

US Army Corps of Engineers ® Northwestern Division

Missouri River Basin Water Management Division

Missouri River Mainstem System 2016-2017 Annual Operating Plan

Annual Operating Plan Process 64 Years Serving the Missouri River Basin

September 2016

Draft

2016-2017

A

DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, NORTHWESTERN DIVISION PO BOX 2870 PORTLAND OR 97208-2870

September 2016

This draft Annual Operating Plan (AOP) presents pertinent information regarding water management in the Missouri River Mainstem Reservoir System through December 2017. The information provided in this draft AOP is based upon water management guidelines designed to meet the reservoir regulation objectives of the 2006 Missouri River Master Water Control Manual (Master Manual). Regulation of the mainstem reservoir system is provided by my office, the Missouri River Basin Water Management Division, Northwestern Division, U. S. Army Corps of Engineers, located in Omaha, Nebraska.

The draft AOP presents plans for the regulation of the reservoir system under widely varying water supply conditions. The AOP is not intended to be a forecast for the coming year; rather the guidelines included in the Master Manual are applied to computer simulations of System regulation assuming five statistically derived runoff scenarios based on an analysis of water supply records from 1898 to 2011. This approach provides a good range of water management simulations for dry, average, and wet conditions. The AOP provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the mainstem reservoir system's six individual projects during the upcoming year to serve its Congressionally-authorized project purposes.

In addition to the AOP, two separate documents are also available entitled: "System Description and Operation" and "Summary of Actual 2015 Regulation." To receive copies of those documents, contact the Missouri River Basin Water Management Division at 1616 Capitol Avenue, Suite 365, Omaha, Nebraska 68102-4909, phone (402) 996-3841. Both reports are available at the "Reports and Publications" link on our web site at: **www.nwd-mr.usace.army.mil/rcc/**

Five public meetings to discuss this draft AOP are scheduled: October 5 in Smithville, Missouri and Council Bluffs, Iowa; October 6 in Pierre, South Dakota, and Bismarck, North Dakota; and October 7 in Fort Peck, Montana. We ask that any comments be provided by November 11, 2016. The final AOP is scheduled for publication in December 2016.

We thank you for your interest in the regulation of the mainstem reservoir system and look forward to your participation in this process.

Jody S. Farhat, P.E. Chief, Missouri River Basin Water Management Division

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Draft Annual Operating Plan 2016 - 2017

List of List of	ii latesii Abbreviationsii iv
I.	OREWORD1
II.	ACKGROUND AND AOP PROCESS2
III.	AINSTEM MASTER MANUAL AND ESA CONSULTATIONS
IV.	N-GOING COORDINATION, STUDIES AND REPORTS
V.	UTURE RUNOFF: AUGUST 2016 – DECEMBER 2017
VI.	NNUAL OPERATING PLAN FOR 2016-20179
	 General
VII.	UMMARY OF RESULTS EXPECTED IN 201722
	 Flood Control
	Summary of Water Use by Functions

TABLES

Ι	Upper Basic Runoff Percentages	6
II	Lower Basic Runoff Percentages	7
III	Natural and Net Runoff at Sioux City	8
IV	Navigation Service Support for the 2017 Season	16
V	Summary of 2016-2017 AOP Studies	22
VI	Peaking Capability and Sales	27
VII	Energy Generation and Sales	27
VIII	Anticipated December 31, 2017 System Storage	30
IX	Missouri River Mainstem System Water Use for Calendar Years 2015,	
	2016, and 2017 Above Sioux City, Iowa	31

PLATES

1	Missouri	River	Basin	Map
-	1,110000		2010111	111010

- 2 Summary of Engineering Data
- 3 Summary of Master Manual Technical Criteria
- 4 System Storage and Fort Peck Elevations 2016-2017 AOP Simulation
- 5 Garrison and Oahe Elevations 2016-2017 AOP Simulation
- 6 System Storage 1953-2017
- 7 Gavins Point Releases 1953-2017
- 8 Fort Peck Elevations and Releases 1953-2017
- 9 Garrison Elevations and Releases 1953-2017
- 10 Oahe Elevations and Releases 1953-2017
- 11 Fort Randall Elevations and Releases 1953-2017
- 12 Reservoir Release and Unregulated Flow
- 13 System Gross Capability and Average Monthly Generation
- 14 American Indian Reservations

ABBREVIATIONS

AOP	-	annual operating plan
ACHP	-	Advisory Council on Historic Preservation
AF	_	acre-feet
В	_	Billion
BiOp	_	Biological Opinion
BOR	_	Bureau of Reclamation
cfs	_	cubic feet per second
Corps	_	Corps of Engineers
CY	-	calendar year (January 1 to December 31)
elev	_	elevation
ESA	_	Endangered Species Act
ft	_	feet
FTT	_	Flow-to-Target
FY	-	fiscal year (October 1 to September 30)
GWh	_	gigawatt hour
ISAP	_	Independent Science Advisory Panel
KAF	-	1,000 acre-feet
kcfs	_	1,000 cubic feet per second
kW	_	kilowatt
kWh	_	1.11 1
MAF		million acre-feet
		Missouri River Natural Resources Committee
		Missouri River Basin Water Management Division
msl	-	mean sea level
MW	-	megawatt
MWh	-	megawatt hour
NEPA	-	National Environmental Policy Act
plover	-	piping plover
PA	-	Programmatic Agreement
P-S MBP	-	Pick-Sloan Missouri Basin Program
RCC	-	Reservoir Control Center
RM	-	river mile
RPA	-	Reasonable and Prudent Alternative
SHPO	-	State Historic Preservation Officers
SR		Steady Release
System	-	Missouri River Mainstem System
tern	-	interior least tern
T&E		Threatened and Endangered
THPO		Tribal Historic Preservation Officers
USFWS	-	United States Fish and Wildlife Service
WY	-	water year
yr	-	year

DEFINITION OF TERMS

<u>Acre-foot</u> (AF, ac-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Draft Annual Operating Plan 2016 - 2017

I. FOREWORD

This draft Annual Operating Plan (AOP) presents pertinent information and plans for regulating the Missouri River Mainstem Reservoir System (System) through December 2017 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual projects during the coming year to serve the Congressionally authorized project purposes; to fulfill the Corps' responsibilities to Native American Tribes; and to comply with environmental laws, including the Endangered Species Act (ESA). Regulation of the System is directed by the Missouri River Basin Water Management Division (MRBWMD), Northwestern Division, U. S. Army Corps of Engineers (Corps) located in Omaha, Nebraska. A map of the Missouri River basin is shown on *Plate 1* and the summary of engineering data for the six individual mainstem projects and System is shown on *Plate 2*.

It is important to note that the AOP is not intended to be a forecast for the coming year; rather it examines a range of potential runoff scenarios which span 80 percent of the historic record. There is still a 10 percent chance that runoff will be higher than shown in the AOP and a 10 percent chance that it will be lower. The studies included in the AOP provide an array of reservoir levels and releases that may be expected under the various runoff scenarios. Actual real-time regulation of the System is accomplished using the best information and tools available and is adjusted to respond to changing conditions on the ground. As the runoff season unfolds, there is a possibility that real-time regulation plans will indicate runoff volumes, reservoir levels and releases outside those anticipated in this report. Should that occur, the Corps will appreciably increase its communication and outreach efforts to convey that information to stakeholders throughout the basin so that other Federal, state and local agencies, Tribes, communities, and local residents can take appropriate actions.

This plan may require adjustments such as when substantial departures from expected runoff occur; to meet emergencies including short-term intrasystem adjustments to protect human health and safety, to maintain minimum river or reservoir levels to keep intakes operational during periods of extended drought, and to prevent loss of historic and cultural properties; or to meet the provisions of applicable laws, including the ESA. These adjustments would be made to the extent possible after evaluating impacts to all System uses, would generally be short-term in nature, and would continue only until the issue is resolved. This document provides the plan for future regulation of the System. Other documents that may be of interest include the "System Description and Regulation" report dated November 2007 or the "Summary of Actual 2015 Regulation," dated June 2016. Both reports are currently available at the "Reports and Publications" link on our website at: **www.nwd-mr.usace.army.mil/rcc**, or you may contact the Missouri River Basin Water Management Division at 1616 Capitol Avenue, Suite 365, Omaha, Nebraska 68102-4909, phone (402) 996-3841 for copies. The "Summary of Actual 2016 Regulation" will be available at the same site in late spring or early summer of 2017.

II. BACKGROUND AND AOP PROCESS

Beginning in 1953, projected System reservoir regulation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, state, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System regulation. The Coordinating Committee on Missouri River Mainstem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982, the Committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meetings are conducted to take public input on the draft AOP, which typically is published in mid-September each year. The spring meetings are conducted to update the public on the current hydrologic conditions and projected System regulation for the remainder of the year as it relates to implementing the final AOP.

Under the terms of Stipulation 18 of the March 2004 "Programmatic Agreement for the Operation and Management of the Missouri River Main Stem System for Compliance with the National Historic Preservation Act, as amended" (PA) the Corps has agreed to consult/meet with the affected Tribes and Tribal Historic Preservation Officers (THPOs), State Historic Preservation Officers (SHPOs), the Advisory Council on Historic Preservation (ACHP) and other parties on the draft AOP. The purpose of this consultation/meeting is to determine whether operational changes are likely to cause changes to the nature, location or severity of adverse effects to historic properties or to the types of historic properties affected and whether amendments to the Corps Cultural Resources Management Plans and Five-Year Plan are warranted in order to better address such effects to historic properties. During 2006 the Corps worked with the affected Tribes to establish processes for consultation on AOPs under 36 CFR Part 800, the PA, and Executive Order 13175. The process consists of a series of informational meetings with the Tribes and/or government-to-government consultation with Tribes, as requested. A letter dated September 7, 2016 was sent to the

Tribes offering consultation on the 2016-2017 AOP. Meeting times and locations of the five fall public meetings were also provided. Separate meetings will be scheduled for all Tribes requesting government-to-government consultation. All tribes, whether signatory to the PA or not, may request government-to-government consultation on this and all future AOPs. In addition, the Tribes have reserved water rights to the Missouri River and its major tributaries. In no way does this AOP attempt to define, regulate or quantify water rights or any other rights that the Tribes are entitled to by law or treaty.

The 2016 spring public meetings were held at the following locations and dates: April 12 at Smithville, Missouri and Nebraska City, Nebraska; April 13 at Fort Peck, Montana and Bismarck, North Dakota; and April 14 at Pierre, South Dakota. The attendees were given an update regarding the outlook for 2016 runoff and projected System regulation for the remainder of 2016. Five fall public meetings on the draft 2016-2017 AOP are planned at the following locations: October 5 in Smithville, Missouri and Council Bluffs, Iowa; October 6 in Pierre, South Dakota, and Bismarck, North Dakota; and October 7 in Fort Peck, Montana. In the spring of 2017, public meetings will be held to discuss the basin's hydrologic conditions and the effects those conditions are expected to have on the implementation of the final 2016-2017 AOP.

III. MAINSTEM MASTER MANUAL AND ESA CONSULTATIONS

The System is comprised of six dam and reservoir projects authorized by the Rivers and Harbors Act of 1935 and the Flood Control Act of 1944. Section 9 of the 1944 Flood Control Act authorized the System to be operated for the purposes of flood control, navigation, irrigation, hydropower, water supply, water quality control, recreation and fish and wildlife. In addition, operation of the System must also comply with other applicable Federal statutory and regulatory requirements, including the ESA. The System is regulated using guidelines published in the Master Manual. The Master Manual presents the water control plan and operational objectives for the integrated regulation of the System. Annual water management plans (Annual Operating Plans) are prepared each year, based on the water control criteria contained in the Master Manual, in order to describe potential reservoir regulation of the System for the current operating year under a variety of runoff conditions.

First published in 1960 and subsequently revised during the 1970s, the Master Manual was revised in March 2004 to include more stringent drought conservation measures. A 2000 Biological Opinion issued by the U. S. Fish and Wildlife Service (USFWS), while the Corps was revising the Master Manual, concluded that the operation and regulation of the System would jeopardize the continued existence of three endangered or threatened species: the pallid sturgeon, the interior least tern and the piping plover. In 2003 the USFWS amended the BiOp (2003 Amended BiOp) and provided a Reasonable and Prudent Alternative (RPA) to avoid jeopardy to the

endangered pallid sturgeon that included a provision for the Corps to develop a plan to implement a bimodal spring pulse from Gavins Point Dam. Working with the USFWS, Tribes, states and basin stakeholders, the Corps developed technical criteria for the bimodal spring pulse releases. In March 2006 the Master Manual was revised to include technical criteria for a spring pulse. Neither the 2004 Master Manual, nor the 2006 revisions to the Master Manual, changed the volume of storage in the System reserved for flood risk reduction or the basic principles of how that storage is regulated. The Corps does not store water in the reservoirs specifically for the endangered species and the Master Manual storage allocations were not altered to facilitate the spring pulses. In years when water is released for endangered species reservoir storage levels are not adjusted.

Current regulation of the System in accordance with the Master Manual to serve authorized project purposes is dependent on successful implementation of the 2003 Amended BiOp. The Missouri River Recovery Program (MRRP), together with the MRBWMD, works to ensure implementation of the following BiOp elements: habitat construction including emergent sandbar habitat and shallow water habitat, flow modifications, propagation/hatchery support, research, monitoring and evaluation, and adaptive management. Simply put, the Corps must comply with environmental laws including the ESA, and the MRRP is the vehicle used to accomplish this. This AOP identifies flow modifications at Garrison, Fort Randall and Gavins Point for the benefit of the endangered interior least tern (tern) and the threatened piping plover (plover) while maintaining flood control and navigation as primary authorized purposes.

On November 30, 2011 the MRRP Independent Science Advisory Panel (ISAP) released its Final Report on Spring Pulses and Adaptive Management. This report, commissioned by the Missouri River Recovery Implementation Committee (MRRIC), evaluated the Gavins Point spring pulses that have been implemented to date in regards to the biological outcomes the USFWS sought in the 2003 Amended BiOp. The ISAP concluded that spring pulses as currently implemented are not accomplishing their intended outcomes and provided recommendations towards achieving a new management paradigm for the Missouri River.

Since the release of that report, the Corps and USFWS, in coordination with MRRIC, have been aggressively pursuing completing the recommendations laid out by the ISAP. At the center of this effort is the development of a Missouri River Recovery Management Plan/EIS that will establish an overarching adaptive management process for implementation of Corps actions required to avoid jeopardizing all of the listed species in the Missouri River basin. The draft EIS is expected to be released for public comment in December 2016. Since the Corps is consulting with the USFWS as this plan is being developed about what management actions are required, the agencies believe it is prudent to forego a spring pulse during the 2017 Missouri River operating season and that this suspension is not likely to have an adverse effect on the listed species.

Additional information on other efforts undertaken through the MRRP to meet the requirements of the 2003 Amended BiOp can be found in the Annual Report on the Biological Opinion which can be found on the "MRRP Documents" page of the MRRP website at: <u>www.moriverrecovery.org</u>. The ISAP report is also available at this website.

IV. ON-GOING COORDINATION, STUDIES AND REPORTS

As committed to following the 2011 Flood, the Corps communicated more broadly and frequently in 2016 by holding monthly conference calls from January to June with Federal, state, county and local officials, Tribes, emergency management officials, independent experts and the media to discuss conditions on the ground and the current release plans and forecasts. Recordings of the conference calls were made available to the public. Outreach calls will be re-initiated in January 2017 or as needed if basin and/or weather conditions change dramatically.

The Corps continues to update a number of technical reports used in the regulation of the reservoir system. The "Determination and Analysis of Upper Basic and Lower Basic Forecasts" and the "Hydrologic Statistics on Inflows" reports were completed last year. Additional reports that are expected to be completed in the next year include long-term runoff forecasting, which includes an analysis of the relationship of hydrologic factors as they relate to plains snowmelt, and an analysis of releases needed to support navigation.

The Corps continues to collaborate with other Federal, state and local agencies and our field offices to improve runoff forecasts, particularly as it relates to plains snowpack. This will require a collaborative effort to improve both data collection (i.e. plains snowpack water equivalent, soil moisture and frost depth) and hydrologic modeling. In 2013 a proposal for the Missouri River basin plains snow and basin condition network was prepared by subject matter experts from various Federal and State agencies. This proposal outlined timelines, costs, and agency responsibilities. The 2014 Water Resources and Reform Development Act (WRRDA 2014, Section 4003a) included authorization, but not funding, for the establishment of the basin monitoring network. Implementation guidance was provided in October 2015, which stated that activities under Section 4003(a) may not be undertaken until funds are specifically appropriated for such purpose. The Government Accountability Office (GAO) submitted a report to Congress in June 2015 stating that the progress has been limited, primarily due to lack of funding.

The Water Management office continues to participate in a variety of regional and national climate change teams. The National Oceanic and Atmospheric Administration (NOAA) also collaborated with the Corps and other agencies on a three-part study. The

first part was a climate attribution effort focusing on the 2011 event. The second part of the study was an assessment of the skill and reliability of predictions of seasonal climate and the ability to predict rapid transitions of cycles from wet to dry and dry to wet. NOAA and the University of Colorado's Cooperative Institute for Research in Environmental Sciences recently completed the third part of the study, "Climate Assessment Report: Causes for Hydrologic Extremes in the Upper Missouri River Basin." This study revealed that the increased frequency of high annual runoff events in the last 40-year period, as measured by naturalized runoff at Sioux City, Iowa, resulted mainly from the land surface response to increased precipitation falling over the upper Missouri River basin. All three reports are available at https://www.drought.gov/drought/dews/missouri-river-basin/reports-assessmentsand-outlooks.

V. FUTURE RUNOFF: SEPTEMBER 2016 - DECEMBER 2017

Runoff into the six System reservoirs is typically low and relatively stable during the August through February period. The August 1 calendar year runoff forecast is used as input to the basic reservoir regulation simulation (Basic) in the AOP studies for the period August 2016 through February 2017. The August 1 runoff forecast for 2016 was 22.7 million acre-feet (MAF). Two other runoff scenarios based on the August 1 runoff forecast were developed for the same period. These are the Upper Basic (wetter than forecast) and Lower Basic (drier than forecast) simulations. The Upper and Lower Basic simulations are based on a percentage of the Basic runoff. The adjusted Upper and Lower Basic values for each month and reach are shown as percentages in *Tables I* and *II*. The percentages shown are used for the August through February period in the AOP simulations. These percentages are also used in the regularly updated monthly reservoir simulations. The report detailing the computation of these new runoff factors was posted to the Corps' website in January 2015.

	<u>Jan</u>	Feb	Mar	Apr	<u>May</u>	<u>Jun</u>	<u>Jul</u>	Aug	<u>Sep</u>	<u>Oct</u>	Nov	Dec
Fort Peck	120	120	135	145	135	145	145	130	120	120	120	120
Garrison	120	120	135	145	135	145	145	130	120	120	120	120
Oahe	140	140	150	155	155	145	140	135	135	135	135	135
Fort Randall	140	140	150	155	155	145	140	135	135	135	135	135
Gavins Point	140	140	150	155	155	145	140	135	135	135	135	135
Sioux City	140	140	150	155	155	145	140	135	135	135	135	135

TABLE I UPPER BASIC RUNOFF PERCENTAGES

TABLE II LOWER BASIC RUNOFF PERCENTAGES

	<u>Jan</u>	Feb	Mar	Apr	<u>May</u>	<u>Jun</u>	<u>Jul</u>	Aug	<u>Sep</u>	Oct	Nov	Dec
Fort Peck	80	75	65	65	70	65	65	70	75	80	80	80
Garrison	80	75	65	65	70	65	65	70	75	80	80	80
Oahe	75	75	55	50	50	50	55	65	75	75	75	75
Fort Randall	75	75	55	50	50	50	55	65	75	75	75	75
Gavins Point	75	75	55	50	50	50	55	65	75	75	75	75
Sioux City	75	75	55	50	50	50	55	65	75	75	75	75

Simulations for the March 1, 2017 to February 28, 2018 time period use five statistically derived runoff scenarios based on an analysis of historic water supply. The report detailing the development of these runoff scenarios, "Runoff Volumes for Annual Operating Plan Studies", was updated in August 2013 to include five additional years of runoff data that now extends from 1898 to 2011. In addition to the five runoff scenarios, the updated analysis added two runoff scenarios, one each at the upper and lower end, to span 96 percent of the historic record. Using statistically derived runoff scenarios for the AOP provides a good range of simulation for dry, average, and wet conditions, and eliminates the need to forecast future precipitation months in advance. As noted in the second NOAA study (see Chapter IV), for the lead times (one to six months) and times of year of interest (January-February-March and April-May-June) in the Missouri River basin, there is no useful skill and reliability of precipitation forecasts. Real-time regulation of the System is based on all available and relevant hydrometerological information including, but not limited to, observed runoff volumes, National Weather Service short- and long-range outlooks, plains and mountain snow water equivalent data, observed base flows, soil moisture, and soil frost depths.

The five statistically derived runoffs used in the AOP are identified as the Upper Decile, Upper Quartile, Median, Lower Quartile and Lower Decile runoff conditions. Upper Decile runoff (34.5 MAF) has a 1 in 10 chance of being exceeded, Upper Quartile runoff (30.6 MAF) has a 1 in 4 chance of being exceeded, and Median runoff (24.6 MAF) has a 1 in 2 chance of being exceeded. Lower Quartile runoff (19.3 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile runoff (16.1 MAF) has a 1 in 10 chance of the occurrence of less runoff. There is still a 20 percent chance that a runoff condition may occur that has not been simulated; i.e., a 10 percent chance runoff could be lower than Lower Decile and a 10 percent chance runoff could be greater than Upper Decile.

The two additional runoff volumes included in the updated "Runoff Volumes for Annual Operating Plan Studies" report are the 2 percent and 98 percent exceedance levels. Annual runoff at the 2 percent exceedance (40.1 MAF) has a 1 in 50 chance of being exceeded; the 98 percent exceedance (11.4 MAF) has a 1 in 50 chance of the occurrence of less runoff. Although these runoff volumes were not included as scenarios in this year's AOP, additional monthly studies could be performed based on these runoff volumes, or any prior year's runoff volume and distribution, as the 2017 runoff season unfolds should the runoff forecast exceed the Upper Decile runoff scenario or be lower than the Lower Decile runoff.

The Upper Decile and Upper Quartile simulations extend from the end of the Upper Basic simulation through February 2018. Likewise, the Median simulation extends from the end of the Basic simulation, and the Lower Quartile and Lower Decile simulations extend from the end of the Lower Basic simulation through February 2018.

The estimated natural flow at Sioux City, the corresponding post-1949 water use effects, and the net flow available above Sioux City are shown in *Table III*, where water supply conditions are quantified for the period August 2016 through February 2018. The natural water supply for calendar year (CY) 2015 totaled 25.8 MAF.

TABLE III NATURAL AND NET RUNOFF AT SIOUX CITY (Volumes in 1,000 Acre-Feet)

	Natural 1/	Post-1949 Depletions	<u>Net 2</u> /
August 2016 through February 20	017 (Basic Runoff S	Scenario)	
Basic	6,500	700	7,200
Upper Basic	8,300	800	9,100
Lower Basic	5,000	400	5,400
Runoff Year March 2017 through Upper Decile Upper Quartile Median Lower Quartile Lower Decile	February 2018 (St. 34,500 30,600 24,600 19,300 16,100	atistical Analysis of Past R -3,100 -3,000 -3,100 -2,800 -2,700	ecords) 31,400 27,600 21,500 16,500 13,400

1/ The word "Natural" is used to designate runoff adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck reservoir have also been eliminated during its period of regulation prior to 1949.

2/ The word "Net" represents the total runoff after deduction of the post-1949 irrigation, upstream storage, and other use effects.

VI. ANNUAL OPERATING PLAN FOR 2016-2017

A. <u>General</u>. The anticipated regulation described in this AOP is designed to meet the regulation objectives presented in the current Master Manual. While some aspects of System and individual project regulation are clearly defined by technical criteria in the Master Manual, for example navigation service level and season length, others such as minimum releases for irrigation and water supply in the reaches between the reservoirs are based on regulation experience and may be adjusted as needed to respond to changing conditions. Consideration has been given to all of the authorized project purposes, to historic and cultural resources and to the needs of threatened and endangered (T&E) species. The "System Description and Regulation" report provides a concise summary of the primary aspects of System regulation and should be referred to for further information. For ease of use, a summary of the frequently used technical criteria included in the Master Manual is presented on *Plate 3*.

