 10 -7 5 767 767	74 1 1 768 768	
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	358 1206.0 12.5	358 1206.0 11.0	358 1206.0 15.2	358 1206.0 26.0	358 1206.0 23.8	358 1206.0 26.2	358 1206.0 28.0	358 1206.0 28.3	13 371 1206.5 28.0	26 397 1207.5 27.5	397 1207.5 23.3	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 9.0	397 1207.5 12.5	397 1207.5 12.5	
AVE POWER M PEAK POW MW ENERGY GWH		39 114 13.9	53 114 8.9	89 114 19.2	82 114 58.7	89 114 66.6	95 114 68.6	96 114 71.6	96 115 71.3	95 117 68.7	82 117 60.9	32 117 11.6	32 117 5.4	32 117 6.2	44 78 33.0	44 78 33.0	
GAVINS POI NAT INFLOW DEPLETION	NT - SIOU 1211 263	X CITY- 155 7	- 72 3	93 4	121 22	234 35	168 31	101 38	75 36	47 24	33 10	17 6	8 3	9 3	17 13	-3 14	
REGULATED FL KAF KCFS				553 31.0	1515 25.5	1810 29.4	1803 30.3	1803 29.3	1761 28.6	1659 27.9	1456 23.7	279 9-4	3 130 9.4	3 149 9.4	13 771 12.5	14 751 12.2	
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION	22102 2590 3 1705	1301 5 87	607 2 -5	780 3 -22	2003 164 -22	2963 681 -26	5623 1524 -24	2992 1107 -3 106	1097 205 1 331	962 -239 26 412	961 -81 29 354	434 -145 38 159	203 -67 1 74	231 -77 0 85	628 -197 -47 185	474 -186 -33	
STORAGE SYSTEM POWE AVE POWER M PEAK POW MW ENERGY GWH	W	39054 536 2075 193.1	39373 674 2076 113.2	846 2077 182.7	39878 838 2081 603.2	40324 951 2084 707.3	42595 1010 2117 727.0	42568 1103 2113 820.5	41369 1040 2099 774.0	40526 857 2085 617.3	39787 746 2049 555.1	39966 440 2054 158.6	40033 460 2055 77-2	40108 456 2057 87.6	39930 701 2037 521.3	39806 738 2053 548.9	
DAILY GWH		12.9	16.2	20.3	20.1	22.8	24.2	26.5	25.0 31AUG	20.6	17.9	10.6	11.0	11.0	16.8	17.7	

•

DATE OF STUDY 11/16/06 TIME OF STUDY 17:02:19		2006-2007 Shtn NAV						FF SIMU	LATION	99001	9901 9	901 PA STUDY		1
28FEB11 INI-SUM	2011		VALUES	IN 100	O AF EX	CEPT AS	S INDICA		15NOV	22NOV	201 30NOV			29FEB
FORT PECK NAT INFLOW 6751 DEPLETION 454	272 127 -22 -10	163 591 -13 43	1041 315	1636 573	712 232	295 -40	284 -149	365 -74	188 -36	89 - 17	100 -19	332 -112	238 -122	318 -96
EVAPORATION 448 MOD INFLOW 5849 RELEASE 5360	294 137 149 69	176 548 89 357	726 492	1063 506	27 453 523	86 249 523	107 326 357	94 345 344	42 181 164	20 84 76	23 97 87	49 395 553	360 553	414 518
STOR CHANGE 489 STORAGE 10082 ELEV FIMSL 2207.0 2 DISCH KCFS 9.0		87 191 10382 10573 2208.9 2210.0 5.0 6.0		557 11365 2214.7 8.5	-70 11295 2214.3 8.5	-273 11021 2212.7 8.5	-31 10990 2212.5 6.0	1 10992 2212.6 5.6	17 11009 2212.7 5.5		9 11026 2212.8 5.5	-158 10868 2211.8 9.0	-193 10675 2210.7 9.0	-104 10571 2210.0 9.0
POWER Ave power MW PEAK pow MW Energy Gwh 809.4	61 61 137 137 22.0 10.3	62 74 138 139 13.3 53.4	99 141 73.8	107 145 76.8	107 144 79.9	107 142 79.5	75 142 54.2	70 142 52.2	69 142 24.8	69 142 11.6	69 142 13.3	112 141 83.6	112 140 83.2	111 139 77.5
GARRISON NAT INFLOW 10290 DEPLETION 1041	485 226 -4 -2	291 779 -3 44	1310 234	2760 758	1932 634	543 83	456 -146	438 -14	179 -125	84 -58	95 -67	243 - 123	181 -97	287 - 73
CHAN STOR 0 EVAPORATION 525 REG INFLOW 14084	44 682 298	-11 383 1081	-22 1546	-5 2502	0 32 1789	101 881	26 126 859	4 110 690	1 49 419	0 23 195	0 26 223	-37 57 825	831	878
	387 180 295 117 12424 12542	232 982 151 99 12692 12792		1250 1253 14054	1291 498 14551	1230 -348 14203	1012 -153 14050	925 -235 13815	446 -27 13788	208 -13 13775	238 -15 13760	953 -128 13632	1353 -521 13111	1265 -388 12723
ELEV FIMSL 1015.3 1 DISCH KCFS 22.0 POWER	13.0 13.0	1817.6 1818.0 13.0 16.5 142 180	1818.1 25.0 272	1823.1 21.0 233	21.0 239	20.0	1823.0 17.0 193	1822_1 15.1 170	1822.0 15.0 169	1822.0 15.0 169	1821.9 15.0 169	1521.4 15.5 174	22.0	1817.8 22.0 241
AVE POWER MW PEAK POW MW ENERGY GWH 1818.0	140 141 391 393 50.6 23.7	395 397 30.6 129.8	397 202.5	415 167.9	422 177.6	417 169.6	415 138.9	412 126.6	411 60.8	411 28.4	411 32.4	409 129.5	402 181.4	396 167.6
OAHE NAT INFLOW 1877 DEPLETION 680 CHAN STOR 0	199 93 24 11 45	119 297 14 49 -17	168 71 -42	747 145 20	132 173	31 115 5	84 28 15	12 -10 10	1 0	0	1	-45 12 -2	-7 16 -33	47 28
EVAPORATION 463 REG INFLOW 14224 RELEASE 13614	607 262 403 266	337 1212 387 1195	1592 1569	1871 1364	29 1221 1697	89 1062 1494	111 972 971	96 861 967	44 402 231	21 187 118	24 214 133	51 843 1102	1295 977	1284 740
	204 -4 12905 12902 585.4 1585.4 13.6 19.1	-50 18 12852 12870 1585.1 1585.2 21.7 20.1		508 13401 1587.5 22.9	-476 12925 1585.5 27.6	-432 12494 1583.6 24.3	1 12494 1583.6 16.3	-107 12388 1583.1 15.7	171 12559 1583.9 7.8	70 12628 1584.2 8.5	81 12709 1584.5 8.4	-260 12450 1583.4 17.9	318 12768 1584.8 15.9	544 13312 1587.1 12.9
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1875.4	155 219 595 595 55.7 36.7	247 229 594 594 53.4 164.9	291 595 216.2	263 606 189.4	316 595 235.3	2305 276 585 205.0	185 585 132.9	178 583 132.3	88 587 31.7	97 588 16.2	96 590 18.4	203 584 151.2	180 592 134.2	148 604 102.9
BIG BEND EVAPORATION 129		5511 10175	220.2		8	24	31	27	12	6	7	14		
REG INFLOW 13485 RELEASE 13485 STORAGE 1621	403 266 403 266 1621 1621	387 1195 387 1195 1621 1621	1569 1569 1621	1364 1364 1621	1689 1689 1621	1469 1469 1621	940 940 1621	940 940 1621	219 219 1621	112 112 1621	127 127 1621	1088 1088 1621	977 977 1621	740 740 1621
ELEV FTMSL 1420.0 1 DISCH KCFS 12.9 POWER AVE POWER MW	420.0 1420.0 13.6 19.1 64 90	1420.0 1420.0 21.7 20.1 102 94	1420.0 25.5 119	1420.0 22.9 107	1420.0 27.5 129	1420.0 23.9 113	1420.0 15.8 78	1420.0 15.3 77	1420.0 7.3 37	1420.0 8.1 41	1420.0 8.0 40	1420.0 17.7 87	1420.0 15.9 77	1420.0 12.9 62
PEAK POW MW ENERGY GWH 780.9	517 510 23.1 15.1	509 509 21.9 67.7	509 88.9	509 77.3	509 95.7	518 84.1	538 56.1	538 57.4	538 13.4	538 6.9	538 7.8	538 65.1	538 57.5	529 43.0
FORT RANDALL NAT INFLOW 696 DEPLETION 79	95 44 1 1	57 B9 1 3	71 9	181 12	36 18	68 15	32	2	1	ō	1	7	-7 3	21 3
EVAPORATION 134 REG INFLOW 13969 RELEASE 13969 STOR CHANGE 0	497 309 223 175 274 135	443 1281 426 1281 17	1631 1631	1533 1533 0	10 1697 1697	31 1491 1665 -174	35 930 1605 -675	25 916 1320 -403	10 208 208 0	5 107 107	5 121 121	13 1079 713 366	967 695 272	758 569 189
STORAGE 3124	3397 3532	3549 3549 1355.2 1355.2 23.9 21.5		3549	3549 1355.2 27.6	3375	2700	2296	2296	2296 1337.5 7.7	2296 1337.5 7.6	2662	2934	3123
POWER Ave power MW Peak pow MW Energy GWH 1379.0	62 106 350 355 22.4 17.8	201 182 356 356 43.5 131.1	224 356 166.5	217 356 156.5	233 356 173.1	226 349 168.5	215 315 155.0	160 285 119.3	51 285 18.5	56 285 9.5	56 285 10.7	87 313 64.8	89 330 66.0	80 339 55.7
GAVINS POINT NAT INFLOW 1362	100 47	60 135	150	156	88	87	63	114	51	24	27	76	75	110
DEPLETION 112 CHAN STOR -1 EVAPORATION 47 BEC INFORM 15171	0 0 4 -10	0 4 -22 5	19 -10	24 1 1666	39 -4 3 1740	10 1 9 1735	-5 0 11	1 10 10	5 27 5 277	2 -1 2 125	3 0 2	10 -7 5 767	1 1 769	3 682
REG INFLOW 15171 RELEASE 15171 STOR CHANGE STORAGE 358	328 212 328 212 358 358	464 1416 464 1416 358 358	1752 1752 358	1666	1740 1740 358	1722 1722 13 371	1662 1636 26 397	1433 1433 397	277 277 397	125 125 397	143 143 397	767 397	769 397	721 -39 358
ELEV FTMSL 1206.0 1. DISCH KCFS 12.5 POWER	206.0 1206.0 11.0 15.2	1206.0 1206.0 26.0 23.8	1206.0 28.5	1206.0 28.0	1206.0 28.3	1206.5 28.0	1207.5 27.5	1207.5 23.3	1207.5 9.3	1207.5 9.0	1207.5 9.0	1207.5 12.5	1207.5 12.5	1206.0 12.5
AVE POWER MW PEAK POW MW ENERGY GWH 634.3	39 53 114 114 13.9 8.9	89 82 114 114 19.2 58.7	97 114 72.1	95 114 68.6	96 114 71.6	96 115 71.3	95 117 68.7	82 117 60.9	33 117 11.9	32 117 5.4	32 117 6.2	44 78 33.0	44 78 33.1	44 76 30.8
GAVINS POINT - SIOUX NAT INFLOW 1223 DEPLETION 263	157 73 7 3	94 122 4 22	236 35	170 31	102 38	75 36	47 24	33 10	17 6	8 3	9 3	18 13	-3 14	65 14
REGULATED FLOW AT SIOU. KAF 16131 KCFS	X CITY 478 282 16.1 20.3	554 1516 31.1 25.5	1953 31.8	1805 30.3	1804 29.3	1761 28.6	1659 27.9	1456 23.7	288 9.7	130 9.4	149 9.4	772 12.5	752 12.2	772 13.4
TOTAL NAT INFLOW 22199 DEPLETION 2629 CHAN STOR 0	1308 610 5 2 93 -10	785 2013 3 165 -22 -24	2976 683 -73	5650 1543 16	3002 1134 -4	1099 219 6	966 - 241 42	964 -86 24	435 -148 29	203 -69 -1	232 ~79 0	631 -197 -47	477 -183 -32	848 -124 3
EVAPORATION 1746 STORAGE 40015 SYSTEM POWER	40933 41250	41455 41763	42030	44347	108 44299	340 43085	421 42253	362 41509	163 41671	76 41735	87 41810	189 41630	41506	41708
AVE POWER MW PEAK POW MW ENERGY GWH 7298.1		843 841 2106 2110 182.0 605.5	1102 2112 820.0	1023 2146 736.4	1120 2141 833.3	1046 2128 777.9	842 2112 605.9	737 2076 548.7	448 2080 161.2	464 2082 77.9	462 2083 88.7	708 2063 527.1		
DAILY GWH INI-SUM	12.5 16.1 15MAR 22MAR	20.2 20.2 31mar 30apr	26.5 31MAY	24.5 30JUN	26.9 31JUL	25.1 31AUG	20.2 30SEP	17.7 310CT	10.7 15NOV	11.1 22NOV	11.1 30NOV	17.0 31DEC	17.9 31JAN	16.5 29FEB