The plan relies on a wealth of regulation experience. Reservoir regulation experience available for preparation of the 2016-2017 AOP includes 13 years of regulation at Fort Peck (1940) as the sole Mainstem project, plus 63 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) were brought progressively into System regulation. This regulation experience includes lessons learned during two major droughts of six and eight years (1987-1992 and 2000-2007) that have occurred since the System filled in 1967. It also includes the high runoff period 1993-1999 during which five of the seven years experienced runoff greater than Upper Quartile including the previous record runoff of 49.0 MAF in 1997, and the record runoff of 61.0 MAF in 2011. In addition to the long period of actual System reservoir regulation experience, many background regulation studies for the completed System are available for reference.

B. 2016-2017 AOP Simulations. Reservoir simulations for the Upper Basic, Basic, and Lower Basic runoff scenarios, which span the period of August 2016 through February 2017, are shown in the final section of this AOP as studies 1 through 3. AOP simulations for the five statistically derived runoff scenarios, which span the period of March 2017 through February 2018 are shown in the final section of this AOP as studies 4 through 8. As previously stated, the simulations use five statistically derived runoff scenarios and reflect 80 percent of the historic annual runoff volumes (between Upper Decile and Lower Decile). The simulations provide information for planning purposes on a range of future reservoir levels and release rates, and are not meant to represent a particular forecast. The simulations shown use a monthly time-step, and thus do not provide the level of detail necessary to address specific flood control regulations. Detailed routing of specific flood flows is accomplished using daily and hourly timestep models which incorporate real-time information including observed precipitation, and these situations are handled individually during real-time regulation.

The AOP studies, in summary, provide the following: the full flood control capacity of the reservoir system will be available at the start of the runoff season; use of the Exclusive Flood Control Zone is not anticipated under any of the five runoff scenarios covered in the AOP; full service flow support for Median and above runoff scenarios and reduced flow support for Lower Quartile and Lower Decile runoff to start the navigation season; full service flow support for Median and above runoff scenarios after the July 1 System storage check and reduced flow support for Lower Quartile and Lower Decile runoff; a full length navigation season for all runoff scenarios; near normal winter releases for Median runoff, minimum winter releases for Lower Quartile and Lower Decile runoff, and above normal winter releases for Upper Decile and Upper Quartile runoff; a steady release-flow to target regulation during the tern and plover nesting season for Median and below runoff and nearly steady releases for Upper Decile and Upper Quartile runoff with flood water evacuation; emphasis on Fort Peck and Oahe for steady to rising reservoir levels during the forage fish spawn; and reservoir releases and pool levels sufficient to keep all intakes operational under all Water conservation measures may be implemented if runoff runoff scenarios. conditions indicate that it would be appropriate including cycling releases from Gavins Point during the early part of the nesting season, only supporting flow targets in reaches being used by commercial navigation, and utilization of the Kansas River projects authorized for Missouri River navigation flow support. Additional details about the studies are provided in the following paragraphs. Results of the simulations are shown in *Plate 4* and *Plate 5* for the System storage and the Fort Peck, Garrison and Oahe pool elevations.

Under all runoff scenarios modeled for the AOP, the full flood control capacity of the System is available at the start of the 2017 runoff season. In addition, under the Basic and Lower Basic simulations, system storage will begin the runoff season below the base of the Annual Flood Control and Multiple Use Zone. Although the March 1 and May 1 System storage is above the Gavins Point spring pulse precludes of 40.0 MAF, as discussed in Chapter III, spring pulses will not be conducted in 2017. The Corps will continue to work closely with the USFWS to ensure the AOP will meet the intent of the 2003 Amended BiOp and comply with the ESA.

The March 15 and July 1 System storage checks were used to determine the level of flow support for navigation and other downstream purposes as well as the navigation season length in 2017. Full service navigation flows or more are provided for Median and above runoff throughout the navigation season. Service levels for Lower Quartile and Lower Decile start the season slightly below full service, and drop to an intermediate service level following the July 1 System storage check (see *Plate 3*). Application of the July 1 System storage check indicated that a full length navigation season would be provided for all five runoff conditions, with the upper two runoff scenarios including a 10-day extension to the navigation season. Upper Quartile and Upper Decile simulations reach the desired 56.1 MAF System storage level on March 1,

2018. Storage is below the base of the Annual Flood Control and Multiple Use Zone for Median and lower runoff conditions.

For modeling purposes in this AOP, the Steady Release – Flow-to-Target (SR-FTT) regulation scenario for Gavins Point is shown during the 2017 tern and plover nesting season for Median and lower runoff conditions. For these simulations, the monthly average May release used in the simulations was determined by using the long-term average May release (see *Plate 3*), based on the service level, for the first third of the month, followed by the July table values for the remainder of the month to reflect a steady release regulation at the start of the nesting season. The modeled June release was set equal to the long-term average release for July (see *Plate 3*) based on the service level for the first half of the navigation season. The long-term average releases (see *Plate 3*) were used for July and August to indicate flowing to target. The Upper Decile and Upper Quartile runoff simulations follow the Master Manual, with much above normal runoff requiring release increases mid-year to evacuate flood water from the reservoirs. Although these modeled Gavins Point releases represent our best estimate of required releases during 2017, actual releases will be based on hydrologic conditions and the availability of habitat at that time. To the extent reasonably possible, measures to minimize incidental take of the protected species will be utilized. These may include not meeting flow targets in reaches without commercial navigation and utilizing the Kansas River tributary reservoirs for navigation flow support when appropriate. It may also be necessary to cycle releases for flood control regulation during the T&E species' nesting season or for water conservation if drought conditions develop.

The long-term average Gavins Point releases to meet target flows were used in the AOP studies for navigation support during the spring and fall months with the exception of Upper Decile and Upper Quartile. Under these runoff scenarios, releases were based on flood water evacuation. Based on the September 1 storage checks and flood evacuation criteria, modeled Gavins Point winter releases range from 16,500 cfs to 17,500 cfs during the 2016-2017 winter season and range from 12,500 cfs to 20,000 cfs during the 2017-2018 winter season depending on the runoff scenario. Gavins Point releases will be increased to meet downstream water supply requirements in critical reaches, to the extent reasonably possible, if downstream incremental runoff is low.

The Gavins Point releases shown in this and previous AOPs are estimates based on historic averages and experience. Adjustments are made as necessary in real-time based on hydrologic conditions.

Intrasystem releases are adjusted to best serve the multiple purposes of the projects with special emphasis placed on regulation for non-listed fisheries starting in early April and for T&E bird species beginning in early May and continuing through August. As part of the overall plan to rotate emphasis among the upper three reservoirs during low runoff years, Fort Peck and Oahe are scheduled to be favored

during the 2017 forage fish spawn while also attempting to maintain rising water levels at Garrison. The Median, Upper Quartile, and Upper Decile simulations show that it is possible to provide steady-to-rising pool levels in each of the three large upper reservoirs during the spring forage fish spawn period. Insufficient runoff is available in the Lower Quartile and Lower Decile simulations to keep all three reservoirs rising. In the Lower Quartile and Lower Decile simulations, the Fort Peck reservoir level declines slightly in April but rises in May. In the Lower Quartile and Lower Decile simulations the Garrison reservoir level declines in April. The Lower Quartile simulation shows the Oahe reservoir level steady in April but declining in May, and nearly steady in April but declining in May under the Lower Decile simulation.

Intrasystem releases are also adjusted so that the upper three reservoirs are shown in a balanced condition each year on March 1, the approximate start of the runoff season. This balancing is computed based on the percent of storage in the respective Carryover Multiple Use Zones.

Actual System regulation from January 1 through July 31, 2016 and the simulated regulating plans for each project through CY 2017 using the five runoff scenarios described on Page 4 are presented on *Plate 6* through *Plate 11*, inclusive. Big Bend regulation is omitted since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual regulation since 1953.

Plate 12 illustrates Fort Peck, Garrison, Oahe, and Gavins Point actual releases (Regulated Flow) as well as the Missouri River flows that would have resulted if the reservoirs were not in place (Unregulated Flow) during the period January 2015 through July 2016. *Plate* 13 presents past and simulated gross average monthly power generation and gross peaking capability for the System.

C. <u>Regulation Plan for the Balance of the 2016 Navigation Season and Fall of</u> <u>2016.</u> The regulation of the System for the period of August through November 2016 is presented in the following paragraphs.

<u>Fort Peck</u>. Releases will average about 8,000 cfs through mid-September and then be lowered to 5,000 cfs as irrigation ceases. Releases will be held near that level through the end of November. The Fort Peck pool will slowly decline through mid-September before nearly leveling off during October and November. The reservoir will end November at 2232.5 feet msl or 2.6 feet below the August 1 elevation of 2235.1 feet msl.

<u>Garrison</u>. The threatened least terns and endangered piping plovers were fledged by September 3 on the reach downstream of Garrison and hydropower peaking restrictions were discontinued at that time. Releases will be maintained at 20,000 cfs through mid-September, before slowly decreasing to 14,000 cfs and then held steady in October and through most of November. The Garrison pool will steadily drop throughout the fall and end the month of November at 1838.2 feet msl or 3.1 feet below the August 1 elevation of 1841.3 feet msl.

<u>Oahe</u>. The reservoir started the month of August at elevation 1611.6 feet msl. Releases will average 24,700 cfs in August and 27,900 cfs in September in support of navigation and to evacuate the annual flood control pool. Releases will be reduced to 20,500 cfs in October and 19,000 cfs in November, respectively to accommodate the fall drawdown of the Fort Randall pool and to continue evacuation of stored water. At the end of November, the Oahe pool will be at elevation 1605.8 feet msl or 5.8 feet below the August 1 elevation.

<u>Big Bend</u>. Releases generally parallel those from Oahe. The Big Bend pool generally fluctuates between 1420.0 feet msl and 1421.0 feet msl for weekly cycling during high power load periods.

<u>Fort Randall</u>. Releases will average 24,800 cfs in August, 29,000 cfs in September, and 30,200 cfs in October to back up the releases from Gavins Point. The fall pool drawdown of Fort Randall will start after Labor Day in early September and will be completed near the end of November. Releases will be reduced after the navigation season ends to the level required to back up Gavins Point winter releases.

Gavins Point. Releases will be scheduled to support downstream full service flows in reaches with scheduled commercial navigation throughout the 2016 navigation season. A full length navigation season will be provided in accordance with the technical criteria for the July 1 System storage check presented in the Master Manual. The closing dates for the commercial navigation season will range from November 22 at Sioux City, Iowa to December 1 at the mouth near St. Louis, Missouri. Releases will be reduced by approximately 3,000 cfs per day beginning on about November 21, working toward the target winter release. Under the Upper Basic forecast the navigation season is extended 10 days. In accordance with the Master Manual, during years of greater than normal water supply, the navigation season is extended as both an additional evacuation measure and to provide an increased benefit to navigation while striving to reach the base of the Annual Flood Control and Multiple Use Zone by March 1 the following season. If this were to occur, the closing dates would range from December 2 at Sioux City to December 11 at the mouth near St. Louis and releases would be reduced beginning on approximately December 3. The Gavins Point pool level will be raised 1.5 feet to elevation 1207.5 feet msl in the fall. The pool level will remain near that elevation during the winter months.

D. <u>Regulation Plan for Winter 2016-2017</u>. The regulation of the System presented in the following paragraphs is based on the previously discussed AOP simulations.

Actual real-time regulation of the System is adjusted to respond to changing conditions on the ground. The latest long-term reservoir regulation forecasts, which are updated monthly, can be found on the Corps' website. The September 1 System storage check is used to determine the winter release rate from Gavins Point. A winter release of 12,000 cfs is scheduled if System storage is less than 55.0 MAF on September 1; 17,000 cfs is scheduled when System storage is above 58.0 MAF; and the release is prorated for System storages between 55.0 and 58.0 MAF. A modification to the winter release rate from Gavins Point dam may occur when the evacuation of System flood control storage cannot be accomplished by providing a full-service navigation season with a 10-day extension of the navigation season. With an excess annual water supply, the winter season Gavins Point release may be scheduled at a rate of up to 25,000 cfs to continue to evacuate the remaining excess water in System flood control storage. Based on the studies included in this AOP, the scheduled winter System release for 2016-2017 will be at least 16,500 cfs. Under the Upper Basic forecast releases are set at 17,500 cfs. It is anticipated that this year's winter release will be adequate to complete evacuation of stored flood waters and serve all downstream water intakes. Water supply is discussed in more detail in Chapter VII, Section B.

<u>Fort Peck</u>. Releases are expected to average 7,500 cfs in December and 9,000 cfs in January and February to serve winter power loads and to help balance System storage. The Fort Peck pool level is expected to decline about 0.9 foot from December through February to near elevation 2231.6 feet msl by March 1. At the beginning of March, the Fort Peck pool will be 2.4 feet below the base of its Annual Flood Control and Multiple Use Zone.

<u>Garrison</u>. Releases are scheduled to be 18,000 cfs in December increasing to 19,000 cfs for January and February to serve winter power loads and to help balance System storage. Releases will be held steady or lowered, most likely in December, to prevent ice-induced flooding at the time of freeze-in and then gradually increased as river conditions permit. These temporary reductions in the releases may be scheduled to prevent exceedance of a 13-foot stage at the Missouri River at Bismarck streamgaging station. The Bismarck flood stage is 14.5 feet. Water Management staff will coordinate closely with other Federal, state and local agencies during periods of freeze-in and ice-out to reduce flood risk and ensure communities and local residents are aware of the rapidly changing conditions and are prepared to take appropriate actions. The Garrison pool level will decline 2.7 feet from elevation 1838.2 feet msl at the end of November to near elevation 1835.5 feet msl by March 1, 2.0 feet below the base of its Annual Flood Control and Multiple Use Zone.

<u>Oahe</u>. Releases for the winter season will provide backup for the Fort Randall and Gavins Point releases as well as refill the recapture space available in the Fort Randall reservoir consistent with anticipated winter power loads. Monthly average releases may vary substantially with fluctuations in power loads occasioned by weather

conditions but, in general, are expected to average between 17,500 cfs and 20,500 cfs. Daily and hourly releases will vary widely to best meet power loads. Peak hourly and minimum hourly releases, as well as daily energy generation, will be constrained to prevent urban flooding in the Pierre and Fort Pierre areas if severe ice conditions develop downstream of Oahe Dam. This potential reduction is coordinated with the Western Area Power Administration (Western). The Oahe pool level is expected to slowly decline from 1605.8 feet msl at the end of November to 1605.5 feet msl at the end of February, 2.0 feet below the base of its Annual Flood Control and Multiple Use Zone.

<u>Big Bend</u>. The Big Bend pool level will be maintained in the normal 1420.0 feet msl to 1421.0 feet msl range during the winter.

<u>Fort Randall</u>. Releases will average about 15,000 cfs during the winter season to support Gavins Point winter releases. The Fort Randall pool level is expected to rise from its fall drawdown elevation of near 1337.5 feet msl at the end of November or early December to near elevation 1350.0 feet msl, the seasonal base of flood control, by March 1. However, if the plains snowpack flood potential downstream of Oahe Dam is lower than normal, the Fort Randall pool level will be raised to near 1353.0 feet msl by March 1. It is likely that a pool level as high as 1355.0 feet msl could be reached by the end of March if spring runoff has commenced. The Fort Randall pool level above the White River delta near Chamberlain, South Dakota will remain at a higher elevation than the pool level below the delta from early October through December, due to the damming effect of this delta area.

<u>Gavins Point</u>. Gavins Point winter releases are discussed in the first paragraph of this section. The Gavins Point pool level will be near elevation 1207.5 feet msl until late February when it will be lowered to elevation 1206.0 feet msl to create additional capacity to store spring runoff.

System storage for all runoff conditions will range between 52.4 and 56.1 MAF by the beginning of next year's runoff season, approximately March 1, 2017. The base of the Annual Flood Control and Multiple Use Zone is 56.1 MAF.

E. <u>Regulation During the 2017 Navigation Season</u>. All five runoff scenarios modeled for this year's AOP follow the technical criteria presented in the current Master Manual for downstream flow support. Beginning in mid-March, Gavins Point releases will be gradually increased to provide navigation flow support at the mouth of the Missouri near St. Louis, Missouri by April 1, 2017, the normal navigation season opening date. The corresponding dates at upstream locations are Sioux City, March 23; Omaha, March 25; Nebraska City, March 26; and Kansas City, March 28. However, if during the 2017 navigation season there is no commercial navigation scheduled to use the upper reaches of the navigation channel, MRBWMD will consider not providing navigation flow support in those reaches to conserve water in the System, reduce flood</u>

risk, and/or minimize incidental take of the protected species during the nesting season.

Navigation flow support for the 2017 season will be determined by actual System storage on March 15 and July 1. Runoff scenarios modeled indicate full service flow support at the start of the 2017 navigation season for Median and above runoff conditions. Lower Quartile and Lower Decile runoffs indicate reductions below full service flow support of 1,700 cfs and 1,900 cfs, respectively, to start the season. Following the July 1 System storage check, full service would be provided for Median and above runoff scenarios. The service level would be 2,400 cfs below full service for Lower Quartile runoff and 3,600 cfs below full service for Lower Decile runoff. The normal 8-month navigation season is provided for Median runoff scenarios and below as shown in *Table IV*. A 10-day extension to the navigation season is provided for the upper two runoff scenarios.

TABLE IV NAVIGATION SERVICE SUPPORT FOR THE 2017 SEASON

	Runoff	System S	torage	Flow Lev	Flow Level Above or					
	Scenario	March 15	July 1	Below F	ull Service	Shortening				
	<u>(MAF)</u>	<u>(MAF)</u>	(MAF)		<u>(cfs)</u>					
				<u>Spring</u>	Summer/F	<u>all</u>				
U.D.	34.5	57.4	63.8	0	+18,500	0*				
U.Q.	30.6	57.1	63.0	0	+11,500	0*				
Med.	24.6	55.2	58.9	0	0	0				
L.Q.	19.3	52.9	54.4	-1,700	-2,400	0				
L.D.	16.1	52.8	53.1	-1,900	-3,600	0				

*Includes 10-day extension for Upper Quartile and Upper Decile.

As previously stated, the modeled regulation for the 2017 nesting season below Gavins Point is SR-FTT. When the SR-FTT release scenario is used, the initial steady release, which has ranged from 24,000 cfs to 30,000 cfs over the last several years, will be based on hydrologic conditions and the availability of habitat at that time. Model runs included in this AOP have a Gavins Point release which is higher during the last 20 days of May to keep birds from nesting at low elevations. Gavins Point releases will be adjusted to meet downstream targets as tributary flows recede, but ideally the initial steady release will be sufficient to meet downstream targets until the majority of the birds have nested. The purpose of this regulation is to continue to meet the project purposes while minimizing the loss of nesting T&E species. A Gavins Point peaking cycle of two days down and one day up may be used for flood control regulation or to conserve water in the upper three reservoirs, if required. Gavins Point releases for the

Upper Decile and Upper Quartile runoff simulations are much above normal to evacuate flood water from the reservoirs. Releases from Garrison and Fort Randall will follow repetitive daily patterns from early May, at the beginning of the T&E species' nesting season, to the end of the nesting season in late August. In addition to the intraday pattern, Fort Randall releases may also be cycled with two days of lower releases and one day of higher releases during the early part of the nesting season to maintain release flexibility in that reach while minimizing the potential for take. If higher daily releases are required later in the nesting season, the daily peaking pattern may be adjusted, reduced or eliminated resulting in a steady release to avoid increased stages at downstream nesting sites.

Gavins Point releases may be quite variable during the 2017 navigation season but are expected to range from 26,000 to 50,500 cfs under the five modeled runoff scenarios. Release reductions necessary to minimize downstream flooding are not reflected in the monthly averages shown in the simulations but will be implemented as conditions warrant. Reductions in System releases to integrate the use of downstream Missouri River flow support from the designated Kansas River projects (Milford, Tuttle Creek and Perry) authorized to provide Missouri River navigation flow support have not been modeled since they are based on downstream hydrologic conditions. However, this storage will be utilized to the extent possible as a water conservation measure, or to minimize incidental take of protected species during the nesting season if conditions indicate it is prudent to do so. Simulated storages and releases for the System and individual reservoirs within the System are shown on *Plate 6* through *Plate 11*. As experienced in 2011, runoff above or below simulated levels can occur and result in releases beyond those modeled for the AOP. As previously stated, should that occur, the Corps will increase its efforts to convey that information throughout the basin so that state, Tribal, and local agencies, communities, and local residents can take appropriate action.

F. <u>Regulation Activities for T&E Species and Fish Propagation Enhancement.</u> The ability to provide steady-to-rising pool levels in the upper three reservoirs in low runoff years is very dependent on the volume, timing, and distribution of runoff. The reservoir regulation simulations presented in this AOP for the Upper Decile, Upper Quartile, and Median runoff scenarios show that steady-to-rising pool levels would occur during the spring fish spawn period for the upper three reservoirs. As part of the overall plan to rotate emphasis among the upper three reservoirs during low runoff years, Fort Peck and Oahe are scheduled to be favored during the 2017 forage fish spawn if runoff is below the Median runoff scenario. This will be accomplished by setting releases at Fort Peck and Garrison at a level that would attempt to maintain a rising Fort Peck and Oahe pool, but no less than the minimum required for downstream water supply requirements, including irrigation. These adjustments may be restricted when the terns and plovers begin nesting in May. The studies show that Fort Peck pool levels drop slightly in April for both the Lower Quartile and Lower Decile runoff scenarios but then rise from May through June for both runoff scenarios. Oahe pool levels hold steady or nearly steady for April, but decline in May and June for both the Lower Quartile and Lower Decile runoff scenarios. Garrison pool levels decline in April for both lower runoff scenarios. If drought conditions develop, emphasis during the fish spawn will be rotated among the upper three reservoirs and may also be adjusted to be opportunistic in regard to runoff potential. The upper three reservoirs will be managed to benefit forage fish to the extent reasonably possible, while continuing to serve the other Congressionally authorized project purposes.

<u>Fort Peck</u>. The repetitive daily pattern of releases from Fort Peck has not been implemented since the 2004 tern and plover nesting season. This adaptive management decision was made based on data collected during previous nesting seasons. In recent years, birds in this reach have nested on available high elevation habitat, and thus were not expected to be impacted by the potential range of releases from Fort Peck during the summer. Releases during the 2017 nesting season will not be restricted by the repetitive daily pattern unless habitat conditions or nesting patterns warrant a change.

If high tributary flows enter the Missouri River below the project during the nesting season, hourly releases will generally be lowered to no less than 3,000 cfs in order to keep traditional riverine fish-rearing areas continuously inundated, while helping to lower river stages at downstream nesting sites. In rare instances releases below 3,000 cfs may be scheduled for flood damage reduction. April releases are expected to be adequate for trout spawning below the project.

Maintaining a rising Fort Peck pool level will be dependent upon the daily inflow pattern to the reservoir. The reservoir rises in April and May for Median and above runoff scenarios, but declines slightly in April under both lower runoff scenarios.

<u>Garrison</u>. As in previous years, releases from Garrison will follow a repetitive daily pattern during the T&E nesting season to limit peak stages below the project for nesting birds. Releases are scheduled to be 1,000 cfs lower in July and early August than the June releases to enhance conditions for the fledging of chicks. High elevation nesting habitat is expected to be sufficient below Garrison Dam during the 2017 nesting season.

During 2017, coldwater habitat in Garrison should be adequate for all runoff scenarios. Coldwater habitat will continue to be monitored during the year and adjustments will be considered if conditions warrant.

A steady-to-rising pool at Garrison during the fish spawn in April and May will be dependent upon the daily inflow pattern to the reservoir. The reservoir rises in April and May for Median and above runoff scenarios, but declines in April under both lower runoff scenarios. <u>Oahe</u>. Releases in the spring and summer will back up those from Gavins Point. The pool level should be steady to rising in the spring during the fish spawn for Median and above runoff scenarios. Under the Lower Quartile and Lower Decile runoff scenarios, the Oahe pool would decline in April and May, dropping 0.6 and 1.4 feet, respectively.

<u>Fort Randall</u>. To the extent reasonably possible, Fort Randall will be regulated to provide for a pool elevation near 1355.0 feet msl during the fish spawn period, provided water can be supplied from other reservoirs for downstream uses. The pool will not be drawn down below elevation 1337.5 feet msl in the fall to ensure adequate supply for water intakes. As a measure to minimize take while maintaining the flexibility to increase releases during the nesting season, hourly releases from Fort Randall will follow a repetitive daily pattern to limit peak stages below the project for nesting birds. Daily average flows may be increased every third day to preserve the capability of increasing releases later in the summer with little or no incidental take if drier downstream conditions occur. If higher daily releases are required later in the nesting season, the daily peaking pattern may be adjusted, reduced or eliminated resulting in a steady release to avoid increased stages at downstream nesting sites. Periods of zero release will be minimized to the extent reasonably possible during the nesting season given daily average releases, real-time hydrologic conditions, and System generating constraints as defined in coordination with Western.