TIME OF STU	OY 17:02:	19		SH	en nav s	SEAS 31 VALUES				3.01 S INDIC	ATED				STUDY	NO	18
2	SFEB12 INI-SUM	15MAR	2012 22MAR		30APR	31MAY					310CT	15NOV	22NOV	202 30NOV	13 31DEC	31JAN	28FEE
FORT PECH NAT INFLOW DEPLETION EVAPORATION	7022 465	283 22	132 -10	170 -13	615 42	1083 316	1702 577	741 239 28	307 -36 89	295 -149 112	-78	196 -38 44	91 -18 21	104 -20 24	345 -114 51	248 -125	
MOD INFLOW RELEASE STOR CHANGI STORAGE	6091 5376 715 10571		142 69 73 10800		573 357 216 11109	767 492 275 11384	1125 506 619 12004	474 523 -49 11955	254 523 -269 11686	332 357 -25 11662	359 344 16 11677	189 166 22 11699	88 76 12 11711	101 87 13 11725	408 553 -145 11579	11368	-82 11286
ELEV FTMSL DISCH KCFS POWER AVE POWER 1	9.0	2211.0 5.0 62	2211.4 5.0 62	2212.0 5.0 62	2213.3 6.0 75	2214.9 8.0 101	2218.4 8.5 108	2218.1 8.5 109	2216.6 8.5 109	2216.5 6.0 77	2216.6 5.6 71	2216.7 5.6 72	2216.7 5.5 70	2216.8 5.5 70	2216.0 9.0 115	2214.8 9.5 120	
PEAK POW MU ENERGY GWH	826.7	140 22.4	141 10.5	141 13.5	143 54.2	145 75.0	149 78.1	148 81.3	147 81.0	146 55.2	147 53.2	147 25.7	147 11.8	147 13.5	146 85.3	145 89.6	144 76.4
NAT INFLOW DEPLETION CHAN STOR EVAPORATION	10598 1067 0	500 -3 43	233 -2	300 -2	803 44 -11	1349 235 -21	2842 771 -5	1990 650 0 33	559 88 106	470 -149 26 131	451 -19 4 114	185 -129 0 51	86 -60 1 24	98 -69 0 27	251 -125 -37 59	186 -97 -5	295 -67 5
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	12723	695 446 249 12972 1818.8 15.0	304 194 110 13082 1819.2 14.0	391 250 141 13223 1819.8 14.0	1105 1012 94 13317 1820.2 17.0	1585 1138 447 13764 1821.9 18.5	2571 1309 1262 15026 1826.8 22.0	1829 1353 477 15503 1828.5 22.0	888 1353 -465 15038 1826.8 22.0	871 1071 -201 14837 1826.1 18.0	704 936 -232 14605 1825.2 15.2	428 453 -25 14581 1825.1 15.2	200 208 -9 14572 1825.1 15.0		834 953 -119 14442 1824.6 15.5		
POWER AVE POWER M PEAK POW MV ENERGY GWH	7	165 400 59.2	154 401 26.0	155 403 33.5	188 405 135.7	206 411 153.6	251 429 180.4	256 435 190.6	256 429 190.6	208 426 150.0	176 423 130.7	175 423 63.0	172 422 29.0	172 422 33.1	178 421 132.3	249 414 185.5	247 409 165.7
OAHE NAT INFLOW DEPLETION CHAN STOR	2048 696 0	217 24 34	101 11 5	130 15	324 50 -14	183 72 -7	815 148 -17	144 178	34 119	92 29 19	13 -11 13	1	0	· 1	-49 13 -2	-8 18 -32	51 28 0
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	14354 13460 894 13312 1587.1	1587.8			1271 1180 92 13705 1588.8	1241 1556 -315 13390 1587.5	1959 1338 621 14011 1590.0			116 1037 965 72 13375 1587.4	102 872 964 -93 13282 1587.0	1587.8	22 187 118 69 13538 1588.1	1588.4	54 835 1101 -266 13352 1587.3	1295 978 317 13669 1588.6	1245 708 537 14206 1590.8
DISCH KCFS POWER AVE POWER M PEAK POW MY ENERGY GWH		17.6 204 607 73.4	10.2 119 610 19.9	20.3 235 611 50.8	19.8 231 613 166.1	25.3 293 606 218.0	22.5 262 619 188.3	27.5 320 611 238.0	24.1 279 604 207.5	16.2 188 605 135.0	15.7 181 603 134.9	7.4 86 607 30.9	8.5 99 609 16.6	8.3 97 611 18.7	17.9 208 605 154.5	15.9 185 612 137.4	12.7 150 623 100.6
BIG BENI EVAPORATION	J 129							8	24	31	27	12	6	7	14		
REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS DOMED	13331 13331 1621 1420.0 12.9	524 524 1621 1420.0 17.6	141 141 1621 1420.0 10.2	362 362 1621 1420.0 20.3	1180 1180 1621 1420.0 19.8	1556 1556 1621 1420.0 25.3	1338 1338 1621 1420.0 22.5	1681 1681 1621 1420.0 27.3	1459 1459 1621 1420.0 23.7	934 934 1621 1420.0 15.7	937 937 1621 1420.0 15.2	208 208 1621 1420.0 7.0	112 1621 1420.0 8.1	126 126 1621 1420.0 7.9	1087 1087 1621 1420.0 17.7	978 978 1621 1420.0 15.9	708 708 1621 1420.0 12.7
POWER AVE POWER M PEAK POW MU ENERGY GWH		83 510 29.8	48 509 8.0	95 509 20.5	93 509 66.8	11.8 509 88.1	105 509 75.8	128 509 95.2	112 518 83.5	77 538 55.8	77 538 57.2	35 538 12.8	41 538 6.9	40 538 7.7	87 538 65.0	77 538 57.6	61 529 41.1
-FORT RANDA NAT INFLOW DEPLETION	779 79	106 1	49 1	64 1	100 3	79 9	203 12	41 18	76 15	36	2	1	Q	1	8 3	8 3	23 3
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE	13897 13897 0 3123	629 220 409 3532	190 173 17 3549	424 424 3549	1277 1277 3549	1626 1626 3549	1529 1529 0 3549	10 1694 1694 0 3549	31 1489 1663 ~174 3375	35 928 1603 -675 2700	25 913 1317 -403 2297	10 197 198 0 2296	5 107 107 0 2296	5 120 120 0 2296	13 1079 713 366 2662	967 695 272 2934	728 539 189 3123
ELEV FTMSL DISCH KCFS POWER AVE POWER M	9.9 W	1355.0 7.4 62	12.5 106	23.8 201	21.5 181	26.4 223	25.7 217	27.6 232	27.0 226	26.9 215	21.4 160	6.6 49	7.7 56	7.5 55	11.6 87	11.3 89	9.7 78
PEAK POW MW ENERGY GWH -GAVINS POI	1372.5 NT	355 22.3	356 17.8	356 43.4	356 130.7	356 166.0	356 156.1	356 172.8	349 168.3	315 154.8	285 119.1	285 17.6	285 9.5	285 10.6	313 64.8	330 66.0	339 52.7
NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW	1401 112 -1 47 15139	103 0 5 328	48 0 -10 212	62 0 -22 464	139 4 4 1416	155 19 -10 1752	160 24 1 1666	91 39 -4 3 1740	89 10 1 9 1735	65 -5 0 11 1662	117 1 10 10 1433	53 5 27 5 268	25 2 -2 2 125	28 3 0 2 143	78 10 ~8 5 768	77 1 1 771	113 3 655
RELEASE STOR CHANGE STORAGE ELEV FTMSL	15139 358	328 358 1206.0	212 358	464 358	1416 358	1752 358	1666 358	1740 358	1722 13 371	1636 26 397	1433 397	268 397	125 397	143 397	768 397	771 397	694 -39 358
DISCH KCFS POWER AVE POWER M PEAK POW MW	12.5 W	11.0 39 114	15.2 53 114	26.0 89 114	23.8 82 114	28.5 97 114	28.0 95 114	28.3 96 114	28.0 96 115	27.5 95 117	23.3 82 117	9.0 32 117	9.0 32 117	9.0 32 117	12.5 44 78	12.5 45 78	12.5 44 76
ENERGY GWH -GAVINS POI NAT INFLOW	633.0 NT - SIQU 1356	13.9 X CITY- 174	8.9 - 81	19.2 104	58.7 135	72.1 262	68.6 188	71.6	71.3 84	68.7 52	60.9 37	11.6 19	5.4 9	б.2 10	33.0 20	33.2	29.6 72
DEPLETION EGULATED FL KAF KCFS	268	7	3	4 565 31.6	22 1529 25.7	36 1978 32.2	31 1823 30.6	39 1814 29.5	37 1769 28.8	24 1664 28.0	11 1459 23.7	6 281 9.4	3 131 9.4	3 150 9.4	13 775 12.6	14 753 12.3	15 751 13.5
TOTAL NAT INFLOW DEPLETION CHAN STOR	23204 2687 1	1383 7 82	645 3 -5	829 4 -22	2116 165 ~21	3111 687 -38	5910 1563 -21	3120 1163 -4	1149 233 1	1010 -243 46	999 -95 28	452 -153 28	211 -71 0	241 -82 0	653 -200 -47	491 -186 -36	885 -108 8
EVAPORATION STORAGE SYSTEM POWE AVE POWER M	1809 41708 R			43258 837	43659 850	44066 1039	46569	112 46597	351 45394	436 44592	375 43880	168 44063	79 44135	90 44218	196 44053	43940	44191
PEAK POWER M PEAK POW MW ENERGY GWH		2127	2132 91.1 13.0	2135 180.9 20.1	2140 612.2 20.4	2141 772.9 24.9	2176 747.3 24.9	1142 2174 849.6 27.4	1078 2162 802.2 25.9	861 2148 619.6 20.7	747 2112 555.9 17.9	449 2117 161.5 10.8	471 2118 79.1 11.3	468 2120 89.8 11.2	719 2100 535.0 17.3	765 2117 569.2 18.4	693 2119 466.0 16.6