<u>Gavins Point</u>. As detailed in Section III of this report, the Corps does not plan to implement the bimodal spring pulse from Gavins Point for the benefit of the endangered pallid sturgeon under any runoff scenarios in 2017.

While less habitat is available than the previous few years, it is anticipated that a sufficient amount of habitat to provide for successful nesting will be available at elevations above the planned release rates for all runoff conditions. This expectation is based on the high elevation habitat resulting from the record releases in 2011 and the resultant habitat observed yet in 2016. Releases from Gavins Point may follow the flow-to-target (FTT) release scenario or the SR-FTT scenario. The FTT scenario limits releases from Gavins Point to those needed to meet downstream targets. The actual release scenario will be evaluated when birds begin nesting in early May. If monitoring determines that nests are likely to be initiated at a lower elevation which would be inundated later in the summer, a SR-FTT release scenario may be implemented. A full description of these release scenarios can be found in the Master Manual. Actual releases will be based on hydrologic conditions and the availability of habitat at that time.

All reasonable measures to minimize the loss of nesting T&E bird species will be used. While not anticipated because of the quantity of high elevation habitat available, these measures include, but are not limited to, a relatively high initial steady release

during the peak of nest initiation, the use of the three designated Kansas River basin reservoirs for Missouri River navigation flow support, moving nests to higher ground, and monitoring nest fledge dates to determine if delaying an increase a few days might allow threatened chicks to fledge. The location of navigation tows and river conditions at intakes would also be monitored to determine if an increase could be temporarily delayed without impact. Cycling releases every third day may be used to conserve water early in the nesting season if extremely dry conditions develop. In addition, cycling may be used during downstream flood control regulation.

The Gavins Point pool will be regulated near 1206.0 feet msl in the spring and early summer, with minor day-to-day variations due to incremental inflows between Fort Randall and Gavins Point resulting from rainfall runoff. Several factors can limit the ability to protect nests from inundation in the upper end of the Gavins Point pool. First, because there are greater numbers of T&E bird species nesting below Gavins Point, regulation to minimize incidental take usually involves restricting Gavins Point releases, which means that the Gavins Point pool can fluctuate significantly due to increased runoff from rainfall events. Second, rainfall runoff between Fort Randall and Gavins Point can result in relatively rapid pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs. And third, the regulation of Gavins Point for downstream flood control may necessitate immediate release reductions to reduce downstream damage. When combined, all these factors make it difficult, and sometimes impossible, to prevent inundation of nests in the upper end of the Gavins Point reservoir. However, because of the quantity of habitat expected we do not anticipate a large number of nests being inundated. The pool will be increased to elevation 1207.5 feet msl late in August or early September when it is determined that there are no terns or plovers nesting along the reservoir.

G. <u>Regulation Activities for Historic and Cultural Properties.</u> As acknowledged in the 2004 Programmatic Agreement (PA) for the Operation and Management of the Missouri River Main Stem System, wave action and fluctuation in the level of the reservoirs results in erosion along the banks of the reservoirs. The Corps will work with the Tribes utilizing 36 CFR Part 800 and the PA to address the exposure of historic and cultural sites. The objective of a programmatic agreement is to deal "...with the potential adverse effects of complex projects or multiple undertakings..." The PA objective was to collaboratively develop a preservation program that would avoid, minimize and/or mitigate adverse effects along the System reservoirs. All tribes, whether signatory to the PA or not, may request government-to-government consultation on the regulation of the System and the resulting effect on historic and cultural properties and other resources.

Pool levels at the upper three reservoirs will likely be near normal or slightly below normal in 2017 but will vary depending on runoff conditions. Continuing exposure of cultural sites along the shoreline is still possible. Actions to avoid, minimize or mitigate adverse impacts and expected results of the actions are covered under Chapter VII of this AOP. *Plate 14* shows the locations of the Tribal Reservations.

<u>Fort Peck</u>. Depending on runoff in the Missouri River basin, System regulation during 2017 could result in a Fort Peck pool elevation variation from a high of 2243 feet msl to a low of 2218 feet msl. This is based on the Upper and Lower Decile runoff scenarios (see *Plate 8* and the studies included at the end of this report). Based on a review of existing information, approximately 13 known sites could be affected during this period.

<u>Garrison</u>. Based on the Upper and Lower Decile runoff scenarios (see *Plate 9* and the studies included at the end of this report), Garrison pool elevations could range between 1847 and 1825 feet msl during 2017. Based on a review of existing information, approximately 39 known sites could be affected during this period.

<u>Oahe</u>. At the Oahe reservoir, the System regulation under the Upper and Lower Decile runoff scenarios could result in pool elevations ranging from 1616 to 1591 feet msl (see *Plate 10* and the studies included at the end of this report). Based on a review of existing information, approximately 169 known sites could be affected during this period.

<u>Big Bend</u>. System regulation will be adjusted to maintain the Big Bend pool level in the normal 1420 to 1421 feet msl range during 2017. Short-term increases above 1421 due to local rainfall may also occur. Based on a review of existing information, no known sites will be affected during this period.

<u>Fort Randall</u>. As part of the normal System regulation, the Fort Randall pool elevations will vary between 1350 and 1355 feet msl during the spring and summer of 2017 (see *Plate 11* and the studies included at the end of this report). Short-term increases above 1355 feet msl due to local rainfall may occur. The annual fall drawdown of the reservoir to elevation 1337.5 feet msl will begin prior to the close of the navigation season and will be accomplished by early December. The reservoir will then be refilled during the winter to elevation 1350 feet msl. Based on a review of existing information, no known sites will be affected during this period.

<u>Gavins Point</u>. System regulation will be adjusted to maintain the Gavins Point pool level in the normal 1206 to 1207.5 feet msl range during 2017. Short-term increases above 1207.5 feet msl may occur due to local rainfall. Based on a review of existing information, one known site could be affected during this period.

VII. SUMMARY OF RESULTS EXPECTED IN 2017

With regulation of the System in accordance with the 2016-2017 AOP outlined in the preceding pages, the following results can be expected. *Table V* summarizes the critical decision points throughout the year for all runoff conditions.

	2017 Runoff Condition											
Decision Points	Upper Decile	Upper Quartile	Median	Lower Quartile	Lower Decile							
March 1 System Storage March 23-31 GP Release	56.1 MAF 26.7 kcfs	56.1 MAF 26.7 kcfs	54.4 MAF 26.7 kcfs	52.4 MAF 28.1 kcfs	52.4 MAF 27.9 kcfs							
March 15 System Storage Spring Service Level	57.4 MAF Full service	57.1 MAF Full service	55.2 MAF Full service	52.9 MAF 1.7 kcfs blw Full service	52.8 MAF 1.9 kcfs blw Full service							
May 1 System Storage May Early/Late May Avg GP Release	60.0 MAF Not applicable 36.0 kcfs	59.4 MAF 28.0/31.6 kcfs 29.9 kcfs	55.9 MAF 28.0/31.6 kcfs 29.9 kcfs	52.7 MAF 29.6/32.6 kcfs 31.0 kcfs	52.5 MAF 29.4/32.4 kcfs 31.0 kcfs							
Fish Spawn Rise (Apr-Jun) FTPK Pool Elev Change GARR Pool Elev Change OAHE Pool Elev Change	+7.1 feet +6.3 feet +5.0 feet	+6.4 feet +5.7 feet +5.0 feet	+5.1 feet +4.7 feet +2.1 feet	+3.5 feet +3.0 feet -0.9 feet	+1.5 feet +1.8 feet -2.2 feet							
July 1 System Storage Sum-Fall Service Level (kcfs) Nav Season Length	63.8 MAF Full Service 10 Day extension	63.0 MAF Full Service 10 Day extension	58.9 MAF Full Service 0 Days shortening	54.4 MAF 2.4 kcfs blw Full Service 0 Days shortening	53.1 MAF 3.6 kcfs blw Full Service 0 Days shortening							
September 1 System Storage Winter 2017-18 GP Release	61.9 MAF 20.0 kcfs	61.3 MAF 20.0 kcfs	57.3 MAF 15.8 kcfs	51.9 MAF 12.5 kcfs	50.0 MAF 12.5 kcfs							
February 28 System Storage End-Year Pool Balance Percent Pool	56.1 MAF Balanced 100%	56.1 MAF Balanced 100%	53.9 MAF Balanced 94%	47.9 MAF Balanced 78%	45.7 MAF Balanced 72%							

Table VSummary of 2016-2017 AOP Studies

Flood Control. Flood control is the only authorized project purpose that A. requires the availability of empty storage space rather than impounded water. Actual flood events, especially those that are a result of rainfall runoff, are difficult to predict with much advance notice; therefore, detailed routing of specific major flood flows is accomplished when floods occur. There is a recurring pattern of high-risk flood periods during each year: a season when snowmelt, ice jams, and protracted heavy rains will almost surely occur with or without generating consequent floods; and a season when these situations are less likely and the flood threat is correspondingly low. The highrisk flood season begins about March 1 and extends through the summer. As a consequence, regulation of the System throughout the fall and winter months is predicated on the achievement of a March 1 System storage level at or below the base of the Annual Flood Control and Multiple Use Zone. All runoff scenarios studied for this AOP will begin the March 1, 2017 runoff season with System storage at or below the desired 56.1 MAF base of the Annual Flood Control and Multiple Use Zone. Therefore, the entire System flood control storage of 16.3 MAF, (11.6 MAF in the Annual Flood Control and Multiple Use Zone and 4.7 MAF in Exclusive Flood Control Zone) will be available to store runoff. Under the Basic Runoff scenario, an additional 1.7 MAF of the Carryover Multiple Purpose Zone will be available to store runoff. Under the Lower Basic runoff scenario, an additional 3.7 MAF of the Carryover Multiple Purpose Zone will be available to store runoff.

To the extent practical, the System is regulated to prevent damaging flows in the river reaches between and below the Mainstem dams. In 2017, the full capacity of the System will be available to capture a significant volume of runoff originating from the upper basin and meter it out over an extended period of time at a rate that does not contribute to flooding in the river reaches between and below the reservoirs. Additionally, the reservoir system will have the capacity to reduce releases and hold back water during periods of high runoff below the System to reduce peak stages and discharges on the lower river. The ability to significantly reduce peak stages on the lower river diminishes at locations further downstream due to the large uncontrolled drainage area and travel time from the dam.

The base of the Exclusive Flood Control Zone defines the maximum level of storage that will be accumulated for purposes other than flood control. When the Exclusive Flood Control Zone at a particular reservoir is encroached upon, the control of subsequent flood inflows becomes the dominant factor. During such periods, releases may substantially exceed the powerplant release capacity with the evacuation rate of any project dependent upon existing flood conditions, the potential for further inflows, and conditions of other reservoirs in the System. Maximum release rates at such times are based upon the Master Manual flood control criteria, the flood control status of the System, and the critical need to preserve the integrity of the dams. Detailed information regarding the adjustments of releases for flood control evacuation

and downstream flood control constraints can be found in Chapter 7 of the Master Manual.

Due to release limitations imposed by the formation of downstream ice cover, a major portion of the required flood control space must be evacuated prior to the winter season. Higher releases may be made on occasions when the downstream channel conditions permit. If plains and/or mountain snowpack accumulations are much above normal during the winter of 2016-2017, and studies indicate that available storage in the Carryover Multiple Use Zone as well as the Annual Flood Control and Multiple Use Zone will be fully utilized, releases may be adjusted to the extent reasonably possible to evacuate water from the reservoir system early in the runoff season. High releases during the late winter and early spring periods may exacerbate localized flooding if coincident with plains snowmelt or spring rains, and may also contribute to significant ice jam flooding. Therefore, if higher than normal releases are indicated, local conditions will need to be closely monitored. In addition, all 2017 runoff that is stored in the flood control zones will be evacuated prior to the start of the 2018 runoff season.

B. <u>Water Supply and Water Quality Control</u>. Water supply problems at intakes located in the river reaches both between and below the Mainstem dams and in the reservoirs are related primarily to intake elevations or river access rather than inadequate water supply. In emergency situations, short-term adjustments to protect human health and safety would be considered to keep intakes operational.

Low reservoir levels during the 2000-2007 drought contributed to both intake access and water quality problems for intakes on Garrison and Oahe reservoirs, including several Tribal intakes. A return to more normal reservoir elevations has eliminated concern over many of these intakes. If the drought conditions return, reservoir pool levels and releases may decline renewing the potential for intake access and water quality problems at both river and reservoir intakes. Under the Lower Decile runoff scenario, minimum reservoir levels in 2017 would be at least 18 feet higher than the record lows set in the 2000-2007 drought. Although not below the critical shutdown elevations for any intake, a return to lower reservoir levels would require extra monitoring to ensure the continued operation of the intakes.

Winter releases are determined based on the September 1 System storage check. The winter season extends from December through February and flows are provided during this time to support the Congressionally authorized project purposes of hydropower production and downstream water supply and water quality. Per the Master Manual, if September 1 System storage is 55.0 MAF or less, the winter release from Gavins Point will be 12,000 cfs. Planned winter release rates of 12,000 cfs may be less than required for downstream water supply intakes without sufficient incremental tributary flows below the System. Should that occur, releases may need to be set higher to ensure that downstream water supply intakes are operable. In 2012-2013, winter

releases were set at 14,000 cfs rather than 12,000 cfs due to channel degradation and low incremental tributary flows below the System. Improved tributary flows in future winters would facilitate releases reaching the target level of 12,000 cfs. While the Master Manual indicates that the water control plan's purpose is to meet water supply requirements in river reaches downstream of the reservoirs to the extent reasonably possible, the Corps believes the minimum winter release of 12,000 cfs presented in the Master Manual represents a reasonable long-term goal for water intake operability and for owners to strive for as they make improvements to their facilities. A letter was sent to intake owners in the spring of 2013 informing them of the Master Manual criteria and encouraging them to take necessary action to ensure their intakes are able to operate at reduced release rates. Coordination with intake owners will continue prior to and during the low release periods. In addition, it may be necessary at times to temporarily increase Gavins Point releases to provide adequate downstream flows during periods when excessive river ice formation is forecast or if ice jams or blockages form which temporarily restrict flow. Based on past experiences, these events are expected to occur infrequently and be of short duration.

Based on the studies included in this AOP, the scheduled winter System release for 2016-2017 will range from 16,500 cfs to 17,500 cfs. As shown in *Table V*, 2017-2018 winter releases of 20,000 cfs would be made for the Upper Decile and Upper Quartile runoff scenarios, 15,800 cfs for Median, and 12,500 cfs under Lower Quartile and Lower Decile runoff scenarios. The additional 500 cfs on Lower Quartile and Lower Decile reflects how the Corps, when conditions warrant, temporarily increases Gavins Point releases during extreme cold periods to inhibit the formation of ice jams in the lower river reach.

During non-navigation open water periods in the spring and fall the Master Manual includes System releases as low as 9,000 cfs as a water conservation measure provided that enough downstream tributary flow exists to allow for continued operation of downstream water intakes. If a non-navigation year would occur in the future, summer releases (May through August) could average around 18,000 cfs from the System. However, it should be noted that System releases will be set at levels that meet the operational requirements of water intakes to the extent reasonably possible. Problems have occurred at several downstream intakes in the past, however in all cases the problems have been associated with access to the river or reservoir rather than insufficient water supply. In addition, the low summer release rate would likely result in higher water temperatures in the river, which could impact a powerplant's ability to meet their thermal discharge permits. Again, it should be noted that System releases will be set at levels that allow the downstream powerplant to meet their thermal discharge permit requirements to the extent reasonably possible. This may mean that actual System releases in the hottest part of the summer period may be set well above the 18,000 cfs level. The Corps continues to encourage intake operators between and below the mainstem dams to make necessary modifications to their intakes to allow

efficient operation over the widest possible range of hydrologic conditions. While the current level of System storage should allow adequate access for all intakes during the coming year, intake operators that have experienced difficulty with access during the past drought years should continue to make adjustments to improve access and flexibility when drought returns to the basin.

C. <u>Irrigation</u>. Scheduled releases from the System reservoirs will be sufficient to meet the volumes of flow required for irrigation diversions from the Missouri River. Some access problems may be experienced, however, if Lower Quartile or Lower Decile runoff conditions return. Below Fort Peck, localized dredging may once again be required in the vicinity of irrigation intakes in order to maintain access to the water if releases are low next summer. Intake access problems are the responsibility of the intake owner and the Corps will not guarantee access, only that the supply of water in the Missouri River is adequate to meet this project purpose. Fort Peck releases may be adjusted during the irrigation season to provide more consistent flows at downstream locations as tributary flows vary. Tributary irrigation water usage is fully accounted for in the estimates of water supply.

D. <u>Navigation</u>. The anticipated service level and season length for all runoff conditions simulated are shown in *Table V*. Service to navigation in 2017 from the beginning of the navigation season through the July 1 storage check will be at full service for Median and above runoff scenarios. For the Lower Quartile and Lower Decile runoff scenarios, the navigation service level will be at 1,700 cfs and 1,900 cfs below full service. After the July 1 storage check, Median and higher runoff scenarios indicate at least full service to navigation. The July 1 storage check indicates 2,400 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Quartile runoff scenario and 3,600 cfs below full service for the Lower Decile runoff scenario. In addition, the Upper Decile and Upper Quartile runoff scenarios indicate a 10-day extension to the navigation season based on the July 1 storage check. Median and below runoff indicates a full length navigation season. Although the AOP simulations provide a comparison of typical flow support under varying runoff conditions, the actual rate of flow support for the 2017 navigation season will be based on actual System storage on March 15 and July 1, 2017.

E. <u>Power</u>. *Table VI* and *Table VII* indicate the estimated monthly System load requirements and hydropower supply of the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP), from August 2016 through December 2017. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments. Under the Median runoff scenario, annual generation in 2017 is estimated to be 9.4 million MWh, 101 percent of the 1967-2015 average.

TABLE VI PEAKING CAPABILITY AND SALES (1,000 kW at plant)

	Estimated Committed Sales*	Exj		Corps Ge		1	Exp	pected Bi	~ .	<u> </u>	y**		Expected Total System Capability			
2016	_		<u>U.B.</u>	Basic	<u>L.B.</u>			<u>U.B.</u>	Basic	<u>L.B.</u>			<u>U.B.</u>	Basic	<u>L.B.</u>	
Aug	2201		2345	2341	2337			196	194	194			2541	2535	2531	
Sep	2021		2339	2330	2327			196	194	194			2535	2524	2521	
Oct	1879		2324	2310	2298			197	196	194			2521	2506	2492	
Nov	1986		2290	2274	2259			196	195	194			2486	2469	2453	
Dec	2114		2290	2275	2256			192	193	192			2482	2468	2448	
2017			0011	2204	2252			100	101	101			2500	2 4 9 F	2464	
Jan	2128		2311	2294	2273			189	191	191			2500	2485	2464	
Feb	2111		2320	2300	2276			185	189	190			2505	2489	2466	
		<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	<u>Med</u>	<u>L.Q.</u>	<u>L.D.</u>
Mar	2046	2342	2336	2309	2280	2279	184	184	189	190	190	2526	2520	2498	2470	2469
Apr	1918	2361	2353	2313	2273	2269	184	184	190	190	190	2545	2537	2503	2463	2459
May	1881	2382	2369	2317	2271	2264	184	184	193	194	194	2566	2553	2510	2465	2458
Jun	2084	2399	2393	2342	2286	2271	198	198	200	197	197	2597	2591	2542	2483	2468
Jul	1805	2390	2386	2346	2277	2253	201	201	201	196	196	2591	2587	2547	2473	2449
Aug	2203	2377	2374	2322	2256	2231	199	199	200	195	195	2576	2573	2522	2451	2426
Sep	2025	2368	2367	2313	2248	2216	200	199	201	196	196	2568	2566	2514	2444	2412
Oct	1880	2334	2335	2296	2222	2196	199	199	201	198	198	2533	2534	2497	2420	2394
Nov	1986	2294	2298	2261	2186	2160	198	198	199	197	197	2492	2496	2460	2383	2357
Dec	2113	2251	2254	2226	2150	2123	196	195	197	195	195	2447	2449	2423	2345	2318

* Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements will be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant.

TABLE VII ENERGY GENERATION AND SALES (Million kWh at plant)

	Estimated Committed Sales*	Ex	pected (Corps Ge	eneration	n	Expe	cted Bu	reau Ge	neratio	ז **			ected To n Genera		
2016			<u>U.B.</u>	Basic	<u>L.B.</u>	<u> </u>		<u>U.B.</u>	Basic	<u>L.B.</u>	<u> </u>		<u>U.B.</u>	Basic	<u>L.B.</u>	
Aug Sep Oct Nov Dec	741 737 806 913		804 822 713 694 622	820 827 713 633 604	836 779 803 638 579			58 58 60 63 65	59 53 51 49 53	58 43 43 42 43			862 879 773 757 687	879 880 763 682 656	894 822 847 679 622	
2017 Jan Feb	- 927 902	UD	676 584	667 584	642 565			68 60	52 46	43 38			744 644	719 630	685 603	
		<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>
Mar	813	649	654	612	638	642	79	79	52	42	42	728	733	664	681	685
Apr	767	764	690	735	786	782	94	94	53	38	38	858	783	788	824	819
May	718	1063	909	892	935	912	118	118	81	44	44	1180	1026	972	979	956
Jun	783	1245	1105	923	936	923	114	114	88	42	42	1358	1219	1010	977	964
Jul	867	1445 1447	1308 1312	997 1033	992 990	950 048	117 97	117 93	75 69	50 53	49 48	1563	1425 1405	1071	1042 1043	999 997
Aug	860 744	1338	1312	907	990 803	948 828	97 86	93 85	69 65	53 52	48 46	1544 1423	1405 1276	1103 973	855	997 873
Sep Oct	744	1225	1057	907 757	762	680	80	79	74	52 54	40	1423	1276	831	835 816	725
Nov	807	1225	1037	670	601	578	77	76	73	53	44	1278	1120	743	654	622
Dec	913	<u>835</u>	<u>806</u>	<u>634</u>	<u>533</u>	<u>531</u>	79	78	75	58	45	<u>914</u>	<u>884</u>	<u>709</u>	<u>591</u>	<u>577</u>
CY TOT	,	12472	11336	9410	9182	8979	1069	1060	804	566	524	13541	12396	10214	9748	9503

* Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase.
 ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant.

F. <u>Recreation, Fish and Wildlife</u>. The regulation of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a managed system. Recreation access is expected to be near normal or slightly below normal levels in 2017. If Lower Quartile or Lower Decile runoff were to occur in 2017, boat ramps that were lowered and low water ramps that were constructed during the two recent drought periods will provide adequate reservoir access. Special regulation adjustments incorporating specific objectives for these purposes will be made to the extent reasonably possible. Overall conditions should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs.

The effects of the simulated System regulation during 2017 on fish and wildlife are included in Chapter VI, Section F, entitled, "Regulation Activities for T&E Species and Fish Propagation Enhancement."

G. <u>Historic and Cultural Properties</u>. As mentioned in Chapter VI of this AOP, the regulation of the System during 2016 and 2017 will expose cultural sites due to erosion from the normal fluctuation of pool elevations. The Corps will work with the Tribes utilizing 36 CFR Part 800 and the PA to address the exposure of these sites. The objective of a programmatic agreement is to deal "...with the potential adverse effects of complex projects or multiple undertakings..." The PA objective was to collaboratively develop a preservation program that would avoid, minimize and/or mitigate the adverse affects of the System operation. All tribes, whether signatory to the PA or not, may request government-to-government consultation on the regulation of the System and the resulting effect on historic and cultural properties and other resources.</u>

The planned preservation program for this AOP is outlined by multiple stipulations in the PA. One of the stipulations, or program components, is the Five-Year Plan. This plan outlines how the Corps will accomplish its responsibilities under the PA and the National Historic Preservation Act. The "Cultural Resource Program Final Five Year 2012" Plan, dated February (see http://www.nwo.usace.army.mil/Missions/CivilWorks/CulturalResources.aspx) is currently being implemented. The plan includes inventory, testing and evaluation, mitigation and other specific activities that will allow the Corps to avoid, minimize and/or mitigate the adverse effects to cultural sites on Corps lands within the System. Many of the actions listed in the plan are within the elevation ranges that will occur with the implementation of the Master Manual criteria in 2016 and 2017. Two critical components of the Five-Year Plan that are applicable to this AOP are monitoring and mitigation, which will be briefly discussed in the following paragraphs.

First, a collaboratively developed plan, entitled "Final Cultural Resource Monitoring dated 2014" Plan, June (see http://www.nwo.usace.army.mil/Missions/CivilWorks/CulturalResources.aspx) is in place. This monitoring plan outlines the sites that require monitoring and specifies a frequency for monitoring. The Corps is strategically monitoring sites, including those sites within the potential operating pool elevations, to document the effects of the implementation of the 2016-2017 AOP. Specific sites are identified in the draft Monitoring and Enforcement Plan for the monitoring team, comprised of Corps rangers This focused monitoring is and Tribal monitors, to visit and document impacts. resulting in more accurate data on the current impacts to sites along the river plus it is assisting with the identification of sites for mitigation. The most recent training for the monitoring teams was held in July 2014.

Second, mitigation or protection of sites that are being adversely impacted continues. During the reporting period for the 2015 Annual Report by the Corps on the implementation of the Programmatic Agreement, four sites were either completed, started, or in the design phase. The annual report is available at http://www.nwo.usace.army.mil/Missions/CivilWorks/CulturalResources.aspx. In addition the Corps completed a contract to develop an erosion model that will compare modeling data against actual erosion data, collected by the monitoring team, to assist in the prioritization of sites for protection. Work on the erosion model was completed in June 2011.

Results expected from the proposed monitoring and mitigation actions include more accurate horizontal and vertical data on existing cultural sites, detailed impact data, proactive protection and preservation of sites. The effects of the simulated System regulation during 2016-2017 on cultural sites are included in the Chapter VI, section G., entitled, "Regulation Activities for Historic and Cultural Properties."

H. <u>System Storage</u>. If the August 1, 2016 Basic runoff forecast verifies, System storage will decline to 54.4 MAF by the end of 2016. This would be 20.5 MAF higher than the record low System storage of 33.9 MAF set on February 9, 2007 and 2.5 MAF less than the 2015 end-of-year storage of 56.9 MAF. This end-of-year storage is 1.7 MAF more than the 1967-2015 average. The lowest storage during the 1988-1992 drought was 40.8 MAF in January 1991, and the record low storage was set during the 2000-2007 drought at 33.9 MAF in February 2007. The end-of-year System storages have ranged from a maximum of 60.9 MAF in 1975 to the 2006 minimum of 34.4 MAF. Forecasted System storage on December 31, 2017 is presented in *Table VIII* for the runoff scenarios simulated.

TABLE VIIIANTICIPATED DECEMBER 31, 2017 SYSTEM STORAGE

	Carryover	Unfilled	Total
Total	Storage	Carryover	Change
(12/31/17)	Remaining 1/	Storage 2/	CY 2017
(Volumes	s in 1,000 Acre-Fee	et)	
56,300	38,500	0	500
56,500	38,500	0	700
54,000	36,400	2,100	-400
47,900	30,300	8,200	-4,900
45,900	28,300	10,200	-6,900
	(12/31/17) (Volumes 56,300 56,500 54,000 47,900	Total Storage (12/31/17) Remaining 1/ (Volumes in 1,000 Acre-Fee 56,300 38,500 56,500 38,500 54,000 36,400 47,900 30,300	TotalStorage Remaining 1/Carryover Storage 2/ Storage 2/(12/31/17)Remaining 1/Storage 2/(Volumes in 1,000 Acre-Feet)

- 1/ Net usable storage above 17.6 MAF System minimum pool level established for power, recreation, irrigation diversions, and other purposes.
- 2/ System base of Annual Flood Control and Multiple Use Zone containing 56.1 MAF.

I. <u>Summary of Water Use by Functions</u>. Anticipated water use in CY 2016, under the regulation plan with the Basic forecast of water supply is shown in *Table IX*. Under the reservoir regulation simulations in this AOP, estimated water use in CY 2017 also is shown in *Table IX*. Actual water use data for CY 2015 are included for information and comparison.

TABLE IX MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2015, 2016, AND 2017 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF)

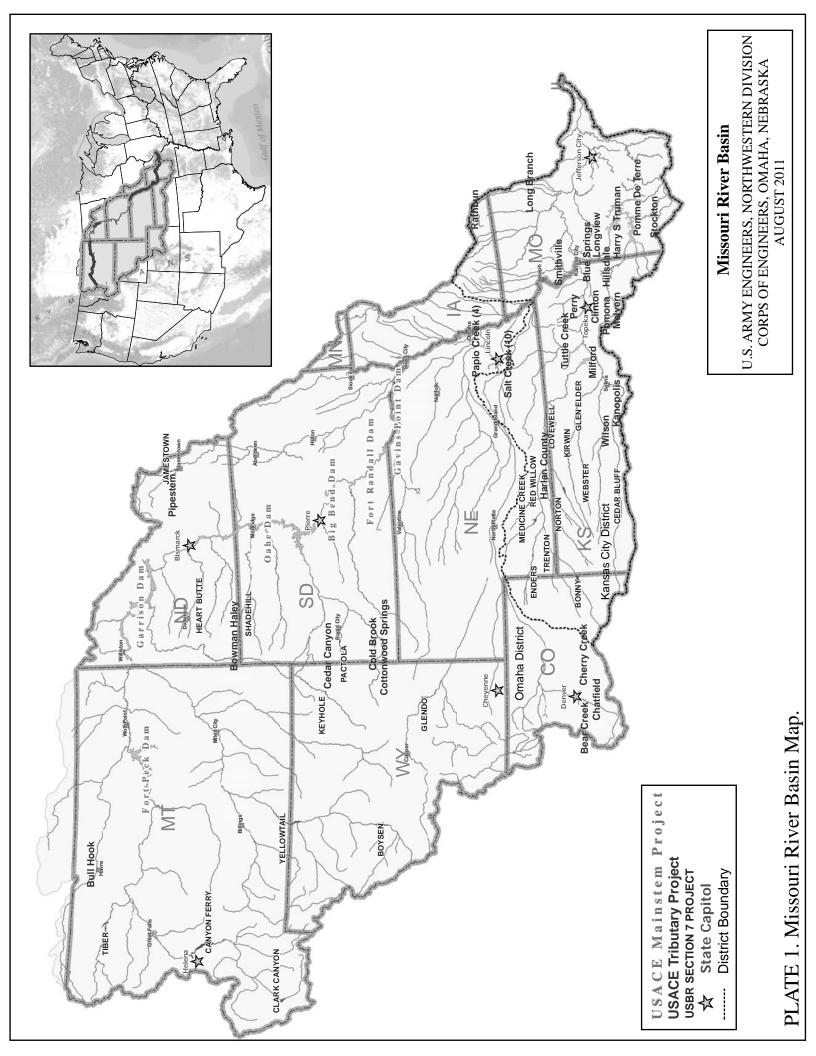
		CY 2015	CY 2016	Simulations for Calendar Year 2017					
		Actual	Actual Basic		Upper		Lower	Lower	
			Simulation	Decile	Quartile	Median	Quartile	Decile	
Upstream Depletions Irrigation, Tributary Reservoir	(1)								
Evaporation & Other Uses		2.8	2.8						
Tributary Reservoir Storage Ch	ange	-0.3	0.0						
Total Upstream Depletions	C	2.5	2.8	3.1	2.9	3.0	2.9	2.6	
System Reservoir Evaporation	(2)	3.1	2.5	1.2	1.2	1.7	2.0	1.9	
Sioux City Flows									
Navigation Season									
Unregulated Flood Inflows B		0.0	0.0						
Gavins Point & Sioux City		0.0	0.0	1((1()	15.0	15.0	110	
Navigation Service Requirem	ient (4)	14.9	14.9	16.6	16.3	15.9	15.3	14.6	
Supplementary Releases T&E Species	(5)	0.6	0.9	0.3	0.3	0.3	0.3	0.3	
Flood Evacuation	(5) (6)	0.0	0.9	0.3 8.1	0.3 4.7	0.3	0.3	0.3	
Non-navigation Season	(0)	0.0	0.0	0.1	4./	0.0	0.0	0.0	
Flows		4.1	4.1	4.2	4.1	4.1	3.7	3.7	
Flood Evacuation Releases	(7)	0.0	0.0	0.5	0.4	0.0	0.0	0.0	
Tiood Evacuation Releases	(7)	0.0	0.0	0.0	0.1	0.0	0.0	0.0	
System Storage Change		0.6	-2.5	<u>0.5</u>	<u>0.7</u>	<u>-0.4</u>	-4.9	<u>-7.0</u>	
Total		25.8	22.7	34.5	30.6	24.6	19.3	16.1	
Project Releases									
Fort Peck		4.9	4.9	8.0	7.3	6.2	5.9	5.9	
Garrison		12.5	12.7	20.3	18.3	15.9	14.7	14.1	
Oahe		14.2	14.2	23.3	20.6	16.9	17.3	17.1	
Big Bend		13.5	13.6	23.2	20.5	16.8	17.2	17.0	
Fort Randall		15.3	15.1	24.6	21.6	17.6	17.4	17.1	
Gavins Point		17.0	16.7	26.7	23.5	19.0	18.6	18.2	

(1) Tributary uses above the 1949 level of development including agricultural depletions and tributary storage effects.

(2) Net evaporation is shown for 2017.

(3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point releases were held to as low as 6,000 cfs.

(4) Estimated requirement for downstream water supply and water quality is approximately 6.0 MAF.


(5) Increased releases required for threatened and endangered species regulation.

(6) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River.

(7) Releases for flood control storage evacuation in excess of a 17,000 cfs Gavins Point release.

VIII. TENTATIVE PROJECTION OF REGULATION THROUGH FEBRUARY 2023

(Not completed until final plan is adopted.)

		ary of Engineering Data					
Item No.	Subject	Fort Peck Dam - Fort Peck Lake	Garrison Dam - Lake Sakakawea	Oahe Dam - Lake Oahe			
1	Location of Dam	Near Glasgow, Montana	Near Garrison, ND	Near Pierre, SD			
2 3	River Mile - 1960 Mileage Total & incremental drainage areas in square miles	Mile 1771.5 57,500	Mile 1389.9 181,400 (2) 123,900	Mile 1072.3 243,490 (1) 62,090			
4	Approximate length of full reservoir (in valley miles)	134, ending near Zortman, MT	178, ending near Trenton, ND	231, ending near Bismarck, ND			
5 6	Shoreline in miles (3) Average total & incremental	1520 (elevation 2234) 10,200	1340 (elevation 1837.5) 25,600 15,400	2250 (elevation 1607.5) 28,900 3,300			
7	inflow in cfs Max. discharge of record near damsite in cfs	137,000 (June 1953)	348,000 (April 1952)	440,000 (April 1952)			
8 9	Construction started - calendar yr. In operation (4) calendar yr.	1933 1940	1946 1955	1948 1962			
10	Dam and Embankment	2290.5	1975	1660			
10 11	Top of dam, elevation in feet msl Length of dam in feet	2280.5 21,026 (excluding spillway)	1875 11,300 (including spillway)	1660 9,300 (excluding spillway)			
11	Damming height in feet (5)	220	180	200			
13	Maximum height in feet (5)	250.5		245			
14	Max. base width, total & w/o	3500, 2700	3400, 2050	3500, 1500			
15	berms in feet Abutment formations (under dam &	Bearpaw shale and glacial fill	Fort Union clay shale	Pierre shale			
16	embankment) Type of fill	Hydraulic & rolled earth fill	Rolled earth filled	Rolled earth fill & shale berms			
10	Fill quantity, cubic yards	125.628.000	66,500,000	55,000,000 & 37,000,000			
18	Volume of concrete, cubic yards	1,200,000	1,500,000	1,045,000			
19	Date of closure	24 June 1937	15 April 1953	3 August 1958			
20	Spillway Data	D:1(1,1	T (0.1	D'1(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1			
20 21	Location Crest elevation in feet msl	Right bank - remote 2225	Left bank - adjacent 1825	Right bank - remote 1596.5			
21	Width (including piers) in feet	820 gated	1336 gated	456 gated			
22	No., size and type of gates	16 - 40' x 25' vertical lift gates	28 - 40' x 29' Tainter	8 - 50' x 23.5' Tainter			
23	Design discharge capacity, cfs	275,000 at elev 2253.3	827,000 at elev 1858.5	304,000 at elev 1644.4			
25	Discharge capacity at maximum	230,000	660,000	80,000			
	operating pool in cfs						
2.6	Reservoir Data (6)		1054 1 000 000				
26 27	Max. operating pool elev. & area Max. normal op. pool elev. & area	2250 msl 245,000 acres	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
27 28	Base flood control elev & area	2246 msl 240,000 acres 2234 msl 211,000 acres		· · · · · · · · · · · · · · · · · · ·			
29	Min. operating pool elev. & area Storage allocation & capacity	2160 msl 211,000 acres					
30	Exclusive flood control	2250-2246 971,000 a.f.	1854-1850 1,495,000 a.f.	1620-1617 1,107,000 a.f.			
31	Flood control & multiple use	2246-2234 2,704,000 a.f.					
32	Carryover multiple use	2234-2160 10,700,000 a.f.					
33 34	Permanent Gross	2160-2030 4,088,000 a.f. 2250-2030 18,463,000 a.f.					
35	Reservoir filling initiated	November 1937	December 1953	August 1958			
36	Initially reached min. operating pool	27 May 1942	7 August 1955	3 April 1962			
37	Estimated annual sediment inflow	17,200 a.f./year 1073 yrs.	21,600 a.f./year 1,086 yrs.	14,800 a.f./year 1553 yrs.			
20	Outlet Works Data	D: 1, 1 1					
38 39	Location Number and size of conduits	Right bank 2 - 24' 8" diameter (nos. 3 & 4)	Right Bank 1 - 26' dia. and 2 - 22' dia.	Right Bank 6 - 19.75' dia. upstream, 18.25' dia. downstream			
40	Length of conduits in feet (8)	No. 3 - 6,615, No. 4 - 7,240	1529	3496 to 3659			
41	No., size, and type of service gates	1 - 28' dia. cylindrical gate	1 - 18' x 24.5' Tainter gate per	1 - 13' x 22' per conduit, vertical			
		6 ports, 7.6' x 8.5' high (net opening) in each control shaft	conduit for fine regulation	lift, 4 cable suspension and 2 hydraulic suspension (fine			
42	Entrance invert elevation (msl)	2095	1672	regulation) 1425			
42	Avg. discharge capacity per conduit	Elev. 2250	Elev. 1854	Elev. 1620			
7.5	& total	22,500 cfs - 45,000 cfs		18,500 cfs - 111,000 cfs			
44	Present tailwater elevation (ft msl) Power Facilities and Data	2032-2036 5,000 - 35,000 cfs					
45	Avg. gross head available in feet (14)	194	161	174			
45	Number and size of conduits	No. 1-24'8" dia., No. 2-22'4" dia.	5 - 29' dia., 25' penstocks	7 - 24' dia., imbedded penstocks			
47	Length of conduits in feet (8)	No. 1 - 5,653, No. 2 - 6,355	1829	From 3,280 to 4,005			
48 49	Surge tanks No., type and speed of turbines	PH#1: 3-40' dia., PH#2: 2-65' dia. 5 Francis, PH#1-2: 128.5 rpm,	65' dia 2 per penstock 5 Francis, 90 rpm	70' dia., 2 per penstock 7 Francis, 100 rpm			
50	Discharge cap. at rated head in cfs	1-164 rpm , PH#2-2: 128.6 rpm PH#1, units 1&3 170', 2-140' 8,800 cfs, PH#2-4&5 170'-7,200 cfs	150' 41,000 cfs	185' 54,000 cfs			
51	Generator nameplate rating in kW	1&3: 43,500; 2: 18,250; 4&5: 40,000	3 - 121,600, 2 - 109,250	112,290			
52	Plant capacity in kW	185,250	583,300	786,030			
53	Dependable capacity in kW (9)	181,000	388,000	534,000			
54	Avg. annual energy, million kWh (12)	1,035	2,254	2,622			
55 56	Initial generation, first and last unit Estimated cost September 1999	July 1943 - June 1961	January 1956 - October 1960	April 1962 - June 1963			
	completed project (13)	\$158,428,000	\$305,274,000	\$346,521,000			

		Data Missouri River Ma	,		
Big Bend Dam - Lake Sharpe	Fort Randall Dam - Lake Francis Case	Gavins Point Dam - Lewis & Clark Lake	Total	Item No.	Remarks
Mile 987.4	Near Lake Andes, SD Mile 880.0 263,480 (1) 14,150	Near Yankton, SD Mile 811.1 279,480 (1) 16,000		1 2 3	(1) Includes 4,280 square miles of non-contributing areas.
80, ending near Pierre, SD	107, ending at Big Bend Dam	25, ending near Niobrara, NE	755 miles	4	(2) Includes 1,350 square miles of non-contributing
200 (elevation 1420) 28,900	540 (elevation 1350) 30,000 1,100	90 (elevation 1204.5) 32,000 2,000	5,940 miles	5 6	 areas. (3) With pool at base of flood control. (4) Stange first envilable for
440,000 (April 1952)	447,000 (April 1952)	480,000 (April 1952)		7	(4) Storage first available for regulation of flows.(5) Damming height is height
 1959 1964	1946 1953	1952 1955		8 9	from low water to maximum operating pool. Maximum
1440 10,570 (including spillway) 78 95 1200, 700	1395 10,700 (including spillway) 140 165 4300, 1250	1234 8,700 (including spillway) 45 74 850, 450	71,596 863 feet	10 11 12 13 14	 height is from average streambed to top of dam. (6) Based on latest available storage data. (7) River regulation is attained by flows over low-crested spillway and through
Pierre shale & Niobrara chalk	Niobrara chalk	Niobrara chalk & Carlile shale		15	turbines. (8) Length from upstream face
Rolled earth, shale, chalk fill 17,000,000 540,000 24 July 1963	Rolled earth fill & chalk berms 28,000,000 & 22,000,000 961,000 20 July 1952	Rolled earth & chalk fill 7,000,000 308,000 31 July 1955	358,128,000 cu. yds 5,554,000 cu. yds.	16 17 18 19	of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985).
Left bank - adjacent 1385 376 gated 8 - 40' x 38' Tainter 390,000 at elev 1433.6 270,000	Left bank - adjacent 1346 1000 gated 21 - 40' x 29' Tainter 620,000 at elev 1379.3 508,000	Right bank - adjacent 1180 664 gated 14 - 40' x 30' Tainter 584,000 at elev 1221.4 345,000		23	 (10) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2015 Average (13) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract
1423 msl 61,000 acres 1422 msl 60,000 acres 1420 msl 57,000 acres 1415 msl 51,000 acres	1365 msl 94,000 acres 1350 msl 76,000 acres	1208 msl 25,000 acres 1204.5 msl 21,000 acres		26 27 28 29	Report Fiscal Year 1999. (14) Based on Study 8-83-1985
1420-1345 1,631,000 a.f. 1423-1345 1,810,000 a.f. November 1963 25 March 1964	1365-1350 1,306,000 a.f. 1350-1320 1,532,000 a.f. 1320-1240 1,469,000 a.f. 1375-1240 5,293,000 a.f. January 1953 24 November 1953	1208-1204.579,000 a.f.1204.5-1160295,000 a.f.	4,674,000 a.f. 11,626,000 a.f. 38,536,000 a.f. 17,592,000 a.f. 72,428,000 a.f. 77,400	30 31 32 33 34 35 36 37	
None (7)	Left Bank 4 - 22' diameter	None (7)		38 39	
	1013 2 - 11' x 23' per conduit, vertical lift, cable suspension			40 41	
1385 (11)	1229 Elev 1375	1180 (11)		42 43	
 1351-1355(10) 25,000-100,000 cfs	32,000 cfs - 128,000 cfs 1228-1237 10,000-60,000 cfs			44	
70 None: direct intake	117 8 - 28' dia., 22' penstocks 1,074	48 None: direct intake	764 feet 55,083	45 46 47	
None 8 Fixed blade, 81.8 rpm	59' dia, 2 per alternate penstock 8 Francis, 85.7 rpm	None 3 Kaplan, 75 rpm	36 units	48 49	
67' 103,000 cfs	112' 44,500 cfs	48' 36,000 cfs		50	
3 - 67,276, 5 - 58,500 494,320 497,000 980 Osteber 1064 - July 1066	40,000 320,000 293,000 1,726 March 1054 January 1056	44,100 132,300 74,000 725 September 1056 - January 1057	2,501,200 kw 1,967,000 kw 9,342 million kWh	51 52 53 54	Corps of Engineers, U.S. Army Compiled by
 October 1964 - July 1966	March 1954 - January 1956	September 1956 - January 1957	July 1943 - July 1966		Northwestern Division Missouri River Region
 \$107,498,000	\$199,066,000	\$49,617,000	\$1,166,404,000		August 2016

Plate 3 Summary of Master Manual Technical Criteria

	NAVIGATION	FARGET F	LOWS					
Location	Minimum	Service (kcfs)		Full Ser	vice (kcfs)			
Sioux City	2	5		3	1			
Omaha	2	5		3	1			
Nebraska City	3	1		3	7			
Kansas City	3	5		4	1			
RELATION O	F SYSTEM STORAGE	TO NAVIO	GATION SE	RVICE I	LEVEL			
Date	System Storage (MAF)		Navigation Se		<u>el</u>			
March 15	54.5 or more		35,000 cfs (full	l-service)				
March 15	49.0 to 31		29,000 cfs (mi	nimum-ser	vice)			
March 15	31.0 or less		No navigatior	n service				
Iralia 1	57.0 or more		25 000 ata (full	(comvice)				
July 1			35,000 cfs (full		• •			
July 1	50.5 or less		29,000 cfs (mi	nimum-ser	vice)			
RELATION OF	SYSTEM STORAGE	FO NAVIG						
			Final Day of 1	0				
Date	System Storage (MAF)		at Mouth of t					
July 1	51.5 or more		November 30					
July 1	46.8 through 41.0		October 31 (7-month season)					
July 1	36.5 or less		September 30 (6-month season)					
	N OF SYSTEM WINTE							
58.0 or more	stem Storage (MAF)	<u>Average vvi</u> 17,000 cfs	nter Release for	r Gavins P	<u>01nt</u>			
55.0 or less		,						
55.0 or less		12,000 cfs						
GAVINS P	OINT RELEASES NEI		MEET TARG	ET FLO	WS			
		6 Data (kcfs)						
	<u>Median, Upper Quarti</u>							
	Apr May		ul Aug	Sep	Oct	Nov		
Full Service	26.7 28.0		1.6 33.2	32.6	32.0	31.1		
Minimum Service	20.7 22.0		5.6 27.2	26.6	26.0	25.1		
	Lower Overtile I	ower Decile P	unoff					

Willing our vice	20.7	22.0	21.7	20.0	27.2	20.0	20.0	20.1
	Lower Q	Quartile, L	ower Deci	le Runoff				
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	29.8	31.3	31.2	34.3	34.0	33.5	33.1	31.2
Minimum Service	23.8	25.3	25.2	28.3	28.0	27.5	27.1	25.2

RESERVOIR UNBALANCING SCHEDULE

	Fort P	eck	Garr	ison	Oahe		
Year	March 1	ch 1 Rest of Year		Rest of Year	March 1	Rest of Year	
1	High	Float	Low	Hold Peak	Raise & hold during spawn	Float	
2	Raise & hold during spawn	Float	High	Float	Low	Hold peak	
3	Low	Hold peak	Raise & hold during spawn	Float	High	Float	

Notes: Float year: Normal regulation, then unbalance 1 foot during low pool years or 3 feet when System storage is near 57.0 MAF on March 1.

Low year: Begin low, then hold peak the remainder of the year.

High year: Begin high, raise and hold pool during spawn, then float.