TIME	OF	STUDY	11:06:05	
		0.0 10 10 10	000	20

TIME OF STUDY 11:06:05		SHTN N	NAV SEAS 61 DAYS, SP MAR 0 MAY 0 VALUES IN 1000 AF EXCEPT AS INDICATED									STUDY NO 13					
28FEB08 INI-SUM 1	200 5MAR 22MAR		R 31MAY		31JUL		30SEP	310CT	15NOV	22NOV	200 30NOV)9 31DEC	31JAN	28FEB			
ELEV FTMSL 2188.8 21 DISCH KCFS 8.0	250 116 -1 0 251 117 149 69 102 48 7517 7565 89.6 2189.9 5.0 5.0	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5 194 640 7 492 5 148 2 7880 2 2192.3	1061 349 712 476 236 8116 2193.9 8.0	468 234 22 212 492 -280 7836 2191.9 8.0	270 15 68 187 492 -305 7531 2189.7 8.0	258 -86 84 260 417 -157 7374 2188.5 7.0	341 -62 73 330 399 -70 7304 2188.0 6.5	169 -47 33 183 193 -10 7294 2187.9 6.5	79 -22 15 85 90 -5 7289 2187.8 6.5	90 -25 18 98 103 -6 7284 2187.8 6-5	289 -135 38 386 461 -75 7208 2187.2 7.5	218 -103 321 461 -140 7068 2186.1 7.5	293 -50 343 389 -46 7022 2185.8 7.0			
POWER AVE POWER MW PEAK POW MW ENERGY GWH 684.0	55 55 113 114 19.7 9.2	55 72 114 119 11.9 51.7	5 117	90 119 64.6	90 116 66.7	88 113 65.7	76 111 55.0	70 111 52.4	70 111 25.3	70 110 11.8	70 110 13.5	81 110 60.2	80 108 59.8	75 108 50.2			
GARRISON NAT INFLOW 8026 DEPLETION 1153 CHAN STOR 12 EVAPORATION 416 REG INFLOW 11628 RELEASE 12083 STOR CHANGE -455 STORRAGE 8872 4	297 138 24 11 35 456 197 417 180 40 16 8912 8929	178 77 14 3: -1 253 110 232 89 21 21: 8949 916	93 7 -17 1375 1076 299	2221 719 1978 1131 847 10307	1404 571 26 1299 1168 131 10438	397 119 81 689 1168 -480 9958	305 -99 11 100 732 952 -220 9738	429 24 86 724 818 -95 9644	177 -81 39 412 396 16 9660	83 -38 0 18 192 194 -2 9658	94 -43 220 222 -2 9656	119 -90 -11 45 614 953 -339 9317	176 -65 702 1199 -497 8820	245 -41 681 1083 -402 8418			
ELEV FTMSL 1800.0 18 DISCH KCPS 17.0 3 POWER AVE POWER MW	00.2 1800.3 14.0 13.0 133 124	1800.4 1801. 13.0 15. 124 14	5 1803.0) 17.5 169	1807.1 19.0 188	1807.8 19.0 192	19.0 190	1804.4 16.0 158	13.3 131	13.3 131	14.0 138	14.0 138	15.5 151	1799.7 19.5 186 330	1797.5 19.5 182			
PEAK POW MW ENERGY GWH 1426.3 4 OAHE	332 332 48.0 20.8	333 33 26.8 103.		357 135.3	359 142.5	351 141.6	347 114.0	345 97.6	346 47.2	346 23.1	346 26.4	339 112.5	138.5	322 122.5			
NAT INFLOW 1184 DEPLETION 640 CHAN STOR -14 EVAPORATION 325 REG INFLOW 12289 RELEASE 12778 STOR CHANGE -490 STORAGE 9368 1 ELEV FTMSL 1567.9 151 DISCH KCFS 16.4 1 1	223 104 23 11 17 6 633 279 432 277 202 3 9569 9572 69.1 1569.1 14.5 19.9	-1 352 103 369 124 -18 -20 9554 934	5 68 -14 1107 1468 -361 5 8984 1565.7	242 135 -9 1229 1418 -189 8795 1564.6 23.8	92 160 20 1080 1727 -646 8149 1560.6 28.1	24 106 1026 1351 -324 7824 1558.5 22.0	72 26 18 76 941 593 348 8172 1560.8 10.0	6 -9 16 69 781 549 232 8404 1562.2 8.9	-6 1 358 259 99 8503 1562.8 8.7	-3 0 -4 15 172 120 52 8555 1563.1 8.7	-3 1 0 17 202 137 64 8619 1563.5 8.7	-54 12 -9 37 841 1022 -181 8438 1562.4 16.6	-13 17 -24 1145 801 344 8782 1564.5 13.0	47 27 1103 1007 96 8878 1565.1 18.1			
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1541.8 !	149 205 509 509 53.8 34.5	213 21 509 50 46.1 155.4	3 492	239 487 172.0	276 467 205.1	211 456 157.2	97 468 69.5	88 475 65.3	86 478 31.0	86 479 14.5	86 481 16.6	165 476 122.4	130 486 96.5	182 489 122.2			
ELEV FTMSL 1420.0 143	432 277 432 277 1621 1621 20.0 1420.0 14.5 19.9	369 124 369 124 1621 162 1420.0 1420. 20.7 21.	3 1468 1621 1420.0	1418 1418 1621 1420.0 23.8	8 1719 1719 1621 1420.0 28.0	24 1326 1326 1621 1420.0 21.6	31 562 562 1621 1420.0 9.4	27 522 522 1621 1420.0 8.5	12 247 247 1621 1420.0 8.3	6 114 114 1621 1420.0 8.2	7 131 1621 1420.0 8.3	16.4	801 801 1621 1420.0 13.0	1007 1007 1621 1420.0 18.1			
AVE POWER MW PEAK POW MW ENERGY GWH 733.3	69 93 518 510 24.7 15.7	97 9 509 50 20.9 70.	9 509	112 509 80.3	131 509 97.4	103 525 76.5	48 538 34.5	43 538 32.0	42 538 15.1	42 538 7.0	42 538 8.0	82 538 60.8	65 538 48.0	87 529 58-5			
	67 31 1 1 235 159 262 148 3384 3532 53.2 1355.0 7.9 11.5		3 9 7 1501 7 1501 9 3549 2 1355.2	146 12 1552 1552 3549 1355.2 26.1	16 18 10 1707 1707 0 3549 1355.2 27.8	44 15 30 1325 1674 -349 3200 1351.0 27.2	-12 7 31 506 1410 -903 2296 1337.5 23.7	-62 1 22 437 437 0 2296 1337.5 7.1	-3 10 233 233 0 2296 1337.5 7.8	-1 0 5 108 108 0 2296 1337.5 7.8	-2 123 123 0 2296 1337.5 7.8	3 13 992 719 273 2569 1342.1 11.7	-7 3 791 701 90 2659 1343.5 11.4	15 3 1019 555 464 3123 1350.0 10.0			
AVE POWER MW PEAK POW MW	66 97 350 355 23.6 16.3	185 18 356 35 40.0 132.	5 356	220 356 158.5	234 356 174.1	226 342 167.9	182 284 131.3	52 285 38.8	57 285 20.6	57 285 9.6	57 285 10.9	87 306 64.9	87 312 65.0	79 339 53.4			
	89 42 0 0 4 -7 329 194 329 194 358 358 06.0 1206.0 11.1 14.0	-20 425 141 425 141 358 35 1206.0 1206.	19) -5 5 1611 5 1611 3 358 0 1206.0	141 24 -3 1666 1666 358 1206.0 28.0	78 39 -3 1740 1740 358 1206.0 28.3	78 10 1735 1722 13 371 1206.5 28,0	56 -5 7 11 1466 1440 25 397 1207.5 24.2	107 1 31 564 564 1207.5 9.2	46 5 268 268 397 1207.5 9-0	21 2 0 125 125 125 1207.5 9.0	25 3 0 143 143 143 1207.5 9.0	69 10 -7 56 766 397 1207.5 12.5	67 1 768 768 397 1207.5 12.5	100 3 658 697 -39 358 1206.0 12.5			
POWER AVE POWER MW PEAK POW MW	39 49 114 114 13.9 8.2	82 83 114 11-	2 89 114	95 114 68.6	96 114 71.6	96 115 71.3	84 117 60.8	33 117 24.3	32 117 11.6	32 117 5.4	32 117 6.2	44 78 32.9	44 78 33.0	44 76 29.7			
	44 21 6 3	4 2: 448 148	L 35 9 1749	128 30 1764 29.6	57 38 1759 28.6	26 35 1713 27.9	18 23 1435 24.1	17 10 571 9.3	12 6 274 9.2	5 3 128 9.2	6 3 146 9.2	12 12 766 12.5	-6 13 749 12.2	32 14 715 12.9			
SYSTEM POWER	969 452 53 25 56 -1 1362 31576	31658 3176	418 -37 31853	3939 1269 -12 32747	2115 1060 -3 88 31951	839 300 1 273 30505	697 -134 31 334 29598	838 -35 53 288 29666	395 -116 -1 131 29771	184 -54 -4 29816	211 -62 0 29873	435 -188 -28 152 29551	435 -134 -23 29348	732 -47 8 29420			
ENERGY GWH 6227.0 1	510 624 1936 1935 83.7 104.8 12.2 15.0	163.4 572.4	1931 675.3	944 1943 679.4 22.6	1018 1922 757.4 24.4	914 1903 680.1 21.9	646 1865 465.1 15.5	417 1871 310.5 10.0	419 1874 150.8 10.1	425 1876 71.4 10.2	425 1877 81.7 10.2	610 1847 453.7 14.6	592 1853 440.8 14.2	650 1863 436.5 15.6			

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB

TIME OF STUDY 11:06:05

2006-2007 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 NO NAVIGATION SEASON, SP MAR 0 MAY 0