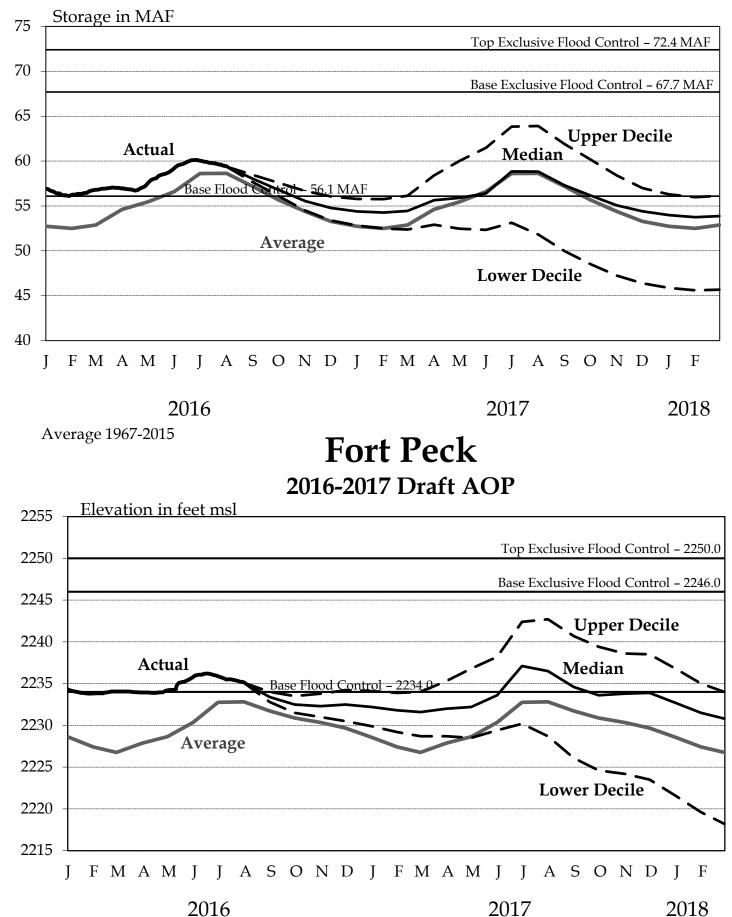
MRNRC RECOMMENDED RESERVOIR ELEVATION GUIDELINES FOR UNBALANCING

	Fort Peck	Garrison	Oahe
Implement unbalancing if March	2234	1837.5	1607.5
1 pool is above this level.	feet msl	feet msl	feet msl
Implement unbalancing if March			
1 pool level is in this range and	2227-2234	1827-1837.5	1600-1607.5
the pool is expected to raise more	feet msl	feet msl	feet msl
than 3 feet after March 1.			
Scheduling Criteria	Avoid pool level decline	Schedule after spawn period	Schedule after spawn
-	during spawn period which	of April 20 - May 20	period of April 8 - May 15
	ranges from April 15 – May 30		

Plate 3 (cont'd) Summary of Master Manual Technical Criteria

TECHNICAL CRITERIA FOR SPRING PULSES FROM GAVINS POINT DAM

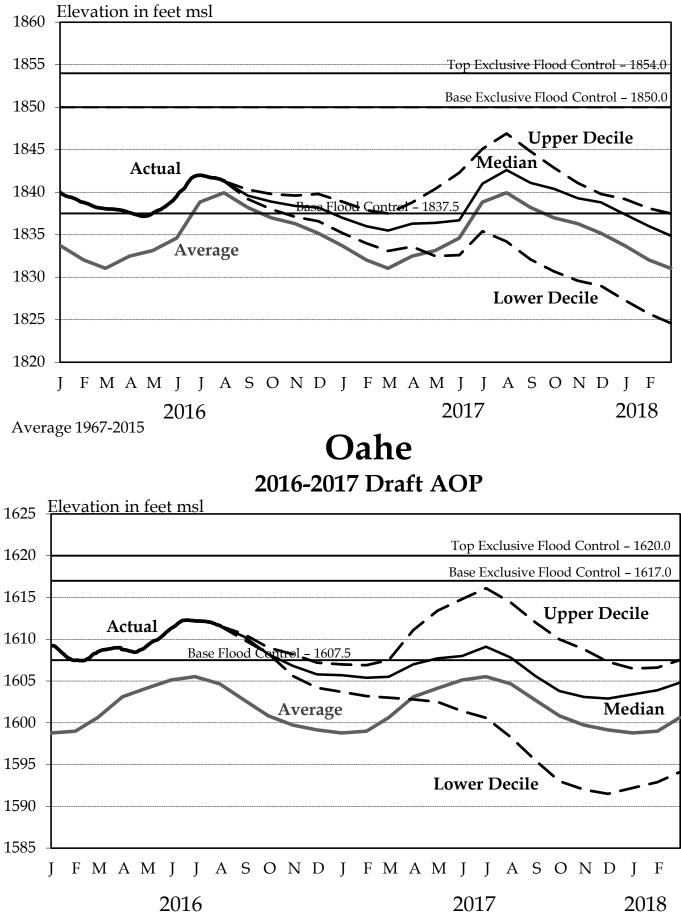
Criteria Applicable to Both the March and May Spring Pulses


Criteria Applicable to Both the March and May Flood Control Constraints	<u>Spring Pulses</u> No change from current levels
	0
Criteria Applicable to the March Spring Pulse	
Drought Preclude	40.0 MAF or below measured on March 1.
Drought Proration of Pulse Magnitude*	None, 5 kcfs added to navigation releases, but no greater than 35 kcfs.
Initiation of Pulse	Extend the stepped System release increases that precede the beginning of the navigation season.
Rate of Rise before Peak	Approximately 5 kcfs for 1 day.
Duration of Peak	Two days.
Rate of Fall after Peak	Drop over 5 days to navigation target release.
Criteria Applicable to Time Period Between the	Bimodal Pulsos
Release	Existing Master Manual Criteria
Criteria Applicable to the May Spring Pulse	
Drought Preclude	40.0 MAF or below measured on May 1.
Proration of	Prorated from 16 kcfs based on a May 1 System
Pulse Magnitude Based On System Storage*	Storage check; 100% at 54.5 MAF; straight line interpolation to 75% at 40.0 MAF.
	•
Proration of	After the proration of the spring pulse magnitude for
Pulse Magnitude Based On Projected Runoff*	System Storage, the resultant magnitude would be further adjusted either up or down based on the May CY runoff forecast; 100%
	, I J
	for Median; straight-line interpolation to 125% at Upper Quartile runoff; 125%
	for runoff above Upper Quartile; straight-line interpolation to 75% at Lower
	0 1 11 -
Initiation of Pulse	for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile. Between May 1 to May 19, depending on Missouri River water temperature
Initiation of Pulse	for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile. Between May 1 to May 19, depending on Missouri River water temperature immediately below Gavins Point Dam. If possible, pulse will be initiated after
Initiation of Pulse	for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile. Between May 1 to May 19, depending on Missouri River water temperature
Initiation of Pulse	for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile.Between May 1 to May 19, depending on Missouri River water temperature immediately below Gavins Point Dam. If possible, pulse will be initiated after the second daily occurrence of a 16 degree Celsius water temperature; however,
Initiation of Pulse Rate of Rise before Peak	for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile.Between May 1 to May 19, depending on Missouri River water temperature immediately below Gavins Point Dam. If possible, pulse will be initiated after the second daily occurrence of a 16 degree Celsius water temperature; however, the decision will be informed by the potential for 'take' of Threatened and
	for runoff above Upper Quartile; straight-line interpolation to 75% at Lower Quartile runoff; 75% for runoff below Lower Quartile. Between May 1 to May 19, depending on Missouri River water temperature immediately below Gavins Point Dam. If possible, pulse will be initiated after the second daily occurrence of a 16 degree Celsius water temperature; however, the decision will be informed by the potential for 'take' of Threatened and Endangered bird species.

Spring Pulse Downstream Flow Limits	
Omaha	41,000 cfs
Nebraska City	47,000 cfs
Kansas City	71,000 cfs

* Spring pulse magnitudes will be determined by taking the difference between pre-pulse Gavins Point releases and the peak pulse Missouri River flows measured just downstream of the mouth of the James River.

releases back to the existing Master Manual criteria over an 8-day period.


System Storage 2016-2017 Draft AOP

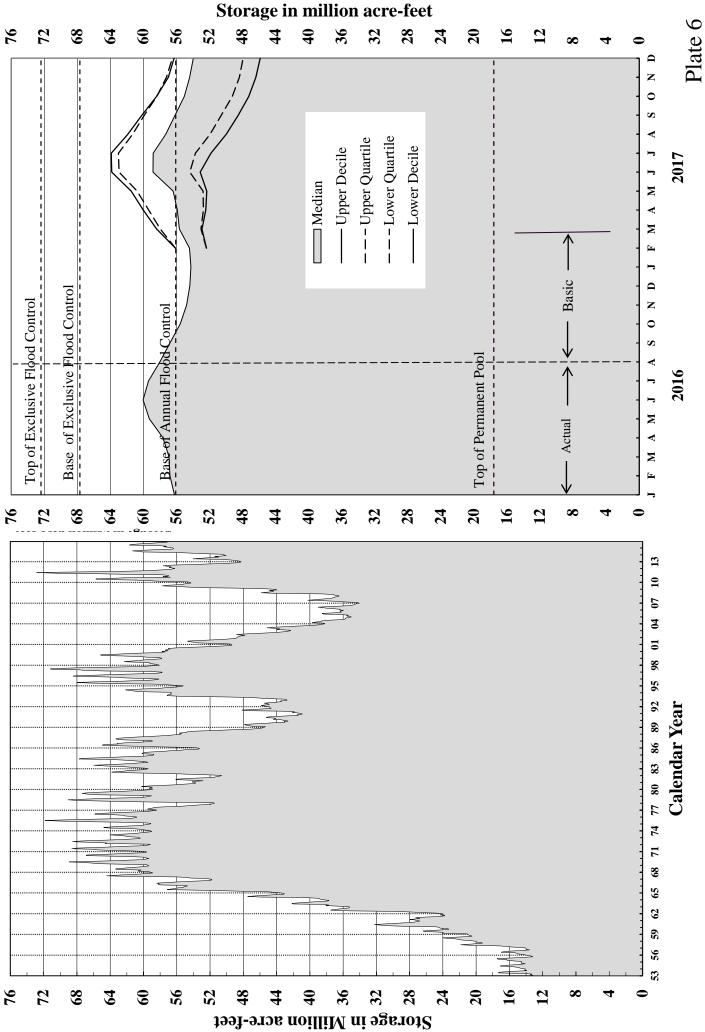
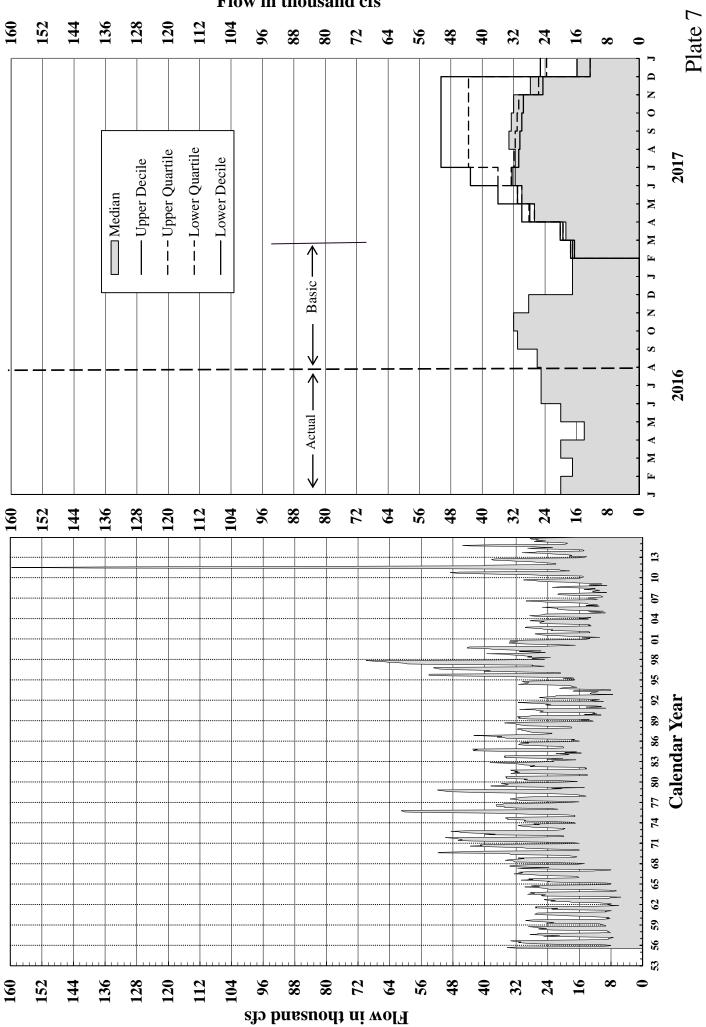
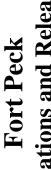
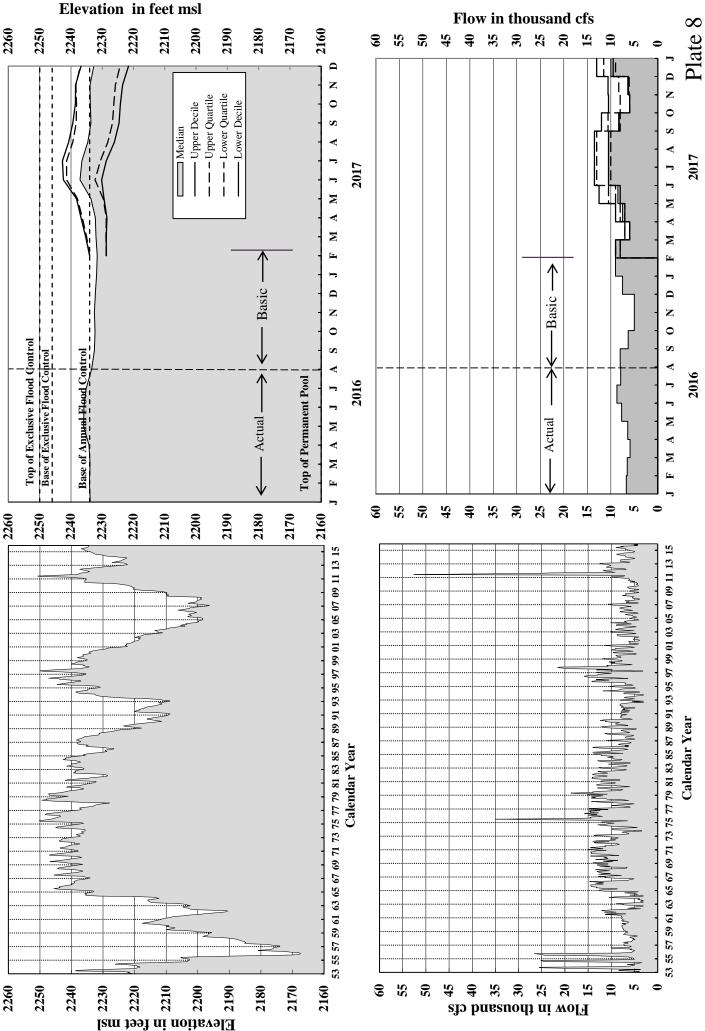
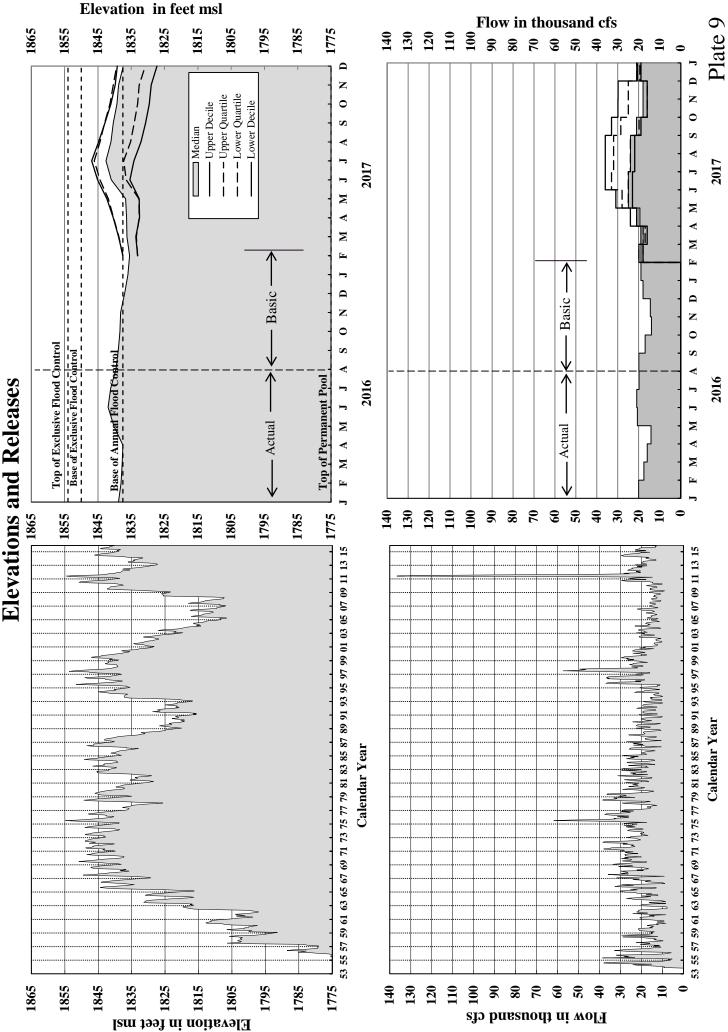

Average 1967-2015

Plate 4

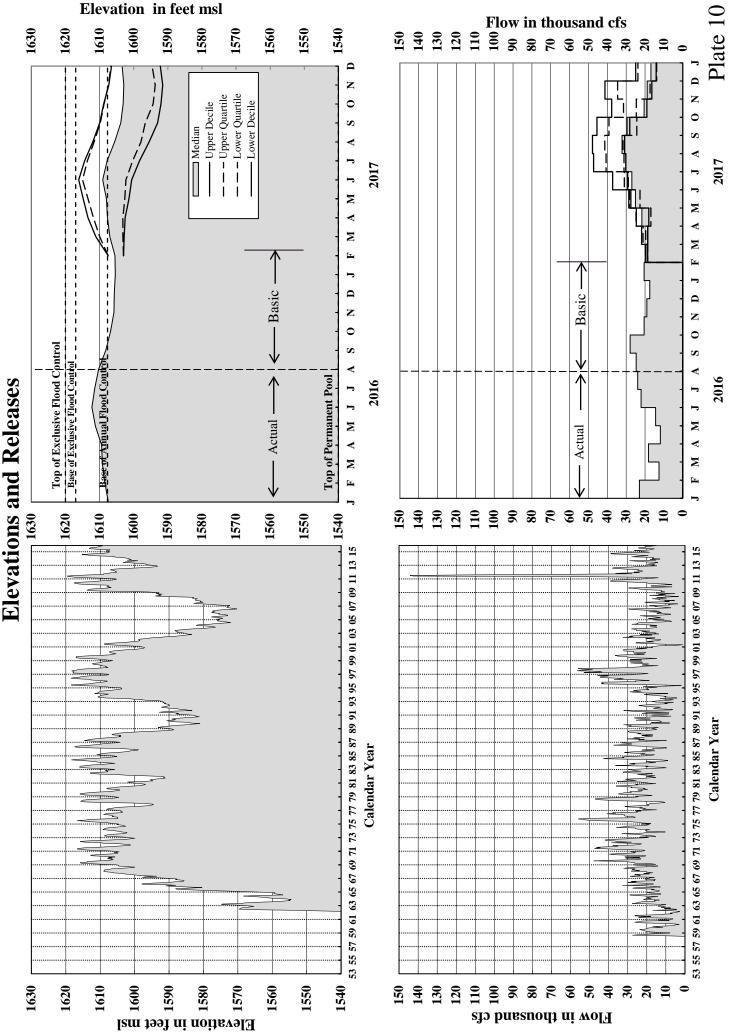

Garrison 2016-2017 Draft AOP

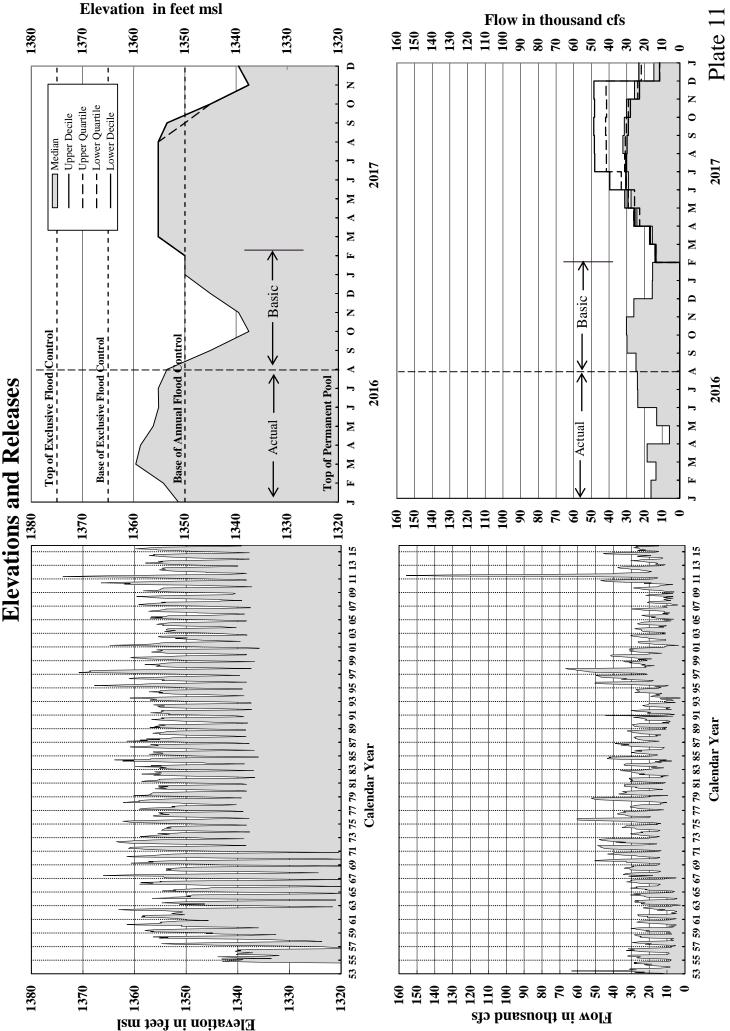


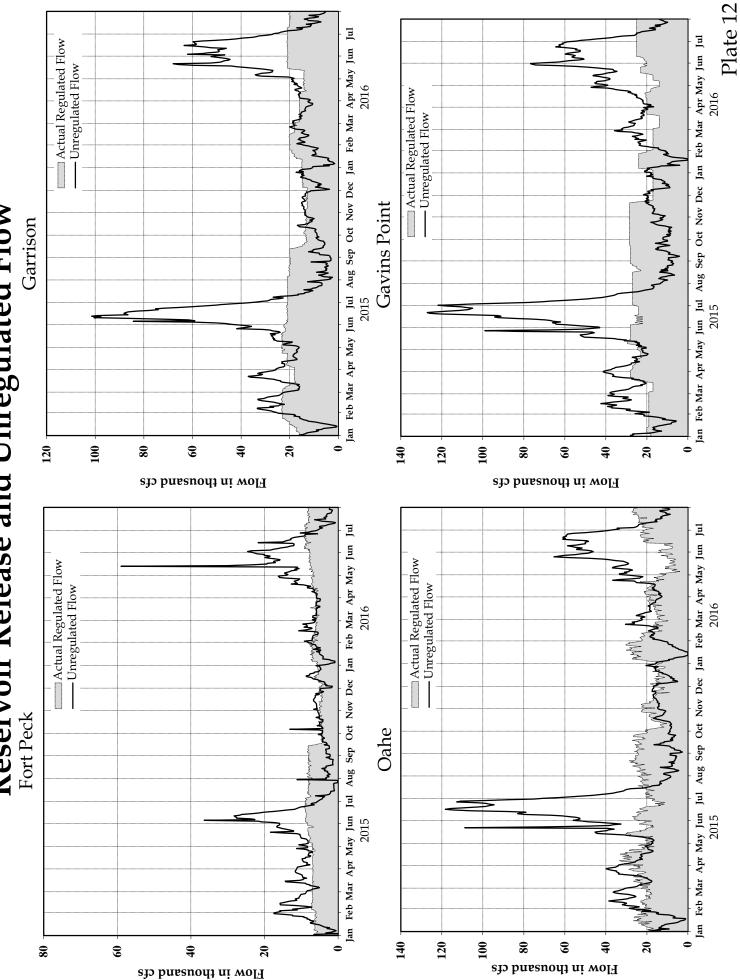

Gavins Point Releases

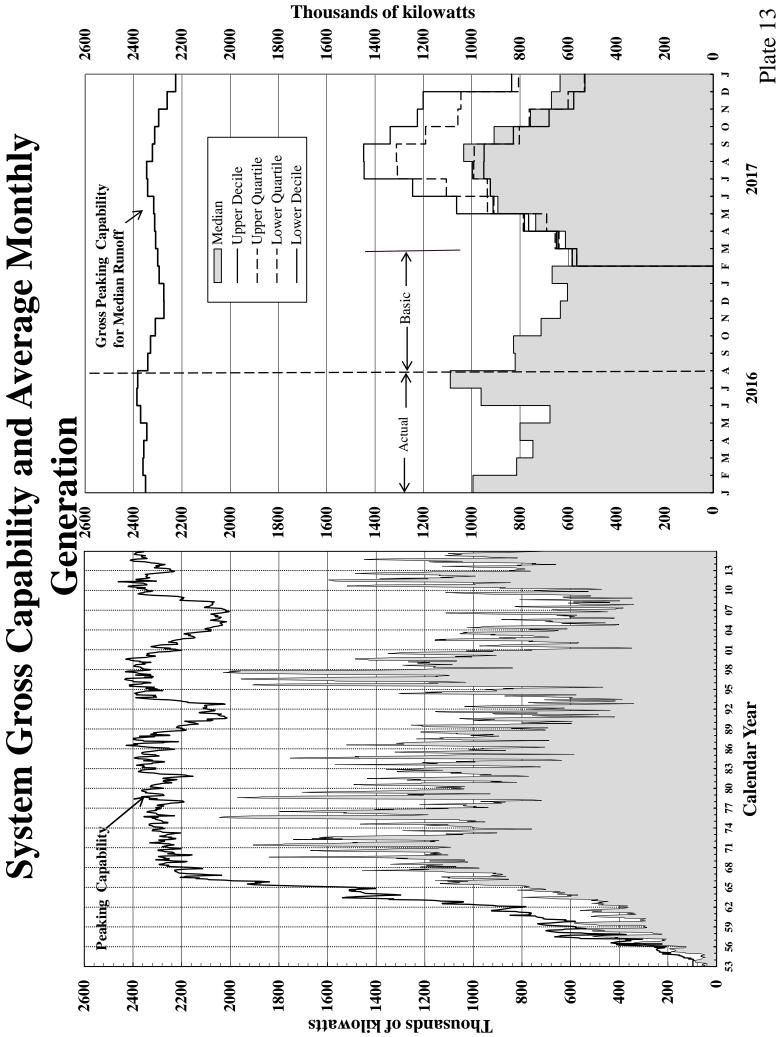


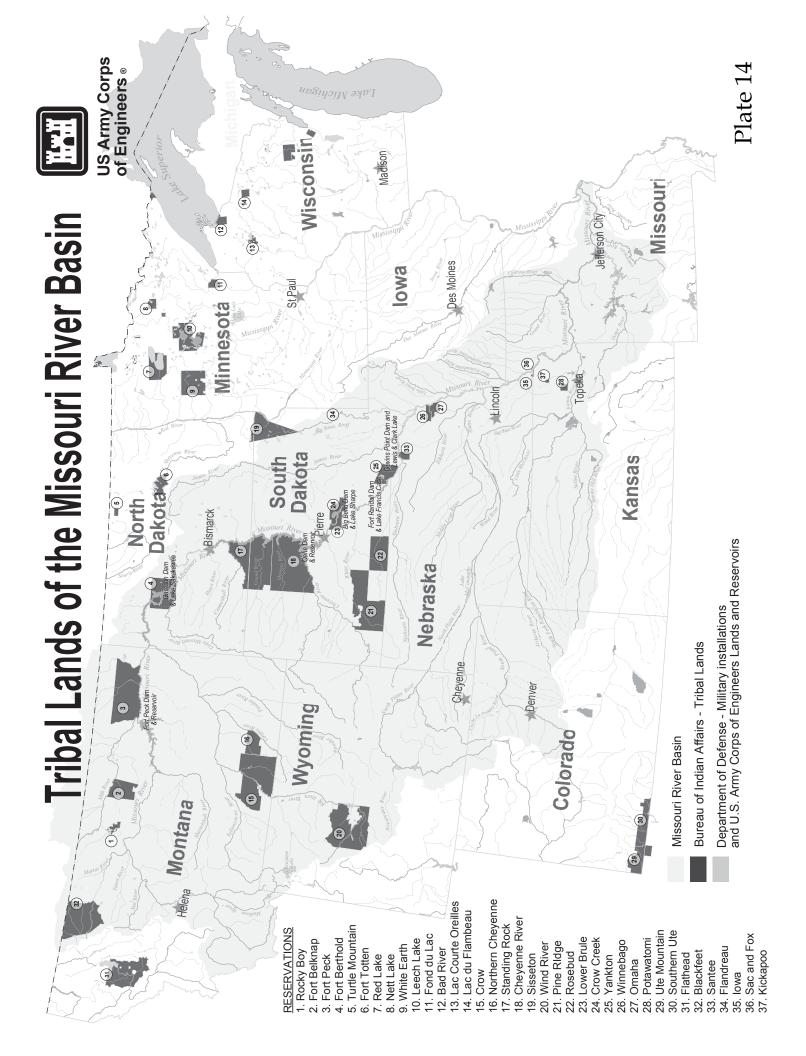
Flow in thousand cfs






Garrison


Oahe



Fort Randall

Reservoir Release and Unregulated Flow

ME OF STUDY:	10:16:			FULL	016 / BA SERV 2N	ID HALF	/ FULL	NAV SEA	AS	ALANCED	99001	9901	4 PAGE STUDY NO
31JULI IN		31AUG	2016 30SEP		15NOV	22NOV	30NOV	31DEC	31JAN	28FEB		2017	1
	2088 -582 417 2253 2984 -731 15022.	250 36 128 492 -363 14659 2233.4 8.0		300 -59 93 266 307 -41 14444 2232.3 5.0	$^{-44}_{42}$ 164 149 15 14460				312 -157 469 553 -84 14324 2231.8 9.0				
VE POWER MW EAK POW MW NERGY GWH	490.2	109 162 81.2	85 161 61.3	68 161 50.6	68 161 24.5	68 161 11.4	68 161 13.0	102 161 75.7	122 161 90.7	122 160 81.8			
TORAGE 1 LEV FTMSL 1					-135 48 411 417 -6 18008				262 -78 -15 878 1168 -290 17296 1836.0 19.0				
VE POWER MW EAK POW MW	1102.2	253 476 188.1	214 473 154.3	176 471 130.7	175 471 63.1	175 471 29.5	200 471 38.4	224 466 166.6	235 463 174.6	234 461 156.9			
TORAGE 1 LEV FTMSL 1 ISCH KCFS 2			112 31 126 981 1662 -681 18871 1608.2 27.9			16 0 22 188 305 -117 18168 1605.9 22.0			12 19 -4 1157 1262 -105 18010 1605.4 20.5				
POWER VE POWER MW EAK POW MW NERGY GWH	1405.3	324 723 241.4	363 711 261.4	265 704 197.2	250 701 89.8	281 699 47.3	203 699 38.9	224 698 166.7	262 696 195.2	249 697 167.4			
ISCH KCFS 2 POWER	99 8898 8931 1664. 1420.6 20.900	24.9	27.5	20.2	19.1	21.6	15.5	17.3	1262 1262 1631 1420.0 20.5	19.5			
VE POWER MW EAK POW MW NERGY GWH	524.7	117 509 87.1	130 517 93.9	99 538 73.6	96 538 34.5	108 538 18.2	78 538 15.0	87 538 64.8	$101 \\ 538 \\ 74.9$	93 529 62.8			
-FORT RANDALI (AT INFLOW (EPLETION (VAPORATION EG INFLOW ELEASE TOR CHANGE TORAGE (LEV FTMSL) (ISCH KCFS 2 POWER	173 34 108 8962 9390 -428 3427.	30 15 25 1522 1524 -2 3425 1355.2 24.8	38 7 31 1636 1780 -144 3281 1353.5 29.9	5 1 24 1219 1858 -639 2641 1345.0 30.2	3 1 9 560 873 -313 2328 1340.0 29.3	1 0 4 297 408 -111 2217 1338.0 29.4	1 4 243 269 -26 2191 1337.5 16.9	13 9 1065 956 108 2299 1339.5 15.6	28 3 946 341 2640 1345.0 15.4	54 3 1133 774 359 2999 1350.0 13.9			
NE POWER MW EAK POW MW NERGY GWH	902.3	209 356 155.8	250 350 180.1	242 319 180.1	222 296 79.8	215 287 36.1	124 285 23.7	114 294 85.1	117 319 87.0	111 339 74.7			
ISCH KCFS 2	769 28 18 32 10118 10122 -4 331.	100 10 -2 6 1607 1599 8 339 1206.5 26.0	100 -5 -10 1868 1845 23 362 1207.5 31.0	119 2 -1 1968 1968 362 1207.5 32.0	59 5 23 925 925 362 1207.5 31.1	28 2 432 432 432 1207.5 31.1	31 323 23 319 319 362 1207.5 20.1	100 10 3 4 1045 1045 362 1207.5 17.0	100 1 0 1045 1045 362 1207.5 17.0	132 3 909 944 -35 327 1206.0 17.0			
POWER VE POWER MW EAK POW MW NERGY GWH	422.1	89 115 66.5	105 117 75.7	108 117 80.6	106 117 38.3	106 117 17.9	71 117 13.6	60 117 44.7	60 117 44.7	60 114 40.1			
-GAVINS POINT AT INFLOW EPLETION GULATED FLOW KAF KCFS	654 132	160 38	110 25	90 12 2046 33.3	42 7 960 32.3	19 3 448 32.3	22 3 338 21.3	60 14 1091 17.7	50 15 1080 17.6	101 15 1030 18.5			
YSTEM POWER	6547 -748 15 1618 59391.	1048 360 2 339 58022	940 -166 19 420 56797	1036 -101 24 360 55553	475 -165 160 55074	221 -77 0 74 54850	253 -88 16 84 54785	712 -208 -30 182 54401	764 -197 -19 54263	1098 -106 3 54439			
VE POWER MW EAK POW MW	4846.9	1102 2341 820.0	1148 2330 826.7	958 2310 712.7	916 2285 329.9	955 2274 160.4 22.9	743 2271 142.7 17.8	811 2275 603.6	897 2294 667.0	869 2300 583.7			

STUDY NO 2

2017

THE OF STUDY	: 10:17:	:19		FIII	SERV 2	ND HALF	7 / FIIL	. NAV SI	245	
31JU	L16	19	2016	5		VALUES	S IN 100	0 AF EX	KCEPT AS	S INDICA 28FEB
FORT PECK-	INI-SUM -	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER MW	2529 -600	325 1	276 -116	360 -92	195 -30	91 -14	104 -16	372 -115	374 -134	432 -85
EVAPORATION MOD INFLOW	287 2842	64 260	81 311	71 381	17 208	8 97	9 111	37 450	508	517
RELEASE STOR CHANGE	3079	492	408	338	164	76 21	87 23	461	553	500 17
ELEV FTMSL	2235.1	2234.0	2233.5	2233.8	2234.0	2234.1	2234.2	14813 2234.1	2233.9	2234.0
POWER	8.300	100	0.8	5.5	5.5	5.5	5.5	1.5	9.0	9.0
AVE POWER MW PEAK POW MW ENERGY GWH	508 1	162 81 3	162 67 2	162 55 8	162 27 0	162 12 6	162 14 4	162 76 1	162	162
NAT INFLOW DEPLETION	2951 -621	559 86	420 -158	540 -39	210 -131	98 -61	112 -70	270 -115	316 -83	426 -50
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	332	75	11 94	13 82	19	9	10	-20	-15	076
RELEASE	7524	1230	1044	922 - 74	446	208	239	1094	1230	1111
STORAGE ELEV ETMSL	18951.	18614	18473	18400	18439	18457	18477	18167	17875	17740 1837 5
POWER AVE POWER MW PEAK POW MW ENERGY GWH		253 478	222 477	189 476	189 476	189 476	190 477	224 473	250 470	249 468
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	602 213	105 131	151 31	97 -13	46 1	21 0	25 1	5 13	18 19	134 30
CHAN STOR EVAPORATION	1 _336	1 78	9 96	10 82	.19	9	10	-11 42	-9	0
REG INFLOW RELEASE	7577 8911	1127 1460	1078 1598	960 1204	472 542	220 289	252 432	1033 1113	1220 1240	1215 1034
STORAGE	19996.	19664	19143	18899	18829	18760	18581	18501	18481	18662
DISCH KCFS POWER	23.500	23.7	26.8	19.6	18.2	20.8	27.2	18.1	20.2	18.6
POWER AVE POWER MW PEAK POW MW ENERGY GWH		312 724	350 716	255 712	236 711	269 709	351 706	234 705	260 705	240 708
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS DOWER	67	15	19	17	4	2	2	9	1040	1004
RELEASE	8877 1664	1478	1579	1188	538 1631	287 1631	429	1105	1240 1240 1631	1034
ELEV FTMSL DISCH KCFS	1420.6	1420.0 24.0	1420.0 26.5	1420.0 19.3	1420.0	1420.0 20.7	1420.0 27.1	1420.0	1420.0	1420.0 18.6
POWER AVE POWER MW		113	126	_95	91	104	135	_90	99	89
POWER AVE POWER MW PEAK POW MW ENERGY GWH	522.0	509 84.0	517 90.5	538 70.5	538 32.8	538 17.4	538 26.0	538 67.2	538 73.6	529 60.0
FORT RANDA: NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE	LL 240	41	51	7	4	2	2	18	39	77
DEPLETION EVAPORATION	34	15 19	24	18	1	0 2	1	3	1076	1100
RELEASE	9009 9436 - 427	1485	1599 1743	1814	537 850 -212	287 398 _111	429	1005	1276 935	1108 749
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	-42/ 3427. 1355 2	3425 1355 2	-144 3281 1353 5	2642 1345 0	2328 1340 0	2217 1338 0	-20 2191 1337 5	2300 1339 5	2641 1345 0	3000 1350 0
POWER										
AVE POWER MW PEAK POW MW ENERGY GWH		204 356	245 350	236 319	216 296	210 287	207 285	120 294	116 319	108 339
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	1050	135 10	135	161	80 5	37 2	42	135 10	140 1	185
CHAN STOR EVAPORATION	19 22	-1	-10	0 5	2 1	0 1	0	23 3	2	3
REG INFLOW RELEASE	10455 10459	1607 1599	1868 1845	1968 1968	925 925	432 432	493 493	1150 1150	1076 1076	937 972
STOR CHANGE STORAGE	-4	339	23 362	362	362	362	362	362	362	-35
ELEV FTMSL DISCH KCFS POWER	1206.2 25.000	1∠06.5 26.0	1∠07.5 31.0	1∠07.5 32.0	1207.5 31.1	1207.5 31.1	⊥207.5 31.1	18.7	17.5 17.5	⊥∠06.0 17.5
AVE POWER MW PEAK POW MW ENERGY GWH		89 115	105 117	108 117	106 117	106 117	106 117	66 117	62 117	114
				80.6	38.3	17.9	20.4	49.1	46.0	41.3
GAVINS POID NAT INFLOW DEPLETION	NI - SIC 892 132	JUX CITY 216 38	149	122 12	56 7	26	30 3	81 14	71 15	141 15
EGULATED FLO	N AT SIC	JUX CITY	2							
KAF KCFS	/	28.9	33.1	33.8	32.8	32.8	32.8	19.8	18.4	19.8
TOTAL NAT INFLOW DEPLETION CHAN STOR	8264	1381	1182	1287	590	275	315	881	958	1395
DEPLETION CHAN STOR EVAPORATION STORAGE	-814 13	281 4 256	-216 11	-129 23	-147	-69	-78	-190 -7	-179 -21	-87 3
AVE POWER MW PEAK POW MW ENERGY GWH		1081 2345	1141 2339	958 2324	914 2300	954 2290	1064 2286	836 2290	908 2311	870 2320
ENERGY GWH DAILY GWH	4914.7	804.0 25.9	821.6 27.4	713.1 23.0	329.1 21.9	160.2 22.9	204.3 25.5	622.1 20.1	675.9 21.8	584.4 20.9
:	INI-SUM	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

STUDY NO 3

2017

DATE OF STUDY	:23Aug20)16		AUG I,	2016 /	LOWER H	BASIC /	21.5 MA	AF. / BAI	LANCED		
TIME OF STUDY	: 10:17:	:07	FULL SERV 2ND HALF / FULL NAV SEAS VALUES IN 1000 AF EXCEPT AS INDI 2016 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FE									
31JU	L16 INI-SUM	31AUG	2016 30SEP	5 310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB		
FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCES	514 1509 2834 -1325 15022.	106 15 492 -477 14545	132 116 389 -273 14272	114 206 307 -101 14170	51 96 149 -53 14118	24 45 69 -24 14093	27 51 79 -28 14065	59 288 412 -124 13941	354 492 -138 13804	338 444 -106 13697		
POWER AVE POWER MW PEAK POW MW ENERGY GWH GARRISON	463.3	161 81.1	160 63.8	160 50.4	160 24.3	160 11.4	160 13.0	159 67.2	159 80.0	158 72.1		
NAT INFLOW DEPLETION CHAN STOR EVAPORATION	1860 -445 3 595	301 122 3 124	263 -131 14 153	360 -17 15 132	140 -124 59	65 -58 0 28	75 -66 0 31	180 -89 -17 68	210 -52 -13	266 -31 0		
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER MW	4546 7073 -2527 18951. 1841.3 20.300	549 1230 -680 18271 1839.2 20.0	644 1010 -366 17905 1838.0 17.0	568 861 -293 17612 1837.1 14.0	353 417 -63 17548 1836.9 14.0	165 194 -30 17519 1836.8 14.0	188 222 -34 17485 1836.6 14.0	597 1033 -436 17049 1835.2 16.8	741 1107 -366 16683 1834.0 18.0	741 1000 -258 16424 1833.1 18.0		
PEAK POW MW ENERGY GWH	1060.0	474 187.9	470 153.0	467 129.8	466 62.6	465 29.2	465 33.3	460 154.0	455 163.5	452 146.7		
OAHE NAT INFLOW DEPLETION CHAN STOR	325 213 8	51 131 100	84 31 12	54 -13 12	26 1	12 0	14 1	3 13 -12	10 19 -5	72 30		
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	6591 9282 -2691 19996. 1611.6 23.500	1022 1579 -556 19440 1609.9 25.7	158 917 1430 -513 18927 1608.3 24.0	133 807 1654 -848 18079 1605.6 26.9	383 658 -275 17803 1604.7 22.1	27 179 257 -78 17725 1604.4 18.5	205 262 -57 17668 1604.2 16.5	945 1078 -133 17535 1603.7 17.5	1093 1263 -170 17365 1603.2 20.5	1042 1101 -59 17305 1603.0 19.8		
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1440.8	337 721 250.5	313 712 225.1	346 698 257.3	282 693 101.5	236 691 39.6	210 690 40.3	222 688 165.4	260 685 193.2	250 684 168.0		
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS	123 9159 9192 1664. 1420.6	25 1554 1587 1631 1420.0 25.8	31 1398 1398 1631 1420.0 23.5	28 1627 1627 1631 1420.0 26.5	12 646 646 1631 1420.0 21.7	6 251 1631 1420.0 18.1	7 255 255 1631 1420.0 16.1	14 1063 1063 1631 1420.0 17.3	1263 1263 1631 1420.0 20.5	1101 1101 1631 1420.0 19.8		
POWER AVE POWER MW PEAK POW MW ENERGY GWH	541.0	121 509 90.2	113 529 81.1	129 538 96.3	108 538 39.0	91 538 15.3	81 538 15.6	87 538 64.8	101 538 75.0	95 529 63.9		
FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOP CULNCE	LL 129 34 132	20 15 32	29 7 38	4 1 29	2 1 12	1 0 5	1 1 5	10 3 12	21 3	41 3		
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	9155 9583 -428 3427. 1355.2 23.900	1560 1562 -2 3425 1355.2 25.4	1383 1807 -424 3001 1350.0 30.4	1601 1960 -359 2641 1345.0 31.9	635 889 -254 2387 1341.0 29.9	$247 \\ 417 \\ -170 \\ 2217 \\ 1338.0 \\ 30.0$	251 277 -26 2191 1337.5 17.4	1059 951 108 2299 1339.5 15.5	$1281 \\ 940 \\ 341 \\ 2640 \\ 1345.0 \\ 15.3$	1139 780 359 2999 1350.0 14.0		
POWER AVE POWER MW PEAK POW MW ENERGY GWH												
GAVINS POID NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOP CHANCE	NT 567 28 18 40	65 10 -3 8	75 -5 -9 10	89 2 -3 9	45 5 4 4	21 2 0 2	24 3 23 2	75 10 4 1015	75 1 0	99 2 881		
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	10105 -4 331. 1206.2	1599 8 339 1206.5	1845 23 362 1207.5	2035 2035 362 1207.5	928 928 362 1207.5	433 362 1207.5	319 362 1207.5	1015 362 1207.5	1015 362 1207.5	916 -35 327 1206.0		
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH		89 115	105 117		107 117	31.2 107 117 17.9	71 117	58 117	58 117	58 114		
GAVINS POID NAT INFLOW DEPLETION	NT - SIC 476 132	DUX CITY 104 38	2 83 25			14 3			38 15			
REGULATED FLO KAF KCFS	W AT SIC 10449	DUX CITY 1665 27.1	1903 32.0	2091 34.0	953 32.0	445 32.0	332 20.9	1046 17.0				
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE	4973 -445 28 2005	716 370 1 424	707 -148 17 522	815 -95 24 445	373 -128 4 197	174 -60 91	199 -68 23 103	561 -148 -25 224	604 -118 -18	824 -51 2		
STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH		1123 2337	1082 2327	1079 2298	965 2274	895 2259	730 2255	779 2256	862 2273	841 2276		
	INI-SUM											