STUDY NO 20

TIME OF STUDY 11:0		:	NO NAVI					S INDIC	ATED				STUDY	NO	20	
28FEB09 INI-SU	UM 15M/	200 R 22MAR		30APR							15NOV	22NOV	201 30NOV		31JAN	28FEB
EVAPORATION 3 MOD INFLOW 48: RELEASE 37' STOR CHANGE 10' STORAGE 70' ELEV FTMSL 2185	24 - 64 27 26 73 11 55 14 22 716	2 -1 0 121 9 56 1 66 3 7229 9 2187.4	155 -1 156 89 67 7296 2187.9 5.0	567 92 475 298 177 7473 2189.2 5.0	862 324 538 307 231 7704 2191.0 5.0	1097 530 567 357 210 7914 2192.5 6.0	483 187 22 274 369 -95 7819 2191.8 6.0	279 -34 69 244 369 +125 7694 2190.9 6.0	266 -138 86 318 298 20 7714 2191.0 5.0	352 -63 76 339 237 102 7816 2191.8 3.9	175 -69 35 209 115 94 7910 2192.5 3.9	81 -32 16 97 56 42 7952 2192.8 4.0	93 -37 19 111 63 48 7999 2193.1 4.0	298 -179 41 436 338 98 8097 2193.8 5.5	226 -103 329 369 -40 8057 2193.5 6.0	303 -50 353 20 6077 2193.7 6.0
AVE POWER MW PEAK POW MW ENERGY GWH 508	10		54 111 11.7	55 113 39.2	55 115 41.0	67 117 48.1	67 116 49.9	67 115 49.6	55 115 39.9	43 116 32.0	43 117 15.6	45 118 7.6	45 118 8.7	62 119 46.2	68 119 50.4	68 119 45.5
CHAN STOR 2 EVAPORATION 4 REG INFLOW 108 RELEASE 96 STOR CHANGE 120 STORAGE 84	03 12 3 91 45 23 35 68 10 18 852 .5 1798.	7 3 5 198 7 167 2 31 0 8551 1 1798.2	187 4 -12 260 196 645 1798.6 11.0	810 30 1078 655 423 9038 1800.8 11.0	1045 202 1150 922 228 9266 1802.0 15.0	2337 677 -11 2006 893 1113 10379 1807.5 15.0	1477 556 1264 922 341 10720 1809.1 15.0	418 77 83 627 922 -296 10424 1807.7 15.0	320 -148 104 673 714 -41 10383 1807.5 12.0	451 -12 13 91 622 656 -34 10349 1807.3 10.7	187 -116 41 376 317 59 10408 1807.6 10.7	87 -54 19 176 146 30 10438 1807.8 10.5	99 -62 203 167 36 10474 1807.9 10.5	125 -113 -17 47 512 892 -380 10094 1806.1 14.5	185 -88 -6 636 892 -255 9839 1804.9 14.5	258 -61 805 -153 9686 1804.1 14.5
AVE POWER MW PEAK POW MW ENERGY GWH 1156	11 32 .9 40.	4 325	103 326 22.3	105 334 75.3	144 339 107.4	148 359 106.8	153 364 113.7	153 359 113.8	122 358 87.7	108 358 80.6	108 359 39.0	107 359 17.9	107 360 20.5	146 353 108.8	144 349 107.4	143 346 96.2
CHAN STOR 3 EVAPORATION 33 REG INFLOW 98 RELEASE 855 STOR CHANGE 133 STORAGE 887	52 2 30 4 92 72 61 52 36 20 25 78 912 .1 1566.	3 11 4 5 267 4 191 1 75 9 9204 6 1567.0	143 14 6 331 80 251 9455 1568.4 4.5	220 48 827 363 464 9919 1571.0 6.1	120 69 -22 951 779 172 10091 1571.9 12.7	259 138 1014 808 205 10296 1573.0 13.6	99 164 23 834 1090 -256 10040 1571.6 17.7	25 109 766 907 -142 9899 1570.9 14.8	77 27 93 688 201 487 10385 1573.4 3.4	6 -9 83 595 421 174 10560 1574.3 6.8	-6 1 38 272 261 12 10572 1574.4 8.8	-3 0 1 18 126 121 5 10576 1574.4 8.7	-3 1 20 143 139 4 10580 1574.4 8.7	-58 12 -22 44 756 1024 -268 10312 1573.1 16.7	-14 17 861 802 59 10371 1573.4 13.0	
AVE POWER MW PEAK POW MW ENERGY GWH 1091.	12 49 .7 44.	7 499	46 506 9.9	64 519 45.7	133 524 99.1	144 530 103.4	187 523 139.0	155 519 115.1	36 532 25.8	73 537 54.5	94 537 33.8	94 537 15.7	94 537 18.0	177 530 132.0	139 532 103.1	191 527 128.2
BIG BEND EVAPORATION 12 REG INFLOW 842 RELEASE 844 STORAGE 162 ELEV FIMSL 1420, DISCH KCFS 18. POWER AVE POWER MW PEAK POW MW ENERGY GWH 485.	23 36 23 36 21 162 .0 1420. .1 12. 51	4 191 1 1621 0 1420.0 2 13.8 8 65 8 510	80 80 1621 1420-0 4.5 21 509 4.5	363 363 1621 1420.0 6.1 29 509 20.5	779 779 1621 1420.0 12.7 59 509 44.2	808 808 1621 1420.0 13.6 64 509 45.8	8 1082 1082 1621 1420.0 17.6 82 509 61.3	24 883 1621 1420.0 14.4 68 518 50.5	31 170 1621 1420.0 2.9 14 538 10.2	27 394 394 1621 1420.0 6.4 32 538 23.7	12 248 248 1621 1420.0 8.3 42 538 14.9	6 115 1621 1420.0 8.3 41 538 6.9	7 132 1621 1420.0 8.3 41 538 7.9	14 1010 1621 1420.0 16.4 80 538 59.5	802 802 1621 1420.0 13.0 63 534 47.0	1001 1001 1621 1420.0 18.0 85 513 57.0
EVAPORATION 14 REG INFLOW 860 RELEASE 824 STOR CHANGE 36 STORAGE 312	79 13 15 43 17 53 26 23 339 .0 1353.	1 1 6 225 0 83 7 142 0 3532 3 1355.0 7 6.0	44 1 106 17 3549 1355.2 6.0	58 3 418 418 3549 1355.2 7.0 60	47 9 817 817 1355.2 13.3 113	161 12 957 957 3549 1355.2 16.1 137	18 18 10 1072 1072 0 3549 1355.2 17.4 148	48 15 31 885 1059 -174 3375 1353.1 17.2 145	-13 7 35 115 678 -563 2812 1345.7 11_4 93	-69 1 28 296 449 -153 2659 1343.5 7.3	-4 1 232 232 232 0 2659 1343.5 7.8 60	-2 0 108 108 2659 1343.5 7.8 60	-2 1 6 123 123 0 2659 1343.5 7.8 60	3 15 992 719 273 2932 1347.4 11.7 92	-8 3 791 701 90 3022 1348.6 11.4 92	16 3 1014 550 464 3486 1354.5 9.9 82
PEAK POW MW ENERGY GWH 824. -~GAVINS POINT	35 .2 17.		356 11.0	356 43.2	356 84.1	356 98.4	356 110.0	349 107.8	322 66.7	312 42.5	312 21.7	312 10.1	312 11.5	330 68.3	334 68.1	354 55.1
NAT INFLOW 124 DEPLETION 11 CHAN STOR EVAPORATION 4 REG INFLOW 932 RELEASE 932 STOR CHANGE STORAGE 35 ELEV FIMSL 1206. DISCH KCFS 12.	12 0 17 25 26 25 26 25 26 38 35 .0 1206.	0 0 8 -1 8 125 8 125 8 125 8 358 0 1206-0	54 0 161 161 358 1206.0 9.0	124 4 -2 536 536 1206.0 9.0	136 19 -12 922 922 358 1206.0 15.0	143 24 -5 1071 1071 358 1206.0 18.0	79 39 -3 31107 1107 358 1206.0 18.0	79 10 9 1120 1107 13 371 1206.5 18.0	57 -5 11 740 714 26 397 1207.5 12.0	108 1 553 553 397 1207.5 9.0	47 5 -1 268 268 397 1207-5 . 9.0	22 2 0 125 125 125 1207.5 9.0	25 3 2 143 143 143 397 1207.5 9.0	69 10 -7 5 766 766 397 1207.5 12.5	67 1 1 768 768 397 1207.5 12.5	101 3 654 693 -39 358 1206.0 12.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 396.	3 11 1 11.	4 114	32 114 6.8	32 114 22.8	52 114 38.9	62 114 44.9	62 114 46.4	63 115 46.6	42 117 30.6	32 117 23.9	32 117 11.6	32 117 · 5.4	32 117 6.2	44 78 32.9	44 78 33.0	44 76 29.6
GAVINS POINT - SI NAT INFLOW 73 DEPLETION 25 REGULATED FLOW AT S KAF 979 KCFS	10 4 58 SIOUX CI	8 23 6 3 TY 0 145	29 4 186 10.4	102 21 617 10.4	191 35 1078 17.5	141 31 1181 19.8	63 38 1132 18.4	29 36 1100 17.9	20 23 711 11.9	18 10 561 9.1	13 6 275 9.2	6 3 128 9.2	7 3 147 9.2	13 12 767 12.5	-7 14 747 12.1	35 14 714 12.8
EVAPORATION 150 STORAGE 2942 SYSTEM POWER	8 3 2 8 9 0 3018	6 17 7 -1 1 30495	612 21 -6 30894	1881 198 -2 31959	2401 658 -34 32589	4138 1412 -17 34117	2219 1002 -3 92 34108	878 213 0 289 33384	727 -234 39 361 33312	866 -72 28 315 33401	411 -173 -1 143 33566	192 -81 -1 67 33642	219 +92 0 77 33730	447 -255 -46 166 33453	449 -156 -5 33307	763 -67 3 33426
AVE POWER MW PEAK POW MW ENERGY GWH 4462. DAILY GWH INI-SU	10.	2 1914 8 74.5 0 10.6	307 1922 66.3 7.4 31MAR	343 1946 246.9 8.2 30APR	557 1957 414.7 13.4 31MAY	621 1985 447.5 14.9 30JUN	699 1983 520.3 16.8 31JUL	650 1975 483.4 15.6 31AUG	362 1983 260.8 8.7 30SEP	346 1978 257.1 8.3 310CT	379 1980 136.6 9.1 15NOV	379 1981 63.7 9.1 22NOV	379 1983 72.8 9.1 30NOV	602 1949 447.7 14.4 31DEC	550 1946 409.1 13.2 31JAN	613 1935 411.6 14.7 28FEB

DATE OF STUDY 11/30/06 TIME OF STUDY 11:06:05

2006-2007 AOF EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHIN NAV SEAS 61 DAYS, SP MAR C MAY 0

STUDY NO 21

TIME OF STUDY 11:06:05 SHTN NAV								, SP MAR 00 AF EX		STUDY NO 21							
28F	EB10 INI-SUM	15MAR	2010 22MAR		30APR							15NOV	22NOV	202 30NOV	11 31DEC	31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	5748 442 383 4923 4888 36 8077	264 -2 266 119 147 8224 2194.7 4.0	123 -1 124 56 69 8293 2195.2 4.0	158 -1 160 71 88 8381 2195.8 4.0	580 92 488 298 190 8572 2197.1 5.0	882 329 553 400 153 8725 2198.2 6.5	1123 538 585 476 109 8834 2198.9 8.0	495 194 24 277 492 -214 8619 2197.5 8.0	285 -30 73 242 492 -250 8369 2195.7 8.0	273 -138 91 320 387 -67 8302 2195.3 6.5	361 -65 80 346 344 2 8304 2195.3 5.6	179 -70 36 212 162 49 8354 2195.6 5.5	83 -32 17 99 76 22 8376 2195.8 5.5	95 -37 19 113 87 26 8402 2196.0 5.5	305 -180 42 443 492 -49 8353 2195.6 8.0	231 -104 335 492 -157 8196 2194.5 8.0	310 -51 361 444 -83 8113 2193.9 8.0
AVE POWER M PEAK POW MW ENERGY GWH	679.6	45 121 16.4	46 121 7.7	46 122 9.9	58 124 41.6	76 126 56.2	93 127 67.1	93 125 69.2	92 122 68.5	74 121 53.5	64 121 47.6	63 122 22.5	63 122 10.6	63 122 12.1	92 122 68.1	91 120 67.7	91 119 60.8
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION	8762 1028 -23 449	324 -3 23	151 -1	194 -2	840 31 ~11	1084 203 -17	2425 764 -17	1533 573 28	433 96 87	332 -138 17 108	468 -16 10 93	194 -107 2 42	90 -50 20	103 -57 0 22	130 -115 -28 48	192 -88	268 -62
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL		469 417 52 9739 1804.4		268 214 53 9833 1804.9			2120 1131 990 11244 1811.4				745 911 -166 10691 1808.9	422 417 6 10697 1809.0	1809.0	1809.0		772 1168 -396 10013 1805.7	
DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH		14.0 138 347 49.7	12.0 119 348 20.0	12.0 119 349 25.7	15.0 149 352 107.4	17.0 170 356 126.6	19.0 194 373 139.9	19.0 199 377 147.9	19.0 198 370 147.4	16.5 170 366 122.7	14.8 152 364 113.2	14-0 143 364 51.7	14.0 144 364 24.1	14.0 144 364 27.6	15.5 158 359 117.4	19.0 190 352 141.6	19.0 188 347 126.2
OAHE NAT INFLOW DEPLETION CHAN STOR	1323 666 -24	249 24 3	116 11 11	149 14	231 49 -16	126 70 -11	271 141 -11	103 169	26 112	81 27 15	7 -10 10	-7 2 5	-3 1	-3 1 0	-61 12 -8	-15 17 -20	52 27
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	369 12369 12322 47 10198	645 178 467 10665	283 144 139 10804	349 361 -11 10793 1575.5 20.2	1058 1236 -177 10615	1090 1458 -368 10248	1250 1388 -139 10109 1572.0 23.3	23 1080 1723 -643 9466 1568.5 28.0	68 1014 1518 ~503 8963 1565.6 24.7	86 964 425 539 9502	78 859 551 308 9811	36 377 259 118 9928 1571.0 8.7	17 174 120 54 9982 1571.3 8.7	19 198 137 61 10043	42 830 1021 -191 9852	1117 804 313 10164 1572.3 13.1	1080 1000 80 10245 1572.7 18.0
Power Ave Power M Peak Pow MW Energy Gwh	N 1562.4	64 540 23.0	112 543 18.7	217 543 46.9	223 538 160.3	252 528 187.2	246 525 176.8	290 506 216.0	251 492 186.5	73 507 52.7	93 516 69.3	91 520 32.9	91 521 15.3	91 523 17-5	174 517 129.4	137 526 102.2	190 528 127.7
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	129 12193 12193 1621 1420.0 18.0	6.0	10.3	20.2	20.8	23.7	1388 1388 1621 1420.0 23.3	27.9	24.3	6.6	8.5	12 247 247 1621 1420.0 8.3	8.2	8.2	16.4	804 804 1621 1420.0 13.1	1000 1000 1621 1420.0 18.0
AVE POWER M PEAK POW MW ENERGY GWH	706.1	28 512 10.1	49 510 8.2	95 509 20.4	97 509 70.0	111 509 82.6	109 509 78.6	131 509 97.1	115 518 85.5	34 538 24.2	43 538 32.1	42 538 15.1	42 538 7.0	42 538 8.0	82 538 60.7	65 538 48.2	86 529 58.0
FORT RANDAJ NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	433 79 128 12409 12772 -363 3486 1354.5 9.9	7.8	11.4	21.9	21.8	24.4	26.1	19 18 100 1706 1706 0 3549 1355.2 27.7	27.2	23.7	6.9	7.8	7.8	7.8	11.7	11.4	17 3 1014 550 464 3122 1350.0 9.9
AVE POWER MU PEAK POW MW ENERGY GWH	1261.5	66 355 23.9	97 355 16.3	185 356 39.9	184 356 132.5	206 356 153.2	220 356 158.3	234 356 174.0	228 349 169.3	184 284 132.4	51 285 37.8	57 285 20.6	57 285 9.6	57 285 10.9	87 306 64.9	87 312 65.0	79 339 52.9
GAVINS POIN NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE	1246 112 -1 47 13858 13858 358	91 0 4 327 327 327	42 0 -7 194 194 358	54 0 -20 425 425 358	125 4 0 1416 1416 358	136 19 -5 1611 1611 358	143 24 -3 1666 1666 358	79 39 -3 3 1740 1740 358	79 10 1735 1735 1722 13 371	57 -5 7 11 1466 1440 26 397	108 1 31 553 553 397	47 -2 268 268 397	22 2 0 125 125 397	25 3 0 2 143 143 397	70 10 -7 5 767 767 397	68 1 769 769 397	101 3 654 693 -39 358
ELEV FTMSL DISCH KCFS POWER AVE POWER MV PEAK POW MW	12.5	1206.0 11.0 39 114	1206.0 14.0 49 114	1206.0 23.8 82 114	1206.0 23.8 82 114	1206.0 26.2 89 114	1206.0 28.0 95 114	1206.0 28.3 96 114	1206.5 28.0 96 115	1207.5 24.2 84 117	1207.5 9.0 32 117	1207.5 9.0 32 117	1207.5 9.0 32 117	1207.5 9.0 32 117	1207.5 12.5 44 78	1207.5 12.5 44 78	1206.0 12.5 44 76
ENERGY GWH GAVINS POIN NAT INFLOW	579.9 T - SIOU 785	13.9	8.2	17.6	58.7	66.6 205	68.6 151	71.6	71.3	60.8 21	23.9	11.6	5.4	6.2	33.0	33.0	29.6
DEPLETION REGULATED FLC KAF KCFS	263	7	3	4 452 25.3	1504 25.3	205 35 1781 29.0	131 31 1786 30.0	38 1770 28.8	36 36 1717 27.9	24 24 1437 24.1	20 10 563 9.2	14 6 275 9.3	6 3 128 9.3	, 3 147 9.3	14 13 768 12.5	-7 14 748 12.2	38 14 717 12.9
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION	18297 2590 -58 1505	1060 27 30	494 12 4	636 16 -20	1948 201 -27	2483 665 -33	4287 1510 -31	2297 1031 -3 94	906 239 1 292	749 ⁻ -223 28 360	889 -79 50 311	422 -163 4 141	197 -76 0 66	225 -87 0 76	458 -257 -44 164	460 -157 -19	786 -69 3
STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH	33426	9.1	34388 470 1993 79.0 11.3 22MAR	34535 743 1994 160.6 17.8	34751 792 1994 570.5 19.0	34755 904 1990 672.3 21.7	35715 957 2004 689.4 23.0	35113 1043 1987 775.8 25.0 31JUL	33772 979 1966 728.5 23.5	32975 620 1934 446.4 14.9	33119 435 1941 323.9 10.4	33292 429 1945 154.3 10.3	33370 428 1947 71.9 10.3	33460 429 1949 82.3 10.3	33199 636 1920 473.5 15.3	33050 615 1927 457.9 14.8	33191 677 1939 455.2 16.3
		TOUR	2 21 11 1A	- TURK	JUNER		2 20 ON	1001	2 THUG	TOOR	21001	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

DATE OF STUDY 11/30/06 TIME OF STUDY 11:06:05

2006-2007 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 PAGE SHTN NAV SEAS 61 DAYS, SP MAR 0 MAY 0 VALUES IN 1000 AF EXCEPT AS INDICATED

STUDY NO

EB11 2011 INI-SUM 15MAR 22MAR 28FEB11 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB -FORT PECK--70 36 218 164 54 NAT INFLOW DEPLETION - 2 -25 74 -33 17 -37 20 116 87 29 -104 330 542 -180 -138 92 327 419 -92 8439 2196.2 7.0 202 24 283 492 -209 8779 198.5 8.0 386 -1 -1 -67 -60 452 492 EVAPORATION 357 383 -26 8413 2196.0 6.2 4949 137 119 155 56 72 238 268 446 168 8987 492 -247 76 25 492 -150 460 -81 MOD INFLOW RELEASE 71 93 118 STOR CHANGE -40 8113 8268 2193.9 2195.0 8.0 4.0 2195.5 4.0 2196.2 4.0 2196.9 8.0 2196.6 5.5 2196.8 5.5 2196.5 8.0 195.5 8.0 2194.9 8.0 2198.0 STORAGE ELEV FTMSL DISCH KCFS 2200.0 7.5 2196.4 5.5 2198.8 7.5 4.0 POWER AVE POWER MW PEAK POW MW ENERGY GWH 126 123 10.7 122 68.2 122 123 12.2 63.4 9.9 33.4 69.0 22.8 691.9 16.4 63.2 69.6 58.4 53.3 68.5 -GARRISON -116 -28 48 NAT INFLOW -140 11 107 DEPLETION CHAN STOR -1 -1 -20 -111 8 -52 -59 - 88 -67 -6 27 EVAPORATION 1414 -60 1250 965 1107 -349 415 28 953 -285 1035 -227 REG INFLOW 12482 387 167 1107 952 887 194 222 RELEASE STOR CHANGE -141 -326 805.3 STORAGE 805.5 811.5 1809.9 807.8 305.2 ELEV FTMSL DISCH KCFS 1804.4 19.0 04.9 305.2 09.3 08.9 809.1 809.1 1809.1 05.6 12.0 18.0 13.0 12.0 18.0 23.0 21.0 18.0 18.0 16.0 14.4 14.0 14.0 14.0 15.5 18.0 POWER AVE POWER MW PEAK POW MW 350 169.2 367 367 138.8 364 27.6 350 118.5 110.1 51.5 24.1 25.8 128.7 138.7 117.6 134.7 124.6 ENERGY GWH 1528.8 46.3 20.0 152.4 OAHE NAT INFLOW -64 12 -8 43 -16 18 -14 -3 1 0 28 -7 -3 16 23 1037 1721 DEPLETION 33 -33 11 11 89 -10 9 80 3 37 CHAN STOR EVAPORATION 379 12837 12665 172 10245 1572.7 18.0 409 252 10497 1513 -563 426 507 558 274 REG INFLOW RELEASE 265 356 1230 1452 1370 259 120 137 1022 804 1023 STOR CHANGE -2 10522 -684 10203 10257 10317 -196 10416 1567.6 24.6 570.7 570.4 7.2 1571.9 9.1 STORAGE 574.1 19.1 ELEV FTMSL DISCH KCFS 574.0 13.7 574.1 19.9 20.7 23.6 23.0 1573.1 573.4 13.1 573.6 17.8 1572.5 2.8 8.7 72.1 28.0 8.7 16.6 POWER AVE POWER MW 532 103.1 533 131.6 PEAK POW MW 34.2 45.9 187.0 53.5 70.9 33.2 17.7 130.7 15.4 219.0 ENERGY GWH 1618.5 52.6 158.6 176.6 188.6 -BIG BEND 247 247 1008 1008 EVAPORATION 12537 1621 1488 1621 409 1621 356 1621 1230 1621 1452 1621 1713 1621 395 531 114 1621 131 804 1023 REG INFLOW RELEASE 1621 420.0 ELEV FIMSL 1420.0 1420.0 13.7 20.0 20.0 20.0 20.0 20.0 420.0 20.0 1. 20.0 20.0 0.0 20.0 1. 20.0 20.0 420.0 DISCH KCFS 18.0 .9 20.7 23.6 .0 8.3 . 9 24.2 6.6 8.6 8.3 8.2 16.4 13.1 17.8 POWER AVE POWER MW PEAK POW MW ENERGY GWH 23.4 15.0 20.1 69.7 82.2 77.6 97.0 85.2 32.6 15.2 7.0 60.8 48.2 59.4 725.8 24.3 8.0 -FORT RANDALL 15 31 1499 1673 -174 79 128 18 10 -2 0 5 NAT INFLOW DEPLETION 1 1 1 3 9 12 -16 -82 -4 1 10 -2 1 5 3 -10 22 425 EVAPORATION REG INFLOW RELEASE 992 719 232 263 158 147 1706 1409 232 107 123 390 1295 1498 1549 701 575 STOR CHANGE 3123 Ō -1078 Ď n 9n 1353.2 7.8 55.0 11.4 STORAGE ELEV FTMSL 1350.0 55.2 21.9 1337.5 7.7 55.2 21.8 24.4 26.0 355.2 353.1 337.5 337.5 6.9 37.5 37.5 42.1 43.5 350.0 DISCH KCFS 9.9 23.7 11.4 10.0 POWER AVE POWER MW PEAK POW MW 284 285 37.8 285 285 312 65.0 169.3 132.4 ENERGY GWH 1263.0 23.3 16.2 39.9 132.5 153.1 174.0 20.6 9.5 10.9 64.9 55.3 GAVINS POINT NAT INFLOW DEPLETION CHAN STOR 0 4 0 -20 5 -2 2 0 10 -7 10 -5 7 -5 - 3 -7 31 10 -1 47 9 EVAPORATION 328 194 1611 553 268 767 769 REG INFLOW 425 1416 1666 1740 1722 143 RELEASE 26 STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS 1206.0 12.5 206.5 28.0 207.5 24.2)7.5 9.0 07.5 9.0 1206.0 06.0 06.0 07.5 07.5 12.5 1207.5 12.5 06.0 107.5 06.0 06.0 06.0 12.5 11.0 14.0 23.8 23.8 26.2 28.0 28.3 9.0 9.0 POWER AVE POWER MW PEAK POW MW ENERGY GWH 117 11.6 76 30.7 78 58.7 66.6 581.0 68.6 71.6 71.3 60.8 23.9 5.4 6.2 33.0 33.0 - SIOUX CITY-862 57 263 7 AT SIOUX CITY 14484 378 GAVINS POINT 4 22 35 31 38 24 10 6 NAT INFLOW DEPLETION 36 13 -8 14 14 3 3 REGULATED FLOW AT 29.3 9.2 KAF 12.7 KCFS 9.3 25.5 15.7 25.5 30.3 28.9 28.0 24.2 9.3 12.5 12.1 13.0 -- TOTAL-12 -1 -84 49 313 -62 3 253 - 78 -89 -258 DEPLETION CHAN STOR EVAPORATION - 5 83 -20 -32 -72 -224 19 362 -168 -156 B 67 -43 166 STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW 1988 101.3 14.5 1975 722.1 1950 328.6 1930 475.5 1958 1936 723.2 23.3 447.9 14.9 581.7 96.7 770.0 154.8 72.2 ENERGY GWH DAILY GWH 175.9 159.4 6408.9 82.6 452.2 465.0 19.4 23.2 24.8 23.3 10.6 10.3 10.3 10.3 15.3 16.0 INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 31JUL 29FEB 3 OJUN 31AUG 30SEP 310CT 15NOV 22NOV 3 ONOV 31DEC 31JAN

TIME OF STUDY 11:06:05

2006-2007 AOP EXTENSIONS, LOWER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1 SHIN NAV SEAS 61 DAYS, SP MAR 0 MAY 0

STUDY NO 23

TIME OF STU		5	SHTN NA	V SEAS (VALUES			R 0 MAY KCEPT AS		ATED				STUDY	NO 2	23		
28	FEB12 INI-SUM	15MAR	2011 22MAR		30APR				31AUG			15NOV	22NOV	20: 30NOV	13 31DEC	31JAN	28FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATIO MOD INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS	5961 473 N 363 5125 4947 E 179 8250 2194.9	274 -2 276 119 157 8407 2196.0 4.0	128 -1 129 56 73 8480 2196.5 4.0	164 -1 165 71 94 8574 2197.1 4.0	602 94 508 298 210 8784 2198.6 5.0	915 333 582 461 121 8905 2199.4 7.5	1164 549 615 476 139 9044 2200.3 8.0	513 208 24 281 492 -211 8833 2198.9 8.0	296 ~21 74 243 492 -249 8584 2197.2 8.0	283 -139 93 329 357 -28 8556 2197.0 6.0	374 -69 81 362 307 54 8610 2197.4 5.0	185 -71 23 232 152 80 8690 2198.0 5.1	86 -33 11 108 69 39 8729 2198.2 5.0	99 -38 13 124 79 44 8774 2198.5 5.0	317 -181 43 455 523 -68 8706 2198.1 8.5	240 -105 523 -178 8528 2196.8 8.5	321 -51 372 472 -100 8428 2196.1 8.5
POWER AVE POWER PEAK POW M ENERGY GWH	W	46 122 16.5	46 123 7.8	46 124 10.0	58 126 41.9	88 127 65.2	94 128 67.6	94 127 69.8	93 124 69.2	69 124 50.0	58 124 43.2	59 125 21.4	58 126 9.8	58 126 11.2	99 125 73.6	98 124 73.2	98 123 65.6
GARRISO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER	9293 1131 -5 N 431 12672 12453 E 219 9896 1805.2 18.0	344 -2 45 510 387 123 10019 1805.8 13.0 130	160 -1 217 167 50 10069 1806.0 12.0 120	205 -1 279 214 64 10134 1806.3 12.0 120	891 32 -11 1145 893 253 10386 1807.5 15.0 15.1	1150 203 -28 1380 1045 335 10721 1809.1 17.0 173	2572 784 -6 2258 1160 1098 11819 1814.0 19.5 203	1626 630 29 1459 1199 260 12079 1815.1 19.5 208	460 102 90 760 1199 -439 11640 1813.2 19.5 207	353 -149 22 112 769 1012 -242 11398 1812.1 17.0 179	496 -25 11 96 743 974 -231 11167 1811.1 15.8 166				137 -95 -39 50 666 953 -287 10865 1809.7 15.5 161	204 -66 793 1230 -437 10428 1807.7 20.0 204	284 -42 0 798 1111 -313 10115 1806.2 20.0 201
PEAK POW M ENERGY GWH	Ň	352 46.7	353 20.2	354 26.0	359 108.8	364 128.6	382 146.3	386 154.5	379 154.1	375 120.8	372 123.2	371 58.4	371 26.2	371 30.0	367 119.4	359 151.5	354 134.9
OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FIMSL DISCH KCPS POWER AVE FOWER	1429 696 -10 N 346 12830 12611 E 219 10416 1573.6 17.8	269 24 27 659 406 253 10669 1574.9 13.6 146	125 11 5 286 263 23 10692 1575.0 19.0 203	161 15 361 354 7 10698 1575.0 19.8 213	249 50 -16 1075 1228 -153 10546 1574.3 20.6 221	136 72 -11 1098 1451 -353 10193 1572.4 23.6 250	293 148 -14 1292 1366 -75 10119 1572.0 23.0 242	112 178 23 1110 1721 -610 9508 1568.7 28.0 290	29 119 68 1041 1511 -470 9038 1566.0 24.6 250	87 29 14 87 997 426 571 9609 1569.3 7.2 74	7 -11 79 919 559 360 9970 1571.3 9.1 95	-7 1 23 434 249 185 10154 1572.2 8.4 88	-3 0 3 11 197 116 81 10236 1572.7 8.3 88	-4 1 221 132 89 10325 1573.1 8.3 89	-65 13 -3 829 1022 -193 10132 1572.1 16.6 176	-16 18 -25 1171 804 367 10499 1574.0 13.1 139	56 28 1139 1002 136 10635 1574.7 18.0 193
PEAK POW M ENERGY GWH	1604.3	540 52.5	540 34.2	541 45.9	537 158.9	527 185.9	525 173.9	507 215.9	494 186.1	510 53.0	521 70.7	526 31.8	528 14.8	530 17.0	525 130.8	535 103.3	539 129.6
BIG BEN EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER 1	N 120 12491 12491 1621 1420.0 17.8	406 406 1621 1420.0 13.6 65	263 263 1621 1420.0 19.0 89	354 354 1621 1420.0 19.8 93	1228 1228 1621 1420.0 20.6 97	1451 1451 1621 1420.0 23.6 110	1366 1366 1621 1420.0 23.0 107	8 1713 1713 1621 1420.0 27.9 130	24 1486 1486 1621 1420.0 24.2 114	31 395 395 1621 1420.0 6.6 34	27 532 532 1621 1420.0 8.7 44	8 241 241 1621 1420.0 8.1 41	4 112 1621 1420.0 8.1 41	4 128 128 1621 1420.0 8.1 41	14 1008 1008 1621 1420.0 16.4 82	804 804 1621 1420.0 13.1 65	1002 1002 1621 1420.0 18.0 87
PEAK POW MI ENERGY GWH	4	518 23.2	510 14.9	509 20.1	509 69.6	509 82.2	509 77.4	509 97.0	518 85.1	538 24.3	538 32.6	538 14.8	538 6.9	538 7.9	538 60.8	530 48.2	529 58.2
FORT RANDJ NAT INFLOW DEPLETION REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER AVE POWER PEAR FOW M ENERGY GWH	469 799 121 12770 12770 302 3123 1350.0 10.0	90 1 494 232 262 3385 1353.3 7.8 65 350 23.3	42 1 305 158 147 3532 1355.0 11.4 96 355 16.2	54 1 407 390 17 3549 1355.2 21.9 185 356 39.9	70 3 1295 1295 3549 1355.2 21.8 184 356 132.5	56 9 1498 3549 1355.2 24.4 206 356 153.1	195 12 1549 1549 1355.2 26.0 220 356 158.2	21 18 10 1706 1706 0 3549 1355.2 27.7 234 356 174.0	59 31 1499 1673 -174 3375 1353.1 27.2 228 349 169.3	-16 7 32 330 1409 -1078 2297 1337.5 23.7 184 284 132.4	-84 1 22 424 0 2297 1337.5 6.9 51 285 37.7	-4 230 230 2296 1337.5 7.7 57 285 20.4	-2 0 107 0 2296 1337.5 7.7 56 285 9.5	-2 1 122 122 0 2296 1337.5 7.7 56 285 10.8		-10 3 791 701 90 2659 1343.5 11.4 87 312 65.0	20 3 1019 555 464 3123 1350.0 10.0 79 339 53.4
GAVINS PC: NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGI STORAGE ELEV FTMSL DISCH KCFS POWER	1252 112 ~1 13865 13865 358	91 0 4 328 328 1206.0 11.0	42 0 -7 194 194 358 1206.0 14.0	55 0 -20 425 425 358 1206.0 23.8	125 4 0 1416 1416 358 1206.0 23.8	137 19 -5 1611 1611 358 1206.0 26.2	144 24 -3 1666 1666 358 1206.0 28.0	79 39 -3 1740 1740 1740 358 1206.0 28.3	79 10 1735 1735 1722 13 371 1206.5 28.0	57 -5 7 11 1466 1440 26 397 1207.5 24.2	109 31 10 553 553 397 1207.5 9.0	47 5 -2 268 268 397 1207.5 9.0	22 0 1 125 125 397 1207.5 9.0	25 3 143 143 397 1207.5 9.0	70 10 -7 5 767 767 397 1207.5 12.5	68 1 769 769 1207.5 12.5	102 3 660 699 -39 358 1206.0 12.6
AVE POWER M PEAK POW MW ENERGY GWH		39 114 13-9	49 114 8.2	82 114 17.6	82 114 58.7	89 114 66.6	95 114 68.6	96 114 71.6	96 115 71.3	84 117 60.8	32 117 23.9	32 117 11.6	32 117 5.4	32 117 6.2	44 78 33.0	44 78 33.0	44 76 29.8
GAVINS POI NAT INFLOW DEPLETION REGULATED FI KAF KCFS	NT - SIOU 879 268 OW AT SIC 14476	7X CITY- 58 7	- 27 3	35 4 456 25.5	123 22 1517 25.5	230 36 1805 29.4	169 31 1804 30.3	76 39 1777 28.9	35 37 1720 28.0	24 24 1440 24.2	22 11 564 9.2	15 6 277 9.3	7 3 129 9.3	8 3 148 9.3	16 13 770 12.5	~8 14 747 12.1	42 15 726 13.1
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE CYCTEM DOWE	19303 2759 -27 1425 33664	1125 28 77 34459	525 13 -1 34752	675 17 -20 34934	2060 205 -27 35244	2624 672 -44 35348	4537 1548 -23 36510	2427 1112 -3 96 35949	958 262 1 297 34629	788 -233 33 366 33877	924 -92 48 316 34061	441 -177 -1 91 34310	206 -83 43 34431	235 -94 0 49 34564	475 -237 -49 168 34290	478 -135 -24 34132	825 -47 3 34281
System fowe ave power m Peak fow MM Energy GWH Daily GWH	W	489 1996 176.1 11.7 15MAR	604 1997 101.4 14.5 22MAR	739 1998 159.6 17.7 31MAR	792 2001 570.4 19.0 30APR	916 1998 681.6 22.0 31MAY	961 2015 692.0 23.1 30JUN	1052 1999 782.9 25.3 31JUL	988 1980 735.0 23.7 31AUG	624 1949 449.5 15.0 30SEP	445 1957 331.3 10.7 310CT	440 1962 158.4 10.6 15NOV	432 1965 72.6 10.4 22NOV	432 1968 83.0 10.4 30NOV	648 1939 482.4 15.6 31DEC	637 1947 474.3 15.3 31JAN	702 1959 471.5 16.8 28FEB