TIME OF STUDY: 10:17:33

2016-2017 AOP UPPER DECILE RUNOFF

99001 9901 9901 PAGE 1

STUDY	NO	4

TIME OF STUDY: 10:17:33				S IN 100)))))))	CEDT AC		משייי				STUDY	NO	4
28FEB17 INI-SUM 1	201 5MAR 22MAR					31AUG	30SEP	310CT	15NOV	22NOV	201 30NOV		31JAN	28FEB
FORT PECK NAT INFLOW 9450 DEPLETION 616 EVAPORATION 327 MOD INFLOW 8507	341 159 1 0 340 159	1 -: 204 80	36 309 51 1091	607 1748	1205 284 22 899	440 2 70 368	385 -113 87 411	480 -75 75 480	288 -28 18 297	134 -13 8 139	153 -15 9 159	350 -111 39 422	310 -116 426	420 -82 502
RELEASE 8507 STOR CHANGE 0 STORAGE 14785. ELEV FIMSL 2234.0 DISCH KCFS 9.000 POWER 1000	208 97 132 62 4917 14978 34.6 2234.9 7.0 7.0	79 32 15057 153 2235.3 2236	25 322 3 15705 8 2238.2	945 16650 2242.4	830 69 16719 2242.7 13.5	830 -462 16257 2240.7 13.5	713 -302 15955 2239.4 12.0	646 -165 15790 2238.6 10.5	312 -15 15775 2238.6 10.5	146 -7 15768 2238.5 10.5	171 -13 15755 2238.5 10.8	799 -377 15378 2236.8 13.0	799 -373 15005 2235.0 13.0	722 -220 14785 2234.0 13.0
AVE POWER MW PEAK POW MW ENERGY GWH 1335.3	96 96 163 163 34.4 16.1	163 10	64 165		168 168 125.3	168 167 124.8	163 166 117.4	144 166 107.3	144 166 51.9	144 166 24.2	148 166 28.4	165 164 122.6	164 163 121.7	163 162 109.2
GARRISON NAT INFLOW 14000 DEPLETION 1222 CHAN STOR -39	530 247 -18 -8 20		57 41	1152	2715 700	835 111	570 -142 15	645 -33 14	248 -132	116 -61	132 -70 -3	260 -114 -22	315 -84	415 -52 0
ELEV FTMSL 1837.5 18	776 353 565 264 211 89 7951 18040 38.2 1838.4 19.0 19.0	339 142 114 50 18154 1869 1838.8 1840	28 1906 00 627 54 19281 4 1842.3	2142 959 20240 1845.1	25 2820 2214 606 20846 1846.9		99 1341 1965 -624 19483 1842.9 33.0		20 672 893 -221 18671 1840.4 30.0	9 314 417 -103 18568 1840.1 30.0	10 360 468 -108 18460 1839.8 29.5	43 1109 1291 -182 18278 1839.2 21.0		1189 1388 -199 17740 1837.5
POWER AVE POWER MW PEAK POW MW	237 237 471 472 85.2 39.9	238 3 473 4)1 392 79 491	451 500	36.0 458 501 340.5	36.0 457 499 340.1	420 498 302.5	30.0 380 481 282.4	30.0 378 479 136.1	30.0 377 478 63.4	370 477 71.1	21.0 264 474 196.2	25.0 312 470 232.1	25.0 310 468 208.5
OAHE NAT INFLOW 3900 DEPLETION 760 CHAN STOR -17	569 265 25 12 4		2 77		310 199	125 134	185 32 11	145 -13 12	118 1	55 0	63 0 2	15 14 34	10 19 -16	90 30
RELEASE 23630 STOR CHANGE 1 STORAGE 18662.1 ELEV FTMSL 1607.516	1113 517 526 281 587 236 9249 19485 09.3 1610.1 17.7 20.3	338 10 327 79 19812 2060 1611.1 1613	1 1693 6 500 9 21109 4 1614.8	2211 460 21569 1616.1	26 2298 2906 -607 20962 1614.4 47.3	80 2124 2946 -822 20140 1612.0 47.9	98 2031 2705 -675 19466 1610.0 45.5	83 1931 2318 -387 19078 1608.8 37.7	20 990 1140 -150 18928 1608.3 38.3	9 462 567 -104 18824 1608.0 40.8	$10 \\ 522 \\ 749 \\ -227 \\ 18597 \\ 1607.3 \\ 47.2$	42 1284 1536 -251 18346 1606.5 25.0	1512 1460 52 18398 1606.6 23.8	1448 1184 265 18663 1607.5 21.3
POWER AVE POWER MW PEAK POW MW	230 265 718 721 82.7 44.5	249 23 727 73	8 367 9 746	497 753	628 744 467.5	629 732 468.0	593 721 427.1	489 715 363.9	495 712 178.1	525 711 88.3	603 707 115.7	321 702 238.8	305 703 226.8	275 708 184.5
ELEV FTMSL 1420.0 14	526 281 526 281 1631 1631 20.0 1420.0 17.7 20.3	338 10 1631 16 1420.0 1420	1 1693 1 1631 0 1420.0	2211 1631 1420.0	5 2901 2901 1631 1420.0 47.2	15 2931 2931 1631 1420.0 47.7	19 2686 2686 1631 1420.0 45.1	17 2302 2302 1631 1420.0 37.4	4 1136 1136 1631 1420.0 38.2	2 565 565 1631 1420.0 40.7	2 747 747 1631 1420.0 47.1	9 1527 1527 1631 1420.0 24.8	1460 1460 1631 1420.0 23.8	1184 1184 1631 1420.0 21.3
POWER AVE POWER MW PEAK POW MW	84 95 517 509 30.1 15.9	89 5 509 5	129 19 509	174 509	221 509 164.1	223 509 165.8	214 517 153.7	182 538 135.4	189 538 68.2	201 538 33.8	232 538 44.6	124 538 92.5	116 538 86.5	102 529 68.6
FORT RANDALL NAT INFLOW 1500 DEPLETION 80	150 70 1 1		10 230 4 9		80 18	70 15	100 7	40 1	1	0	1	15 3	3	60 3
EVAPORATION 80 REG INFLOW 24900 RELEASE 24899 STOR CHANGE 1	674 351 393 207 281 144	427 15			6 2957 2957 0	19 2967 2967 0	24 2756 2900	18 2323 2962	4 1132 1445	2 563 674	2 744 770	7 1534 1425 109	1457 1116	1241 882
STORAGE 3000. ELEV FTMSL 1350.0 13 DISCH KCFS 13.481	3281 3425	3425 342 1355.2 1355	2 1355.2	3425 1355.2	3425	3425	-144 3281 1353.5 48.7	-639 2642 1345.0 48.2	-313 2329 1340.0 48.6	$^{-111}_{2218}$ 1338.0 48.5	-26 2192 1337.5 48.5	2301 1339.5 23.2	341 2642 1345.0 18.2	359 3001 1350.0 15.9
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2249.9	109 126 350 356 39.4 21.1	356 31	6 356	356	356 356 264.9	356 356 264.9	353 350 254.2	336 319 250.2	308 296 110.7	291 287 49.0	286 285 54.9	169 294 126.1	138 320 102.5	126 339 84.9
GAVINS POINT NAT INFLOW 2250 DEPLETION 114 CHAN STOR -7	111 52 0 0 0 -3	0	80 330 5 19 -3 -11	24	205 39 -16	165 10 0	130 -5 -1	150 2 1	65 5 -1	30 2 0	35 3 0	90 10 47	105 1 9	190 4
EVAPORATION 23 REG INFLOW 27005 RELEASE 27005 STOR CHANGE	506 256 506 256				1 3105 3105	5 3117 3105 12	6 3028 3005 23	5 3105 3105	1 1503 1503	1 701 701	1 801 801	3 1550 1550	1230 1230	1076 1111 -35
STORAGE 327. ELEV FTMSL 1206.0 12	327 327 06.0 1206.0 17.0 18.4	1206.0 1206	0 1206.0	1206.0	327 1206.0 50.5	339	362	362 1207.5 50.5	362 1207.5 50.5	362 1207.5 50.5	362 1207.5 50.5	362 1207.5 25.2	362 1207.5 20.0	327 1206.0 20.0
AVE POWER MW PEAK POW MW	59 64 114 114 21.2 10.7	114 11	.4 114	113	112 112 83.1	113 114 83.8	115 115 82.5	115 115 85.8	$\begin{array}{c}115\\115\\41.5\end{array}$	$115 \\ 115 \\ 19.4$	115 115 22.2	79 78 58.6	70 78 52.0	69 76 46.6
GAVINS POINT - SIOUX NAT INFLOW 3400 DEPLETION 283 REGULATED FLOW AT SIOUX	189 88 7 3		20 890 24 37		290 40	225 39	165 26	85 12	50 7	23 3	27 3	60 14	35 15	140 16
KAF 30122 KCFS	687 340 23.1 24.5				3355 54.6	3291 53.5	3144 52.8	3178 51.7	1546 52.0	721 52.0	825 52.0	1596 25.9	1250 20.3	1235 22.2
TOTAL NAT INFLOW 34500 DEPLETION 3075 CHAN STOR -61 EVAPORATION 1241	1890 882 16 8 24 -3	10 -17	-8 492 11 -71	1990 -44	4805 1280 -16 86	1860 311 0 269	1535 -195 25 332	1545 -106 27 283	768 -146 -1 66	358 -68 0 30	409 -78 -2 35	790 -184 62 141	775 -162 -7	1315 -85 4
	7355 57886 814 882				63910 1943	61898 1945	60178 1858	58395 1647	57696 1629	57370 1655	56997 1754	56296 1122	55976 1104	56146 1045
PEAK POW MW ENERGY GWH 12736.1 2	2333 2336 93.0 148.1 19.5 21.2	2342 23 208.2 764	1 2382 3 1062.5	2399 1244.5	2390	2377	2368	2334	2306 586.5 39.1	2294 278.0 39.7	2287 336.7 42.1	2251 834.9 26.9	2272 821.7 26.5	2282 702.4 25.1
INI-SUM 1	5MAR 22MAR	31MAR 30A	PR 31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

TIME OF STUDY: 10:17:19

2016-2017 AOP UPPER QUARTILE RUNOFF

99001 9901 9901 PAGE 1

STUDY NO 5

TIME OF STUDY: 10:	:17:19					VALUES	S IN 100	0 AF EX	CEPT AS	INDICA	ATED				STUDY	NO	5
28FEB17 INI-S	SUM 1	5MAR	2017 22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	201 30NOV	.8 31DEC	31JAN	28FEB
DEPLETION E EVAPORATION MOD INFLOW 77 RELEASE 77 STOR CHANGE STORAGE 1477 ELEV FTMSL 2234 DISCH KCFS 9.(4.0 22	310 1 309 208 101 4885 34.5 7.0	144 0 144 97 47 14932 2234.7 7.0	186 1 185 125 60 14992 2235.0 7.0	755 -36 791 476 315 15307 2236.4 8.0	1285 309 976 646 330 15638 2237.9 10.5	2155 607 1548 774 774 16412 2241.4 13.0	1105 282 22 801 799 2 16414 2241.4 13.0	$405 \\ -10 \\ 69 \\ 346 \\ 799 \\ -453 \\ 15961 \\ 2239.4 \\ 13.0$	350 -124 85 389 629 -241 15720 2238.3 10.6	$\begin{array}{r} 440 \\ -95 \\ 74 \\ 461 \\ 492 \\ -31 \\ 15689 \\ 2238.2 \\ 8.0 \end{array}$	263 -31 18 276 238 38 15727 2238.3 8.0	123 -14 8 129 111 18 15745 2238.4 8.0	$140 \\ -17 \\ 9 \\ 147 \\ 146 \\ 1 \\ 15746 \\ 2238.4 \\ 9.2$	320 -116 39 707 -310 15436 2237.0 11.5	285 -121 406 799 -393 15043 2235.2 13.0	385 -78 463 722 -259 14784 2234.0 13.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1241	1.4	96 163 34.4	96 163 16.1	96 163 20.7	110 164 78.9	143 165 106.7	166 168 119.7	168 168 124.7	167 166 124.1	145 165 104.5	110 165 82.2	110 165 39.8	110 165 18.6	127 165 24.4	156 164 115.8	164 163 121.8	163 162 109.3
CHAN STOR EVAPORATION 3 REG INFLOW 189 RELEASE 189 STOR CHANGE STORAGE 1774	186 -40 370 923 922 1 40. 1 7.5 18 000	482 -18 20 728 536 192 7932 38.1 18.0 224 470 80.7	225 -8 330 250 80 18012 1838.4 18.0 225 2471 37.8	289 -11 424 321 103 18115 1838.7 18.0 225 473 48.6	1230 -57 -10 1753 1250 504 18619 1840.3 21.0 264 478 189.9	1675 41 -24 2255 1722 533 19152 1841.9 28.0 354 485 263.3	3200 1153 -24 2796 1964 833 19985 1844.4 33.0 419 499 301.5	2475 700 25 2549 1968 582 20567 1846.1 32.0 411 500 306.0	760 107 80 1373 1968 -595 19972 1844.4 32.0 411 499 306.0	520 -160 23 99 1234 1704 -470 19502 1843.0 28.6 365 498 263.1	555 -43 25 85 1030 -507 18995 1841.4 25.0 317 482 236.0	215 -135 20 568 744 -176 18819 1840.9 25.0 316 480 113.8	100 -63 0 9 265 347 -82 18737 1840.6 25.0 316 480 53.1	115 -72 -12 10 397 -87 18650 1840.4 25.0 315 479 60.6	235 -116 -23 43 993 1291 -299 18352 1839.4 21.0 264 475 196.8	295 -83 -15 1163 1537 -375 17977 1838.3 25.0 312 471 232.4	$\begin{array}{r} 380 \\ -50 \\ 0 \\ 1152 \\ 1388 \\ -236 \\ 17741 \\ 1837.5 \\ 25.0 \\ 310 \\ 468 \\ 208.6 \\ \end{array}$
OAHE	200	457	213	274	430	310	640	250	95	150	120	95	44	51	-10		80
DEPLETION CHAN STOR EVAPORATION REG INFLOW 209	760 -18 366 978 976 2 52. 1 7.5 16 513	25 8 976 558 418 9080	12 452 296 156 19236	15 581 357 224 19459	52 -12 1616 1005 611 20070	77 -26 1928 1397 531 20602	163 -19 2422 1843 579 21181	199 4 26 1996 2505 -508 20673	134 80 1849 2540 -691 19981	32 13 97 1737 2329 -592 19390	120 -13 14 83 1601 1933 -332 19058 1608.7 31.4 408 714 303.8	1 20 819 939 -120 18938	0 9 382 473 -91 18847	0 437 642 -205 18642	14 16 42 1241 1463 -222 18420	19 -16 1502 1478 24 18444 1606.8 24.0 309 704 229.8	30 1438 1219 219 18664 1607.5 21.9 283 708 190.1
BIG BEND EVAPORATION REG INFLOW 200 RELEASE 200 STORAGE 165 ELEV FTMSL 1420 DISCH KCFS 18.6 POWER AVE POWER MW PEAK POW MW ENERGY GWH 1200	31. 0.0 14 513	558 558 1631 20.0 18.7 89 517 32.0	296 296 1631 1420.0 21.3 100 509 16.8	357 357 1631 1420.0 20.0 94 509 20.2	1005 1005 1631 1420.0 16.9 79 509 56.9	1397 1397 1631 1420.0 22.7 106 509 79.1	1843 1843 1631 1420.0 31.0 145 509 104.3	5 2500 2500 1631 1420.0 40.7 190 509 141.5	15 2525 2525 1631 1420.0 41.1 192 509 142.9	19 2310 2310 1631 1420.0 38.8 184 517 132.3	17 1916 1916 1631 1420.0 31.2 152 538 113.1	4 935 935 1631 1420.0 31.4 157 538 56.4	2 471 1631 1420.0 33.9 169 538 28.3	2 640 640 1631 1420.0 40.3 200 538 38.3	9 1454 1454 1631 1420.0 23.7 118 538 88.1	1478 1478 1631 1420.0 24.0 118 538 87.6	1219 1219 1631 1420.0 21.9 105 529 70.7
FORT RANDALL NAT INFLOW 12 DEPLETION EVAPORATION REG INFLOW 219 RELEASE 219 STOR CHANGE STOR CHANGE 300	200 80 945 944 1 00. 0.0 13 481	123 1 680 399 281 3281	58 1 353 209 144 3425	74 1 430 430 3425	350 4 1351 1351 0 3425	185 9 1573 1573 0 3425	140 12 1971 1971 3425	75 18 2551 2551 0 3425	65 15 19 2556 2556 0 3425	75 7 24 2354 2498 -144 3281	10 1 18 1907 2546 -639 2642 1345.0 41.4 317 319 235.6	-3 1 928 1241 -313 2329	-1 0 2 468 579 -111 2218	-1 2 636 622 2192 1337.5 41.7 278 285	5 3 7 1451 1342 109 2301	-5 3 1470 1129 341 2642 1345.0 18.4 139 320 103.7	50 3 1266 907 359 3001
DEPLETION CHAN STOR EVAPORATION REG INFLOW 233 RELEASE 233 STOR CHANGE STORAGE 33 ELEV FTMSL 1206 DISCH KCFS 17.5 POWER AVE POWER MW PEAK POW MW	500	106 0 506 506 327 06.0 17.0 59 114 21.2	50 0 -3 256 256 327 1206.0 18.4 64 114 10.7	64 0 -17 477 477 1206.0 26.7 91 114 19.7	240 5 3 1589 1589 1206.0 26.7 91 114 65.6	290 19 -6 1839 1839 1206.0 29.9 101 114 74.9	210 24 -14 2142 2142 1206.0 36.0 114 82.1	180 39 -16 1 2675 2675 327 1206.0 43.5 113 84.2	145 10 0 5 2687 12 339 1206.5 43.5 114 114 84.8	115 -5 -1 2611 2588 23 362 1207.5 43.5 115 116 83.0	135 2 2675 2675 2675 1207.5 43.5 116 86.4	60 5 -1 1294 1294 1294 1207.5 43.5 116 41.8	28 2 0 1 604 604 1207.5 43.5 116 19.5	32 3 0 1 690 690 1207.5 43.5 116 22.3	85 10 37 1451 1451 1207.5 23.6 79 78 58.5	95 16 1230 1230 1207.5 20.0 70 78 52.0	165 4 1076 1111 -35 327 1206.0 20.0 69 76 46.6
GAVINS POINT - NAT INFLOW 28 DEPLETION 2 REGULATED FLOW AT	SIOUX 300 283 SIOUX 317	CITY 165 7		99 4 571 32.0	390 24 1955 32.8	730 37 2532 41.2	435 32 2545 42.8	240 40 2875 46.8	180 39 2816 45.8	135 26 2697 45.3	70 12 2733 44.4	41.0 43 7 1330 44.7	20 3 621 44.7	22.3 23 3 709 44.7	50 14 1487 24.2	30 15 1245 20.2	115 16 1210 21.8
CHAN STOR EVAPORATION 12 STORAGE 5614 SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 11619 DAILY GWH	981 -64 236 45. 5 5.4 2	1643 16 28 7136 821 2330 95.7 19.7 5MAR	766 8 -3 57563 888 2331 149.2 21.3 22MAR	985 10 -17 57950 970 2336 209.5 23.3 31MAR	3395 -8 -19 59380 958 2353 689.5 23.0 30APR	29.3	36.8	42.2	1650 295 0 266 61309 1763 2374 1311.7 42.3 31AUG	39.7	1330 -136 40 282 58377 1421 2335 1057.0 34.1 310CT	673 -153 -1 66 57806 1403 2309 505.1 33.7 15NOV	314 -71 0 30 57539 1434 2298 240.8 34.4 22NOV	359 -81 -12 35 57223 1556 2291 298.7 37.3 30NOV	685 -191 32 142 56502 1083 2254 805.9 26.0 31DEC	700 -166 -24 56099 1112 2274 827.3 26.7 31JAN	1175 -79 4 56147 1060 2282 712.6 25.4 28FEB

2016-2017 AOP MEDIAN RUNOFF

99001 9901 4 PAGE 1

TIME OF STUDY: 10:16	:26				VALIES	S TN 100)በ አፍ ፍኔ	CEDT AS	S INDICA	תידה				STUDY	NO	6
28FEB17 INI-SUM	15MAR	2017 22MAR		30APR			31JUL				15NOV	22NOV	201 30NOV	.8 31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 7200 DEPLETION 578 EVAPORATION 451 MOD INFLOW 6171 RELEASE 6334 STOR CHANGE -163 STORAGE 14291. ELEV FTMSL 2231.6 DISCH KCFS 9.000	11 216 179 38 14329 2231.8	106 5 101 83 18 14347 2231.9 6.0	136 7 130 107 23 14369 2232.0 6.0	560 71 489 446 43 14412 2232.2 7.5	1145 336 809 523 286 14698 2233.6 8.5	1830 458 1372 625 747 15445 2237.1 10.5	$\begin{array}{r} 840 \\ 288 \\ 524 \\ 646 \\ -121 \\ 15324 \\ 2236.5 \\ 10.5 \end{array}$	365 32 87 246 646 -399 14925 2234.6 10.5	290 -90 108 272 486 -214 14710 2233.6 8.2	385 -121 94 412 369 43 14753 2233.8 6.0	205 -38 43 200 179 21 14775 2233.9 6.0	96 -18 20 93 83 10 14785 2234.0 6.0	109 -20 23 107 119 -12 14772 2233.9 7.5	$295 \\ -122 \\ 49 \\ 368 \\ 615 \\ -247 \\ 14525 \\ 2232.7 \\ 10.0$	260 -135 646 -251 14275 2231.5 10.5	350 -87 437 583 -146 14129 2230.8 10.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1038.7	81 161 29.3	81 161 13.7	81 161 17.6	102 161 73.2	115 162 85.9	142 164 102.5	143 164 106.5	143 163 106.1	111 162 80.2	82 162 60.9	82 162 29.5	82 162 13.8	102 162 19.6	136 161 100.9	141 160 104.8	140 160 94.3
GARRISON NAT INFLOW 10900 DEPLETION 1268 CHAN STOR -15 EVAPORATION 520	18 30	223 8	287 11	780 40 -15	1300 185 -10	3120 876 -20	2100 708 32	580 135 101	480 -147 23 126	445 -48 21 109	180 -138 49	84 -64 23	96 -74 -15 26	180 -116 -25 55	255 -78 -5	310 -48
REG INFLOW 15431 RELEASE 15626 STOR CHANGE -196 STORAGE 17143. ELEV FTMSL 1835.5 DISCH KCFS 19.000 POWER 19.000	536 134 17277 1836.0	298 250 49 17326 1836.1 18.0	384 321 62 17388 1836.3 18.0	1171 1160 11 17399 1836.4 19.5	1628 1537 90 17490 1836.7 25.0	2849 1488 1361 18851 1841.0 25.0	2006 1476 530 19381 1842.6 24.0	$990 \\ 1476 \\ -486 \\ 18895 \\ 1841.1 \\ 24.0$	1010 1253 -243 18652 1840.4 21.1	775 1107 -332 18320 1839.3 18.0	448 536 -88 18232 1839.1 18.0	209 250 -41 18192 1838.9 18.0	248 286 -38 18154 1838.8 18.0	831 1261 -430 17724 1837.4 20.5	$974 \\ 1414 \\ -441 \\ 17284 \\ 1836.0 \\ 23.0$	941 1277 -336 16948 1834.9 23.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2357.8	221 463 79.7	222 463 37.3	222 464 48.0	240 464 173.2	308 465 229.0	312 481 224.8	304 493 226.1	304 481 226.2	266 479 191.6	227 475 168.9	226 474 81.4	226 473 37.9	226 473 43.3	256 468 190.1	284 463 211.1	281 458 189.2
OAHE NAT INFLOW 2300 DEPLETION 760 CHAN STOR -16 EVAPORATION 485	25 4	121 12	155 15	405 52 -6	220 77 -22	625 163	170 199 4 31	70 134 95	95 32 12 116	45 -13 13 100	45 1 45	21 0 21	24 0 24	-15 14 -10 52	-10 19 -10	70 30 0
REG INFLOW 16666 RELEASE 16868 STOR CHANGE -203 STORAGE 18048. ELEV FTMSL 1605.5 DISCH KCFS 19.491	303 18352	359 306 53 18404 1606.6 22.1	462 360 101 18505 1607.0 20.2	1507 1293 215 18720 1607.7 21.7	1658 1543 116 18836 1608.0 25.1	1950 1609 340 19176 1609.1 27.0	1420 1849 -430 18746 1607.8 30.1	1317 1983 -666 18080 1605.6 32.2	1211 1754 -543 17538 1603.8 29.5	1077 1263 -186 17352 1603.1 20.5	535 587 -52 17300 1602.9 19.7	250 309 -59 17241 1602.7 22.3	285 227 58 17299 1602.9 14.3	1169 1037 132 17431 1603.4 16.9	1375 1241 134 17565 1603.9 20.2	1317 1037 281 17846 1604.8 18.7
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2610.3	203 702 73.0	283 703 47.6	260 705 56.1	280 709 201.8	324 711 241.2	351 716 252.4	389 709 289.5	413 698 307.3	374 688 269.1	260 685 193.1	249 684 89.6	280 683 47.1	181 684 34.7	213 686 158.5	255 689 189.9	237 694 159.4
BIG BEND EVAPORATION 105 REG INFLOW 16763 RELEASE 16763 STORAGE 1631. ELEV FTMSL 1420.0 DISCH KCFS 19.491 POWER AVE POWER MW PEAK POW MW ENERGY GWH 968.1	470 470 1631 1420.0 15.8 75 517	306 306 1631 1420.0 22.1 103 509 17.3	360 360 1631 1420.0 20.2 95 509 20.4	1293 1293 1631 1420.0 21.7 102 509 73.2	1543 1543 1631 1420.0 25.1 117 509 87.4	1609 1609 1631 1420.0 27.0 127 509 91.1	6 1843 1843 1631 1420.0 30.0 140 509 104.4	20 1963 1963 1631 1420.0 31.9 149 509 111.1	25 1729 1729 1631 1420.0 29.1 138 517 99.1	22 1241 1241 1631 1420.0 20.2 99 538 73.7	10 577 577 1631 1420.0 19.4 97 538 35.1	5 305 1631 1420.0 21.9 110 538 18.5	5 222 222 1631 1420.0 14.0 70 538 13.5	12 1025 1025 1631 1420.0 16.7 84 538 62.5	1241 1241 1631 1420.0 20.2 99 538 73.7	1037 1037 1631 1420.0 18.7 90 529 60.2
FORT RANDALL NAT INFLOW 900 DEPLETION 800 EVAPORATION 116 REG INFLOW 17468 RELEASE 17466 STOR CHANGE 2 STORAGE 2999. ELEV FTMSL 1350.0 DISCH KCFS 13.945 POWER AVE POWER MW PEAK POW MW ENERGY GWH 1726.7	1 590 307 282 3281 1353.5	56 1 362 218 144 3425 1355.2 15.7 132 356 22.3	73 1 432 432 0 3425 1355.2 24.2 204 356 44.2	160 4 1449 1449 3425 1355.2 24.3 206 356 148.1	165 9 1699 1699 3425 1355.2 27.6 233 356 173.3	135 12 1732 1732 0 3425 1355.2 29.1 245 356 176.5	70 18 1887 1887 0 3425 1355.2 30.7 258 356 192.1	60 15 1982 1982 0 3425 1355.2 32.2 271 356 201.7	35 7 31 1725 1869 -144 3281 1353.5 31.4 262 350 188.9	1 24 1216 1855 -639 2642 1345.0 30.2 242 319 179.7	-5 1 9 562 875 -313 2329 1340.0 29.4 222 296 79.9	-2 0 4 298 409 -111 2218 1338.0 29.5 215 287 36.2	-3 1 4 215 241 -26 2192 1337.5 15.2 111 285 21.3	3 904 108 2300 1339.5 14.7 108 294 80.5	-10 3 1228 887 341 2641 1345.0 14.4 110 320 81.7	45 3 1079 720 359 3000 1350.0 1350.0 13.0 103 339 69.5
GAVINS POINT NAT INFLOW 1500 DEPLETION 114 CHAN STOR 1 EVAPORATION 34	0 7	47 0 -10	61 0 -16	145 5 0	165 19 -6	175 24 -3	100 39 -3 2	90 10 -3 6	95 -5 2 8	120 2 2 7	58 5 1 3	27 2 0 2	31 3 26 2	80 10 1 4	85 1 1	120 3
REG INFLOW 18819 RELEASE 18819 STOR CHANGE STORAGE 327.	417	255 255 327 1206.0	477 477 327 1206.0	1588 1588 327 1206.0	1839 1839 327 1206.0	1880 1880 327 1206.0	1943 1943 327	2053 2041 12 339	1963 1940 23 362	1968 1968 362	925 925 362 1207.5	432 432 362	294 294 362	971 971 362	972 972 362 1207.5	842 877 -35 327 1206.0
DISCH KCFS 17.000 POWER AVE POWER MW PEAK POW MW ENERGY GWH 770.7	49 114	18.4 64 114 10.7	26.7 91 114 19.7	26.7 91 114 65.6	29.9 101 114 74.9	31.6 105 114 75.3	31.6 105 114 77.8	33.2 109 115 80.9	32.6 109 117 78.3	32.0 108 117 80.6	31.1 106 117 38.3	31.1 106 117 17.9	18.5 65 117 12.5	15.8 56 78 41.6	15.8 56 78 41.6	15.8 56 76 37.3
GAVINS POINT - SI NAT INFLOW 1800 DEPLETION 283 RECULATED FLOW AT SI	162 7	76 3	97 4	280 24	345 37	190 32	165 40	130 39	110 26	60 12	30 7	14 3	16 3	25 14	25 15	75 16
REGULATED FLOW AT SI KAF 20336 KCFS		328 23.6	570 31.9	1844 31.0	2147 34.9	2038 34.3	2068 33.6	2132 34.7	2024 34.0	2016 32.8	949 31.9	443 31.9	306 19.3	982 16.0	982 16.0	936 16.9
TOTAL NAT INFLOW 24600 DEFLETION 3083 CHAN STOR -30 EVAPORATION 1709 STORAGE 54439.	62 41	630 29 -10 55460	810 37 -16 55646	2330 196 -21 55914	3340 663 -38 56407	6075 1565 -23 58855	3445 1292 1 107 58835	1295 365 -3 334 57295	1105 -177 36 415 56175	1055 -167 36 356 55061	513 -163 1 159 54629	239 -76 0 73 54428	273 -87 12 84 54411	565 -197 -34 181 53974	605 -175 -15 53758	970 -86 3 53880
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 9472.3 DAILY GWH	715 2307	886 2307 148.8 21.3	953 2309 205.9 22.9	1021 2313 735.0 24.5	1198 2317 891.7 28.8	1282 2342 922.8 30.8	1339 2346	1389 2322 1033.2 33.3	1260 2313 907.4 30.2	1017 2296 756.9 24.4	982 2271 353.7 23.6	1020 2261 171.3 24.5	755 2259 145.0 18.1	852 2226 634.1 20.5	945 2247 702.9 22.7	908 2256 609.9 21.8
INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

2016-2017 AOP LOWER QUARTILE RUNOFF

99001 9901 9901 PAGE 1

ΟY	NO	7	

TIME OF STUDY: 10:17			2	2010-201	L/ AOP I	LOWER QU	JARIILL	RUNOFF				99001	9901	STUDY	NO	7
28FEB17	.07	2017	7		VALUES	S IN 100)0 AF EX	KCEPT AS	S INDICA	ATED			201		NO	/
INI-SUM	15MAR			30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 5950 DEPLETION 630 EVAPORATION 517 MOD INFLOW 4803 RELEASE 6096 STOR CHANGE -1293 STORAGE 13697. ELEV FIMSL 2228.7 DISCH KCFS 8.000	201 9 192 179 14 13711 2228.7 6.0		120 5 115 107 8 13725 2228.8 6.0	460 71 389 417 -28 13698 2228.7 7.0	945 185 760 553 207 13904 2229.7 9.0	1510 377 1133 595 538 14442 2232.3 10.0	645 355 257 615 -358 14085 2230.6 10.0	$290 \\ 60 \\ 101 \\ 129 \\ 615 \\ -486 \\ 13599 \\ 2228.2 \\ 10.0$	240 -74 124 490 478 -288 13311 2226.7 8.0	320 -76 107 289 369 -80 13230 2226.3 6.0	$168 \\ -14 \\ 48 \\ 133 \\ 179 \\ -45 \\ 13185 \\ 2226.0 \\ 6.0 \\$	78 -7 23 62 83 -21 13164 2225.9 6.0	89 -7 26 71 100 -29 13135 2225.8 6.3	240 -91 55 276 553 -278 12857 2224.3 9.0	240 -106 346 615 -269 12588 2222.8 10.0	310 -61 371 555 -184 12404 2221.8 10.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 983.2	81 158 29.0	81 158 13.5	81 158 17.4	94 158 67.6	121 159 89.9	135 161 97.0	135 160 100.3	134 158 99.7	107 157 77.3	80 157 59.5	80 156 28.8	80 156 13.4	84 156 16.1	119 155 88.7	131 153 97.6	130 152 87.6
GARRISON NAT INFLOW 9150 DEPLETION 967 CHAN STOR -21	404 23 20	189 11	242 14	640 56 -10	1150 137 -20	2600 564 -10	1700 556	475 140	395 -128 20	395 -16 21	160 -122	75 -57	85 -65 -3	150 -80 -27	210 -43 -10	280 -22 0
EVAPORATION 600 REG INFLOW 13658 RELEASE 15224 STOR CHANGE -1565 STORAGE 16424. ELEV FTMSL 1833.1 DISCH KCFS 18.000	580 506 74 16499 1833.3 17.0	261 236 25 16524 1833.4 17.0	336 303 32 16556 1833.5 17.0	990 1250 -259 16297 1832.6 21.0	1546 1537 9 16306 1832.7 25.0	2621 1488 1133 17439 1836.5 25.0	37 1722 1476 246 17685 1837.3 24.0	$117 \\ 833 \\ 1476 \\ -643 \\ 17042 \\ 1835.2 \\ 24.0$	145 876 1184 -308 16734 1834.1 19.9	125 675 984 -308 16425 1833.1 16.0	56 404 476 -72 16354 1832.8 16.0	26 189 222 -33 16320 1832.7 16.0	30 218 254 -36 16284 1832.6 16.0	64 692 1199 -507 15777 1830.8 19.5	858 1383 -526 15251 1828.9 22.5	857 1250 -392 14859 1827.5 22.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2224.8	206 453 74.1	206 453 34.6	206 454 44.5	253 450 182.5	300 450 223.4	304 465 218.9	296 467 220.5	295 460 219.6	243 456 174.8	194 452 144.6	194 451 69.7	193 451 32.5	193 450 37.1	233 444 173.7	266 437 197.7	263 431 176.7
OAHE NAT INFLOW 1350 DEPLETION 760 CHAN STOR -19 EVAPORATION 543 REG INFLOW 15251 RELEASE 16864 STOR CHANGE -1613 STORAGE 17305.	177 25 4 661 524 138 17443	82 12 307 354 -47 17396	106 15 394 417 -23 17373	285 52 -17 1466 1476 -10 17363	130 77 -17 1574 1735 -161 17202	315 163 1640 1719 -79 17123	110 199 4 35 1356 1920 -564 16559	50 134 107 1284 1949 -664 15895	55 32 18 132 1094 1449 -356 15539	15 -13 17 112 917 1510 -593 14946	13 1 50 438 591 -153 14793	6 0 23 205 226 -21 14772	7 0 26 234 212 22 14794	-35 14 -16 58 1076 852 225 15019	-15 19 -14 1336 1058 278 15296	50 30 1270 874 396 15692
ELEV FTMSL 1603.0 DISCH KCFS 19.825 POWER AVE POWER MW PEAK POW MW	1603.4 17.6 222 686	1603.3 25.5 321 685	1603.2 23.4 295 685	1603.2 24.8 313 685	1602.6 28.2 355 682	1602.3 28.9 362 681	1600.3 31.2 389 670	1597.9 31.7 389 658	1596.6 24.4 297 651	1594.3 24.6 297 640	1593.7 19.9 238 637	1593.6 16.3 195 637	1593.7 13.3 160 637	1594.6 13.9 167 641	1595.7 17.2 208 647	1597.2 15.7 192 654
ENERGY GWH 2517.1	80.1	53.9	63.6	225.0	263.8	260.6	289.1	289.8	213.8	220.6	85.8	32.8	30.7	124.0	154.7	128.7
BIG BEND EVAPORATION 131 REG INFLOW 16733 RELEASE 16733 STORAGE 1631. ELEV FTMSL 1420.0 DISCH KCFS 19.825 POWER AVE POWER MW PEAK POW MW	524 524 1631 1420.0 17.6 83 517	354 354 1631 1420.0 25.5 119 509	417 417 1631 1420.0 23.4 109 509	1476 1476 1631 1420.0 24.8 116 509	1735 1735 1631 1420.0 28.2 132 509	1719 1719 1631 1420.0 28.9 135 509	8 1912 1912 1631 1420.0 31.1 146 509	25 1924 1924 1631 1420.0 31.3 146 509	31 1418 1418 1631 1420.0 23.8 114 529	28 1483 1483 1631 1420.0 24.1 118 538	12 579 579 1631 1420.0 19.5 97 538	6 220 1631 1420.0 15.8 80 538	7 205 205 1631 1420.0 12.9 65 538	14 837 837 1631 1420.0 13.6 69 538	1058 1058 1631 1420.0 17.2 85 538	874 874 1631 1420.0 15.7 75 529
ENERGY GWH 965.8	30.0	20.0	23.6	83.6	98.3	97.3	108.3	108.9	82.2	87.8	35.0	13.4	12.5	51.1	62.9	50.7
FORT RANDALL NAT INFLOW 450 DEPLETION 80 EVAPORATION 142 REG INFLOW 16962 RELEASE 16960 STOR CHANGE 2 STORAGE 2999. ELEV FTMSL 1350.0 DISCH KCFS 14.046 POWER AVE POWER MW PEAK POW MW ENERGY GWH 1677.8	1353.5 10.7 88 350	1355.2	46 1 463 463 3425 1355.2 25.9 219 356 47.2	80 4 1552 1552 0 3425 1355.2 26.1 220 356 158.5	65 9 1791 0 3425 1355.2 29.1 245 356 182.5	110 12 1817 1817 3425 1355.2 30.5 257 356 185.0	35 18 10 1919 1919 3425 1355.2 31.2 263 356 195.4	30.9 260 356	7 38 1373 1797 -424 3001 1350.0 30.2 249 339 179.2	-20 1 29 1433 1792 -359 2642 1345.0 29.1 230 319 171.1	-8 12 559 813 -254 2388 1341.0 27.3 207 301 74.7	-4 0 5 211 -170 2218 1338.0 27.4 202 287 33.9	-4 15 221 -26 2192 1337.5 14.0 102 285 19.6	-10 3 12 813 704 2301 1339.5 11.4 84 294 62.8	-20 3 1035 694 341 2642 1345.0 11.3 86 319 64.1	40 3 911 552 359 3001 1350.0 9.9 79 339 53.4
GAVINS POINT NAT INFLOW 1300 DEPLETION 114 CHAN STOR 7	0 6	43 0 -13	55 0 -16	125 5 0	140 19 -6	150 24 -3	85 39 -1	70 10 1	80 -5 1	105 2 2	50 5 3	23 2 0	27 3 25	75 10 5	75 1 0	105 3
EVAPORATION 42 REG INFLOW 18110 RELEASE 18110 STOR CHANGE STORAGE 327.		275 275 327	502 502 327	1672 1672 327	1906 1906 327	1940 1940 327	2 1961 1961 327	8 1955 1943 12 339	10 1874 1851 23 362	9 1888 1888 362	4 857 857 362	2 400 400 362	2 268 268 362	5 769 769 362	769 769 362	659 694 -35 327
ELEV FTMSL 1206.0 DISCH KCFS 16.500 POWER AVE POWER MW	1206.0 14.0 49	1206.0 19.8 68	1206.0 28.1 96	1206.0 28.1 96	1206.0 31.0 103	1206.0 32.6 107	1206.0 31.9 105	1206.5 31.6 105	1207.5 31.1 105	1207.5 30.7 105	1207.5 28.8 101	1207.5 28.8 101	1207.5 16.9 60	1207.5 12.5 44	1207.5 12.5 44	1206.0 12.5 44
PEAK POW MW ENERGY GWH 743.5 GAVINS POINT - SI	OUX CIT		114 20.7	114 68.8	114 76.8	114 76.9	114 78.3	115 78.2	117 75.9	117 78.4	117 36.3	117 16.9	117 11.5	78 33.0	78 33.0	76 29.6
NAT INFLOW 1100 DEPLETION 283 REGULATED FLOW AT SI KAF 18927 KCFS	7 OUX CIT	56 3 Y 328 23.6	73 4 570 31.9	145 24 1793 30.1	185 37 2054 33.4	115 32 2023 34.0	100 40 2021 32.9	80 39 1984 32.3	65 26 1890 31.8	35 12 1911 31.1	23 7 873 29.3	11 3 407 29.3	12 3 277 17.4	10 14 765 12.4	20 15 774 12.6	50 16 728 13.1
TOTAL NAT INFLOW 19300 DEPLETION 2834 CHAN STOR -33 EVAPORATION 1975	1072 65 31	500 30 -13	643 39 -16	1735 212 -27	2615 464 -43	4800 1172 -13	2675 1207 3 125	990 398 1 389	835 -142 39 480	850 -90 40 410	405 -123 3 182	189 -57 0 84	216 -66 22 96	430 -130 -39 208	510 -111 -24	835 -34 3
STORAGE 52384. SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 9112.2	52891 729 2280 262.6	944 2277 158.6	53038 1005 2277 217.1	52741 1092 2273 786.0	52795 1256 2271 934.6	54387 1300 2286 935.7	53712 1333 2277 991.9	51931 1330 2256 989.8	50577 1115 2248 803.1	49236 1024 2222 762.1	48712 917 2200 330.2	48467 851 2186 142.9	48398 664 2183 127.5	47947 717 2150 533.3	47771 820 2172 610.1	47914 784 2182 526.8
DAILY GWH	17.5	22.7 22MAR	24.1	26.2	30.1	31.2	32.0	31.9	26.8	24.6	22.0	20.4	15.9	17.2	19.7 31JAN	18.8 28FEB

2016-2017 AOP LOWER DECILE RUNOFF

99001 9901 9901 PAGE 1

YC	NO	8

TIME OF STUD	-			4	2010-201	I AUP I	JOWER DE	CIDE RU	JNOFF				99001	9901	STUDY	NO	8
	EB17	. 50	2017	,		VALUES	G IN 100	0 AF EX	KCEPT AS	INDICA	ATED			201		NO	0
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION	 5300 496 504	194 9	90 4	116 5	440 70	850 185	1180 377	595 222 32	260 32 98	230 -100 121	310 -90 105	145 -24 47	68 -11 22	77 -13 25	220 -73 54	230 -60	295 -38
MOD INFLOW RELEASE	4300 6242	185 179	86 83	111 107	370 417	665 492	803 625	341 646	130 646	209 494	295 369	121 179	57 83	65 111	239 584	290 646	333 583
STOR CHANGE STORAGE ELEV FTMSL	-1942 13697. 2228.7			4 13710 2228.7		173 13837 2229.4	178 14015 2230.2	-305 13711 2228.7		-285 12910 2224.6		-57 12779 2223.9		-46 12706 2223.5			-250 11755 2218.2
DISCH KCFS POWER AVE POWER MI	8.000 M	6.0 81	6.0 81	6.0 81	7.0 94	8.0 107	10.5 140	10.5 140	10.5 138	8.3 110	6.0 79	6.0 79	6.0 79	7.0 92	9.5 124	10.5 134	10.5 133
PEAK POW MW ENERGY GWH	994.6	158 29.0	158 13.5	158 17.4	158 67.6	159 79.9	159 100.6	158 103.8	156 103.0	155 79.2	155 59.1	154 28.5	154 13.3	$154 \\ 17.7$	152 92.6	150 99.9	148 89.5
GARRISON- NAT INFLOW DEPLETION	7400 976	382 23	178 11	229 14	580 56	1100 137	2165 564	935 556	325 114	215 -133	385 -13	150 -118	70 -55	80 -63	140 -69	195 -32	270 -16
CHAN STOR EVAPORATION REG INFLOW	26- 577 12063	20 558	251	323	-10 930	-10 1445	-25 2200	36 988	112 744	22 139 725	23 120 670	54 392	25 183	-10 29 215	-26 61 706	-10 862	869
RELEASE STOR CHANGE STORAGE	14414 -2350 16424.	476 82 16507	222 29 16535	286 37 16573	1250 -319 16253	1414 31 16284	1369 832 17116	1353 -364 16751	1353 -609 16143	1130 -405 15738	984 -313 15424	476 -84 15340	222 -39 15301	254 -39 15262	1168 -462 14800	1291 -429 14371	1166 -297 14074
ELEV FTMSL DISCH KCFS																	1824.6 21.0
POWER AVE POWER MI PEAK POW MW	Ň	194 453	194 453	194 454	253 450	276 450	279 461	268 456	266 448	227 443	190 439	189 438	189 437	189 437	222 431	243 425	241 421
ENERGY GWH	2079.0	69.8	32.6	42.0	182.4	205.6	200.9	199.6	197.5	163.5	141.4	68.1	31.7	36.2	165.4	180.6	161.7
NAT INFLOW DEPLETION CHAN STOR	1150 760 -13	169 25 8	79 12 0	102 15 0	200 52 -21	110 77 -8	305 163	105 199 4	40 134	45 32 14	5 -13 14	8 1	4 0 0	4 0 0	-45 14 -14	-20 19 -9	40 30
EVAPORATION REG INFLOW	524 14267	629	289 372	372 425	1377	1439 1761	1511 1736	34 1229 1859	104 1155 1895	126 1031	108 908	48 435	23 203 270	26 232	56 1039	1243	1176
RELEASE STOR CHANGE STORAGE	16689 -2422 17305.	546 82 17387	-82 17305	425 -53 17252	1464 -87 17166	-322 16844	-226 16618	-630 15988	-740 15248	1669 -639 14609	1168 -260 14349	502 -67 14282	-67 14215	202 30 14245	868 171 14416	1068 175 14590	884 293 14883
ELEV FTMSL DISCH KCFS POWER	1603.0 19.825	1603.2 18.4	1603.0 26.8	1602.8 23.8	1602.5 24.6	1601.4 28.6	1600.6 29.2	1598.3 30.2	1595.5 30.8	1593.0 28.1	1592.0 19.0	1591.7 16.9	1591.4 19.5	1591.5 12.7	1592.2 14.1	1592.9 17.4	1594.1 15.9
AVE POWER MI PEAK POW MW ENERGY GWH	N 2466.6	232 685 83.4	337 684 56.6	299 683 64.7	309 681 222.5	358 675 266.2	363 671 261.1	372 659 277.0	374 646 278.4	336 633 242.0	226 628 168.2	200 627 72.0	230 626 38.7	151 626 29.0	168 630 124.8	207 633 154.0	191 639 128.1
BIG BEND-	-	05.4	50.0	04.7	222.3	200.2	201.1									134.0	120.1
EVAPORATION REG INFLOW RELEASE	131 16558 16558	546 546	372 372	425 425	1464 1464	1761 1761	1736 1736	8 1851 1851	25 1870 1870	31 1638 1638	28 1141 1141	12 489 489	6 264 264	7 195 195	14 854 854	1068 1068	884 884
STORAGE ELEV FTMSL DISCH KCFS	1631. 1420.0 19.825	$1631 \\ 1420.0 \\ 18.4$	1631 1420.0 26.8	1631 1420.0 23.8	1631 1420.0 24.6	1631 1420.0 28.6	1631 1420.0 29.2	1631 1420.0 30.1	1631 1420.0 30.4	1631 1420.0 27.5	1631 1420.0 18.5	1631 1420.0 16.4	1631 1420.0 19.0	1631 1420.0 12.3	1631 1420.0 13.9	1631 1420.0 17.4	1631 1420.0 15.9
POWER AVE POWER M		87	125	111	115	134	137	141	142	130	91	83	96	62	70	85	76
PEAK POW MW ENERGY GWH	954.5	517 31.3	509 21.1	509 24.1	509 82.9	509 99.7	509 98.3	509 104.8	509 105.9	517 93.9	538 67.7	538 29.8	538 16.1	538 12.0	538 52.1	538 63.5	529 51.3
FORT RAND NAT INFLOW DEPLETION	ALL 350 80	68 1	32 1	41 1	85 4	50 9	95 12	25 18	15 15	-57	-25 1	-10	-5	-5 1	-20	-25 3	35 3
EVAPORATION REG INFLOW	145 16683	613	403	465	1545	1802	1819	10 1848	32 1838	39 1587	31 1084	12 466	5 255	5 185	12 819	1040	916
RELEASE STOR CHANGE STORAGE	16682 2 2999.	331 282 3281	259 144 3425	465 3425	1545 3425	1802 3425	1819 3425	1848 0 3425	1838 0 3425	1731 -144 3281	1723 -639 2642	779 -313 2329	366 -111 2218	211 -26 2192	710 109 2301	699 341 2642	557 359 3001
ELEV FTMSL DISCH KCFS POWER	1350.0 14.046	1353.5 11.1	1355.2 18.6	1355.2 26.0	1355.2 26.0	1355.2 29.3	1355.2 30.6	1355.2 30.1	1355.2 29.9	1353.5 29.1	1345.0 28.0	1340.0 26.2	1338.0 26.3	1337.5 13.3	1339.5 11.5	1345.0 11.4	1350.0 10.0
AVE POWER MI PEAK POW MW ENERGY GWH	N 1655.5	92 350 33.1	157 356 26.3	220 356 47.4	219 356 157.7	247 356 183.6	257 356 185.3	253 356 188.2	252 356 187.3	243 350 175.2	225 319 167.2	198 296 71.4	193 287 32.4	97 285 18.7	85 294 63.4	87 319 64.6	80 339 53.9
GAVINS PO NAT INFLOW		80	37	48	120	130	135	80	60	75	107.2	48	22	25	70	70	100
DEPLETION CHAN STOR	114 6	0	0 -14	-14	5	19 -6	24	39 1	10	-5 2	2 2	5 3	2 0	3 24	10 3	1 0	2
EVAPORATION REG INFLOW RELEASE	42 17732 17732	417 417	282 282	499 499	1660 1660	1906 1906	1928 1928	2 1888 1888	8 1881 1869	10 1802 1779	9 1814 1814	4 821 821	2 383 383	2 256 256	5 769 769	769 769	659 694
STOR CHANGE STORAGE	327.	327	327	327	327	327	327	327	12 339 1206.5	23 362	362	362	362	362	362	362	-35 327
ELEV FTMSL DISCH KCFS POWER	16.500	14.0	20.3	27.9	27.9	31.0	32.4	30.7	30.4	29.9	29.5	27.6	27.6	16.1	12.5	12.5	1206.0 12.5
AVE POWER M PEAK POW MW ENERGY GWH	N 731.8	49 114 17.6	70 114 11.8	95 114 20.5	95 114 68.4	103 114 76.8	106 114 76.6	103 114 76.3	102 115 76.1	103 117 73.8	102 117 76.2	97 117 34.8	97 117 16.2	57 117 10.9	44 78 33.0	44 78 33.0	44 76 29.6
GAVINS PO NAT INFLOW	700	87	41	52	90	120	65	70	40	30	30	18	8	9	5	15	20
DEPLETION REGULATED FLO KAF	283 DW AT SIC 18149	496	319	4 547	24 1726	37 1989	32 1961	40 1918	39 1870	26 1783	12 1832	7 832	3 388	3 261	14 760	15 769	16 698
KCFS TOTAL		16.7	23.0	30.6	29.0	32.4	33.0	31.2	30.4	30.0	29.8	28.0	28.0	16.5	12.4	12.5	12.6
NAT INFLOW DEPLETION CHAN STOR	16100 2709 -32	980 65 34	457 30 -14	588 39 -14	1515 211 -31	2360 464 -25	3945 1172 -28	1810 1074 5	740 344 0	590 -173 37	805 -101 39	358 -128 3	167 -60 0	191 -68 14	370 -101 -37	465 -54 -19	760 -5 2
EVAPORATION STORAGE	1923 52384.	52837	52930	52918	52466	52348	53132	122 51833	378 49981	467 48531	400 47244	178 46723	82 46479	93 46397	202 45870	45601	45670
SYSTEM POWE AVE POWER MI PEAK POW MW	Ň	734 2279	964 2275	1000 2275	1085 2269	1225 2264	1282 2271	1277 2253	1275 2231	1149 2216	914 2196	846 2170	884 2160	648 2157	714 2123	801 2143	765 2152
ENERGY GWH DAILY GWH	8882.1		161.9 23.1	216.1 24.0	781.5 26.0	911.7 29.4	922.7 30.8	949.8 30.6	948.3 30.6	827.5 27.6	679.8 21.9	304.6 20.3	148.5 21.2	124.5 15.6	531.3 17.1	595.6 19.2	514.1 18.4
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB