

Northwestern Division Missouri River Basin Water Management Division

Missouri River Mainstem System 2004 Annual Operating Plan

Reservoir Control Center 50 Years of Water Management Missouri River Mainstem System

Annual Operating Plan Process 51 Years Serving the Misssouri River Basin

March 2004

DEPARTMENT OF THE ARMY NORTHWESTERN DIVISION, CORPS OF ENGINEERS 12565 WEST CENTER ROAD OMAHA, NEBRASKA 68144-3869

March 19, 2004

This Annual Operating Plan (AOP) presents information regarding the Corps of Engineers' operation of the Missouri River Mainstem Reservoir System (System) through December 2004. The information provided in this AOP is based on the new Missouri River Master Water Control Manual dated March 19, 2004. The reservoir regulation simulation data presented in this AOP are based on inflow scenarios from our March 1, 2004 runoff forecasts. This approach provides a good range of water management simulations for dry, average, and wet conditions.

The AOP provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year to serve its Congressionally authorized project purposes. In addition, 5-year extensions to the AOP water management simulations, through March 2010, are presented to serve as guides for longer range planning. System water management is provided by my staff at the Missouri River Basin Water Management Division, Northwestern Division, U.S. Army Corps of Engineers located in Omaha, Nebraska.

On December 16, 2003, and in response to the Corps' request for the reinitiation of consultation, the U.S. Fish and Wildlife Service (USFWS) issued an amendment to its 2000 Biological Opinion (2003 Amended BiOp). The 2003 Amended BiOp includes a "reasonable and prudent alternative" (RPA) that calls for a low summer release from the Mainstem Reservoir System of 25,000 cfs each year beginning no later than July 1 and lasting for a minimum of 30 days. The 2003 Amended BiOp includes a provision that this low summer release may be modified, in consultation with the USFWS, if 1200 acres of shallow water habitat (SWH) for the endangered pallid sturgeon is constructed in the river reach between Sioux City, Iowa and Omaha, Nebraska.

Since receipt of the 2003 Amended BiOp, the Corps has been working with the USFWS on plans for near-term SWH development sufficient to meet the intent of the 2003 Amended BiOp; therefore allowing the Corps to operate for all Congressionally authorized purposes this summer. In a letter dated February 13, 2004, the Corps provided new information to support a request that the 1200 acres of new SWH development be applied from Ponca State Park to the mouth of the Osage River, and not be limited to the Sioux City to Platte River reach identified in the 2003 Amended BiOp. The USFWS evaluated this request and concurred in a letter dated March 5, 2004.

The March 5, 2004 USFWS letter also responded to our March 2, 2004 letter containing a list of potential sites suitable for SWH development. The USFWS agreed that the list provided identified a sufficient number of sites that could satisfy the RPA element by July 1, 2004. However, if this condition is not met, summer releases would be reduced to 25,000 cfs in July and would be held at that level for a minimum of 30 days to comply with the provisions of the 2003 Amended BiOp.

The 2003 Amended BiOp also calls for a "spring pulse" from the System, but allows a twoyear period of study to establish an acceptable flow management plan, which will likely avoid jeopardy to the continued existence of the pallid sturgeon and will not result in the destruction or adverse modification of critical habitat in the Missouri River. In their March 5, 2004 letter, the USFWS confirmed that a spring rise is not required in 2004.

The AOP presents a "steady release – flow-to-target" schedule during the nesting season of the interior least tern and piping plover, which are listed for protection under the Endangered Species Act. Under a steady release – flow-to-target schedule, Gavins Point releases are set at an initial steady rate, and then adjusted upward during the nesting season to meet downstream flow targets, if necessary. This operation makes a larger amount of habitat available early in the nesting season, saves additional water in the upper three reservoirs when compared to a steady release scenario and minimizes the potential for flooding nests. It also provided certainty for downstream users that releases could be increased if needed to meet flow targets. To the extent reasonably possible, we will attempt to provide rising pools during the forage fish spawn.

A draft of this AOP was made available to the public in October 2003. Three fall public meetings on the Draft 2003-2004 AOP were held on October 28, 2003 in Pierre, South Dakota; October 29, 2003 in Omaha, Nebraska; and October 30, 2003 in Columbia, Missouri. The primary purposes of these meetings were to present a synopsis of the Draft AOP and to allow those in attendance to make comments in person to Corps of Engineers staff. Attendees included representatives from the Tribes, Missouri River Basin states, public and industry interest groups and private citizens. Copies of the comment letters received on the Draft AOP and a report on the comments received at the three meetings are available upon request, as outlined below.

In addition to the AOP, two separate documents are also available entitled, "System Description and Operation" and "Summary of Actual Calendar Year 2003 Operations." To receive copies of those documents, you may contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both documents are also available at the "Reports and Publications" link on our web site at www.nwd-mr.usace.army.mil/rcc.

I thank you for your interest in the operation of the System. With your help, I trust we can ensure the improvement of the survival of the species, lessen the impact of severe drought by retaining more water in the reservoirs, and move towards providing predictability to the people of the basin. The basin must work together as a team – Federal, Tribes, State and local agencies, as well as the diverse stakeholders – and remain committed to preserving the Missouri River as a National treasure, allowing everyone to enjoy its beauty and many resources.

> William T. Grisoli Brigadier General, U.S. Army Division Engineer

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2004

List of List of	Plates . Abbrev	riations Ferms	ii iii
I.	FORE	WORD	1
II.	PURP	DSE AND SCOPE	1
III.		STEM MASTER MANUAL REVIEW AND UPDATE ESA CONSULTATIONS	3
IV.	FUTU	RE WATER SUPPLY: MARCH – DECEMBER 2004	5
V.	ANNU	AL OPERATING PLAN FOR 2004	6
	A. B. C. D.	General 2004 AOP Simulations Regulation Plan for January – March 2004 Regulation During the 2004 Navigation Season	9 11
VI.	SUMN	IARY OF RESULTS EXPECTED IN 2004	
	A. B. C. D. E. F. G. H.	Flood Control Water Supply and Water Quality Control Irrigation Navigation Power Recreation, Fish and Wildlife System Storage Summary of Water Use by Functions	
VII.		ATIVE PROJECTION OF OPERATIONS THROUGH TH 2010	21
	A. B. C.	Median Runoff Lower Quartile Runoff Lower Decile Runoff	24

TABLES

Ι	Natural and Gross Water Supply at Sioux City	5
II	Relation of System Storage to Navigation Service Level	7
III	Relation of System Storage to Navigation Season Length	7
IV	Gavins Point Releases Needed to Meet Target Flows	8
V	Navigation Service Support for the 2004 Season	12
VI	Reservoir Unbalancing Schedule	15
VII	MRNRC Recommended Reservoir Elevation Guidelines for Unbalancing	15
VIII	Peaking Capability and Sales	20
IX	Energy Generation and Sales	20
Х	Anticipated December 31, 2004 System Storage	21
XI	Missouri River Mainstem System Water Use for Calendar Years 2002, 2003,	
	and 2004 Above Sioux City, Iowa	22
XII	Navigation Service Support, AOP Extensions	23
XIII	March 1 Reservoir Unbalancing, AOP Extensions	24

PLATES

- 1 Missouri River Basin Map
- 2 Summary of Engineering Data
- 3 System Storage
- 4 Gavins Point Releases
- 5 Fort Peck Elevations and Releases
- 6 Garrison Elevations and Releases
- 7 Oahe Elevations and Releases
- 8 Fort Randall Elevations and Releases
- 9 Reservoir Release and Unregulated Flow
- 10 System Gross Capability and Average Monthly Generation
- 11 Tentative Five Year Extension of 2004 AOP
- 12 Tentative Five Year Extension of 2004 AOP

ABBREVIATIONS

AOP	-	annual operating plan
ac.ft.	-	acre-feet
AF	-	acre-feet
В	-	Billion
cfs	-	cubic feet per second
COE	-	Corps of Engineers
CY	-	calendar year (January 1 to December 31)
elev	-	elevation
ft	-	feet
FY	-	fiscal year (October 1 to September 30)
GIS	-	Geographic Information System
GWh	-	gigawatt hour
KAF	-	1,000 acre-feet
Kcfs	-	1,000 cubic feet per second
kW	-	kilowatt
kWh	-	kilowatt hour
Μ	-	million
MAF	-	million acre-feet
MRBA	-	Missouri River Basin Association
MRNRC	-	Missouri River Natural Resources Committee
msl	-	mean sea level
MW	-	megawatt
MWh	-	megawatt hour
plover	-	piping plover
pp	-	powerplant
RCC	-	Reservoir Control Center
RM	-	river mile
tern	-	interior least tern
tw	-	tailwater
USFWS	-	United States Fish and Wildlife Service
USGS	-	United States Geological Survey
yr	-	year

DEFINITION OF TERMS

<u>Acre-foot (AF, ac-ft) is the quantity of water required to cover 1 acre to a depth of 1</u> foot and is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2004

I. FOREWORD

This Annual Operating Plan (AOP) presents pertinent information and plans for regulating the Missouri River Mainstem Reservoir System (System) through December 2004 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the coming year to serve the Congressionally authorized project purposes. Regulation is directed by the Reservoir Control Center in the Missouri River Basin Water Management Division, Northwestern Division, U.S. Army Corps of Engineers (Corps). A map of the Missouri River basin is shown on *Plate 1* and the summary of engineering data for the six System projects is shown on *Plate 2*.

This plan may require adjustments when substantial departures from expected runoff occur, to meet emergencies, or to meet the provisions of applicable laws, including the Endangered Species Act (ESA). Results of a 5-year extension to the AOP studies (March 2005 to March 2010) are presented to serve as a guide for Western Area Power Administration's power marketing activities and those other interests that require information on reservoir conditions for long term planning.

Prior to the 1998-1999 AOP, a System description and discussion of the typical operation, a historic summary of the previous year's regulation, and the plan for future operation was included in one document. Since the 1998-1999 AOP this information has been published in separate reports available upon request. This document provides the plan for future regulation of the System. To receive a copy of either the updated version of the "System Description and Operation," dated Spring 2002, or the "Summary of Actual Calendar Year 2002 Operations," dated May 2003, contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports are currently available at the "Reports and Publications" link on our web site at: **www.nwd-mr.usace.army.mil/rcc**. The "Summary of Actual Calendar Year 2003 Operations" will be available at the same site in the spring of 2004.

II. PURPOSE AND SCOPE

Beginning in 1953, projected System operation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, state, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System regulation. The Coordinating Committee on Missouri River Mainstem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982, the Committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meeting is conducted to take public input on a draft of the AOP, which typically is published in early October each year. The spring meetings are conducted to update the public on the current hydrologic conditions and projected System regulation for the remainder of the year.

Last spring's public meetings were held at the following locations: Kansas City, Missouri on April 7, 2003; Yankton, South Dakota on April 8, 2003; and Nebraska City, Nebraska on April 10, 2003. The attendees were given an update regarding the outlook for 2003 runoff and projected operation for the remainder of 2003. Three fall public meetings on the Draft 2003-2004 AOP were held on October 28, 2003 in Pierre, South Dakota; October 29, 2003 in Omaha, Nebraska; and October 30, 2003 in Columbia, Missouri. The spring 2004 AOP meetings are scheduled for April 5 in Omaha; April 6 in Lewistown, Montana; April 7 in Bismarck, North Dakota; and April 8 in Kansas City.

Preliminary Draft AOP data was presented to the Missouri River Basin Association (MRBA) on July 28, 2003.

III. <u>MAINSTEM MASTER MANUAL REVIEW AND UPDATE</u> <u>AND ESA CONSULTATIONS</u>

The Missouri River Master Water Control Manual (Master Manual), first published in 1960 and subsequently revised during the 1970's and again in March 2004, presents the water control plan and operational objectives for the integrated operation of the Mainstem Reservoir System. In 1989, the Corps initiated a review of the Master Manual in consideration of other laws and regulations, including the Endangered Species Act (ESA), National Environmental Policy Act (NEPA), and the President's Council on Environmental Quality (CEQ) regulations pertaining to NEPA.

In accordance with ESA, the Corps must insure, in consultation with the U.S. Fish and Wildlife Service (USFWS), that any action carried out by the Corps is not likely to jeopardize the continued existence of any Federally listed endangered or threatened species, or result in the destruction or adverse modification of their critical habitat. The species of interest in regard to these projects are the pallid sturgeon (endangered), the interior least tern (endangered), and the piping plover (threatened).

The Corps entered into formal consultation with the USFWS which culminated in the USFWS Missouri River Biological Opinion issued November 2000 (2000 BiOp). The 2000 BiOp concluded the Corps' proposed action jeopardized the continued existence of the listed pallid sturgeon, piping plover, and the interior least tern, and recommended a Reasonable and Prudent Alternative (RPA) to avoid jeopardy.

On November 3, 2003, the Corps requested reinitiation of formal ESA consultation. The request for reinitiation was based on the existence of new information regarding effects of the Mainstem Reservoir System operations on the Federally listed species as well as a new critical habitat designation for one of the listed species. The Corps' description of this information and of the proposed action was set forth in a detailed biological assessment accompanying the request to reinitiate consultation.

On December 16, 2003, and in response to the Corps' request for the reinitiation of consultation, the USFWS issued an amendment to its 2000 BiOp. The 2003 Amended BiOp includes a "reasonable and prudent alternative" (RPA) for the Corps' proposed operations that, according to USFWS, if implemented, will avoid jeopardizing the continued existence of the endangered pallid sturgeon. That RPA recommends operations that were not proposed in the Corps' biological assessment.

The RPA presented in the 2003 Amended BiOp calls for a low summer release from the Mainstem Reservoir System of 25,000 cfs each year beginning no later than July 1 and lasting for a minimum of 30 days. The 2003 Amended BiOp includes a provision that this low summer release may be modified, in consultation with the USFWS, if 1200 acres of shallow water habitat (SWH) for the endangered pallid sturgeon is constructed in the river reach between Sioux City, Iowa and Omaha, Nebraska.

Since receipt of the 2003 Amended BiOp, the Corps has been working with the USFWS on plans for near-term SWH development sufficient to meet the intent of the 2003 Amended BiOp; therefore allowing the Corps to operate for all Congressionally authorized purposes this summer. In a letter dated February 13, 2004, the Corps provided new information to support a request that the 1200 acres of new SWH development be applied from Ponca State Park to the mouth of the Osage River, and not be limited to the Sioux City to Platte River reach identified in the 2003 Amended BiOp. The USFWS evaluated this request and concurred in a letter dated March 5, 2004.

The USFWS's March 5, 2004 letter also responded to the Corps' March 2, 2004 letter containing a list of potential sites suitable for SWH development. The USFWS agreed that the list provided identified a sufficient number of sites that could satisfy the RPA element by July 1, 2004. However, if this condition is not met, summer releases would be reduced to 25,000 cfs in July and would be held at that level for a minimum of 30 days to comply with the provisions of the 2003 Amended BiOp. Any water conservation achieved as the result of these low summer flows would be credited as drought conservation and reduce the duration of navigation season shortening in the fall.

The 2003 Amended BiOp also calls for a "spring pulse" from the System, but allows a two-year period of study to establish an acceptable flow management plan, which will likely avoid jeopardy to the continued existence of the pallid sturgeon and will not result in the destruction or adverse modification of critical habitat in the Missouri River. In their March 5, 2004 letter, the USFWS confirmed that a spring rise is not required in 2004.

On February 27, 2004 the Corps released the Final Environmental Impact Statement (FEIS) on the Missouri River Master Water Control Manual Review and Update. Following a review period on the FEIS, a Record of Decision (ROD) was signed by NWD Division Engineer, BG William T. Grisoli, on March 19, 2004. The revised Master Manual, based on the water management plan identified in the ROD, has been approved and forms the basis for the development of this AOP.

IV. FUTURE WATER SUPPLY: MARCH - DECEMBER 2004

Under normal circumstances, when the Draft AOP is prepared in August, and the Final AOP in late fall, a statistical representation of potential runoff is used because accurate long-range forecasts aren't available at that time. However, due to the delay in issuing this Final 2004 AOP, the studies presented herein have been updated with our latest runoff forecast based on current snowpack and soil moisture data.

The March 1, 2004 "Most Likely" runoff scenario was used as input for the reservoir regulation simulations presented in this AOP. Two other runoff scenarios based on the March 1 forecast were developed for the same period. Factors were applied to the Most Likely runoff forecast to obtain the "Adjusted Lower Decile" and "Adjusted Upper Decile" runoff. This provides a good range of simulations in addition to the Most Likely runoff forecast and eliminates the need to forecast future precipitation, which is very difficult.

The estimated natural flow at Sioux City, the corresponding post-1949 water use effects, and the net flow available above Sioux City are shown in *Table I*, where water supply conditions are quantified for the period March 2004 through February 2005. The natural water supply for calendar year (CY) 2003 totaled 17.6 MAF.

TABLE I NATURAL AND GROSS WATER SUPPLY AT SIOUX CITY (Volumes in 1,000 Acre-Feet)

	<u>Natural 1</u> /	Post-1949 Depletions	<u>Net 2</u> /					
Runoff Year March 2004 through February 2005 (Based on March 1, 2004 runoff forecast.)								
Adjusted Upper Decile	27,900	-2,100	25,800					
Most Likely	20,600	-2,400	18,200					
Adjusted Lower Decile	14,100	-2,600	11,500					

1/ The word "Natural" is used to designate flows adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck Reservoir have also been eliminated during its period of operation prior to 1949. 2/ The word "Net" represents the total streamflow after deduction of the post-1949 irrigation, upstream storage, and other use effects.

V. ANNUAL OPERATING PLAN FOR 2004

A. <u>General</u>. The anticipated operation described in this AOP is designed to meet the operational objectives presented in the March 2004 Master Manual. Consideration has been given to all of the authorized project purposes, and to the needs of threatened and endangered (T&E) species. The plan relies on a wealth of operational experience. Operational experience available for preparation of the 2004 AOP includes 13 years of operation at Fort Peck Reservoir (1940) by itself, plus 50 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) have been brought progressively into System operation. This operational experience includes lessons learned during the 6 consecutive years of drought from 1987 through 1992, the high runoff period that followed and the current 4-year drought that began in 2000. Runoff during the period 1993 to 1999 was greater than the Upper Quartile level in 5 of those 7 years, including the record 49.0 MAF of runoff in 1997. In addition to the long period of actual operational experience, many background operational studies for the completed System are available for reference.

As described in the Master Manual, flow support for navigation and other downstream purposes is defined based on service level. A "full-service" level of 35,000 cfs results in target flows of 31,000 cfs at Sioux City and Omaha, 37,000 cfs at Nebraska City and 41,000 cfs at Kansas City. Similarly, a "minimum service" level of 29,000 cfs results in target values of 6,000 cfs less than the full service levels. Selection of the appropriate service level is based on the actual volume of water in storage in the System on March 15 and July 1.

The relation of System storage to navigation service level is presented in *Table II*. The volumes presented in *Table II* were derived from long-range model simulations that allow the System to meet authorized purposes during significant multi-year droughts. Straight-line interpolation defines intermediate service levels between full and minimum service. These service level determinations are for conservation and normal System regulation. During years when flood evacuation is required, the service level is calculated monthly to facilitate a smooth transition in System release.

As shown in *Table II*, the water control plan calls for suspension of navigation service if System storage is at or below 31 million-acre-feet (MAF) on March 15 of any year. It should be noted that the occurrence of System storage at or below 31 MAF would most likely coincide with a national drought emergency. If any of the reservoir regulation studies performed for the development of an AOP indicate that System storage will be at or below 31 MAF by the upcoming March 15, the Corps of Engineers will notify the Secretary of the Army. Per the revised Master Manual, the Corps will obtain approval from the Secretary of the Army prior to implementation of back-to-back non-navigation years.

TABLE IIRELATION OF SYSTEM STORAGE TO NAVIGATION SERVICE LEVEL

Date	System Storage (MAF)	Navigation Service Level
March 15	54.5 or more	35,000 cfs (full-service)
March 15	49.0 to 31	29,000 cfs (minimum-service)
March 15	31.0 or less	No navigation service
July 1	57.0 or more	35,000 cfs (full-service)
July 1	50.5 or less	29,000 cfs (minimum-service)

The System storage check for navigation season length is made on July 1 of each year. Assuming the System storage is above 31 MAF on March 15, a navigation season will be supported. A full 8-month navigation season will be provided if System storage is 51.5 MAF or above on July 1, unless the navigation season is extended to evacuate flood control storage. However, if System storage falls below 51.5 MAF on July 1, a shortened navigation season will be provided to conserve water. The specific technical criteria for season length are shown in the *Table III*. Straight-line interpolation between 51.5 and 46.8 MAF of storage on July 1 provides the closure date for a season length between 8 and 7 months. If System storage on July 1 is between 46.8 and 41.0 MAF a 7-month navigation season is provided. A straight-line interpolation is again used between 41.0 and 36.5 MAF, providing season lengths between 7 and 6 months. For System storage on July 1 below 36.5 MAF a 6-month season is provided.

TABLE IIIRELATION OF SYSTEM STORAGE TO NAVIGATION SEASON LENGTH

System Storage (MAF)	Season Closure Date at Mouth of the Missouri River
51.5 or more	December 1 (8-month season)
46.8 through 41.0 36.5 or less	November 1 (7-month season) October 1 (6-month season)
	51.5 or more 46.8 through 41.0

The System release required to meet minimum and full service target flows varies by month in response to downstream tributary flow. An analysis of the average monthly Gavins Point Dam release needed to meet flow targets was completed in 1999. As part of that study, the relationship between annual runoff upstream of Sioux City and the average Gavins Point Dam release required for the navigation season was analyzed. The study showed that generally more water was needed downstream to meet flow targets during years with below normal upper basin runoff than during years with higher upper basin runoff. Therefore, regulation studies performed since 1999 use two levels of System release requirements: one for Median, Upper Quartile, and Upper Decile runoff scenarios, and another for Lower Quartile and Lower Decile scenarios. The updated release requirements for full and minimum service flow support are given in *Table IV*. Releases required for minimum service flow support are 6,000 cfs less than full service support. A final report detailing the procedures used in this study is available on our web site.

An examination of the data presented in *Table IV* reflects that, early in the season, the target location is generally at Sioux City with adequate downstream tributary flows to meet the other flow targets. As the runoff season progresses, tributary flows normally recede during the summer, and the target location moves from Sioux City to Nebraska City and eventually to Kansas City. This requires higher flow support from the System as the season progresses through summer. Often the target moves upstream during the fall when higher downstream tributary flows return. This seasonal tributary flow pattern is reflected in the Gavins Point Dam release data presented below.

The releases presented in *Table IV* are average monthly values during the period studied for various runoff conditions and do not reflect the range of daily releases that may be required during any given month to meet flow targets. Actual regulation, therefore, requires daily adjustments to fully serve the Congressionally authorized project purpose of navigation. An additional analysis was conducted in the spring of 2003 that concluded a 30,000 cfs would be needed to provide a 90 percent assurance of meeting minimum service flow targets in July and August. That study was based on runoff data from the period of record 1898 through 1997.

TABLE IV GAVINS POINT RELEASES NEEDED TO MEET TARGET FLOWS FOR INDICATED SERVICE LEVEL 1950 to 1996 Data (Discharges in 1,000 cfs)

<u>Median, Upper Quartile, Upper Decile Runoff</u>								
	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	26.7	28.0	27.9	31.6	33.2	32.6	32.0	31.1
Minimum Service	20.7	22.0	21.9	25.6	27.2	26.6	26.0	25.1

Lower Quartile, Lower Decile Runoff

	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	29.8	31.3	31.2	34.3	34.0	33.5	33.1	31.2
Minimum Service	23.8	25.3	25.2	28.3	28.0	27.5	27.1	25.2

In general, releases from Gavins Point Dam are adjusted as needed to meet target flow levels on the lower river. However, during the nesting season of the endangered interior least tern (tern) and the threatened piping plover (plover) care must be taken to avoid impacts to nesting areas. These two bird species are listed as Threatened and Endangered (T&E) under the ESA and are protected under that Act. Several scenarios have been used in past years to operate the System during the nesting season. Under the Steady-Release (SR) scenario, when the birds begin to initiate nesting activities in early- to mid-May, the release from Gavins Point Dam is set to the level expected to be required to meet downstream flow targets through August and maintained at that level until the end of the nesting season. This operation results in releases that exceed the amount necessary to meet downstream flow targets during the early portion of the nesting season, and may result in targets being missed if basin conditions are drier than expected during the summer.

Gavins Point releases, under the Flow-to-Target (FTT) scenario, are adjusted as needed throughout the nesting season to meet downstream flow targets and would typically result in increased releases as the nesting season progresses. This is due to reduced tributary inflows downstream as the summer heat builds, evaporation increases, and precipitation wanes. Increasing releases as the nesting season progresses can inundate nests and chicks on low-lying habitat. Compared to the SR Scenario, this scenario conserves more water in the System, which keeps the lake levels at the upper three System projects at relatively higher levels. The FTT scenario also ensures that targets on the lower river are met throughout the nesting season.

A third scenario for Gavins Point releases, which combines features of the other two options, was used during the 2003 nesting season. This scenario, called the Steady Release – Flow-to-Target (SR-FTT) scenario, sets Gavins Point releases at an initial steady rate, and then allows releases to be adjusted upward during the nesting season to meet downstream flow targets, if necessary. This operation makes a larger amount of habitat available early in the nesting season and saves additional water in the upper three reservoirs when compared to the SR scenario. The SR-FTT scenario also reduces the potential for flooding nests when compared to the FTT scenario. The SR-FTT operation also provided certainty for downstream users that releases could be increased if needed to meet flow targets.

B. <u>2004 AOP Simulations</u>. AOP simulations for 2004 for the three runoff scenarios are shown as studies 1 through 3. The March 15 and July 1 System storage checks from *Tables II* and *III* were used to determine the level of flow support and the navigation season length. The Steady Release – Flow-to-Target operating scenario was selected for implementation during the 2004 nesting season to reduce the likelihood of flooding nests while conserving water in the upper three reservoirs and ensuring that minimum service flow targets could be met. For modeling purposes, an initial steady release of 28,000 cfs was used in May and June. This initial steady release was based on an estimate of the flow required to inundate numerous small low-lying sandbars below Gavins Point that would likely be flooded if higher releases were needed later in the season. The actual initial steady releases during the 2004 nesting season will be determined by a field survey of nesting sites and the hydrologic conditions at that time.

A 30,000 cfs System release in July and August was used in all 2004 AOP simulations to reflect the increased release requirements for minimum service flow support as tributary flows decline during the summer. The 30,000 cfs release modeled for July and August is an estimate of the flow required to meet minimum service flows 90 percent of the time during that period. Actual releases to meet minimum service flow targets will be based on the hydrologic conditions at the time.

Table IV values were used in all the AOP studies for navigation support during the spring and fall months. The higher releases shown for Lower Quartile and Lower Decile were used for the Most Likely simulation since the forecasted runoff is closer to Lower Quartile than Median. Winter 2004-2005 releases of 12,500 cfs are shown in the simulations. This is lower than recent actual winter releases required for downstream powerplants and water supply intakes, but ongoing modification of intakes will permit lower winter releases as a conservation measure when System storage is low. Non-winter, non-navigation releases were set at 11,000 cfs as a further conservation measure.

The Gavins Point releases shown in this and previous AOPs are not absolute. Adjustments are made as necessary based on hydrologic conditions to meet the target flows as determined by the March 15 and July 1 storage checks.

Application of the July 1 storage check shown on *Table III* indicates the navigation season will be shortened 31 days for Adjusted Upper Decile, 33 days for Most Likely and 56 days for Adjusted Lower Decile runoff. Minimum service navigation flows are provided for all runoff conditions due to low System storage. None of the simulations reach the desired 57.1 MAF System storage level on March 1, 2005.

Intrasystem releases are adjusted to best serve the multiple-purpose functions of the projects with special emphasis placed on regulation for non-listed fisheries starting in early April and for T&E bird species beginning in early May and continuing through August. During the late 1980's to early 1990's drought years, a two-day-down, one-day-up peaking cycle from Gavins Point was utilized during the nesting season. This regulation provided for lower flows for two out of three days to conserve water in the System while ensuring that T&E bird species did not nest on low-lying habitat. A peaking cycle has not been included in any of the simulations because of concerns voiced by the USFWS regarding negative impacts to river fish. However, it may be necessary to cycle releases for flood control operations during the T&E species-nesting season.

The Most Likely and Adjusted Upper Decile simulations include releases that provide a steady to rising lake level in the three large upper reservoirs during the spring fish spawn period. Similar regulation in the past has resulted in a higher fish reproduction success.

Actual System operation from January 1, 2003 through February 29, 2004 and the operating plans for each project for CY 2004 using the three runoff scenarios described on page 5 are presented on *Plates 3 through 8*, inclusive. An exception is the omission of Big Bend,

since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual operations since 1953.

Plate 9 illustrates for Fort Peck, Garrison, Oahe, and Gavins Point Dams the actual reservoir releases (Regulated Flow) as well as the Missouri River flows (Unregulated Flow) that would have resulted if the reservoirs were not in place during the period January 2002 through July 2003. *Plate 10* presents past and simulated gross average monthly power generation, and gross peaking capability for the System.

C. <u>Regulation Plan for January-March 2004</u>. The operating plan for the System for the period of January though March 2004 is presented in the following paragraphs.

<u>Fort Peck Dam</u> releases averaged 8,900 and 8,800 cfs in January and February, more than 2,000 cfs below average. Fort Peck Lake fell below its previous record low elevation in November 2003 and continued to decline, reaching elevation 2204 feet msl on February 29. The previous record low was 2208.7 feet msl set in April 1991. The reservoir is expected to remain near elevation 2204 feet msl during March, nearly 28.0 feet below normal.

<u>Garrison Dam</u> releases during the winter of 2003-2004 could not be increased as needed to balance System storage on March 1 due to construction on the intake at Fort Yates and ice constraints at Bismarck. Releases were adjusted to not exceed the target 13-foot stage at the Bismarck gage. Flood stage is 16 feet. Releases were scheduled no higher than 24,000 cfs in February. Lake Sakakawea reached a record low elevation of 1814.3 feet msl in February, about 20.0 feet below normal. The previous record low was 1815.0 feet msl set in May 1991.

<u>Oahe Dam</u> releases during the winter season provide backup for the Fort Randall and Gavins Point Dam releases plus refill the recapture space available in Lake Francis Case consistent with anticipated winter power loads. Monthly average releases vary substantially with fluctuations in power loads occasioned by weather conditions but, in general, averaged 15,000 to 20,000 cfs. Daily releases vary widely to best meet power loads. Peak hourly releases, as well as daily energy generation, are constrained to prevent urban flooding in the Pierre and Fort Pierre areas when severe ice problems develop downstream of Oahe Dam. This potential reduction has been coordinated with the Western Area Power Administration. The Lake Oahe level rose 2.3 feet in January and February, reaching elevation 1579.2 feet msl. A further rise of 2.0 feet is expected in March. Lake Oahe dropped below its previous record low pool in October 2003 and continued to decline until Garrison releases were increased in January 2004. The reservoir set a new low of 1576.2 feet msl on December 17, 2003. The previous record low was 1580.7 feet msl set in November 1989.

Lake Sharpe at <u>Big Bend Dam</u> will be maintained in the normal 1420.0 to 1421.0 feet msl range during the winter.

<u>Fort Randall Dam</u> releases averaged 14,600 and 10,600 cfs in January and February and were as low as 2,000 cfs in early March before the come-up for navigation support. Lake Francis Case refilled during the period from 1337.5 feet msl at the end of the 2003 navigation

season to slightly above elevation 1350.0 feet msl, the seasonal base of flood control, on March 1. It is likely that a Lake Francis Case level above elevation 1353.0 feet msl, to as high as 1355.2, will be reached by the end of the winter period on March 31, if runoff conditions permit. The level of Lake Francis Case above the White River delta near Chamberlain, South Dakota usually remains at a higher elevation than the lake below the delta from mid-October through December, due to the damming effect of this delta area.

<u>Gavins Point Dam</u> releases averaged 16,100 cfs in January and 13,700 cfs in February. Releases were lowered to 8,000 cfs in early March and will be increased to support navigation flows beginning mid-month. The Lewis and Clark Lake target elevation was 1207.5 feet msl during the winter with periods at lower elevations as ice formed upstream. The reservoir will be lowered to elevation 1206.0 feet msl on March 1 for controlling spring floods, primarily from the Niobrara River and Ponca Creek along the Fort Randall Dam to Gavins Point Dam reach.

System storage was 38.3 MAF at the beginning of the runoff season on March 1, 2004, substantially below the base of the annual flood control zone.

D. <u>Regulation During the 2004 Navigation Season</u>. The Adjusted Upper Decile (Adj U.D), Most Likely (M.L.), and Adjusted Lower Decile (Adj L.D.) runoff scenarios simulated for this year's AOP follow the specific technical criteria presented in the new Master Manual for navigation service flow support. The normal 8-month navigation season length is shortened for all runoff scenarios as shown in *Table V*.

Releases from Fort Peck, Garrison, and Fort Randall Dams will follow repetitive daily patterns from early May, at the beginning of the T&E species nesting season, to the end of the nesting in late August. As previously stated, a Steady Release – Flow-to-Target operation is planned for Gavins Point releases for all three runoff scenarios. Gavins Point releases during the nesting season were modeled with initial steady 28,000 cfs in May and June to keep birds from nesting at low elevations, and 30,000 cfs in July and August to meet flow targets as downstream tributary flow declines. Actual releases will be dependent on the hydrologic conditions at the time. The March 15 and July 1 System storage checks are used in the Simulations.

TABLE VNAVIGATION SERVICE SUPPORTFOR THE 2004 SEASONBased on March 1, 2004 Forecast

Runoff	System S	torage	Flow Le	evel Above or	Season		
Mar 04-Feb 05	March 15	July 1	Below	Full Service	Shortening		
(MAF)	(MAF)	(MAF)	((cfs)			
			<u>Spring</u>	Summer/Fall			
Adj U.D. 27.9	39.5	45.7	-6,000	-6,000	31		
M.L. 20.6	39.1	40.7	-6,000	-6,000	33		
Adj L.D. 14.1	38.7	37.1	-6,000	-6,000	56		

The Adjusted Upper Decile and Most Likely runoff scenarios would likely provide steady to rising pool levels during the spring fish spawn period. Releases from Fort Peck and Garrison during April and May for the Most Likely simulation were adjusted to provide steady to rising pool levels. The ability to provide steady to rising pool levels in the upper three reservoirs in low water years is very dependent on the volume, timing, and distribution of runoff. If runoff is not sufficient to keep all the reservoirs rising during the fish spawn, the Corps will initiate a plan to rotate the emphasis during the fish spawn among the upper three reservoirs to the extent reasonably possible. In 2004, the emphasis will be to provide a rising pool at Garrison during the fish spawn in May. Garrison is given top priority in 2004 because the reservoir is approaching a level that jeopardizes the volume of cold-water fishery habitat available later in the year. In 2004, Oahe will be given the second level of emphasis, and Fort Peck the third level. If the drought continues, the emphasis would rotate each year.

Even though the first level emphasis is at Garrison in 2004, the most critical time period for forage fish spawning is different at each of the upper three System reservoirs. Therefore, we will attempt to provide a steady to rising pool at each reservoir during its most critical period. For example, the critical fish spawn period for Oahe is early April through early May. We will attempt to provide a steady pool at Oahe in April, and for as long as reasonably possible into May, without interfering with the spawn at Garrison. The spawn at Garrison generally begins in late April, so we will give the greatest emphasis to providing a rising pool at Garrison during the period from late April through May. The spawn at Fort Peck generally occurs in June, when inflows from the melt of the mountain snowpack are occurring, so the pool should rise during its most critical period. Any unbalancing that occurs as a result of this operation will be adjusted later in the year so that the reservoirs are balanced on March 1, 2005 in accordance with the Master Manual for the anticipated storage levels this year.

All three runoff scenarios studied for this year's AOP provide gradually increasing Gavins Point releases to meet navigation season flow rates at the mouth of the Missouri near St. Louis by April 1, 2004, the normal navigation season opening date. The corresponding dates at upstream locations are Sioux City, March 23; Omaha, March 25; Nebraska City, March 26; and Kansas City, March 28. However, if there is no commercial navigation scheduled to use the navigation channel reach above the Platte River outside the tern and plover nesting season, we will give consideration to modifying the target flows above that point to conserve water in the System. The studies illustrated on *Plates 3 through 8* and summarized in *Table V* are based on providing minimum service flows (except May through August when flows may exceed minimum service due to the SR-FTT operation) and a shortened navigation season for all runoff scenarios. Navigation season shortening is shown as 31 days from the normal 8-month season for Adjusted Upper Decile, 33 days for Most Likely, and 56 days for Adjusted Lower Decile.

Navigation flow support for the 2004 season will be determined by actual System storage on March 15 and July 1. Although all runoff scenarios modeled indicate minimum service flow support throughout the navigation season, if the July 1 System storage check indicates an increase in service level, any increase greater than 2,000 cfs will be delayed until the end of the T&E bird species nesting season. Gavins Point Dam releases may be quite variable during the 2004 navigation season but are expected to range from 21,000 to 30,000 cfs. Release reductions necessary to minimize downstream flooding are not reflected in these monthly averages but will be instituted as conditions warrant. Simulated storages and releases for the System and individual reservoirs within the System are shown on *Plates 3 through 8.* Ample storage space exists in the System to control flood inflows under all conditions studied.

Two modified reservoir operations shown in previous AOPs, the Fort Peck "mini-test" and unbalancing the upper three reservoirs, will not be implemented in 2004 due to low System storage. When System storage recovers sufficiently, the Corps anticipates that both these operations will be implemented.

The first of these two modified operations is a test of flow modifications for the endangered pallid sturgeon. When Fort Peck Lake has adequate water above the spillway crest by mid- to late-May of any year, a flow modification "mini-test" will be conducted in early June to monitor effects of higher spring releases and warmer water released from the spillway. The purposes of the mini-test are to allow for an evaluation of the integrity of the spillway structure, to test data collection methodology, and to gather information on river temperatures with various combinations of flow from the spillway and powerhouse. Streambank erosion and fishing impacts will also be monitored. Stop protocol for the mini-test are identified in the Fort Peck Flow Modification Mini-Test Environmental Assessment, dated March 2004. Before either test is run, the Corps will fully coordinate with the Tribes of the Fort Peck Reservation, the State of Montana, and any other potentially affected stakeholders.

During the Fort Peck "mini-test," which will last about 4 weeks, flows will vary from 8,000 to 15,000 cfs as various combinations of spillway and powerplant releases are monitored. The maximum spillway release of 11,000 cfs will combine with a minimum powerplant release of 4,000 cfs for 6 days. This operation will be timed to avoid lowering the lake during the forage fish spawn. The "mini-test" will not be conducted if sufficient flows will not pass over the spillway crest (elevation 2225 feet msl). A minimum reservoir elevation of about 2229 feet msl is needed during the test to avoid unstable flows over the spillway. Results of the AOP simulations show that this elevation will not be achieved in 2004 for any of the three runoff scenarios. A more extensive test with a combined 23,000 cfs release from Fort Peck is scheduled to be conducted beginning in early June in the year following the "mini-test" to allow further tests of the integrity of the spillway and to determine if warm water releases will benefit the native river fishery. Peak outflows during the full test would be maintained for 2 weeks within the 4-week test period.

The second modified operation involves unbalancing the three large upper reservoirs as shown on *Table VI* to benefit reservoir fishery and the three protected species. Reservoir unbalancing is computed based on the percentage of the carryover multiple purpose pool that remains in Fort Peck Lake, Lake Sakakawea, and Lake Oahe. The unbalancing would alternate at each project; high one year, float (normal operation) the next year, and low the third year, as shown on *Table VI. Table VII* shows the lake elevations proposed by the MRNRC at which the unbalancing would be terminated. *Table VII* indicates that no reservoir unbalancing should occur for any of the three runoff scenarios in 2004.

TABLE VIRESERVOIR UNBALANCING SCHEDULE

	Fort Peck		Garı	rison	Oahe		
Year	March 1	Rest of Year	March 1	Rest of Year	March 1	Rest of year	
1	High	Float	Low	Hold Peak	Raise & hold during spawn	Float	
2	Raise & hold during spawn	Float	High	Float	Low	Hold peak	
3	Low	Hold peak	Raise & hold during spawn	Float	High	Float	

Notes:

Float year: Normal operation, then unbalance 1 foot during low pool years or 3 feet when System storage is near 57.1 MAF on March 1.

Low year: Begin low, then hold peak the remainder of the year.

High year: Begin high, raise and hold pool during spawn, then float.

TABLE VII MRNRC RECOMMENDED RESERVOIR ELEVATION GUIDELINES FOR UNBALANCING

	Fort Peck	Garrison	Oahe
Implement unbalancing if March 1 reservoir elevation is above this level.	2234 feet msl	1837.5 feet msl	1607.5 feet msl
Implement unbalancing if March 1 reservoir elevation is in this range and the pool is expected to raise more than 3 feet after March 1.	2227-2234 feet msl	1827-1837.5 feet msl	1600-1607.5 feet msl
Scheduling Criteria	Avoid lake level decline during spawn period which ranges from April 15 – May 30	Schedule after spawn period of April 20 – May 20	Schedule after spawn period of April 8 – May 15

Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement

As discussed in the previous section, the 2004 AOP includes no provisions for unbalancing the Fort Peck, Garrison, and Oahe reservoirs for any of the runoff scenarios. The criteria for unbalancing are based on recommendations provided by the MRNRC and the USFWS. Under all simulations, System storage will be below the minimum levels under which unbalancing is recommended by either the MRNRC or the USFWS.

<u>Fort Peck Dam</u> releases during the tern and plover nesting season will range from a daily average of 8,000 cfs to 9,000 cfs depending on runoff, and will follow a repetitive daily pattern from early May to the end of the nesting in late August. This regulation should result in habitat conditions for nesting terns and plovers similar to what was available in 2003.

If flood flows enter the Missouri River below the project during the nesting season, hourly releases will be lowered to no less than 3,000 cfs in order to keep traditional riverine fish rearing areas continuously inundated while helping to lower river stages at downstream nesting sites. April releases should be adequate for trout spawning below the project. A rising pool in the June forage fish spawning season will be dependent upon the ever-changing daily inflow pattern to the reservoir but appears possible with all but Adjusted Lower Decile runoff simulations. The T&E flow modification "mini-test" will not be run under any runoff scenario. Fort Peck Lake must be at elevation 2229 msl to allow releases required for the mini-test through the spillway.

<u>Garrison Dam</u> daily average releases will be much less than full powerplant capacity during the tern and plover-nesting season under all runoff scenarios. Monthly average releases will decline 500 to 1,000 cfs during the summer nesting season. Hourly peaking will be limited to no more than 30,000 cfs for six hours if the daily average release is lower than 28,000 cfs. This will limit peak stages below the project for nesting birds.

Lake Sakakawea elevations will not reach levels considered necessary for optimum fish spawning during the month of May for any of the runoff scenarios. The reservoir may approach a level that jeopardizes the volume of cold water habitat in 2004. In 2004 the emphasis will be to provide a rising pool at Garrison during the fish spawn in May. Given Most Likely or higher runoff the reservoir should rise during the fish spawn season, however, the actual timing of the rise in reservoir elevation will be dependent upon the pattern of inflow at that time.

<u>Oahe Dam</u> releases in the spring and summer will back up those from Gavins Point Dam. An attempt will be made to provide a steady pool in April and for as long in May as possible without interfering with the spawn at Garrison. Given Most Likely or higher runoff the reservoir should be steady to rising in the spring. Under all AOP simulations, the Oahe pool will fall during the summer.

<u>Fort Randall Dam</u> will be operated to provide for a pool elevation near 1355 feet msl during the fish spawn period, provided water can be supplied from other reservoirs for downstream uses, and the lake will not be drawn down below elevation 1337.5 feet msl in the fall to ensure adequate supply for water intakes. Hourly releases from Fort Randall Dam during

the 2004 nesting season will be limited to 37,000 cfs for six hours. Daily average flows may be increased every third day to preserve the capability of increasing releases later in the summer if conditions turn dry.

Just prior to publication of this Final AOP, the Water Management office became aware of the Lewis and Clark Bicentennial Commemoration Signature Event planned in South Dakota between August 27 and September 26, 2004. Due to the shortening of the navigation season, this could coincide with the planned annual fall drawdown of Lake Francis Case. The Water Management office intends to work closely with event organizers and project personnel to minimize impacts the of the fall drawdown by delaying or modifying it to the extent practical. This adjustment is not shown in the studies presented.

<u>Gavins Point Dam.</u> Based on 2003 nesting season results with the Steady Release – Flowto-Target operation and planned habitat development activities, it is anticipated that sufficient habitat will be available above the planned release rates to provide for successful nesting. All reasonable measures to minimize take will be used if a release increase is required above the 28,000 cfs initial steady flow. These measures include, but are not limited to, such things as the use of the Kansas River basin reservoirs, moving nests to higher ground when possible, and monitoring nest fledge dates to determine if delaying an increase a few days might allow threatened chicks to fledge. The location of tows and river conditions at intakes would also be monitored to determine if an increase could be temporarily delayed with little or no impact. Cycling releases every third day is not planned during the 2004 nesting season except during downstream flood control operations.

The Gavins Point pool will be operated near 1206.0 feet msl in the spring and early summer with variations day to day due to rainfall runoff. Greater fluctuations occur in the river, increasing the risk of nest inundation in the upper end of the Gavins Point pool. Several factors contribute to the increased risk of nest inundation in the upper end of the Gavins Point pool. First, because there are greater numbers of T&E species nesting below the Gavins Point Dam project that must be preserved, Gavins Point Dam releases are restricted during the nesting season. Second, rainfall runoff between Fort Randall Dam and Gavins Point Dam can result in sudden pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs. Third, the regulation of Gavins Point for downstream flood control may necessitate sudden release reductions to prevent downstream bird losses. And finally, high releases required in wet years make nest inundation more likely. When combined, all these factors make it difficult and sometimes impossible to prevent inundation of nests in the upper end of Lewis and Clark Lake. The pool will be increased to elevation 1207.5 feet msl following the nesting season.

VI. SUMMARY OF RESULTS EXPECTED IN 2004

With System operations in accordance with the 2004 AOP outlined in the preceding pages, the following results can be expected.

A. <u>Flood Control</u>. All runoff scenarios studied will begin the March 1, 2004 runoff season substantially below the desired 57.1 MAF base of annual flood control and multiple use zone. Therefore, the entire System flood control zone plus an additional 12.1 to 24.3 MAF of the carryover multiple use zone will be available to store runoff. The System will be available to significantly reduce peak discharges and store a significant volume of water for all floods that may originate above the System.

Remaining storage in the carryover multiple use zone will be adequate to provide support for all of the other multiple purposes of the System, though at reduced levels.

B. <u>Water Supply and Water Quality Control</u>. Although below normal winter releases are being provided for all three runoff scenarios, all water supply and water quality requirements on the Missouri River both below Gavins Point Dam and between System reservoirs should be met for all flow conditions studied. It is possible with the low winter releases that ice formation or ice jams may temporarily reduce river stages to levels below which some intakes can draw water. Therefore, during severe cold spells, experience has shown that for brief periods it may be necessary to increase Gavins Point releases to help alleviate water supply problems along the lower river.

If the drought continues, reservoir levels and releases may continue to fall below their previous historic lows creating the potential for water supply problems at intakes, particularly those located on the upper three reservoirs. These intakes are primarily for the purposes of municipal and rural water supplies, nuclear and thermal powerplant cooling, and irrigation supplies. Historically, water access problems have been associated with several of these intakes; however, in most cases the problems have been a matter of restricted access to the river or reservoir rather than insufficient water supply. The Corps continues to encourage intake operators throughout the System and along the lower river to make necessary modifications to their intakes to allow efficient operation over the widest possible range of hydrologic conditions.

C. <u>Irrigation</u>. Scheduled releases from the System reservoirs will be ample to meet the volumes of flow required for irrigation diversions from the Missouri River. Some access problems may be experienced, however, if drought conditions persist. Tributary irrigation water usage is fully accounted for in the estimates of water supply.

D. <u>Navigation</u>. Service to navigation in 2004 will be scheduled at minimum service flow support for all runoff scenarios. Although the AOP simulations provide a comparison of typical flow support under varying runoff conditions, the actual rate of flow support for the 2004 navigation season will be based on actual System storage on March 15 and July 1, 2004.

All simulations have a shortened navigation season. The anticipated service level and season length for all runoff conditions simulated are shown in *Table V*.

E. <u>Power</u>. *Tables VIII and IX* give the estimated monthly System load requirements and hydropower supply of the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP), from March through December 2004. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments.

F. <u>Recreation, Fish and Wildlife</u>. The regulation of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a managed system. As a result of the drought, reservoir levels will remain well below normal and recreation access will be limited at several locations. Special operational adjustments incorporating specific objectives for these purposes will be accomplished whenever possible. Conditions in the lower three reservoirs should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs and for increasing usage of the regulated reaches of the Missouri River downstream of the reservoirs.

Boat ramps that were lowered and low water ramps that were constructed during the drought of the late 1980's to early 1990's and the further improvements made in 2003 should provide adequate lake access this year even under the Lower Decile runoff scenario. However, boat ramps in a few areas where the ramps cannot be extended may become unusable. This will affect the normal use patterns, as visitors will have to seek out areas with usable boat ramps. Boat ramp elevations for Fort Peck, Garrison, Oahe and Fort Randall reservoirs are available on Management the Missouri River Basin Water Division web site at: www.nwd-mr.usace.army.mil/rcc.

The effects of the simulated System regulation during 2004 on fish and wildlife are included in the section entitled, "Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement."

G. <u>System Storage</u>. System storage was 38.7 MAF at the close of CY 2003, breaking the previous record low end-of-year storage of 40.9 MAF set in 1990. This end-of-year storage is 4.0 MAF less than the 42.7 MAF experienced on December 31, 2002, and 16.3 MAF less than the 1967 to 2002 average. The previous lowest storage prior to the 1988-1992 drought was 50.9 MAF in 1981. The end-of-year System storages have ranged from a maximum of 60.9 MAF, which occurred in 1975, to the 2003 minimum of 38.7 MAF. Forecasted System storage on December 31, 2004 is presented in *Table X* for the runoff scenarios simulated.

H. <u>Summary of Water Use by Functions</u>. Actual water use data for CY 2002 and CY 2003 is shown in *Table XI*. Under the simulated operations, estimated water use in CY 2004 also is shown in *Table XI*.

TABLE VIII PEAKING CAPABILITY AND SALES (1,000 kW at plant)

Estimated Committec Sales* 2003		Expecte	Expected C of E Capability			Expected Bureau Capabilit			Expected Tota System Capability		
Aug Sep	2153 1566										
Oct	1527										
Nov	1753										
Dec	1834										
2004	- 2200										
Jan Feb	2209 1970										
гер	1970	Adj		Adj				Adj		Adj	
		<u>U.D.</u>	ML	<u>L.D.</u>	<u>U.D.</u>	Med	<u>L.D.</u>	<u>U.D.</u>	ML	<u>L.D.</u>	
		<u>0.D.</u>		<u>L.D.</u>	<u>0.D.</u>	mea	<u>L.D.</u>	<u>0.D.</u>		<u>L.D.</u>	
Mar	1694	2017	2000	1988	190	191	178	2207	2191	2166	
Apr	1439	2038	2007	1982	191	193	179	2229	2200	2161	
May	1376	2050	2008	1967	199	199	189	2249	2207	2156	
Jun	1822	2126	2058	1998	213	208	199	2339	2266	2197	
Jul	2264	2120	2039	1967	213	211	198	2333	2250	2165	
Aug	2148	2114	2026	1944	209	208	195	2323	2234	2139	
Sep	1566	2109	1998	1907	208	207	196	2317	2205	2103	
Oct	1528	2078	1980	1908	207	207	196	2285	2187	2104	
Nov	1753	2090	1987	1909	206	204	196	2296	2191	2105	
Dec	1819	2078	1965	1881	200	199	194	2278	2164	2075	

* Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements wil be obtained other power systems by interchange or purchasi ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerpla

TABLE IX ENERGY GENERATION AND SALES (Million kWh at plant)

Co	stimated ommittec Sales*	_Expecte	d C of E Ge	neratior	Expected E	Bureau Gen	eration *		pected Tota em Genera	
Aug Sep Oct Nov Dec	667 575 568 621 730									
2004 Jan Feb	901 857	Adj	538 536	Adj	61 56	48 44	45 41	599 592 Adj	586 580	583 577 Adj
		<u>U.D.</u>	ML	<u>L.D.</u>	<u>U.D.</u>	Med	<u>L.D.</u>	<u>U.D.</u>	ML	<u>L.D.</u>
Mar	786	387	449	480	59	47	43	446	496	523
Apr	734	522	613	605	83	54	30	605	667	635
May	681	720	748	729	122	67	35	842	815	764
Jun	739	717	729	729	143	77	37	860	806	766
Jul	639	842	818	799	151	77	41	993	895	840
Aug	834	822	781	754	99	78	41	921	859	795
Sep	716	553	498	456	95	74	40	648	572	496
Oct	709	488	526	306	93	74	50	581	600	356
Nov	774	350	346	338	89	79	47	439	425	385
Dec	<u>902</u>	<u>554</u>	<u>515</u>	<u>465</u>	<u>91</u>	<u>81</u>	<u>49</u>	<u>645</u>	<u>596</u>	<u>514</u>
CY TOT	9272	7029	7097	6735	1144	799	500	6982	7896	6075

* Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements w obtained from other systems by interchange or purchas ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplai

		Carryover	Unfilled	Total	
Water Supply	Total	Storage	Carryover	Change	
Condition	(12/31/04)	Remaining 1/	Storage 2/	CY 2004	
		(Volumes in 1,000 Acre-Feet)			
Adj Upper Decile	45,000	26,900	12,100	6,300	
Most Likely	37,800	19,700	19,300	-900	
Adj Lower Decile	32,800	14,700	24,300	-5,900	

TABLE XANTICIPATED DECEMBER 31, 2004 SYSTEM STORAGE

1/ Net usable storage above 18.1 MAF System minimum pool level established for power, recreation, irrigation diversions, and other purposes.

2/ System base of annual flood control zone containing 57.1 MAF.

VII. TENTATIVE PROJECTION OF OPERATIONS THROUGH MARCH 2010

The 5-year extensions to the AOP (March 2005 to March 2010) have been prepared to serve as a guide for the Western Area Power Administration's marketing activities and to provide data to allow basin interests to conduct long term planning. The extensions were not updated between the Draft Final AOP and this document. Therefore, the initial year (March 2004 through March 2005) is modeled using the February 1, 2004 starting conditions and three statistically derived inflows used in the Draft Final AOP. These inflows are identified as the Median, Lower Quartile and Lower Decile runoff conditions. Median (24.6 MAF) has a 1 in 2 chance of being exceeded, Lower Quartile runoff (19.5 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile (15.5 MAF) has a 1 in 10 chance of the occurrence of less runoff.

The extension studies, which cover the period from March 2005 to March 2010, use Median, Lower Quartile, and Lower Decile runoff. The March 15 and July 1 System storage checks from the new Master Manual were used to determine the flow support for navigation and other downstream uses, and the navigation season length. Table IV releases, as computed by the March 15 and July 1 System storage checks, were used in the extension studies. Releases closer to those shown in Table IV are expected to be utilized in future years during the tern and plover nesting season as additional emergent sandbar habitat becomes available. The September 1 System storage check was used to determine the winter System release.

System storage recovers sufficiently in the Median extension simulations to provide greater than the minimum winter release of 12,500 cfs by winter 2007-2008, reaching 16,300 cfs in winter 2009-2010. The extensions utilize the releases shown in *Table IV* with no additional water released for T&E species during the nesting season. Navigation service support and season length, end of year System storage, and the winter release rate for the extensions are shown on *Table XII*.

TABLE XI MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2002, 2003, AND 2004 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF)

		CY 2002	CY 2003	Adj	Simulations for Calendar Year 2004	Adj
		Actual	Actual	Upper Decile	Most Likely	Lower Decile
Upstream Depletions Irrigation, Tributary Reservoir	(1)					
Evaporation & Other Uses		2.0	2.0			
Tributary Reservoir Storage Cha Total Upstream Depletions	ange	<u>0.2</u> 2.2	<u>0.0</u> 2.0	2.4	2.4	2.6
System Reservoir Evaporation	(2)	2.6	2.6	1.1	1.1	1.5
Sioux City Flows Navigation Season Unregulated Flood Inflows B						
Gavins Point & Sioux City		0.0	0.0			
Navigation Service Requirem Supplementary Releases	ient	14.3	12.7	13.4	13.9	11.4
T&E Species	(4)	-0.4	0.5	1.2	0.6	0.6
Flood Evacuation	(5)	0.0	0.0	0.0	0.0	0.0
Non-navigation Season		2.4	2.0	2.5		
Flows	(0)	3.4	3.8	3.5	3.2	3.2
Flood Evacuation Releases	(6)	0.0	0.0	0.0	0.0	0.0
System Storage Change		<u>-6.1</u>	<u>-4.0</u>	<u>6.4</u>	<u>-0.9</u>	<u>-5.6</u>
Total		16.0	17.6	28.0	20.3	13.7
Project Releases						
Fort Peck		4.8	5.4	5.2	5.3	5.0
Garrison		11.7	12.9	13.5	13.0	11.9
Oahe		14.9	14.9	12.5	13.5	13.5
Big Bend		13.9	13.8	12.3	13.3	13.2
Fort Randall		15.2	14.9	13.4	14.2	13.9
Gavins Point		16.0	16.0	15.3	15.7	14.9

(1) Tributary uses, above the 1949 level of development including agricultural depletions and tributary storage effects.

(2) Net evaporation is shown for 2004.

(3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point Dam releases were held to as low as 6,000 cfs.

(4) Increased releases required to maintain navigation release flexibility during the T&E species nesting season. During 2002, releases fell below those required to maintain minimum service support flows during T&E nesting season (-0.4 MAF). In 2003 releases in excess of minimum service were made prior to mid-August (0.7 MAF), then releases fell below minimum service support flows due to a Federal Court Injunction from mid-August through 1 Sept (-0.2 MAF). Net excess for T&E species was 0.5 MAF.

(5) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River.

(6) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall Dam release.

	2005	2006	2007	2008	2009
MEDIAN					
Flow Level Below Full Serv	ice				
Spring (kcfs)	-6.0	-6.0	-2.5	-0.8	0
Summer/Fall (kcfs)	-6.0	-2.5	0	0	0
Season Length (Months)	8-15 days	8	8	8	8
Dec 31 Storage (MAF)	47.3	50.9	52.7	53.8	54.2
Winter Release (kcfs)	12.5	12.5	13.5	15.4	16.3
LOWER QUARTILE					
Flow Level Below Full Serv	ice				
Spring (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Summer/Fall (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Season Length (Months)	8-31 days	8-31 days	8-31 days	8-28 days	8-12 days
Dec 31 Storage (MAF)	38.5	40.3	42.3	44.2	47.0
Winter Release (kcfs)	12.5	12.5	12.5	12.5	12.5
LOWER DECILE					
Flow Level Below Full Serv	ice				
Spring (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Summer/Fall (kcfs)	-6.0	-6.0	-6.0	-6.0	-6.0
Season Length (Months)	8-61 days				
Dec 31 Storage (MAF)	32.5	31.8	31.7	32.2	32.9
Winter Release (kcfs)	12.5	12.5	12.5	12.5	12.5

TABLE XII NAVIGATION SERVICE SUPPORT, AOP EXTENSIONS

A. <u>Median Runoff</u>. Studies 4 through 9 present the results of simulating median runoff (24.6 MAF) in 2004, followed by 5 additional years of median runoff. The March 1, 2005 System storage would be 42.5 MAF and would rise to 53.9 MAF by March 1, 2010, as shown on studies 4 through 9. Winter system releases would increase from the minimum 12,500 cfs to 13,500 cfs beginning winter 2007-2008. Winter 2008-2009 and winter 2009-2010 releases would be 15,400 and 16,300 cfs, respectively. Fort Peck Lake, Lake Sakakawea, and Lake Oahe rise to the elevations described in *Table VII* that permit unbalancing by March 1, 2007. The Fort Peck "mini-test" could be conducted in 2007 by unbalancing the upper three reservoirs as shown in *Table XIII*. The Fort Peck release would average 12,800 cfs in June 2007. Fort Peck Lake would be favored again in 2008 to accommodate the full test in which up to 19,000 cfs would be spilled for 5 days in June 2008. Beginning in 2008, the pattern of "high", "float", "low" as described in *Table VI* would be followed. The amount of unbalancing was generally 4 feet at Fort Peck Lake and 3 feet at Lakes Sakakawea and Oahe.

TABLE XIII MARCH 1 RESERVOIR UNBALANCING, AOP EXTENSIONS (Feet)

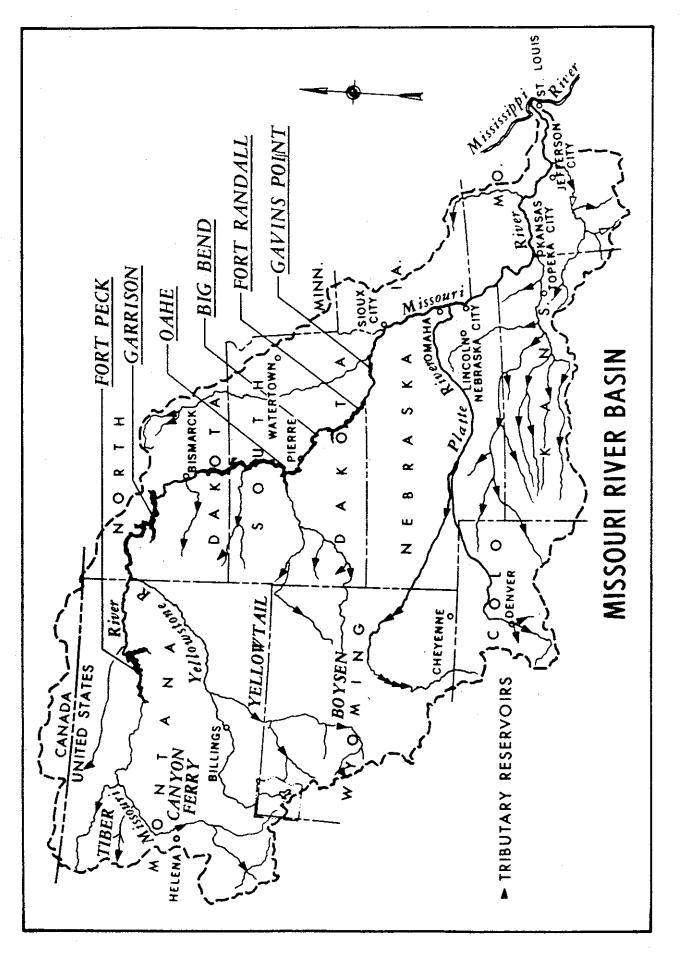
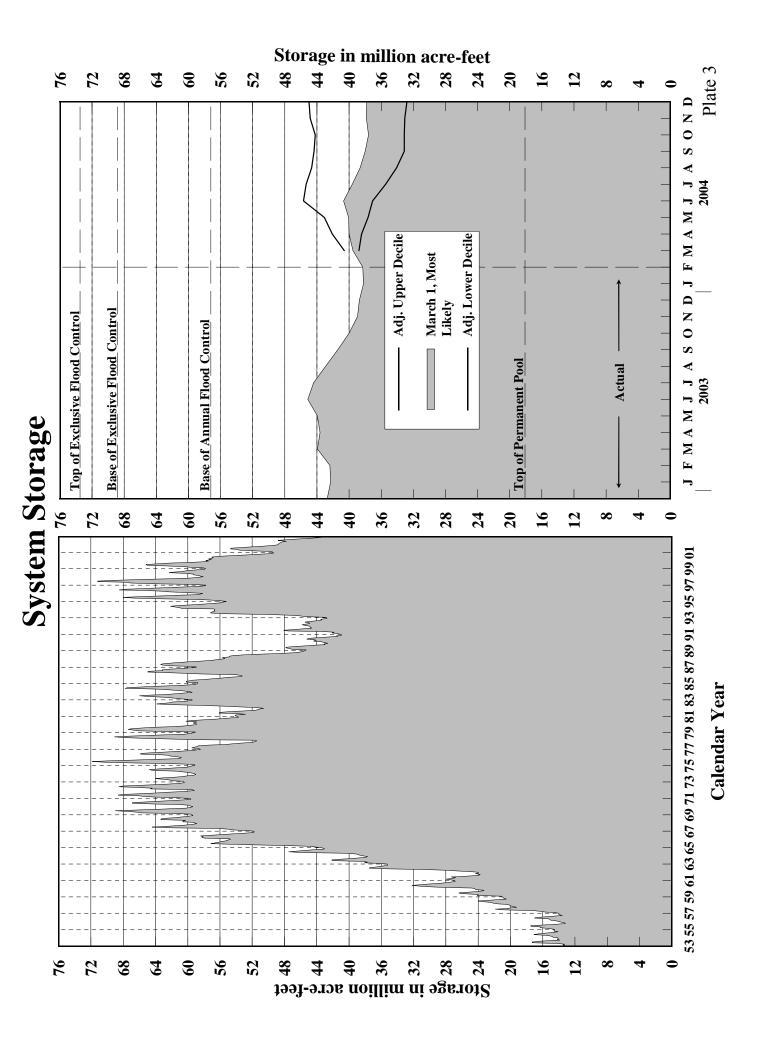
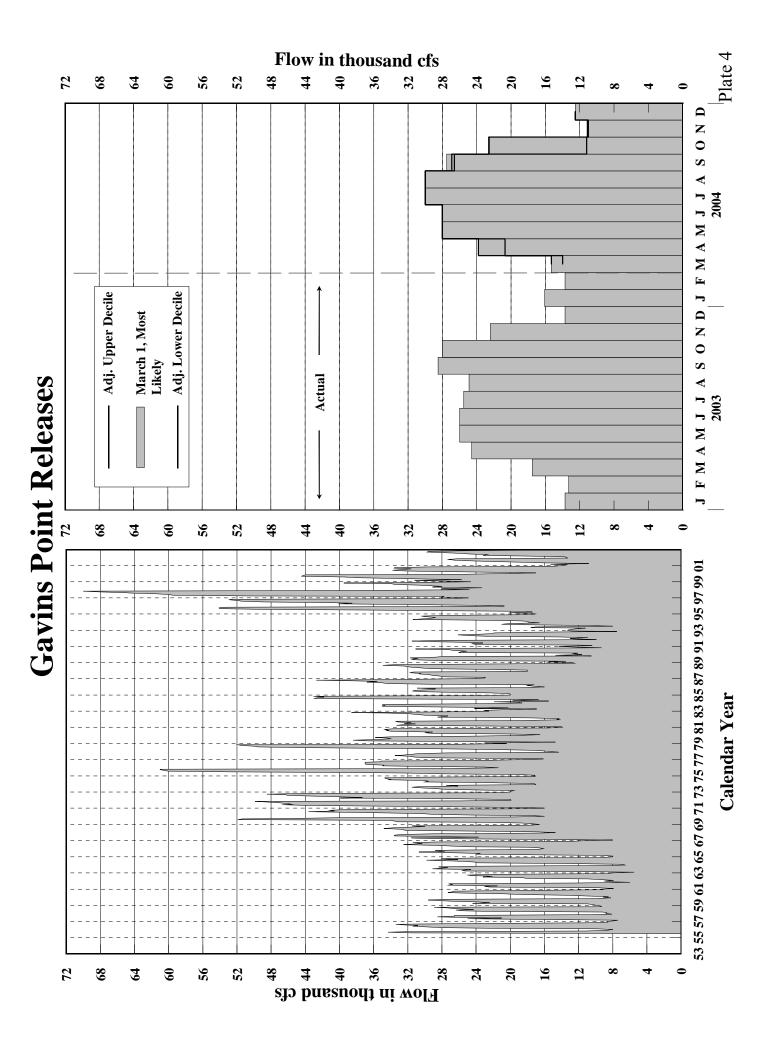
Year	Fort Peck	Garrison	Oahe
2007	+4.1	-3.0	+0.1
2008	+4.2	-3.0	+0.1
2009	0.0	+3.0	-3.0
2010	-3.9	-0.4	+2.9

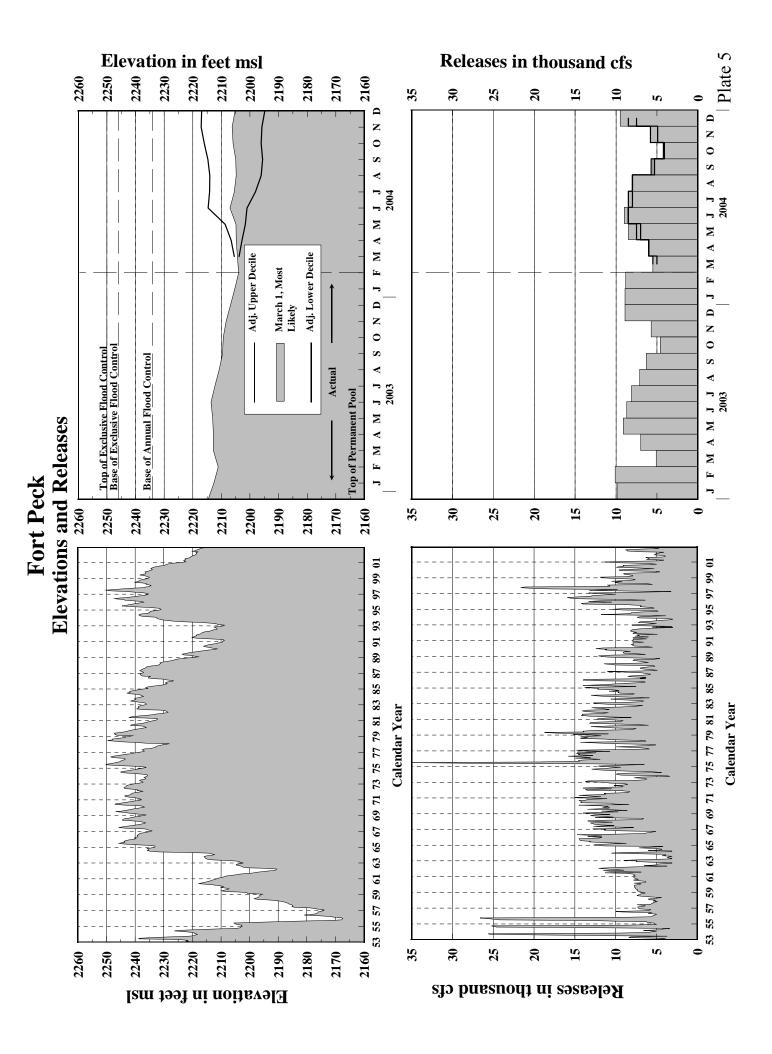
B. <u>Lower Quartile Runoff</u>. Studies 10 through 15 show the results of lower quartile runoff in 2004 (19.5 MAF) followed by a 5-year period of lower quartile runoff. System storage on March 1, 2005 is 37.2 MAF and rises to 47.1 MAF by March 2010 with navigation service levels remaining at minimum service during the simulation period. The navigation season is shortened 31 days from 2005 through 2007, 28 days in 2008 and 12 days in 2009 as System storage increases. A 12,500 cfs winter release is shown for the entire study period. Since the upper three reservoirs do not refill under Lower Quartile runoff, their percent of remaining carryover multiple use storage is balanced each March 1.

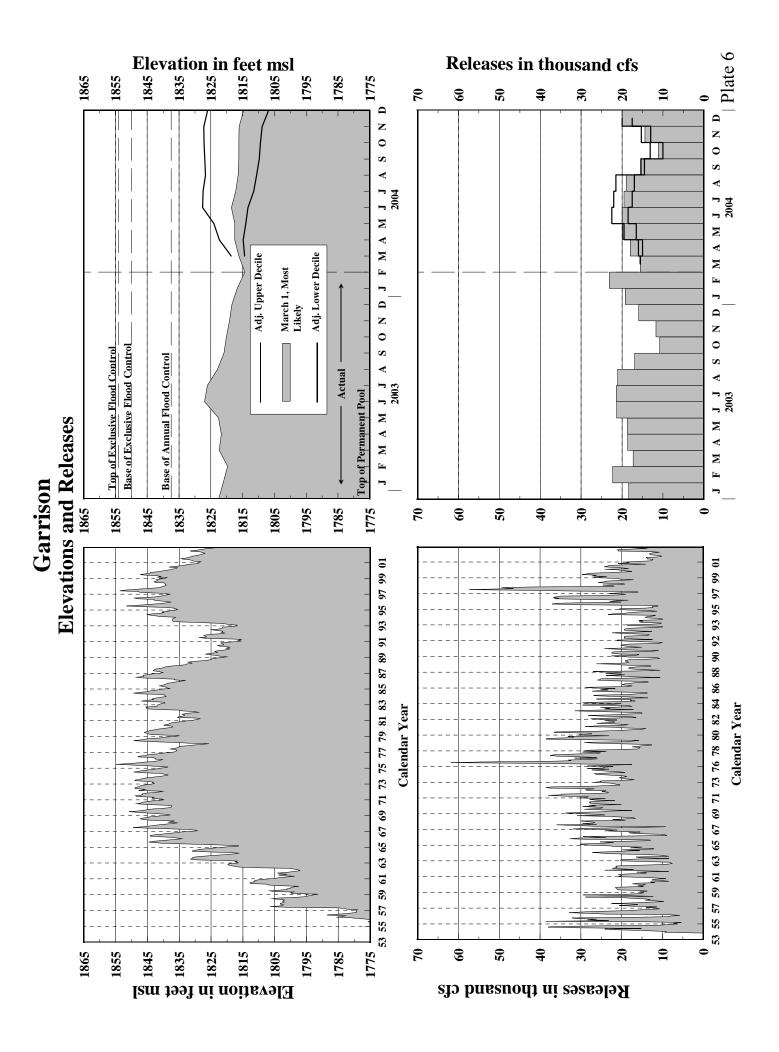
C. <u>Lower Decile Runoff</u>. Studies 16 through 21 show the results of lower decile runoff in 2004 (15.5 MAF) followed by a 5-year period of lower decile runoff. System storage is at 33.9 MAF on March 1, 2005 and falls to 33.0 MAF by March 2010. System storage remains fairly constant due to a 61 day navigation season shortening each year. March 15 System storage in 2007 and 2008 is only 1.5 MAF greater than the 31 MAF navigation preclude described in the new Master Manual. Service level is minimum service, 2005 through 2009. A 12,500 cfs winter release is shown for the entire study period.

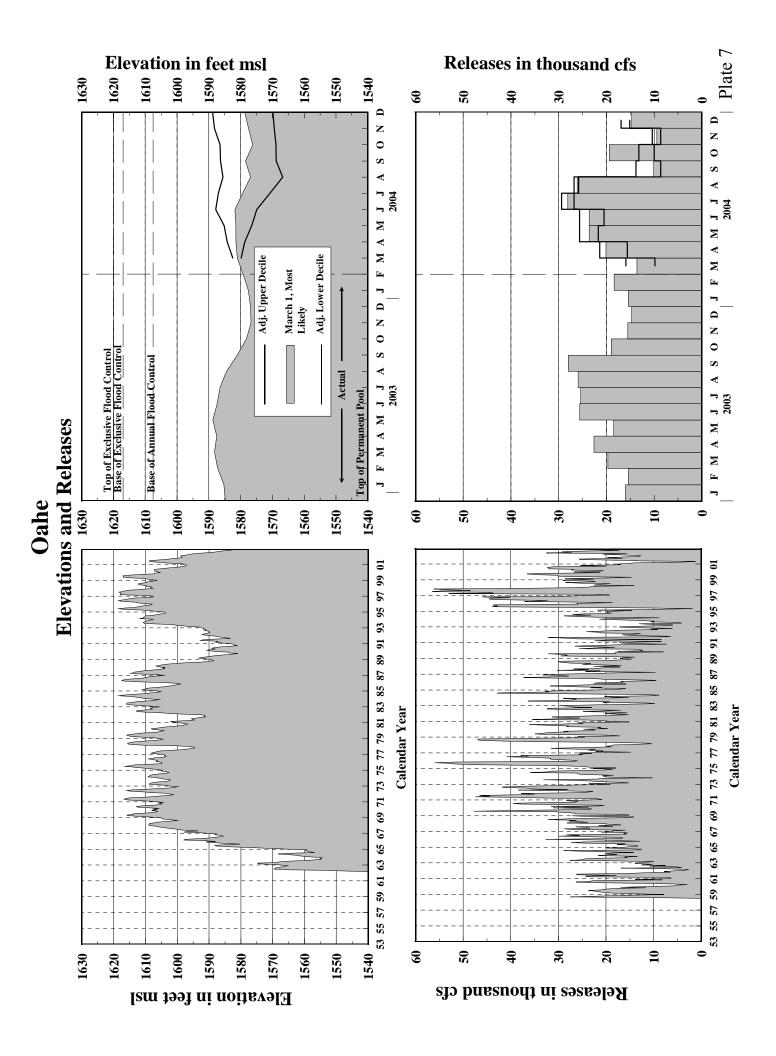
Plate 11 presents System storage, Gavins Point, and System peaking capability for Median, Lower Quartile, and Lower Decile runoff for the period 2005 through March 2010. Peak power, or peaking capability, is the amount of power available when all powerplants are operating at maximum.

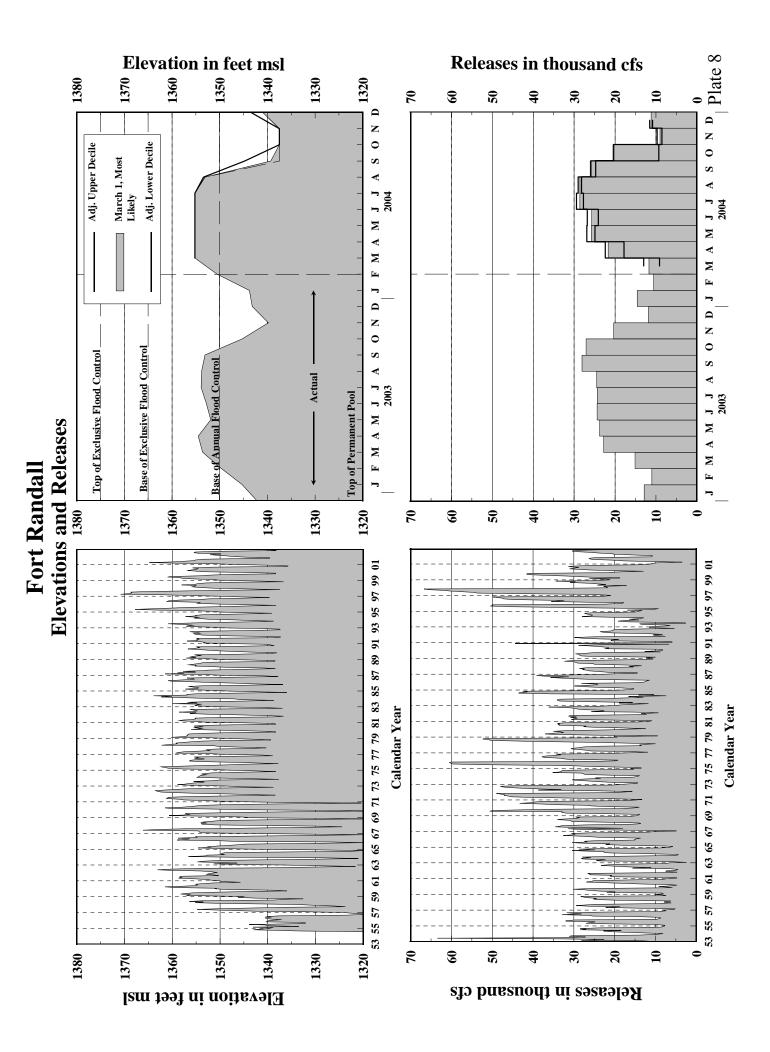
Plate 12 present reservoir elevations for Fort Peck, Garrison, Oahe, and Fort Randall for Median, Lower Quartile, and Lower Decile runoff for the period 2005 through March 2010.

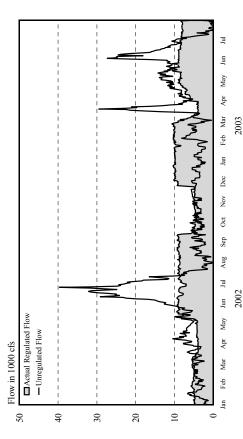




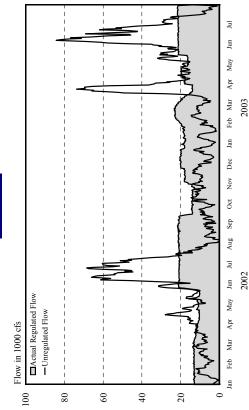

PLATE 1


		nary of Engineering Data		-
Item No.	Subject	Fort Peck Lake	Garrison Dam - Lake Sakakawea	Oahe Dam - Lake Oahe
1	Location of Dam	Near Glasgow, Montana	Near Garrison, ND	Near Pierre, SD
2	River Mile - 1960 Mileage	Mile 1771.5	Mile 1389.9	Mile 1072.3
3	Total & incremental drainage	57,500	181,400 (2) 123,900	243,490 (1) 62,090
	areas in square miles			
4	Approximate length of full	134, ending near Zortman, MT	178, ending near Trenton, ND	231, ending near Bismarck, ND
5	reservoir (in valley miles)	1520 (-1	1240 (-1	2250 (-1
5 6	Shoreline in miles (3) Average total & incremental	1520 (elevation 2234) 10,200	1340 (elevation 1837.5) 25,600 15,400	2250 (elevation 1607.5) 28,900 3,300
0	inflow in cfs	10,200	25,000 15,400	28,900 5,500
7	Max. discharge of record	137,000 (June 1953)	348,000 (April 1952)	440,000 (April 1952)
,	near damsite in cfs	157,000 (Julie 1955)	5 10,000 (April 1902)	(10,000 (11pm 1902)
8	Construction started - calendar yr.	1933	1946	1948
9	In operation (4) calendar yr.	1940	1955	1962
	Dam and Embankment			
10	Top of dam, elevation in feet msl	2280.5	1875	1660
11	Length of dam in feet	21,026 (excluding spillway)	11,300 (including spillway)	9,300 (excluding spillway)
12	Damming height in feet (5)	220	180	200
13	Maximum height in feet (5)	250.5	210	245
14	Max. base width, total & w/o berms in feet	3500, 2700	3400, 2050	3500, 1500
15	Abutment formations (under dam &	Bearpaw shale and glacial fill	Fort Union clay shale	Pierre shale
15	embankment)	Dearpaw share and glacial III	i on omon clay sidie	
16	Type of fill	Hydraulic & rolled earth fill	Rolled earth filled	Rolled earth fill & shale berms
17	Fill quantity, cubic yards	125,628,000	66,500,000	55,000,000 & 37,000,000
18	Volume of concrete, cubic yards	1,200,000	1,500,000	1,045,000
19	Date of closure	24 June 1937	15 April 1953	3 August 1958
	Spillway Data			
20	Location	Right bank - remote	Left bank - adjacent	Right bank - remote
21	Crest elevation in feet msl	2225	1825	1596.5
22	Width (including piers) in feet	820 gated	1336 gated	456 gated
23	No., size and type of gates	16 - 40' x 25' vertical lift gates	28 - 40' x 29' Tainter	8 - 50' x 23.5' Tainter
24	Design discharge capacity, cfs	275,000 at elev 2253.3	827,000 at elev 1858.5	304,000 at elev 1644.4
25	Discharge capacity at maximum operating pool in cfs	230,000	660,000	80,000
	Reservoir Data (6)			
26	Max. operating pool elev. & area	2250 msl 246,000 acres	1854 msl 380,000 acres	1620 msl 374,000 acres
27	Max. normal op. pool elev. & area	2246 msl 240,000 acres		
28	Base flood control elev & area	2234 msl 212,000 acres		
29	Min. operating pool elev. & area	2160 msl 90,000 acres		
	Storage allocation & capacity			
30	Exclusive flood control	2250-2246 975,000 a.f.		
31	Flood control & multiple use		1850-1837.5 4,222,000 a.f.	
32	Carryover multiple use	2234-2160 10,785,000 a.f.		
33	Permanent	2160-2030 4,211,000 a.f.		
34 35	Gross Reservoir filling initiated	2250-2030 18,688,000 a.f. November 1937	. 1854-1673 23,821,000 a.f. December 1953	1620-1415 23,137,000 a.f. August 1958
36	Initially reached min. operating pool	27 May 1942	7 August 1955	3 April 1958
37	Estimated annual sediment inflow	18,100 a.f. 1030 yrs.		19,800 a.f. 1170 yrs.
	Outlet Works Data			
38	Location	Right bank	Right Bank	Right Bank
39	Number and size of conduits	2 - 24' 8" diameter (nos. 3 & 4)	1 - 26' dia. and 2 - 22' dia.	6 - 19.75' dia. upstream, 18.25'
				dia. downstream
40	Length of conduits in feet (8)	No. 3 - 6,615, No. 4 - 7,240	1529	3496 to 3659
41	No., size, and type of service gates	1 - 28' dia. cylindrical gate	1 - 18' x 24.5' Tainter gate per	1 - 13' x 22' per conduit, vertical
		6 ports, 7.6' x 8.5' high (net	conduit for fine regulation	lift, 4 cable suspension and
		opening) in each control shaft		2 hydraulic suspension (fine regulation)
42	Entrance invert elevation (msl)	2095	1672	1425
42	Avg. discharge capacity per conduit	Elev. 2250	Elev. 1854	Elev. 1620
	& total	22,500 cfs - 45,000 cfs		
44	Present tailwater elevation (ft msl)	2032-2036 5,000 - 35,000 cfs		
	Power Facilities and Data			
45	Avg. gross head available in feet (14)	194	161	174
46	Number and size of conduits	No. 1-24'8" dia., No. 2-22'4" dia.	5 - 29' dia., 25' penstocks	7 - 24' dia., imbedded penstocks
47	Length of conduits in feet (8)	No. 1 - 5,653, No. 2 - 6,355	1829 (5) dia 2 mm mento ala	From 3,280 to 4,005
48	Surge tanks	PH#1: 3-40' dia., PH#2: 2-65' dia.	65' dia 2 per penstock	70' dia., 2 per penstock
49	No., type and speed of turbines	5 Francis, PH#1-2: 128.5 rpm,	5 Francis, 90 rpm	7 Francis, 100 rpm
50	Discharge cap. at rated head in cfs	1-164 rpm , PH#2-2: 128.6 rpm PH#1, units 1&3 170', 2-140'	150' 41,000 cfs	185' 54,000 cfs
50	Discharge cap. at fateu field ill CIS	8,800 cfs, PH#2-4&5 170'-7,200 cfs		105 54,000 CIS
51	Generator nameplate rating in kW	1&3: 43,500; 2: 18,250; 4&5: 40,000	3 - 109,250, 2 - 95,000	112,290
52	Plant capacity in kW	185,250	517,750	786,030
53	Dependable capacity in kW (9)	181,000	388,000	534,000
54	Avg. annual energy, million kWh (12)	1,142	2,429	2,867
55	Initial generation, first and last unit	July 1943 - June 1961	January 1956 - October 1960	April 1962 - June 1963
56	Estimated cost September 1999			
	completed project (13)	\$158,428,000	\$305,274,000	\$346,521,000


Lake Sharpe Lake Francis Case Lewis & Clark Lake No. 21 miles upstream Chamberlain, SD Mile 987.4 Near Lake Andes, SD Mile 880.0 Near Yankton, SD Mile 811.1 1 (1) Includes 4 miles of no areas. 249,330 (1) 5,840 263,480 (1) 14,150 279,480 (1) 16,000 3 areas. (2) Includes 1 miles of no areas. (2) Includes 1 80, ending near Pierre, SD 107, ending at Big Bend Dam 25, ending near Niobrara, NE 755 miles 4 miles of no areas. (2) Includes 1 miles of no areas. 200 (elevation 1420) 540 (elevation 1350) 90 (elevation 1204.5) 5,940 miles 5 (3) With pool control. 28,900 30,000 1,100 32,000 2,000 6 (4) Storage fir regulation 440,000 (April 1952) 447,000 (April 1952) 480,000 (April 1952) 7 8 form low y 1959 1946 1952 8 form low y	non-contributing 1,350 square non-contributing 1 at base of flood irst available for n of flows. g height is height water to maximum pool. Maximum
Mile 987.4 Mile 880.0 Mile 811.1 249,330 (1) 5,840 263,480 (1) 14,150 279,480 (1) 16,000 3	non-contributing 1,350 square non-contributing 1 at base of flood irst available for n of flows. g height is height water to maximum pool. Maximum
80, ending near Pierre, SD 107, ending at Big Bend Dam 25, ending near Niobrara, NE 755 miles 4 miles of no areas. 200 (elevation 1420) 540 (elevation 1350) 90 (elevation 1204.5) 5,940 miles 5 (3) With pool control. 28,900 30,000 1,100 32,000 2,000 6 (4) Storage fir regulation 440,000 (April 1952) 447,000 (April 1952) 480,000 (April 1952) 7 7 7 1959 1946 1952 8 8 8	on-contributing l at base of flood inst available for n of flows. g height is height water to maximum pool. Maximum
200 (elevation 1420) 540 (elevation 1350) 90 (elevation 1204.5) 5,940 miles 5 (3) With pool control. 28,900 30,000 1,100 32,000 2,000 6 (4) Storage fir regulation 440,000 (April 1952) 447,000 (April 1952) 480,000 (April 1952) 7 7 7 1959 1946 1952 8 8 8	irst available for of flows. g height is height water to maximum pool. Maximum
440,000 (April 1952) 447,000 (April 1952) 7 regulation 1959 1946 1952 8 from low w	n of flows. g height is height water to maximum pool. Maximum
1959 1946 1952 8 from low v	water to maximum pool. Maximum
14401395123410streambed10,570 (including spillway)10,700 (including spillway)8,700 (including spillway)71,59611(6) Based on I7814045863 feet12storage dat951657413(7) River regu1200, 7004300, 1250850, 45014by flows o	from average d to top of dam. latest available ata. ulation is attained over low-crested and through
Pierre shale & Niobrara chalk Niobrara chalk Niobrara chalk & Carlile shale 15 turbines.	om upstream face
Rolled earth, shale, chalk fill Rolled earth fill & chalk berms Rolled earth & chalk fill 16 of outlet o 17,000,000 28,000,000 & 22,000,000 7,000,000 358,128,000 cu. yds 17 (9) Based on a 540,000 961,000 308,000 5,554,000 cu. yds. 18 of drought 24 July 1963 20 July 1952 31 July 1955 19 (From stude)	or to spiral case. 8th year (1961) at drawdown ady 8-83-1985).
Left bank - adjacent Left bank - adjacent Right bank - adjacent 20 Francis can pool at ele 1385 1346 1180 21 pool at ele 376 gated 1000 gated 664 gated 22 (11) Spillway c 8 - 40' x 38' Tainter 21 - 40' x 29' Tainter 14 - 40' x 30' Tainter 23 (12) 1967-2001 390,000 at elev 1433.6 620,000 at elev 1379.3 584,000 at elev 1221.4 24 (13) Source: A 270,000 508,000 345,000 345,000 25 Civil Word	1 Average Annual Report on rks Activities of the Engineers. Extract
	scal Year 1999. Study 8-83-1985
1423-1422 60,000 a.f. 1375-1365 985,000 a.f. 1210-1208 59,000 a.f. 4,670,000 a.f. 30 1422-1420 117,000 a.f. 1365-1350 1,309,000 a.f. 1208-1204.5 90,000 a.f. 11,656,000 a.f. 31 1420-1345 1,682,000 a.f. 1320-1240 1,517,000 a.f. 1204.5-1160 321,000 a.f. 18,084,000 a.f. 33 1423-1345 1,859,000 a.f. 1375-1240 5,418,000 a.f. 1210-1160 470,000 a.f. 73,393,000 a.f. 34 November 1963 January 1953 August 1955 36 35 36 25 March 1964 24 November 1953 22 December 1955 36 36 4,300 a.f. 430 yrs. 18,300 a.f. 250 yrs. 2,600 a.f. 180 yrs. 92,500 a.f. 37	
Left Bank 38 None (7) 4 - 22' diameter None (7) 39	
1013402 - 11' x 23' per conduit, vertical lift, cable suspension41	
1385 (11) 1229 1180 (11) 42 Elev 1375 32,000 cfs - 128,000 cfs 43	
1351-1355(10) 25,000-100,000 cfs 1228-1239 5,000-60,000 cfs 1155-1163 15,000-60,000 cfs 44	
70 117 48 764 feet 45 None: direct intake 8 - 28' dia., 22' penstocks None: direct intake 46 1,074 55,083 47	
None59' dia, 2 per alternate penstockNone488 Fixed blade, 81.8 rpm8 Francis, 85.7 rpm3 Kaplan, 75 rpm36 units49	
67' 103,000 cfs 112' 44,500 cfs 48' 36,000 cfs 50	
3 - 67,276, 5 - 58,500 40,000 44,100 51 494,320 320,000 132,300 2,435,650 kw 52 497,000 293,000 74,000 1,967,000 kw 53 Corps of Engin 1,041 1,843 754 10,077 million kWh 54 Compiled by October 1964 - July 1966 March 1954 - January 1956 September 1956 - January 1957 July 1943 - July 1966 55 Northwestern D	neers, U.S. Army Division
\$107,498,000 \$199,066,000 \$49,617,000 \$1,166,404,000 May 2001	Region

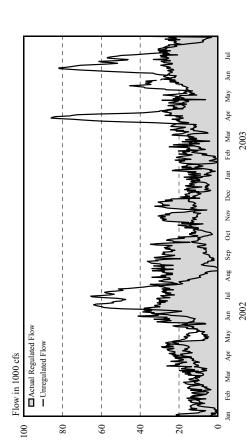


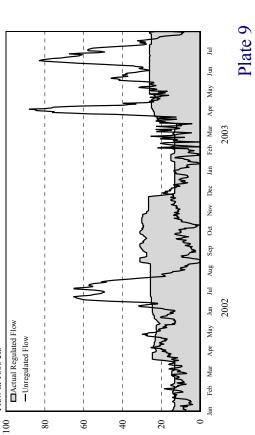


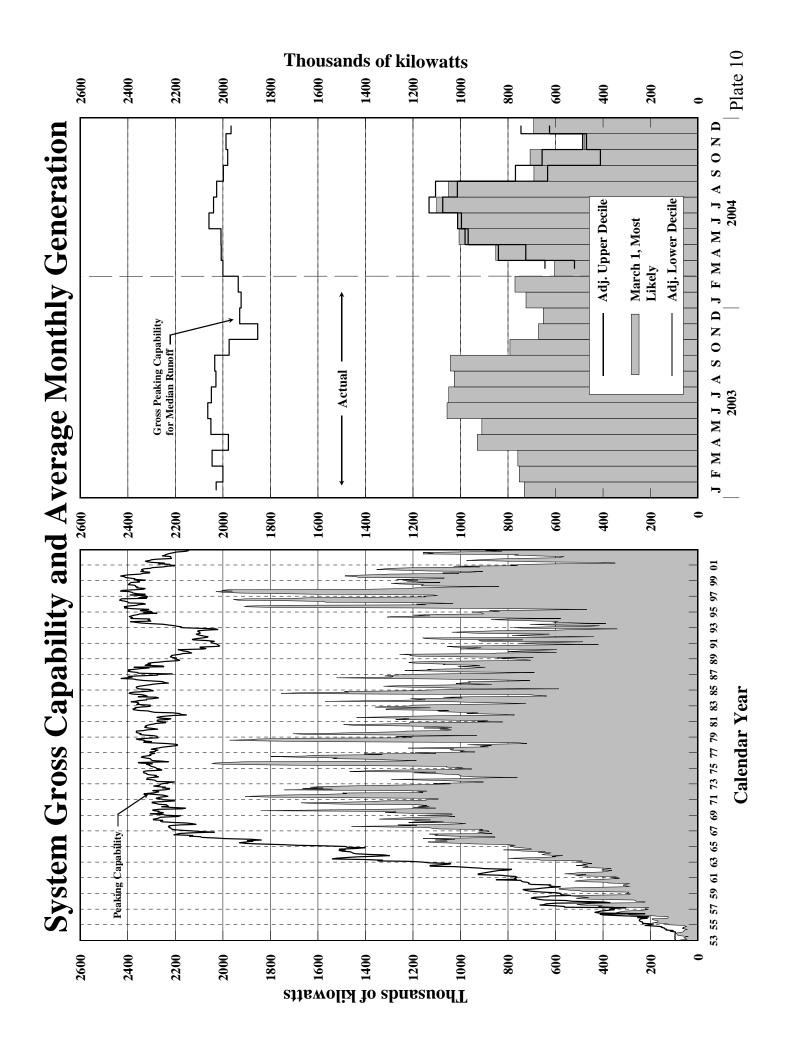


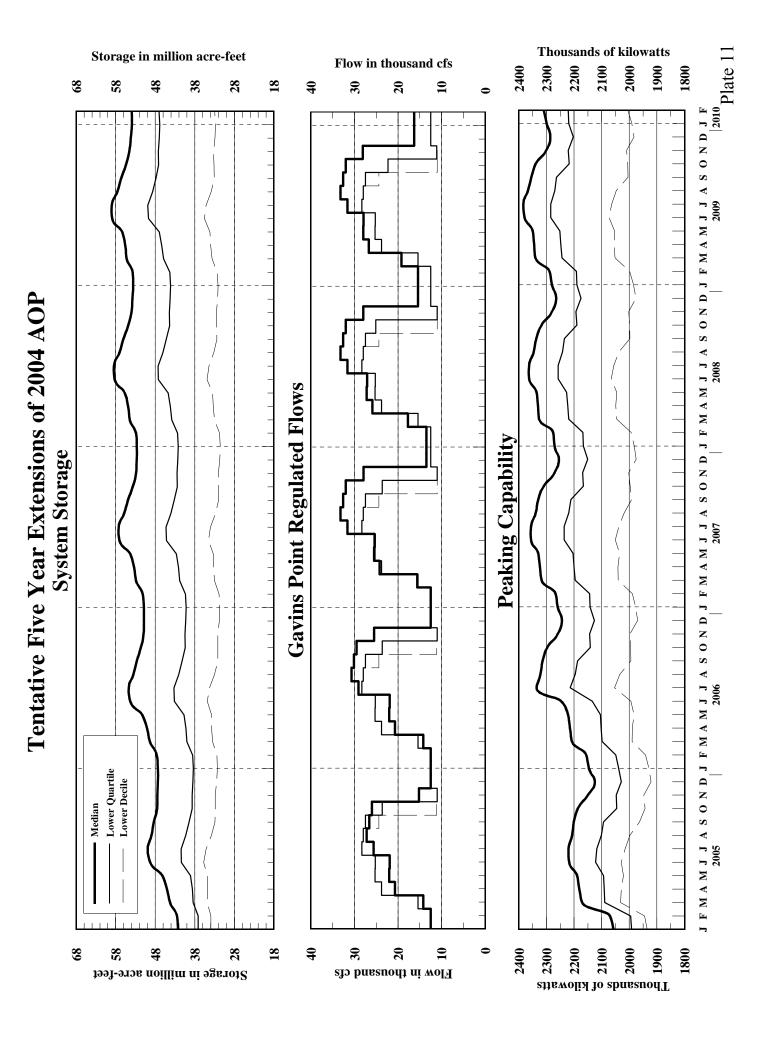
Reservoir Release and Unregulated Flow

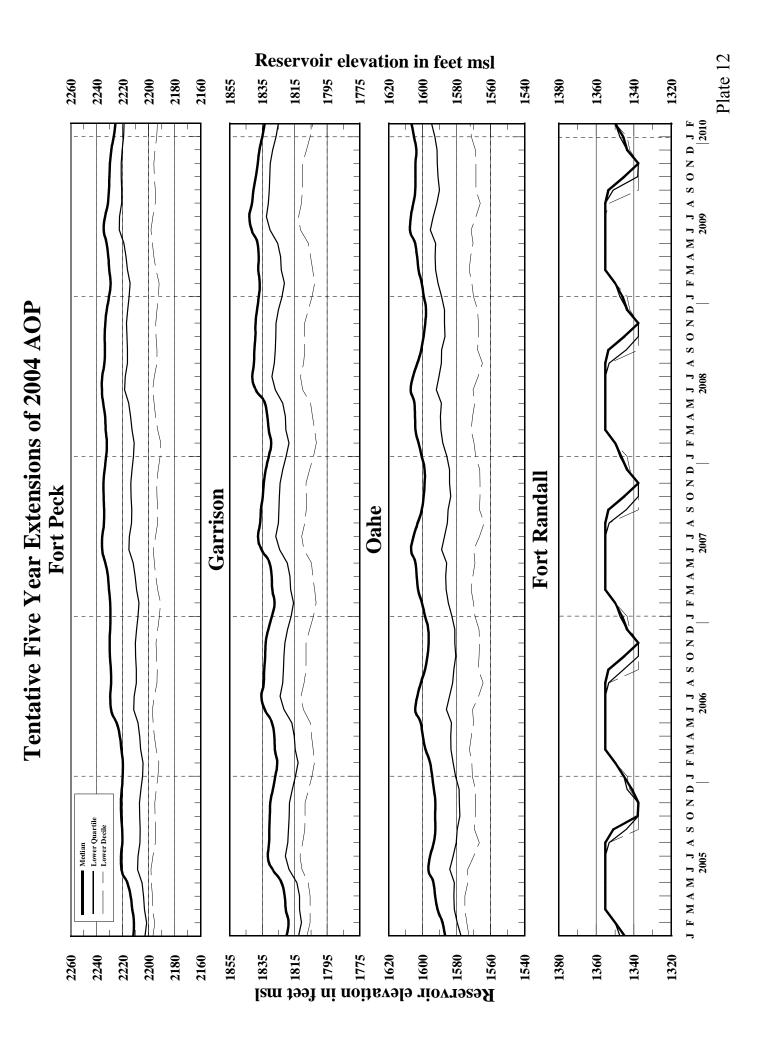
Fort Peck


Garrison






Gavins Point


Flow in 1000 cfs

DATE OF STUDY 03/02/04 TIME OF STUDY 06:38:42

MAR 1, 2004 MOST LIKELY RUNOFF SIMULATION 99001 9901 4 PAGE

DATE OF 310D1 03/02/04			MAR	1, 2004	MOST LI	KELY RU	NOFF SI	MULATIO	N	99001	9901	4 P.	AGE	1
TIME OF STUDY 06:38:42	2		SHOR	TEN NAVI ES IN 10	GATION	SEASON	33-DAYS	מיידיס				STUDY	NO	1
29FEB04 INI-SUM	200 15MAR 22MAR	04 R 31MAR 30				31AUG			1 5 10 1		20			
FORT PECK NAT INFLOW 5860	194 90	0 116	450 80	0 1250			305EP 345		15NOV 195	22NOV 91		31DEC 335	31JAN 315	28FEB 365
DEPLETION 121 EVAPORATION 337	1 :		29 25		20		-99 80		-35 32	-16 15	-18	-125	-152	-105
MOD INFLOW 5402 RELEASE 5415	192 90 179 69	89	421 54 357 52				364 326	397	197 122	92 97	105	423 584	467 584	470 555
STOR CHANGE -13 STORAGE 9603	14 20 9617 9637	7 9663 9	64 1 9727 974			-113	38 9761	145	75 9981	-5 9976	-22	-161 9793	-117	-85
ELEV FTMSL 2204.0 2 DISCH KCFS 8.8	204.1 2204.2 6.0 5.0	2 2204.4 220	04.8 2204. 6.0 8.	9 2207.0	2205.5	2204.8	2205.0	2205.9	2206.4	2206.4	2206.2	2205.2	9675 2204.5	
POWER AVE POWER MW	72 60		72 10			96		4.1	4.1	7.0	8.0	9.5	9.5	10.0
PEAK POW MW ENERGY GWH 788.1	132 133 26.0 10.1	133	133 13 2.1 76.	3 179	177	176	66 176	50 177	50 178	85 178	97 178	115 176	114 175	118 174
GARRISON	20.0 10.1	. 15.0 .	2.1 /0.	1 /0.1	76.3	71.5	47.4	36.9	17.9	14.2	18.6	85.0	84.7	80.2
NAT INFLOW 8655 DEPLETION 1212	532 248 41 19		100 95		950	625	470	525	205	96	109	255	260	360
CHAN STOR -13 EVAPORATION 389	31 11		56 21: -11 -2		5	66 5	-111 27	8 15	~97 0	-45 -31	~51 -11	-105 -16	-83	-47 -5
REG INFLOW 12457 RELEASE 12814	701 310 506 194		390 123		24 880	74 982	93 841	81 703	37 387	17 189	20 257	42 886	927	957
STOR CHANGE -358	195 115	134	071 121 319 19	5 240	-319	1168 -186	911 -70	683 20	333 53	236 -47	286 -28	1230 -344	1230 -303	1111 -154
ELEV FTMSL 1814.3 1	12086 12201 815.1 1815.6	1816.2 181		0 12910 5 1818.5	$12591 \\ 1817.2$	12405 1816.4	12335 1816.2	12356 1816.2	12409	12362	12334	11990 1814.7	11687	11533
DISCH KCFS 23.1 POWER	17.0 14.0		8.0 19.8	3 20.0	19.5	19.0	15.3	11.1	11.2	17.0	18.0	20.0	20.0	20.0
AVE POWER MW PEAK POW MW	182 151 312 313	315	196 216 319 319		214 318	207 316	166 315	121 315	122 316	185 315	195 315	215 311	213 307	212
ENERGY GWH 1679.5	65.7 25.4	32.8 14	1.1 160.9	9 157.9	158.9	153.8	119.7	90.0	44.0	31.0	37.5	160.1	158.6	305 142.2
OAHE NAT INFLOW 1915	145 68		300 320	400	180	65	115	70	33	15	17		10	0.0
DEPLETION 585 CHAN STOR 16	22 10 32 15		46 64 -21 -9		143 3	93	23 20	- 8 22	2	1 -31	1 -5	11	16	90 25
EVAPORATION 335 REG INFLOW 13825	661 267	324 1	305 1464	1466	21 1218	64 1079	80 942	70 713	31 333	15 205	17	-11 37	1004	
RELEASE 13237 STOR CHANGE 588	269 237 391 30		195 1453 109 12	1402	1728 -511	1605 -526	603 339	1193 -480	269 64	137	280 155	1171 906	1224 903	1176 855
ELEV FTMSL 1579.0 15	11895 11925 580.9 1581.0	11921 12 1581.0 158	031 12042	12106	11595	11069	11409		10992	68 11060	125 11186	265 11450	321 11771	321 12092
DISCH KCFS 18.4 POWER	9.0 17.1	18.4 2	0.1 23.6	23.6	28.1	26.1	10.1	19.4	9.0	1576.9 9.8	9.8	1578.7 14.7	1580.3 14.7	1581.8 15.4
AVE POWER MW PEAK POW MW	101 191 573 574		224 264 577 577		311 566	285 553	111 561	211 549	98 551	107	107	162	162	172
ENERGY GWH 1770.7	36.2 32.0	44.2 16	1.3 196.1		231.7	212.1	79.9	157.3	35.4	552 18.0	556 20.5	562 120.3	570 120.9	578 115.4
BIG BEND EVAPORATION 103					6	20	25	22	10	r	-			
REG INFLOW 13134 RELEASE 13200	269 237 335 237		195 1453 195 1453		1722 1722	1585 1585	578 578	1171	10 259	132	5 150	11 895	903	855
	1682 1682 20.0 1420.0	1682 10	582 1682	1682	1682	1682	1682	1171 1682	260 1681	132 1681	149 1682	895 1682	903 1682	855 1682
DISCH KCFS 16.9 POWER	11.3 17.1		0.1 23.6		28.0	25.8	1420.0 9.7	1420.0 19.0	1420.0 8.7	1420.0 9.5	1420.0 9.4	1420.0 : 14.5	1420.0 14.7	1420.0 15.4
AVE POWER MW PEAK POW MW	53 80 516 509	86 509	94 111 509 509		131 509	122 518	49	96	44	48	48	73	72	74
	19.1 13.4		7.7 82.3	79.4	97.5	90.8	538 35.4	538 71.2	538 15.9	538 8.1	538 9.2	538 54.3	538 53.8	529 49.6
FORT RANDALL NAT INFLOW 825	97 45	58 1	.00 145	140	60	40	40	10	-					
DEPLETION 80 EVAPORATION 104	1 1	1	4 9	12	18	15 25	7 26	1	5	2	3	10 3	20 3	50 3
REG INFLOW 13833 RELEASE 13882	430 282 187 148		91 1589 91 1589	1530 1530	1756 1756	1586	575	18 1161	8 257	4 130	4 147	10 892	920	902
STOR CHANGE -49 STORAGE 3172	243 134 3415 3549	3549 35	49 3549	2540	0	1760 -174	1552 -976	1263 -102	257 0	130	147 0	689 203	670 250	528 374
ELEV FTMSL 1350.6 13 DISCH KCFS 10.6	53.6 1355.2 6.3 10.6	1355.2 1355	.2 1355.2 .7 25.8	1355.2 25.7	1355.2	3375 1353.1 :			2296 1337.5 1	2296 1337.5 :		2499 1341.0 1	2749 1344.8 1	3123 350.0
POWER AVE POWER MW	52 90		25.8	23.7	28.6	28.6	26.1	20.5	8.6	9.4	9.3	11.2	10.9	9.5
PEAK POW MW	350 355 18.9 15.1		55 355	355 155.9	240 355 178.6	239	203 291	150 283	63 283	68 283	68 283	83 300	84 317	76 338
GAVINS POINT			101.9	133.9	1/0.0	177.5	146.5	111.6	22.7	11.5	13.0	61.8	62.1	51.0
NAT INFLOW 1585 DEPLETION 114	102 47 0 0	61 1 0	30 160 5 19	160 24	135 39	115 10	110 -5	120	60	28	32	100	100	125
CHAN STOR 1 EVAPORATION 38	8 - 8	-21	0 -8	0	-5	0	-5	2 10	5 22	-1	3	10 -4	1	3
REG INFLOW 15316 RELEASE 15346	298 187 328 187	425 14 425 14		1666 1666	1845 1845	1858	1662	8 1383	4 330	2 153	2 175	4 771	770	655
STOR CHANGE - 30 STORAGE 388	-30 358 358		58 358	358	358	1845	1636 26	1383	330	153	175	771	770	694 -39
ELEV FTMSL 1207.1 120 DISCH KCFS 13.7	06.0 1206.0 11.0 13.5	1206.0 1206 23.8 23	.0 1206.0	1206.0 1 28.0	1206.0 1 30.0	371 1206.5 1	397 207.5 1	397 1207.5 1	397 207.5 1	397 207.5 1	397 207.5 1	397 207.5 1	397 207.5 1	358 206.0
POWER AVE POWER MW	39 47		82 95	20.0	101	30.0 101	27.5	22.5	11.1	11.0	11.0	12.5	12.5	12.5
PEAK POW MW ENERGY GWH 640.1 1	114 114 14.0 7.9		14 114	114 68.6	114 75.1	115 75.4	95 117	79 117	40 117	39 117	39 117	45 78	44 78	44 76
GAVINS POINT - SIOUX (CITY				,	13.4	68.7	58.9	14.2	6.6	7.5	33.1	33.1	29.6
DEPLETION 247	121 56 6 3		00 275 20 34	270 30	215 36	130 34	95	75	38	18	20	45	35	85
REGULATED FLOW AT SIOUX KAF 16849	CITY 442 241	494 15		1906	2024	34 1941	22	9	6	3	3	12	13	13
	14.9 17.3	27.7 26		32.0	32.9	31.6	1709 28.7	1449 23.6	362 12.2	168 12.1	192 12.1	804 13.1	792 12.9	766 13.8
	.191 555	714 22	30 2650	3870	1990	1335	1175	1200	525	0.5.5	o.c		_	
DEPLETION 2359 CHAN STOR -4	72 33 71 18		50 598	1325	955 2	135 135 8	-163 43	1200 -56	535 -118	250 -55	285 -63	745 -194	740 -202	1075 -111
EVAPORATION 1305 STORAGE 38306 39	053 39353	39509 4000			81	253	314	47 270	23 122	-64	-16 65	-30 142	1	- 3
	499 619	766 85		1013	1100	1050	691 -							38379
PEAK POW MW 1 ENERGY GWH 7004.1 17	998 1998 9.8 104.0	2000 200 165.5 612	7 2008	2058	2039	2026	1998	707 1980	417 1983	532 1984	553 1987		690 1986	696 2000
	2.0 14.9	18.4 20.	4 24.1	24.3	26.4	781.0 25.2	497.7 16.6	525.9 : 17.0	10.0	89.4 12.8	106.2 ! 13.3			168.0 16.7
INI-SUM 15	MAR 22MAR	31MAR 30AE	R 31MAY	30JUN	31JUL	31AUG	BOSEP 3	310CT 1	L5NOV 2	22NOV	30NOV :	BIDEC 3		8FEB

DATE OF STUDY 03/02/04 TIME OF STUDY 07:01:45

MAR 1, 2004, ADJUSTED UPPER DECILE SIMULATION 99001 9901 9901 PAGE 1 SHORTEN NAVIGATION SEASON 31-DAYS STUDY NO 2 VALUES IN 1000 AF EXCEPT AS INDICATED 2005

TIME OF STUDY 0		5				SHOR	CEN NAV: ES IN 10	IGATION DOO AF H	SEASON	31-DAY	S				STUDY	NO	2
29FEBO IN		15MAR	200 22MAR	4 31MAR	30APR			N 31JUI				r 15nov	22NOV		05 / 31DEC	31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOP GUANCE	7910 358 251 7301 5116	261 -17 279 179	122 -8 130 69	-10 167 89	79 529 357	325 795 461	5 501 5 1499 5 506	L 170 16 9 444 5 523	-92 52 472	2 -10 2 6 2 45	6 -55 6 58 4 47	5 -22 3 14 7 242	-10 7 113	-12 129	2 -119 7 31 9 490	-153	438 -112 550 472
DISCH KCFS POWER	2185 9603 204.0 8.8	100 9703 2204.6 6.0	61 9764 2205.0 5.0	5.0	10014 2206.6 6.0	10348 2208.7 7.5	11341 2214.6 8.5	11262 2214.1 8.5	11242 2214.0	1135 2214.	5 216 8 11 574 7 22 16.0	5 114 11688 2216.6	44 11731 2216.9	34 11765 2217.1	-33 11732 2216.9	-22 11710 2216.7	78 11788
AVE POWER MW PEAK POW MW ENERGY GWH GARRISON	775.1	72 133 26.0	60 133 10.1	61 134 13.1		92 138 68.2	189	188	188	189	9 191	. 191	192	77 192 14.7	192	192	108 192 72.7
DEPLETION CHAN STOR EVAPORATION	11756 710 4 300 15867	719 -55 31 983	335 -26 11	431 -33	1485 -69 -11	1330 150 -16	830 ~11	527 0 20	58 5	-124	-8 1 15	-103 -1	115 -48 -7 8	131 -55 -10 9	-137 -26	312 -120 -5	432 -79 5
RELEASE STOR CHANGE STORAGE	13555 2312 11891	506 477 12368	441 194 247 12614 1817.3 14.0	553 250 303 12918 1818.6 14.0	1900 952 948 13866 1822.3 16.0	1625 1199 426 14292 1824.0 19.5	1339 966 15258 1827.6	1353 -47 15211 1827.4	1126 1322 -196 15016 1826.7	918 54 15070 1826.9	806 39 15108 1827.1	390 70 15178 1827.3	1827.2	262 286 -24 15135 1827.2	904 1230 -326 14809 1826.0	980 1353 -373 14437 1824.5	988 1222 -234 14203 1823.6
POWER AVE POWER MW PEAK POW MW ENERGY GWH 18	886.1	183 316 65.9	153 318 25.7	154 322 33.3	179 333 128.8	222 338 164.8	260 349	257 348	21.5 250 346 186.3	15.4 180 347 129.7	154 347	154 348	17.0 199 348 33.4	18.0 210 347 40.4	20.0 232 344 172.9	22.0 253 340 188.3	22.0 251 337 168.8
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION	2648 585 8 262	196 22 32	91 10 15	118 13	405 46 -10	448 64 -17	640 123 -15	252 143 2	78 93 2	138 23 30	- 8	39 2 0	18 1 -19	21 1 -5	11 -10	12 16 -10	108 25 0
REG INFLOW 1 RELEASE 1 STOR CHANGE STORAGE 1 ELEV FTMSL 15	L5363 L2039 3324 L1504	711 197 515 12019 581.4 6.6	291 178 113 12132 1581.9 12.8	354 228 126 12258 1582.5 12.8	1301 931 370 12628 1584.2 15.6	1566 1336 229 12857 1585.2 21.7	1841 1221 620 13478 1587.8 20.5	17 1447 1648 -201 13276 1587.0 26.8	54 1255 1587 -332 12944 1585.6 25.8	994 821 174 13118	849 813 36 13154 1586.5	413 244 168 13323	7 228 124 103 13426	8 293 141 152 13578	33 1177 1036 140 13719	1339 888 451 14170 1590.7 14.4	1305 647 658 14828
AVE POWER MW PEAK POW MW ENERGY GWH 16	578.4	74 576 26.5	144 579 24.2	144 582 31.0	177 591 127.5	247 596 184.0	236 610 170.0	309 606 230.1	296 598 220.3	159 602 114.2		95 607 34.3	104 609 17.5	103 612 19.8	197 615 146.2	170 624 126.2	139 637 93.2
RELEASE 1 STORAGE ELEV FTMSL 14	71 1969 2035 1748 21.2 1 16.9	197 263 1682 420.0 : 8.8	178 178 1682 1420.0 12.8	228 228 1682 1420.0 12.8	931 931 1682 1420.0 15.6	1336 1336 1682 1420.0 21.7	1221 1221 1682 1420.0 20.5	5 1643 1643 1682 1420.0 26.7	15 1572 1572 1682 1420.0 25.6	19 802 802 1682 1420.0 13.5	16 797 797 1682 1420.0 13.0	4 241 240 1682 1420.0 8.1	2 123 123 1682 1420.0 8.8	2 139 138 1682 1420.0 8.7	9 1028 1029 1681 1420.0 16.7	888 888 1681 1420.0 (14.4	647 647 1681 1420.0 11.6
	97.5	42 516 15.0	60 509 10.1	60 509 12.9	73 509 52.7	102 509 75.7	96 509 69.1	125 509 93.1	121 517 90.2	66 538 47.8	65 538 48.7	41 538 14.8	45 538 7.5	44 538 8.5	83 538 61.5	70 538 52.3	56 529 37.6
DEPLETION EVAPORATION	1132 80 75 3013	131 1	61 1	78 1	135 4	203 9	224 12	84 18 6	48 15 19	48 7 21	12 1 15	6 1 3	3 0 1	3 1 2	12 3 8	24 3	60 3
RELEASE 1 STOR CHANGE STORAGE ELEV FTMSL 139 DISCH KCFS POWER	3061 -48 3172 50.6 11 10.6	5.0	238 104 134 3549 .355.2 7.5	305 305 3549 1355.2 : 17.1	1062 1062 0 3549 1355.2 1 17.8	1530 1530 3549 1355.2 24.9	1433 1433 0 3549 1355.2 24.1	1703 1703 0 3549 1355.2 27.7	1587 1736 -149 3400 1353.4 28.2	822 1472 -650 2750 1344.8 24.7	792 1245 -453 2297 1337.5 20.3	243 243 0 2297 1337.5 8.2	123 123 0 2297 1337.5 8.9	139 139 0	1030 664 366	909 652 257 2920 1347.2 1 10.6	704 500 204 3124 1350.0 9.0
AVE POWER MW PEAK POW MW ENERGY GWH 128 GAVINS POINT	87.8	42 350 15.0	64 355 10.7	145 355 31.3	151 355 108.8	210 355 156.0	203 355 146.1	233 355 173.3	236 349 175.3	198 317 142.7	152 283 112.9	60 283 21.5	65 283 10.9	64 283 12.3	81 311 60.3	83 328 61.8	73 338 48.8
NAT INFLOW 2 DEPLETION CHAN STOR EVAPORATION	2077 114 2 26	137 0 10	64 0 -5	82 0 -18	176 5 -1	224 19 -13	256 24 2	189 39 -7 2	138 10 -1 5	132 -5 7 7	144 2 8 6	72 5 22 1	34 2 -1 1	38 3 0	120 10 -4	120 1 0	150 3
RELEASE 15 STOR CHANGE STORAGE ELEV FTMSL 120	5000 5030 -30 388 07.1 12	297 327 -30 358 206.0 1 11.0	164 164 358 206.0 1 11.8		1232 1232 358 206.0 1		1666 1666 358 1206.0 :	1845 1845 358 1206.0		1609 1583 26 397	1390 1390 397	331 331 397 1207.5 1	153 153 397	1 175 175 397 207.5	3 767 767 397	771 771 397	653 692 -39 358 206.0
POWER AVE POWER MW PEAK POW MW		39 114 14.0	41 114 6.9	20.7 71 114 15.4	20.7 71 114 51.4	28.0 95 114 70.9	28.0 95 114 68.6	30.0 101 114 75.1	30.0 101 115 75.4	26.6 92 117 66.6	22.6 79 117 59.1	11.1 40 117 14.2	11.0 39 117 6.6	11.0 39 117 7.5	12.5 44 78 33.0	12.5 45 78	12.5 44 76
DEPLETION REGULATED FLOW AT	374 247	164 6	76 3	98 4	270 20	385 34	432 30	301 36	156 34	114 22	90 9	45 6	21 3	24 3	54 12	33.1 42 13	29.5 102 13
KAF 17 KCFS TOTAL	157	484 16.3	237 17.1	464 26.0	1482 24.9	2073 33.7	2068 34.8	2110 34.3	1967 32.0	1675 28.1	1471 23.9	370 12.4	171 12.3	196 12.3	809 13.2	800 13.0	781 14.1
DEPLETION 2 CHAN STOR EVAPORATION	094 14 984						6192 1520 -24 45666	2786 933 -5 66 45339	1602 118 7 207 44655	1410 -183 61 260 44374	1440 -59 35 225 44212	642 ~112 22 53 44565	300 -52 -28 25 44692	342 -59 -15 29 44855	894 -220 -39 119 45001	888 -240 -14 45315 4	1290 -150 8 15982
PEAK POW MW ENERGY GWH 6952 DAILY GWH	2.4 10	62.4 10.8	12.5	15.2	725 2038 521.7 17.4	967 2050 719.6 23.2	996 2126 716.8 23.9	1132 2120 842.3 27.2	1105 2114 822.3 26.5	768 2109 552.6 18.4	656 2078 488.4 15.8	444 2084 159.7 10.6	516 2087 86.6 12.4	538 2090 103.3 12.9	745 2078 554.4 17.9	547.0 4	671 2109 50.6 16.1
INI-5	SUM 19	5MAR 2	2MAR 3	31MAR	30APR 3	MAY .	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV					28FEB

DATE OF STUDY 03/02/04

MAR 1, 2004, ADJUSTED LOWER DECILE SIMULATION 99001 9901 9901 PAGE TIME OF STUDY 06:53:13 SHORTEN NAVIGATION SEASON 56-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED STUDY NO. 29FEB04 INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB -FORT PECK-NAT INFLOW 344 - 7 175 -15 19 78 127 -93 42 DEPLETION -12 - 5 74 194 - 93 80 -28 -13 17 -57 EVAPORATION -88 - 54 71 492 MOD INFLOW 69 506 RELEASE 444 -98 7984 97 -7 81 STOR CHANGE -1619 -11 9592 -298 8421 2196.1 -182 -100 -421 8719 STORAGE ELEV FTMSL DISCH KCFS -158 -48 -142 -152 9139 8719 2201.0 2198.1 2196.3 2204.0 2203.9 8.8 5.0 2203.9 5.0 2201.6 2203.8 2202.8 195.6 5.3 2196.1 7.0 2196.1 2195.8 2194.8 2193.7 7.5 8.0 2. 93.0 8.0 5.0 6.0 8.5 8.0 8.0 POWER AVE POWER MW PEAK POW MW 4.1 4.1 8.0 132 72.0 ENERGY GWH 34.9 16.9 13.4 684.4 21.6 10 1 13.0 69.4 68.3 43.4 63.3 66.9 60.1 --GARRISON-NAT INFLOW DEPLETION 17 70 -16 CHAN STOR EVAPORATION -82 13 - 57 -26 -30 -11 -16 -11 -11 42 - 6 REG INFLOW 1015 -197 1045 RELEASE 615 208 270 250 25 11931 1076 -281 9552 STOR CHANGE 11906 -2339 -146 -416 11255 -210 -413 9833 STORAGE -80 ર 1809.2 ELEV FTMSL 1814.2 1814.3 1814.3 314.4 14.0 314.8 814.0 813.3 1811.5 17.5 1810.6 809.8 1809.4 1809.4 DISCH KCFS 1808.9 1806.8 23.1 17.0 1804.9 1803.5 15.0 16.5 18.5 POWER 15.0 17.0 18.0 18.0 AVE POWER MW 299 132.2 297 PEAK POW MW 295 288 282 141.7 137.4 ENERGY GWH 1450.5 65.5 25 2 32.5 116.0 131.5 108.3 77.3 37.4 26.0 33.6 132 6 134.1 119.4 --OAHE-NAT INFLOW 10 15 93 32 1 DEPLETION 25 -5 - 8 CHAN STOR EVAPORATION - 8 -11 77 - 28 -11 - 3 - 3 13302 175 REG INFLOW 328 267 -23 11763 1575 RELEASE 309 -93 -711 9178 STOR CHANGE -1455 11786 90 170 -787 -441 - 315 9634 STORAGE - 22 1578.7 ELEV FTMSL DISCH KCFS .580.2 19.2 1579.0 1580.3 1579.8 1574.9 1570.8 . 8 568.9 1568.9 1569.4 10.4 18.4 11.0 568.8 1569.9 1570.8 21.6 21.4 25.6 25.6 29.4 26.8 571.7 POWER AVE POWER MW PEAK POW MW 8.6 10.0 10.4 10.4 15.1 15.1 16.1 570 562 521 231.0 513 20.7 ENERGY GWH 77.3 1708.5 44.0 35.8 51.7 169.8 207.5 113.3 198.1 205.1 63.4 38.8 18.0 117.0 116.9 -BIG BEND-EVAPORATION REG INFLOW 1623 1623 1682 478 478 1682 13240 1748 394 917 917 1575 1522 1682 138 RELEASE 158 926 1682 1682 1682 892 STORAGE 1420.0 1421.2 ELEV FTMSI 1420.0 20.0 1420.0 1420.0 120.0 420.0 1420.0 1420.0 1420.0 9.6 DISCH KCFS 20.0 20.0 20.0 13.2 19.2 21.6 21.4 1420.0 1420.0 1420.0 25.6 25.6 29 3 26.4 8.0 POWER 10.0 9.9 9.9 14.9 15.1 16.1 AVE POWER MW PEAK POW MW ENERGY GWH 22.5 21.9 102.1 8.5 9.7 766.5 15.1 72.2 89.2 86.2 93.0 29.3 36.1 18.2 55.7 55.1 51.8 FORT RANDALL NAT INFLOW 1 4 9 12 DEPLETION 3 3 31 EVAPORATION ō 12 135 135 REG INFLOW 226 1335 RELEASE 1539 574 131 555 STOR CHANGE -49 3172 203 STORAGE ELEV FTMSL DISCH KCFS C -174 -1079 ō õ õ ō 3123 1337.5 25.9 1350.6 10.6 1353.4 55.0 55.2 55.2 55.2 1355.2 29.4 353.1 1337.5 1337.5 1337.5 37.5 .5 41.0 11.9 22.7 22.4 26.9 26.8 44.8 350.0 POWER AVE POWER MW 9.3 11.5 10.0 355 PEAK POW MW 136.4 144.2 50.7 ENERGY GWH 1338.8 22.7 41.4 63.8 16.8 168.3 162.3 184.0 179.8 25.6 11.9 13.6 63.4 53.6 -GAVINS POINT NAT INFLOW 0 0 5 1 24 39 DEPLETION 5 2 0 -9 CHAN STOR - 5 0 2 175 - 8 -21 - 5 10 EVAPORATION - 1 - 3 REG INFLOW 327 153 1416 RELEASE STOR CHANGE -30 358 -30 STORAGE -39 ELEV FTMSL DISCH KCFS 207.5 1207.1 1206.0 13.7 11.0 07.5 11.0 1206.0 13.5 1206.0 206.0 1206.0 28.0 1206.0 1206.0 1206.5 1207.5 1207.5 11.2 1207.5 207.5 1207.5 POWER AVE POWER MW PEAK POW MW 23.8 28.0 1206.0 30.0 26.9 12.5 12.5 12.5 114 115 14.0 78 33.0 $\frac{114}{7.9}$ 58.7 78 76 ENERGY GWH 609.2 17.6 68.6 75.4 75.1 67.3 29.6 14.1 6.6 7.5 33.0 29.7 -GAVINS POINT SIOUX CITY NAT INFLOW 1181 79 DEPLETION 247 6 REGULATED FLOW AT SIOUX CITY NAT INFLOW DEPLETION 4 30 36 22 9 6 3 12 13 KAF 13.5 KCFS 27.8 16.0 11.8 26.3 13.5 25.6 30.3 30.2 31.5 31.1 12.0 11.8 11.8 12.9 12.7 -- TOTAL-NAT INFLOW 2592 24 32 -21 254 DEPLETION CHAN STOR -92 79 -71 7 ~73 -38 -23 75 -33 -61 -32 -16 - 27 -27 - 55 2 EVAPORATION - 1 - 1 - 8 STORAGE SYSTEM POWER 33129 32782 AVE POWER MW

456.0 25.8 9.9 10.1 12.1 12.8 15.0 15.2 15.3 INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 3 OJUN 31JUL 31AUG 30SEP 310CT 15NOV 22NOV 31DEC 31JAN 30NOV 28FEB

753.7

24.3

1907

305.9

150.9

84.4

1909

102.5

465.0

469. 427.9

799.0

111.0

15.9

190.4 12.7

PEAK POW M ENERGY GWH

DAILY GWH

MW

6558.0

1982

604.9

20.2

178.1

19.8

1967

729.4

23.5

729.0

24.3

2004 MEDIAN RUNOFF

DATE OF ST	TUDY 02/0	9/04				2004	MEDIAN	RUNOFF									
TIME OF ST	TUDY 10:5	1:43				SHOR	TEN NAV	IGATION	SEASON	31-DAY	S				STUD	NO	4
2	9FEB04 INI-SI	UM 15M2	20 R 22MA		R 30API				EXCEPT 1						005		
FORT PE NAT_INFLO	ECK W 74	00 26	4 12						L 31AUG 9 324			T 15NOV B 188	-		V 31DE0		
DEPLETION EVAPORATI MOD INFLO	ON 30	54			1 29			5 14: 2:	5 -83 2 69	3 -9 9 8	9 -61 7 76	8 - 35 6 35	-16	5 -1	8 -125	-152	349 -105
RELEASE STOR CHAN	57	19 17		9 8:	9 357	7 43	0 595	5 584	1 584	4 38	3 291	7 143	97	7 10 7 12	0 395 7 615	5 413 5 615	
STORAGE ELEV FTMS	959 L 2203	90 967 .9 2204.	5 972 4 2204.	8 979	6 10038	3 1055	9 11429	11506		0 1120	8 11302		11336	5 1130	9 11090	10888	10786
DISCH KCF POWER			-		0 6.0) 7.0	10.0	9.5	5 9.5) 2214.			2211.3 10.0
AVE POWER PEAK POW ENERGY GW	MW	7 13 .7 26.	3 13	3 134	4 135	5 139	9 189	190) 188	3 18	8 188	3 189	189	18	8 187	185	124 184 83.3
GARRIS NAT INFLO DEPLETION	W 1100									. 49'	7 454						326
CHAN STOR EVAPORATI	- 1	11 3 20	3 13		1 56 -11				5	32	2 17	0	-45 -23	-5: -1:	1 -105 1 -21	- 83	-47
REG INFLO RELEASE	1388	32 50	6 194					2056	1018	922	2 671	. 391	190	249	906	935	928
STOR CHAN STORAGE ELEV FTMS	1179		5 12011	12107	/ 12239	12392	13854	734 14588	-273	-118	3 -108 3 14090	13	-46	- 3 1	7 -324	-418	1222 -293 12985
DISCH KCF POWER	S 24.	0 1014.	0 14.0			1816.4	1822.3	1825.1 21.5	1824.1 21.0	1823.6	5 1823.2 5 12.7	1823.3 12.7	1823.1 17.0			1820.0	
AVE POWER PEAK POW ENERGY GW	MW	18 31 0 65.	0 311	. 312	314	316	333	341	338	337	7 336	336	194 335 32.5	335	5 331	246 326 182.8	243 323 163.5
OAHE NAT INFLO		0 31	7 148	190	364	236	689	1.60	2.2						100.0	102.0	103.5
DEPLETION CHAN STOR	58 1	2 3	2 10) 13			123	143	93	23	- 8	2	2 1 - 22	1	. 11	16	40 25
EVAPORATIO REG INFLOU RELEASE		2 83				1613		23 1321	70 1164	88 1065	77 748	35 347	16 200	19	41	-10 1327	0 1237
STOR CHANC STORAGE		5 44	L 137	168	337	1450 163 12710	534	1765 -444 12800	-435	192	-157	62	143 57	162 102	924 224	942 385	886 351
ELEV FTMSI DISCH KCFS		8 1580.9 2 13.3	9 1581.5	1582.3	1583.8		1586.8	1584.9			1583.1		12518 1583.7 10.3	1584.1	1585.1		
POWER AVE POWER PEAK POW N		148 574			185	267	260	328	294	166	167	109	10.3	10.2 116		15.3 176	15.9 185
ENERGY GWH	H 1806.				589 133.5	593 198.9	605 187.1	595 244.2	585 218.9	589 119.6		587 39.1	588 19.6	591 22.3	596	605 131.0	612 124.3
BIG BEN EVAPORATIC REG INFLOW	N 10							6	20	25	22	10	5	5			
RELEASE	1302 1302 168	3 396	210	259 259 1682	977 977	1450 1450	1351 1351	1759 1759	1579 1579	848 848	884 884	275 275	138 138	156 156	11 913 913	942 942	886 886
ELEV FTMSI DISCH KCFS	1420.0	0 1420.0	1420.0		1682 1420.0 16.4	1682 1420.0 23.6	1682 1420.0 22.7	1682 1420.0 28.6	1682 1420.0 25.7		1420.0		1682 1420.0	1682 1420.0	1682 1420.0	1682	1682
POWER AVE POWER PEAK POW M	MW	63		68	77	110	106	134	122	14.2 70	14.4 73	9.2 47	10.0 50	9.9 50	14.8 75	15.3	15.9
ENERGY GWH	755.8	517 3 22.7		509 14.6	509 55.4	509 82.1	509 76.5	509 99.6	518 90.4	538 50.6	538 54.0	538 16.9	538 8.5	538 9.6	538 55.4	75 538 56.1	77 529 51.4
FORT RAND NAT INFLOW DEPLETION	900			73	115	140	185	74	57	42	2	2	1	1	10		
EVAPORATIO REG INFLOW		, -	1 267	1	4	9	12	18 8	15 25	7 28	1 20	1 8	04	1 1 4	10 3 10	3	19 3
RELEASE STOR CHANG	13738	226	133 134	331 331	1088	1581 1581 0	$1524 \\ 1524$	1807 1807 0	1596 1770	855 1530	865 1268	268 268	135 135	152 152	910 707	939 689	902 528
STORAGE ELEV FTMSL		1353.6	3549 1355.2	3549 1355.2	3549 1355.2	3549	3549 1355.2	3549	-174 3375 1353.1	-675 2700 1344.1	-403 2297 1337.5	2297	0 2297	2297	203 2500	250 2750	374 3124
DISCH KCFS POWER AVE POWER	12.2 MW	7.6 63	9.6	18.5	18.3	25.7	25.6	29.4	28.8	25.7	20.6	9.0	1337.5 9.7	1337.5 9.6	1341.0 11.5	1344.8 : 11.2	1350.0 9.5
PEAK POW M ENERGY GWH	W	350	81 355 13.6	157 355 33.9	155 355 111.4	217 355 161.1	216 355 155.3	247 355 183.7	240 348	205 313	154 283	66 283	71 283	70 283	85 300	86 317	76 338
GAVINS PO NAT INFLOW							100.0	183./	178.5	147.6	114.6	23.7	11.9	13.5	63.4	63.8	51.0
DEPLETION CHAN STOR	1450 114 4	0	43 0 -4	55 0 -17	148 5 1	174 19	166 24	86 39	103 10	77 - 5	122 2	50 5	23 2	27 3	77 10	79 1	127
EVAPORATIO REG INFLOW		-	172	370	1232	-14 1722	0 1666	-7 2 1845	1 7	6 9	9 8	22 4	~1 2	0	-4 4	1	3
RELEASE STOR CHANGE STORAGE			172	370	1232	1722	1666	1845	1858 1845 13	1609 1583 26	1390 1390	331 331	153 153	175 175	766 766	767 767	658 697
ELEV FTMSL DISCH KCFS POWER	358 1206.0 13.5		358 1206.0 12.4	358 1206.0 20.7	358 1206.0 20.7	358 1206.0 28.0	358 1206.0 : 28.0	358 1206.0 30.0	771		397 1207.5 22.6	397 1207.5 1 11.1	397 1207.5 1	397 1207.5	397 1207.5 :	397 1207.5 1	-39 358 206.0
AVE POWER N PEAK POW MW	1	39 114	43 114	71 114	71 114	95 114	95 114	101 114	101	92	79	40	11.0 39	11.0 39	12.5 44	12.5 44	12.5 44
ENERGY GWH		13.9 JX CITY-	7.3	15.4	51.4	70.9	68.6	75.1	115 75.4	117 66.6	117 59.1	117 14.2	117 6.6	117 7.5	78 32.9	78 33.0	76 29.7
NAT INFLOW DEPLETION REGULATED FL	1550 247 OW AT ST		79 3	102 4	199 20	310 34	224 30	129 36	96 34	60 22	42 9	16 6	7 3	9 3	21 12	5	82
KAF KCFS	16343	491 16.5	249 17.9	467 26.2	1411 23.7	1998 32.5	1860 31.3	1938 31.5	1907 31.0	1621 27.2	1423 23.1	342 11.5	158 11.4	180 11.4	775	13 ,759	13 766
TOTAL NAT INFLOW	24601	1435	669	860	2307	3493	6073	3346							12.6	12.3	13.8
DEPLETION CHAN STOR EVAPORATION	2359 6 1399	72 78	33 23	43 -17	160 -26	598 -60	1325	955 0	1194 135 4	1113 -163 56	1032 -56 50	452 -118 22	211 -55 -46	241 -63	651 -194	582 -202	943 -111
STORAGE SYSTEM POWE	38010 R	38960	39370	39702	40413	41250		86 44483	271	337 42742	291	131	61	-15 70 42326	-35 152 42209	-9 42225 4	3 42516
AVE POWER M PEAK POW MW	W	566 1997	576 2000	670 2005	745 2017	1034 2026	1045 2106	1175 2105	1117	814	679	467	559	581	727	752	749
ENERGY GWH DAILY GWH	7275.7	203.9 13.6	96.7 13.8						2092 831.3 26.8	2082 586.3 19.5	2048 504.9 16.3	2050 168.0 11.2	2051 93.9 13.4	2052 111.4		2049 559.2	2062 503.1
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY			31AUG :					13.9	17.4		18.0

2004 AOP EXTENSIONS, MEDIAN RUNOFF SIMULATION

SHORTEN NAVIGATION SEASON 15-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

DATE OF STUDY 02/09/0									N RUNOF	F SIMUL	ATION					
TIME OF STUDY 10:51:4	43						GATION : 00 AF E			ATED				STUDY	NO	5
28FEB05 INI-SUM	15MAR	2009 22MAR	5 31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	200 30NOV	06 31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 7400 DEPLETION 388 EVAPORATION 384 MOD INFLOW 6628 RELEASE 5151 STOR CHANGE 1477 STORAGE 10786	264 -2 266 179 88 10874	123 -1 124 69 55 10929	158 -1 160 89 70 10999	628 54 574 357 217 11216	1210 338 872 430 442 11658	1851 551 1300 506 794 12452	23 616 523 93	324 -75 73 326 523 -197 12349	-143 92 370 357 13	398 -76 81 393 274 119 12481	188 -40 37 190 133 58 12539	88 -18 17 89 83 6 12545	100 -21 20 102 111 -10 12535	310 -134 42 402 523 -121 12414	261 -140 401 523 -122 12292	349 -94 443 472 -29 12263
DISCH KCFS 10.0 POWER AVE POWER MW PEAK POW MW	2211.9 6.0 75 185	2212.2 5.0 62 185	2212.6 5.0 62 186	2213.9 6.0 75 188	2216.4 7.0 88 191	2220.9 8.5 109 197			2220.4 6.0 78	2221.1 4.5 58 197	2221.4 4.5 58 197	2221.4 6.0 78 197	2221.4 7.0 91 197	2220.7 8.5 110 197	2220.0 8.5 110 196	2219.9 8.5 110 196
ENERGY GWH 801.5	26.8	10.5	13.5	54.1	65.8	78.5	82.1	82.0	56.0	43.1	20.9	13.1	17.5	82.0	81.8	73.7
NAT INFLOW 11001 DEPLETION 948 CHAN STOR 16 EVAPORATION 457	469 1 43	219 1 11	282 1	853 5 -11	1423 185 -11	2958 759 -16	2066 511 0 27	581 29 87	497 -132 26 110	454 -3 16 96	192 -93 43	89 -43 -16 20	102 -49 -10 23	253 -96 -15 50	237 -80	326 -48 0
REG INFLOW 14764 RELEASE 12968 STOR CHANGE 12968 STORAGE 12985 ELEV FTMSL 1818.8 DISCH KCFS 22.0 POWER 2000	690 476 213 13199 1819.7 16.0	298 208 90 13289 1820.1 15.0	370 268 102 13391 1820.5 15.0	1194 1012 183 13574 1821.2 17.0	1658 1168 490 14064 1823.1 19.0	2689 1220 1469 15533 1828.6 20.5		987 1199 -212 16141 1830.8 19.5	952 -50	651 754 -104 15987 1830.3 12.3	373 365 8 15996 1830.3 12.3	180 201 -22 15974 1830.2 14.5	229 286 -56 15918 1830.0 18.0	807 1230 -423 15495 1828.5 20.0	840 1261 -421 15074 1826.9 20.5	846 1139 -292 14781 1825.8 20.5
AVE POWER MW PEAK POW MW ENERGY GWH 1823.3	177 325 63.9	167 326 28.1	168 328 36.2	190 330 137.1	214 335 159.6	237 352 170.7	236 445 175.8	232 442 172.7	190 441 137.1	146 440 108.7	146 440 52.5	172 440 28.9	213 439 40.9	235 433 174.9	238 428 177.4	236 424 158.8
OAHE NAT INFLOW 2300 DEPLETION 597 CHAN STOR 8 EVAPORATION 415 REG INFLOW 14263 RELEASE 12422 STOR CHANGE 1841	317 22 29 799 520 280	148 10 5 350 95 255	190 13 0 444 258 186	364 46 -9 1320 977 343	236 65 -9 1330 1069 261	689 126 -7 1776 988 788	162 147 26 1221 1498 -277	33 96 2 80 1058 1604 -546	118 24 16 99 963 1209 -246	14 -8 17 87 707 654 53	5 2 39 330 511 -181	2 -10 18 174 124 51	3 -16 21 250 164	-20 11 -9 46 1144 924	16 -2 1242 972	40 25 1154 856
STORAGE 13580 ELEV FTMSL 1588.3 DISCH KCFS 15.9 POWER	13860 1589.4 17.5	14116	14301	14644 1592.6 16.4	14905	15693	15416	14870	14624	14678	14496	14547 1592.2 8.9	86 14633 1592.5 10.4	220 14853 1593.4 15.0	271 15123 1594.4 15.8	298 15421 1595.6 15.4
AVE POWER MW PEAK POW MW ENERGY GWH 1801.9	204 618 73.4	81 623 13.5	171 627 37.0	195 634 140.5	208 639 154.7	201 654 144.7	296 648 219.9	314 638 233.3	243 633 174.7	127 634 94.6	204 631 73.6	106 632 17.9	124 633 23.7	180 638 133.8	190 643 141.4	186 649 125.2
- BIG BEND EVAPORATION 103 REG INFLOW 12319 RELEASE 12319 STORAGE 1682 ELEV FTMSL 1420.0 DISCH KCFS 15.9 POWER	520 520 1682 1420.0 17.5	95 95 1682 1420.0 6.8	258 258 1682 1420.0 14.5	977 977 1682 1420.0 16.4	1069 1069 1682 1420.0 17.4	988 988 1682 1420.0 16.6	6 1492 1492 1682 1420.0 24.3	20 1584 1584 1682 1420.0 25.8	25 1184 1184 1682 1420.0 19.9	22 632 632 1682 1420.0 10.3	10 501 1682 1420.0 16.8	5 119 119 1682 1420.0 8.6	5 159 159 1682 1420.0 10.0	11 913 913 1682 1420.0 14.8	972 972 1682 1420.0 15.8	856 856 1682 1420.0 15.4
AVE POWER MW PEAK POW MW ENERGY GWH 713.0	82 510 29.5	32 509 5.4	68 509 14.6	77 509 55.4	81 509 60.6	78 509 56.0	114 509 84.5	121 509 89.7	95 525 68.3	52 538 38.7	85 538 30.5	44 538 7.3	51 538 9.7	75 538 55.4	78 538 57.7	74 529 49.7
FORT RANDALL NAT INFLOW 900 DEPLETION 80 EVAPORATION 112 REG INFLOW 13023 RELEASE 13023 STOR CHANGE 0 STORRAGE 3124 ELEV FTMSL 1350.0 DISCH KCFS 9.5 POWER	122 1 641 232 408 3532 1355.0 7.8	57 1 134 17 3549 1355.2 9.7	73 1 331 3549 1355.2 18.5	115 4 1088 1088 3549 1355.2 18.3	140 9 1200 1200 3549 1355.2 19.5	185 12 1161 1161 3549 1355.2 19.5	74 18 8 1540 1540 0 3549 1355.2 25.0	57 15 25 1601 1601 0 3549 1355.2 26.0	42 7 31 1188 1535 -347 3202 1351.0 25.8	2 1 22 607 1484 -877 2325 1338.0 24.1	2 1 8 521 -28 2297 1337.5 17.5	1 0 4 117 117 0 2297 1337.5 8.4	1 4 155 155 0 2297 1337.5 9.8	10 3 910 707 203 2500 1341.0 11.5	3 969 689 280 2780 1345.3 11.2	19 3 528 344 3124 1350.0 9.5
AVE POWER MW PEAK POW MW ENERGY GWH 1284.6	65 354 23.4	82 355 13.8	157 355 33.9	155 .355 111.4	165 355 122.8	165 355 118.8	211 355 157.0	219 355 163.1	214 341 153.8	186 285 138.2	127 284 45.8	61 283 10.3	71 284 13.7	85 300 63.4	86 319 64.0	76 338 51.1
GAVINS POINT NAT INFLOW 1450 DEPLETION 114 CHAN STOR -1 EVAPORATION 38 REG INFLOW 14320 RELEASE 14320 STOR CHANGE STORAGE 358 ELEV FIMSL 1206.0 DISCH KCFS 12.5					174 19 -2 1353 1353 358 1206.0		86 39 -11 2 1574 1574 358 1206.0	103 10 -2 7 1685 1672 13 371 1206.5	77 -5 0 9 1609 1583 26 397 1207.5	122 2 3 1599 1599 397 1207.5	50 5 12 4 574 574 397 1207.5	23 2 17 2 153 153 397 1207.5	27 3 -3 174 174 397 1207.5	77 10 -3 4 767 767 397 1207.5	79 1 1 767 767 397 1207.5	127 3 658 697 -39 358 L206.0
DISCH KCFS 12.5 POWER AVE POWER MW PEAK POW MW ENERGY GWH 601.7	11.0 39 114 13.9	12.5 44 114 7.4	20.7 71 114 15.4	20.7 71 114 51.4	22.0 76 114 56.3	21.9 75 114 54.2	25.6 88 114 65.1	27.2 93 115 69.3	26.6 92 117 66.6	26.0 91 117	19.3 68 117	11.0 39 117	11.0 39 117	12.5 44 78	12.5 44 78	12.5 44 76
GAVINS POINT - SIOUX NAT INFLOW 1550 DEPLETION 248	CITY		102 4	199 20	310 34	224 30	129 37	96 34	60 22	67.8 42 9	24.5 16 6	6.6 7 3	7.5 9	33.0 21	33.0	29.7 82
REGULATED FLOW AT SIOU KAF 15622 KCFS	JX CITY 491 16.5	250 18.0	467 26.2	1411 23.7	1629 26.5	1497 25.2	1666 27.1	1734 28.2	1621 27.2	9 1632 26.5	585 19.7	3 158 11.4	3 180 11.3	12 776 12.6	13 759 12.3	13 766 13.8
TOTAL NAT INFLOW 24601 DEPLETION 2375 CHAN STOR 19 EVAPORATION 1509	1435 29 75	669 14 12	860 17 -17	2307 134 -20	3493 650 -22	6073 1502 -23	3346 942 - 8 93	1194 109 0 292	1113 -227 42 366	1032 -75 31 315	452 -119 12 141	211 -56 -8 66	241 -63 -29 75	651 -194 -28 163	582 -187 -2	943 -101 3
SYSTEM POWER AVE POWER MW PEAK POW MW	43505 642 2108 231.0	43923 468 2114 78.7	44281 697 2119 150.6	45024 764 2130 550.0	46216 833 2144 619.7	49267 865 2181 622 9	49904 1054 2269	48962 1089 2255	48358 912 2254	47550 660 2211	47407 689 2207	47442 501 2207	47462 589 2208	47340 729 2183	47348 746 2202	47630 727 2211
DAILY GWH INI-SUM	15.4	11.2	16.7	18.3	20.0	622.9 20.8 30JUN	784.4 25.3 31JUL	810.2 26.1 31AUG	656.4 21.9 30SEP	491.1 15.8 310CT	247.9 16.5 15NOV	84.1 12.0 22NOV	14.1	17.5	17.9	488.3 17.4 28FEB

DATE OF STUDY 02/09/04 TIME OF STUDY 10:51:43

2004 AOP EXTENSIONS, MEDIAN RUNOFF SIMULATION

TIME OF STUDY 10:						AOP EXT			N RUNOR	F SIMUI	LATION					
	51:43	2.0	0.0			HORTENED ES IN 10			S INDIC	CATED				STUDY	NO	6
	SUM 15M	20 AR 22MA		R 30APR	31MA)	7 30JUN	31JUI	31AUG	30SEF	9 310C1	2 15NOV	22NOV	20 30NOV	07 31DEC	31JAN	28FEB
DEPLETION EVAPORATION MOD INFLOW 6 RELEASE 4 STOR CHANGE 1 STORAGE 12 ELEV FTMSL 221 DISCH KCFS	397 424 579 2 756 1	38 51 51 1240 4 2220.	1 -1 4 160 9 89 5 70 6 12476 7 2221.0	55 573 573 573 216 512692 2222.2	331 879 430 449 13141 2224.7	561 1290 476 814 13955 2228.9	197 25 607 461 145 14100 2229.6	7 -71 5 80 7 315 461 5 -146 0 13954 5 2228.9	-144 101 362 327 35 13988 2229.1	- 80 89 251 138 14126 2229.8	-40 41 187 122 65 14191 2230.1	-19 19 87 83 4 14195	-21 22 100 111 -11	310 -134 47 397 461 -64 14120 2229.7 7.5	261 -140 401 461 -60 14060 2229.4 7.5	349 -94 443 417 26 14086 2229.6 7.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 76	19 6.5 28		7 197	198	92 201 68.4	205	101 205 74.8	205		205	55 205	81 205 13.6	94 205 18.1	101 205 74.9	101 205 74.9	101 205 67.6
DEPLETION CHAN STOR		59 219 3 2 6 10	2 2		1423 173 -10	785	2066 518 5 29	35	20	-8 14		89 -50 -19	102 -57 -10	253 -119 -5	237 -102	326 -67
RELEASE 13 STOR CHANGE STORAGE 14 ELEV FTMSL 182	410 67 981 47 429 19 781 1497 5.8 1826. 0.5 16.	6 222 5 79 6 15051 6 1826.8	2 286 5 83 15134 3 1827.2	1101 87 15221 1827.5	1670 1261 410 15631 1829.0 20.5	1369 1270 16901 1833.4	1986 1383 602	916 1353 -436	866 932 -66 17000	629 788 -160 16840	375 381 -6 16834	21 182 222 -40 16794 1833.1 16.0	24 236 -49 16745 1832.9 18.0	51 777 1230 -453 16292 1831.3 20.0	800 1414 -614 15678 1829.1 23.0	810 1277 -468 15210 1827.4 23.0
AVE POWER MW PEAK POW MW ENERGY GWH 201.	18 42 3.2 66.	6 427	428	430	239 435 178.0	452	273 459 203.2	454	190 453 137.1	156 451 115.8	155 451 55.9	193 450 32.5	217 449 41.7	240 444 178.2	272 436 202.1	268 429 180.2
DEPLETION CHAN STOR EVAPORATION	300 31 513 2 -12 2 451	3 11 0	14	364 47 -11	236 66 -9	-11	162 151 2 29	33 100 2 89	118 25 27 109	14 -8 12 93	5 2 0 41	2 1 -14 19	3 1 -9 22	-20 11 -9 48	16 -13	40 26
RELEASE 131 STOR CHANGE 13 STORAGE 154 ELEV FTMSL 159	206 79 394 51 312 27 421 1569 5.6 1596. 5.4 17.	9 95 1 264 2 15956 6 1597.6	258 203 16160 1598.3	1407 977 430 16589 1599.9 16.4	1422 1069 353 16942 1601.1 17.4		1368 1720 -352 17520 1603.1 28.0	1198 1819 -621 16899 1601.0 29.6	943 1621 -678 16221 1598.6 27.2	730 1107 -378 15843 1597.2 18.0	344 524 -180 15663	190 241 -51 15613	257 209 48 15661 1596.5 13.2	1142 1082 60 15721	1385 879 506 16227 1598.6 14.3	1291 786 506 16733 1600.4 14.1
AVE POWER MW PEAK POW MW ENERGY GWH 2085	21 65 5.0 76.	4 658	662	203 670 146.3	217 677 161.2	210 694 150.9	354 687 263.1	370 676 275.5	337 663 242.6	221 656 164.5	215 653 77.4	212 652 35.6	160 653 30.8	215 654 159.6	175 663 130.6	176 673 118.0
REG INFLOW 137 RELEASE 137 STORAGE 16 ELEV FTMSL 1420		9 95 2 1682 0 1420.0	258 1682	977 977 1682 1420.0 16.4	1069 1069 1682 1420.0 17.4	988 988 1682 1420.0 16.6	6 1714 1714 1682 1420.0 27.9	20 1799 1799 1682 1420.0 29.3	25 1596 1596 1682 1420.0 26.8	22 1086 1086 1682 1420.0 17.7	10 514 514 1682 1420.0 17.3	5 237 237 1682 1420.0 17.0	5 203 203 1682 1420.0 12.8	11 1070 1070 1682 1420.0 1 17.4	879 879 1682 1420.0 (14.3	786 786 1682 1420.0 14.1
AVE POWER MW PEAK POW MW ENERGY GWH 796	83 51 .1 29.5	509	68 509 14.6	77 509 55.4	81 509 60.6	78 509 56.0	130 509 97.1	137 509 101.9	127 517 91.5	87 538 64.5	87 538 31.2	86 538 14.4	65 538 12.4	86 538 64.0	70 538 52.0	68 529 45.6
DEPLETION		1 1) 151	73 1 331 331	115 4 1088 1088	140 9 1200 1200	185 12 1161 1161	74 18 8 1762	57 15 25 1816	42 7 31 1600	2 1 25 1062	2 1 10 505	1 0 4 233	1 1 4 200	10 3 10 1067	3 876	19 3 802
STOR CHANGE STORAGE 31 ELEV FTMSL 1350 DISCH KCFS 9 POWER	0 408 24 3532 .0 1355.0 .5 7.6	17 3549 1355.2 9.7	3549	3549	2540	2540	1762 0 3549 1355.2 28.7	1816 0 3549 1355.2 29.5	1744 -144 3405 1353.5 29.3	1699 -637 2768 1345.1 27.6	809 -304 2464 1340.4 27.2	378 -145 2319 1337.9 27.2	222 -22 2297 1337.5 14.0	701 366 2663 1343.5 1 11.4	689 187 2850 346.3 1 11.2	528 274 3124 1350.0 9.5
AVE POWER MW PEAK POW MW ENERGY GWH 1435 GAVINS POINT	65 354 .5 23.4	355	157 355 33.9	155 355 111.4	165 355 122.8	165 355 118.8	241 355 179.2	248 355 184.6	245 349 176.0	221 318 164.6	206 296 74.0	199 285 33.5	102 284 19.6	85 311 63.6	87 324 65.0	76 338 51.3
NAT INFLOW 14 DEPLETION 1 CHAN STOR	14 C -1 3 38 90 328	0 -4 174	55 0 -17 370	148 5 0 1232	174 19 -2 1353	166 24 0 1303	86 39 -18 2 1789	103 10 -2 7 1901	77 ~5 0 9 1817	122 2 3 1814	50 5 1 4 851	23 2 0 2 397	27 3 25 2 268	77 10 5 4 768	79 1 0 767	127 3
STOR CHANGE STORAGE 3	58 358 0 1206.0	358 1206.0	370 358 1206.0 20.7	1232 358 1206.0 1 20.7	1353 358 1206.0 22.0	1303 358 1206.0 1 21.9	1789 358 206.0 : 29.1	1888 13 371 1206.5 30.7	1791 26 397	1814 397	851 397	397 397	268 268 .207.5 1 16.9	768 397	767 397	658 697 -39 358 206.0 12.5
AVE POWER MW PEAK POW MW ENERGY GWH 659.		44 114 7.4	71 114 15.4	71 114 51.4	76 114 56.3	75 114 54.2	99 114 73.5	103 115 76.6	103 117 74.1	102 117 76.2	100 117 36.0	100 117 16.8	60 117 11.5	44 78 33.0	44 78 33.0	44 76 29.7
GAVINS POINT - SI NAT INFLOW 155 DEPLETION 25 REGULATED FLOW AT S KAF 1708 KCFS	50 169 51 6 510UX CIT	79 3 250	102 4 467	199 21 1410	310 35 1628	224 30 1497	129 37 1881	96 34 1950	60 22 1829	42 10 1846	16 6 861	7 3 402	9 3 274	21 12 777	5 13 759	82 13
TOTAL NAT INFLOW 2460 DEPLETION 234 CHAN STOR -	1 1435 1 31	18.0 669 15 7	26.2 860 19 -17	23.7 2307 144	26.5 3493 633	25.2 6073 1541	30.6 3346 960	31.7 1194 123	30.7 1113 -230	30.0 1032 -83	29.0 452 -134	29.0 211 -62	274 17.3 241 -71	651 -217	582 -209	766 13.8 943 -119
EVAPORATION 160 STORAGE 4763 SYSTEM POWER AVE POWER MW PEAK POW MW	5 0 48591 660	49002 492	49359 725	799	870	907	-10 99 54711 1197	0 312 53521 1227	48 389 52693 1076	30 335	1 150	-34 69	6 79	-9 172 50875 5	-13 50894 5	3 51193
ENERGY GWH 7755. DAILY GWH	2255 4 237.8 15.9 M 15MAR	2261 82.7 11.8 22MAR	17.4	19.2	20.9	2328 653.3 21.8 30JUN 3	2330 890.9 28.7	2313 912.6 29.4	2304 774.5 25.8	2285 626.4 20.2	2261 294.3 19.6	2248 146.3 20.9	2246 134.0 16.8	573.4 5 18.5	57.5 4 18.0	733 2250 192.4 17.6
					-			100		310CT	15NOV :	22NOV	30NOV 3	1DEC 3	1JAN 2	8FEB

DATE OF STU						2004	AOP EX:	TENSION	S, MEDIA	AN RUNOF	F SIMUI	ATION					
TIME OF STU	DY 10:51 FEB07	:43	2.04	0.7		VALU	ES IN 10	000 AF 1	EXCEPT A	AS INDIC	ATED				STUDY	V NO	7
FORT PEC	INI-SU	M 15MAF	200 22MAF	R 31MAI	R 30APF	31MA	100 Y 30JU	3 31JU	L 31AUG	30SEP	9 31001	15NOV	22NOV		08 7 31DEC	31 JA	29FEB
NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE ELEV FTMSL DISCH KCFS POWER	740 39 N 45 654 601 E 53 1408	7 -2 5 266 2 179 7 88 6 14174 6 2230.0	-1 124 69 55 14228 2230.3	1 -: 1 160 9 89 5 70 8 14299 8 2230.6	1 55 0 573 9 417 0 156 9 14455 5 2231.4	87 492 38 1484 2233	1 561 9 1290 2 762 7 528 2 15371 3 2235.8	197 28 0 604 2 615 3 -10 -15360 3 2235.1	7 -71 8 87 4 308 5 584 0 -276 0 15084 7 2234.4	-144 109 354 372 -18 15066 2234.3	-80 95 383 300 83 15149 2234.7	-40 43 184 149 36 15185	-19 20 86 83 3 15187	-21 23 98 127 -29 15159 2234.8	-134 50 394 584 -190 14969 2233.9	401 401 615 -214 14755 2232.8	-94 443 575 -132 14623 2232.2
AVE POWER M PEAK POW MW ENERGY GWH		81 205 9 29.0	206	206	5 206	208	3 210	210) 209	209		68 209 24.6	82 209 13.8	109 209 20.9	129 208 96.1	136 207	
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW	1100: 980 -21	2 -7 7 16 3	-3 10	- 4	l −8 ~21	214	826 -49	587 28 29	40 5 94	-138 32 117	454 -12 14 101	192 -110 -1 45	89 -51 -10 21	102 -59 -20 24	253 -120 -15 52	- 5	326 -74
RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	1521(1827.4 23.0	8 194 9 15404 1828.2	222 80 15484	286 89 15573 1828.8	1131 126 15700 1829.2	1322 369 16068 1830.5	1428 1416 17485 1835.4	1445 647 18132 1837.6	1414 -378 17754 1836.3	923 1088 -165 17589 1835.8 18.3		404 490 -86 17170 1834.4 16.5	193 229 -36 17134 1834.2 16.5	244 317 -74 17060 1834.0 20.0	890 1230 -339 16721 1832.8 20.0	1476 -528 16193	975 1381 -405 15788 1829.5 24.0
AVE POWER M PEAK POW MW ENERGY GWH		187 432 67.2	187 433 31.5	188 434 40.6	436	254 441 188.6	459	289 467 214.9	462	225 460 161.9	202 456 149.9	201 455 72.2	200 454 33.7	243 453 46.6	242 449 179.7	286 442 213.1	283 437 197.2
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE	16150 15571 579 16733	23 30 800 519 281 17014	148 11 359 122 237 17251	190 14 462 324 137 17389	47 -13 1435 1185 250	236 67 -10 1481 1284 196 17835	132 -10 1975 1196 778	162 156 2 30 1423 1872 -449 18165	103 2	118 25 20 112 1089 1770 -681 16765	14 -9 8 96 947 1261 -314 16451	5 2 43 450 598 -148 16303	2 1 20 210 276 -66 16238	3 -15 23 281 240 41 16278	-20 12 0 1148 1143	17 -17 1441 970 471	40 26 1395 838 557
ELEV FTMSL DISCH KCFS POWER AVE POWER MI PEAK POW MW ENERGY GWH	14.1	1601.4 17.4 218 678 78.4	1602.2 8.8 111 682 18.6	1602.7 18.2 229 685 49.4	1603.5 19.9 252 689 181.1	1604.2 20.9 265 693 197.1	1606.8 20.1 257 707 185.3	1605.3 30.4 389 699 289.7	1602.9 32.1 406 686 302.0	1600.5 29.7 372 673 267.5					16284 1598.8 18.6 229 664 170.7	16755 1600.5 15.8 196 673 145.7	17312 1602.4 14.6 183 684 127.1
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS POWER	103 15468 15468 1682 1420.0 14.1	519 519 1682 1420.0 17.4	122 122 1682 1420.0 8.8	324 324 1682 1420.0 18.2	1185 1185 1682 1420.0 19.9	1284 1284 1682 1420.0 20.9	1196 1196 1682 1420.0 20.1	6 1866 1866 1682 1420.0 30.3	20 1953 1953 1682 1420.0 31.8	25 1745 1745 1682 1420.0 29.3	22 1239 1239 1682 1420.0 20.2	10 588 588 1682 1420.0 19.8	5 271 271 1682	5 235 235 1682 1420.0 14.8	11 1132 1132 1682	970 970 1682	838 838 1682 1420.0 14.6
AVE POWER MU PEAK POW MW ENERGY GWH	892.3	82 510 29.4	41 509 6.9	85 509 18.4	93 509 67.1	98 509 72.8	94 509 67.8	142 509 105.6	149 509 110.6	139 517 100.0	99 538 73.5	99 538 35.7	98 538 16.5	75 538 14.3	91 538 67.6	77 538 57.3	70 529 48.6
FORT RANDAI NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	900 80 118 16171 16171 0 3124 1350.0 9.5	122 1 640 232 408 3532 1355.0 7.8	57 1 161 17 3549 1355.2 11.6	73 1 397 0 3549 1355.2 22.2	115 4 1296 0 3549 1355.2 21.8	140 9 1415 1415 3549 1355.2 23.0	185 12 1369 1369 3549 1355.2 23.0	74 18 8 1914 1914 0 3549 1355.2 31.1	57 15 25 1970 1970 0 3549 1355.2 32.0	42 7 31 1748 1892 -144 3405 1353.5 31.8	2 1 25 1216 1853 -637 2768 1345.1 30.1	2 10 579 883 -304 2464 L340.4 1 29.7	1 0 268 413 -145 2319 -337.9 1 29.7	1 4 231 253 -22 2297 1337.5	10 3 10 1128 762 366 2663 1343.5 12.4	3 967 750 217 2880	19 3 854 610 244 3124
AVE POWER MW PEAK POW MW ENERGY GWH GAVINS POIN	1600.3	65 354 23.4	99 355 16.6	188 355 40.5	184 355 132.4	194 355 144.5	194 355 139.8	261 355 194.4	269 355 200.0	265 349 190.8	241 318 179.2	224 297 80.7	217 285 36.5	116 284 22.3	93 311 69.1	95 326 70.9	85 338 59.3
NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	1450 114 -3 38 17466 17466 358 1206.0	92 0 3 328 328 1206.0 1	43 0 -7 197 197 358 .206.0 1	55 0 -20 432 432 358 1206.0 ;	$ 148 \\ 5 \\ 1 \\ 1440 \\ 1440 \\ 358 \\ 1206.0 1 $	174 19 -2 1568 1568 358 206.0	166 24 0 1511 1511 358 1206.01	86 39 -16 2 1943 1943 358	103 10 -2 7 2054 2041 13 371	77 -5 0 1966 1940 26 397	122 2 3 1968 1968 1968	50 5 1 925 925 397	23 2 0 2 432 432 397	27 3 25 2 301 301 397	77 10 7 4 832 832 397	79 1 0 829 829 397	127 3 740 779 -39 358
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH	12.5 718.3	11.0 39 114 13.9	14.2 50 114 8.3	24.2 83 114 17.9	24.2 83 114 59.7	25.5 87 114 64.9	25.4 87 114	31.6 105 114	33.2 109 115	32.6 109 117	108 117	207.5 1 31.1 106 117	207.5 1 31.1 106 117	207.5 1 19.0 67 117	207.5 1 13.5 48 78	207.5 1 13.5 48 78	206.0 13.5 48 76
GAVINS POINT NAT INFLOW DEPLETION REGULATED FLOW KAF KCFS	1550 254	X CITY 169		102 4 530 29.7	199 21 1618 27.2	310 35 1843 30.0	62.5 224 30 1705 28.7	77.8 129 37 2035 33.1	80.8 96 35 2102 34.2	78.3 60 23 1977	80.6 42 10 2000	38.2 16 6 936	17.8 7 3 437	12.8 9 3 306	35.7 21 12 841	35.6 5 13 821	82 14 847
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER	24601 2451 -34 1661 51193	1435 21 49 52164	669 10 3 52553	860 13 -20	2307 124 -32	3493 675 -23	6073 1585 -59	3346 1034 14 103	1194 132 5 324	33.2 1113 -232 52 403 54904 5	32.5 1032 -88 25 347 53703	31.5 452 -137 0 154 53200 5	31.5 211 -64 -10 71	19.3 241 -73 -10 81	13.7 651 -217 -9 177	13.3 582 -207 -22	943 -125 3
AVE POWER MW PEAK POW MW	8684.5	671 2295 241.5 16.1	555 2300 93.2 13.3	840 2304 181.4 20.2	929 2310 669.0 22.3	1006 2320	1020 2354	1316 2353 979.1 1 31.7	1345 2336	1194 2325 359.9 7	971 2305	947 2280 40.8 1	949 2267 59.4 1	796 2265 .52.9 6	832 2249 519.0	838 2265 523.4	804 2270 559.6
I	NI-SUM	15MAR 2	22MAR		30APR						23.3 10CT 1			19.1 ONOV 3		20.1	19.3 9FEB

2004 AOP EXTENSIONS, MEDIAN RUNOFF SIMULATION

TIME OF ST	UDY 10:5	1:43				2001	nor LA	1010101	o, nadir	IN RONO	FF SIMUL	ATTON			STUDY	Z NO	8
2	9FEB08	111 151		008	0 2030				EXCEPT A						009		
FORT PE NAT INFLO DEPLETION	CK W 74	00 :	264 1	AR 31MA	8 62	8 121	0 185:	L 821	9 324	319		188			7 31DEC		
EVAPORATI MOD INFLO	ON 4	22 51 27 :		-1 -1 24 16				24	3 87	108	8 95	-42 43 186	20) 23	3 49	9	
RELEASE STOR CHAN STORAGE	71 GE -5 146	95	88	83 10 41 5	7 470 3 9	5 553 7 324	3 1083 1 199	8 640 9 -50	5 646 5 -346	439 - 84	9 354 4 32	208 -22	111	15	615	5 76	694
ELEV FTMS DISCH KCF	և 2232	.2 2232	.6 2232	51 1480 .8 2233. .0 6.	1 2233.	5 2235.3	L 2236.0	2235.	7 2234.1	2233.1	7 14968 7 2233.9 4 5.8	14946 2233.8 7.0	2233.6	2233.4	2232.3	5 14278 2230.5	3 14028 5 2229.3
POWER AVE POWER PEAK POW I ENERGY GW	MM			81 83 07 204	1 109 8 208	9 122 8 209	2 5	7 142) 210	3 143 0 208	100	0 78 8 208	95 208 34.3	109 208	136	5 135 207	168 206	167 205
GARRIS	ON ∛ 110	01 4	69 2	19 282	2 853	3 1423	2958										-
DEPLETION CHAN STOR	10	02 27		-3 -3		5 215	5 836	603	46	497 -141 31	L -17	192 -114 -12	- 53	-61	-122	-103	-69
EVAPORATIO REG INFLO RELEASE				05 392 22 286					1081	125 983	5 108 3 732	49 453	23 221	26 276	56 934		
STOR CHANC STORAGE	3E 200 1578	07 2 38 160	19 06 160	83 101 89 16196	7 244	429	1684	708	-333	1092 -109 18819	-191 18628	447 6 18634	-15	-10	-296	-330	-188
ELEV FTMS DISCH KCFS POWER	5 1829 S 24	.5 1830 .0 16	.3 1830 .0 16	.6 1831.0 .0 16.0) 1831.8) 18.0	1833.3 21.5	1838.9 24.0	1841.1	1840.1	1839.8 18.4	1839.2	1839.2 15.0	1839.1	1839.1	1838.2	1837.1	1836.5
AVE POWER PEAK POW N	ĩW	4	89 19 40 44	41 442						231 475		189 472	213 472				
ENERGY GWH		.8 68	.2 31	.9 41.1	l 154.7	192.0	211.8	219.5		166.4		67.9	35.8				
NAT INFLOW DEPLETION	7 230 64	1		48 190 11 14						118 26		5 2	2	3		17	40 27
CHAN STOR EVAPORATIC REG INFLOW	N 46	5	34 03 35	59 462	-8 ! 1379			30	2 92	19 113	14 96	0 43	-9 20	- 4	- 9	-13	27
RELEASE STOR CHANG	1633 E -56	1 4 5 3	80 25 23 10	50 371)9 91	. 1286 . 93	1389 87	1298	1869	1973	1091 1770 -679	1261	407 598 -191	209 276 -67	260 248 12	1260	1384 1037 347	1290 967
STORAGE ELEV FTMSI DISCH KCFS	1731 1602. 14.	4 1603	.5 1603.	9 1604.2	1604.5	1604.8	1607.0	1605.6	17517 1603.1	16838 1600.8	$16441 \\ 1599.4$	16251 1598.7	16184 1598.4	16196 1598.5	16076	16423	324 16747 1600.5
POWER AVE POWER	MW	2	04 22	28 264				30.4 389		29.7 372		20.1 248	19.9 245	15.7 193	20.5	16.9	17.4
PEAK POW M ENERGY GWH			89 69 .3 38.						687	675 267.9	667	664 89.4	662 41.1	663 37.1	252 661 187.4	208 667 154.8	216 673 145.3
BIG BEN EVAPORATIC	N 10							6	20	25	22	10	5	5	11		
REG INFLOW RELEASE STORAGE	1622 1622 168	8 4	30 25 30 25 32 168	0 371	1286	1389	1298 1298 1682	1862 1862	1953 1953	1745 1745	1239 1239	588 588	271 271	243 243	1249 1249	1037 1037	967 967
ELEV FTMSL DISCH KCFS	1420.	0 1420	0 1420.	0 1420.0	1420.0			1682 1420.0 30.3	1682 1420.0 31.8	1682 1420.0 29.3	1682 1420.0 20.2	1682 1420.0 19.8	1682 1420.0 19.5	1682 1420.0 15.3	1682 1420.0 20.3	1682 1420.0 16.9	
POWER AVE POWER PEAK POW M	W	5		4 97 0 509		106 509	102 509	142 509	149 509	139 517	99	99	98	77	100	83	17.4 83
ENERGY GWH		4 27	.5 14.	2 21.0	72.9	78.7	73.5	105.5	110.6	100.0	538 73.5	538 35.7	538 16.5	538 14.8	538 74.5	538 61.4	529 56.1
NAT INFLOW DEPLETION	90 8	0		7 73 1 1		140 9	185 12	74 18	57 15	42 7	2	2	1	1	10		19
EVAPORATIO REG INFLOW RELEASE	N 11 1693 1693	0 60			1397 1397	1520 1520	1471	8 1910	25 1970	31 1748	25 1216	10 579	4 268	4 239	3 10 1245	3 1034	3 983
STOR CHANG	E 312-	0 29 4 343	1 11	7 17	3549	2540	1471 0 3549	1910 0 3549	1970 0 3549	1892 -144 3405	1853 -637 2768	883 -304 2464	413 -145 2319	261	879 366	867 167	689 294
ELEV FTMSL DISCH KCFS POWER	1350. 10.	0 1353 6 10	6 1355. 4 13.	0 1355.2 6 23.9	1355.2 23.5	1355.2 24.7	1355.2 24.7	1355.2 31.1	1355.2 32.0	1353.5 31.8	1345.1 30.1	1340.4 29.7	1337.9 29.7	1337.5 16.5	2663 1343.5 14.3	2830 1346.0 14.1	3124 1350.0 12.4
AVE POWER I PEAK POW MI	4	35		4 355	198 355	208 355	208 355	261 355	269 355	265 349	241 318	22 4 297	217	120	107	110	99
ENERGY GWH GAVINS PO:		2 31.	0 19.	3 43.5	142.6	155.0	150.0	194.0	200.0	190.8	179.2	80.7	285 36.5	284 23.0	311 79.6	322 81.5	338 66.7
NAT INFLOW DEPLETION	145(114	1	2 4	0 0	148 5	174 19	166 24	86 39	103 10	77 - 5	122 2	50 5	23 2	27	77	79	127
CHAN STOR EVAPORATION REG INFLOW	- 5 3 8 18224	3	0 - 1 3 221		1	-2	0	-12 2	- 2 7	0 9	3 8	1 4	0 2	3 25 2	10 4 4	1 0	3
RELEASE STOR CHANGE	18224 2	40	3 226	5 463	1541 1541	1672 1672	1613 1613	1943 1943	2054 2041 13	1966 1940 26	1968 1968	925 925	432 432	308 308	946 946	945 945	819 858
STORAGE ELEV FTMSL DISCH KCFS	358 1206.0 13.5	1206.	0 1206.0	1206.0	358 1206.0	358 1206.0	358 1206.0	358 1206.0	371 1206.5 :		397 1207.5	397	397 1207.5	397 1207.5	397 1207.5	397	-39 358 1206 0
POWER AVE POWER M	 W	4	7 57	23.5	25.9 88	27.2 93	27.1 92	31.6 105	33.2 109	32.6 109	32.0	31.1	31.1	19.4	15.4	15.4	15.4
PEAK POW MW ENERGY GWH	749.3	11 17.			114 63.7	114 69.0	114 66.5	114 77.8	115 80.8	117 78.3	108 117 80.6	106 117 38.2	106 117 17.8	68 117 13.1	55 78 40.5	54 78 40.5	54 76 36.5
GAVINS POI NAT INFLOW	1550	16	9 79		199	310	224	129	96	60	42						
DEPLETION REGULATED FL KAF	255 OW AT SI 19519	OUX CI		4	21	35	30	38	35	23	10	16 6	7 3	9 3	21 12	5 13	82 14
KCFS	17313	19.			1719 28.9	1947 31.7	1807 30.4	2034 33.1	2102 34.2	1977 33.2	2000 32.5	936 31.5	437 31.5	313 19.8	955 15.5	937 15.2	926 16.7
TOTAL NAT INFLOW DEPLETION	24601 2514				2307	3493	6073	3346	1194	1113	1032	452	211	241	651	582	943
CHAN STOR EVAPORATION	-27 1692	7	-6	~20	-28	679 -27	1606 -103	1070 66 105	150 0 330	-234 50 411	-95 33 353	-143 -11	-67 -19	-76 1	-221 -5	-210 -38	-120
STORAGE SYSTEM POWE AVE POWER M		5380			54856 986	1075	58253	58456	57068	56077	54884	157 54374	73 54123	83 54044	180 53 7 77	53594	53734
PEAK POW MW ENERGY GWH	9053.7	2318 246.3	2319 126.9	2322 199.3	2327 709.9	1075 2335 799.6	1034 2368 744.4	1335 2368 993.1 1	1366 2351 1016.0	1216 2341 875.6	970 2321 721.6	961 2296 346.1	988 2283	820 2281	899 2264	908 2276	904 2283
DAILY GWH	INI-SUM	16.4 15MAF			23.7	25.8	28.5	32.0	32.8	29.2	23.3	23.1	166.0 23.7	157.4 19.7	668.5 21.6	675.4 21.8	607.5 21.7
				2 1 MA	JUNER	31MAY	30JUN	JUUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31 JAN	28FEB

2004 AOP EXTENSIONS, MEDIAN RUNOFF SIMULATION

TIME OF STUDY	10:51:	44				VALUE	S TN 10	00 AF E	ארידסידי א	S INDIC	משיבה				STUDY	NO	9
28FEB I		15MAR	200 22MAR	9 31MAR	30APR			I 31JUL				15NOV	22NOV	20 30NOV		31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	7400 431 6535 7254 -719 14028 2229.3 12.5	-2 267 179 88	124 69 55 14171	2230.4	628 55 573 417 156 14398 2231.1 7.0	334 876 615 261 14659 2232.4	1851 573 1278 803 475 15134 2234.6 13.5	219 27 583 799 -216 14918 2233.6	-58 84 298 769 -471 14447 2231.4	360 536 -176 14271	-83 90 391 434 -44 14228 2230.3	-42 41 189 210 -21 14206	-20 19 88 98 -10 14196 2230.1	-22 22 101 159 -58 14138 2229.8	-137 47 400 615 -214 13924 2228.8	-142 403 769 -366 13558 2226.9	-96 445 694 -249 13309 2225.6
AVE POWER MW PEAK POW MW	1178.6	81 205 29.0	67 205 11.3	67 206 14.5	94 206 67.9	207	181 209 130.6	208	206	121 206 87.2	206	95 205 34.2	205	134 205 25.8	134 204 99.6	166 203 123.7	202
DISCH KCFS POWER	11001 1218 -1 520 16517 17412 -895 17795 1836.5 23.0	469 -6 65 719 536 183 17978 1837.1 18.0	219 -3 10 301 250 51 18029 1837.2 18.0	282 -3 374 321 53 18082 1837.4 18.0	853 -7 -20 1257 1309 -52 18030 1837.2 22.0	-30 1794 1599 195 18225 1837.9	2958 845 -35 2882 1726 1156 19381 1841.5 29.0	619 5 32 2219 1752 467 19848 1842.9	5 102 1201 1722 -520 19328	497 -144 34 126 1084 1396 -312 19016 1840.4 23.5	-20 19 108 819 1298 -479 18537 1838.9	192 - 92 0 48 425 628 -183 18354 1838.3 21.1	-43 0 22 208 292 -84 18270		253 -71 0 55 884 1230 -345 17863 1836.7 20.0	237 -51 -25 1032 1537 -505 17357 1835.0 25.0	1042 1500 -457 16900
	2620.7	222 465 80.0	223 465 37.4	223 466 48.2	272 465 195.9	321 468 239.0	363 481 261.0	491	354 480 263.5	296 477 213.2	471	263 469 94.7	261 468 43.9	248 467 47.7	247 463 184.1	306 457 227.5	326 451 219.4
DISCH KCFS	2300 652 -17 489 18554 16732 1822 16747 1670.5 17.4	317 23 21 850 559 291 17039 1601.5 18.8	148 11 387 244 143 17181 1602.0 17.6	190 14 497 384 113 17295 1602.4 21.5	364 48 -17 1608 1334 274 17569 1603.3 22.4	236 69 -17 1749 1438 311 17880 1604.4 23.4	689 138 -12 2264 1345 919 18799 1607.4 22.6	165 2 30 1721 1867 -146 18653 1606.9	33 109 2 95 1553 1973 -420 18233 1605.5 32.1	118 27 18 117 1388 1770 -382 17851 1604.3 29.7	-10 102 1230 1261 -31 17820 1604.2	5 1 586 598 -12 17808 1604.1 20.1	2 0 21 272 276 -3 17805 1604.1 19.9	3 1 4 25 299 259 40 17845 1604.2 16.3	-20 12 0 53 1145 -172 17673 1603.7 21.4	17 -21 1500 1064 436 18109 1605.1 17.3	40 27 -8 1504 1044 460 18569 1606.6 18.8
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2	2576.9	235 679 84.5	220 681 37.0	270 683 58.4	283 688 203.5	296 694 220.4	290 710 208.6	391 707 290.7	411 700 305.5	378 693 272.2	261 693 193.9	255 693 91.9	252 692 42.4	208 693 39.9	272 690 202.1	220 698 163.9	241 706 162.1
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL 1 DISCH KCFS POWER AVE POWER MW PEAK POW MW	103 16629 16629 1682 420.0 17.4	559 559 1682 1420.0 18.8 89 516	17.6 82	21.5 101	22.4 105	1438 1438 1682 1420.0 23.4 109	22.6 106	30.3 142	31.8 149	25 1745 1745 1682 1420.0 29.3 139	20.2 99	10 588 588 1682 1420.0 19.8 99	5 271 271 1682 1420.0 19.5 98	5 254 254 1682 1420.0 16.0 81	11 1305 1305 1682 1420.0 21.2 105	1064 1064 1682 1420.0 17.3 85	1044 1044 1682 1420.0 18.8 90
ENERGY GWH	959.5	32.0	510 13.8	509 21.8	509 75.6	509 81.5	509 76.2	509 105.4	509 110.6	517 100.0	538 73.5	538 35.7	538 16.5	538 15.5	538 77.9	538 63.1	529 60.6
NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL 1 DISCH KCFS POWER AVE POWER MW PEAK POW MW	900 80 118 17332 17332 0 3124 350.0 12.4	12.3 102 351	57 1 300 207 93 3532 1355.0 14.9 126 354	24.6 207 355	24.3 205 355	25.5 215 355	185 12 1518 1518 3549 1355.2 25.5 215 355	74 18 8 1909 1909 0 3549 1355.2 31.0 261 355	57 15 25 1970 3549 1355.2 32.0 269 355	42 7 31 1748 1892 -144 3405 1353.5 31.8 265 349	2 1 25 1216 1853 -637 2768 1345.1 30.1 241 318	2 1 579 883 -304 2464 1340.4 29.7 224 297	1 0 4 268 413 -145 2319 1337.9 29.7 29.7 217 285	1 4 250 272 -22 2297 1337.5 17.1 125 284	10 3 10 1302 936 2663 1343.5 15.2 114 311	3 1061 924 137 2800 1345.6 15.0 116 320	19 3 1060 736 324 3124 1350.0 13.3 106 338
GAVINS POINT- NAT INFLOW	711.8 - 1450	36.6 92	21.1 43	44.8 55	147.4	159.9 174	154.7	193.9 86	200.0	190.8 77	179.2	80.7	36.5	24.0	84.7	86.7	71.1
RELEASE STOR CHANGE STORAGE	114 ~3 38 18627 18627 358	0 0 458 458 358 1206.0	0 -5 245 245 358	0 -19 477 477 358 1206.0	5 1 1589 1589 358	19 -2 1722 1722 358	24 0 1660 1660 358	39 -11 2 1943 1943 358	10 -2 7 2054 2041 13 371	-5 0 1966 1940 26 397	2 3 1968 1968 1968	5 1 925 925 925	23 2 0 2 432 432 397	27 3 23 317 317 397	77 10 4 1002 1002 397	79 1 0 1002 1002 397	127 3 866 905 -39 358
DISCH KCFS POWER AVE POWER MW PEAK POW MW	15.4	15.4 54 114	17.7 61 114	26.7 91 114	26.7 26.7 91 114	28.0 95 114	27.9 95 114	31.6 105	33.2 109	32.6 109	1207.5 32.0 108	31.1 106	31.1 106	20.0 71	1207.5 16.3 58	16.3 58	1206.0 16.3 57
		19.3 K CITY-	10.3	19.7	65.6	70.9	68.4	114 77.8	115 80.8	117 78.3	117 80.6	117 38.2	117 17.8	117 13.5	78 42.9	78 42.9	76 38.5
DEPLETION REGULATED FLOW 1	1550 262 AT SIOU 19915	169 7 JX CITY 621 20.9	79 3 321 23.1	102 4 574 32.2	199 22 1766 29.7	310 35 1997 32.5	224 31 1853 31.1	129 38 2034 33.1	96 36 2101 34.2	60 23 1977 33.2	42 10 2000 32.5	16 6 935 31.4	7 3 436 31.4	9 3 323 20 3	21 13 1010	5 14 993	82 14 973
DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER	24601 2757 -20 1701 53734	1435 23 86 54612	669 11 5 54954	860 14 -19 55208	2307 127 -36 55586	3493 680 -49 56354	6073 1623 -47 58903	3346 1098 -4 106 59008	1194 163 5 333 57609	1113 -237 53 413 56622	1032 -100 32 355 55431	452 -121 158 54911	211 -56 0 73 54669	20.3 241 -65 -1 83 54568	16.4 651 -170 4 180 54202	16.2 582 -158 -45 53903	17.5 943 -74 -5 53942
AVE POWER MW PEAK POW MW ENERGY GWH 98 DAILY GWH	313.2	781 2329 281.3 18.8	780 2331 131.0 18.7	960 2333 207.3 23.0	1050 2338 755.8 25.2	1172 2347 872.1 28.1	1249 2378 899.5 30.0	1434 2384 1066.9 1 34.4	1460 2366 1086.1 35.0	1308 2359 941.8 31.4	1068 2342 794.8 25.6	1043 2319 375.4 25.0	1030 2307 173.0 24.7	866 2304 166.3 20.8	929 2285 691.2 22.3	951 2294 707.8	986 2302 662.8
INI	-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN			30SEP						22.8 31JAN	23.7 28FEB

DATE OF STUDY 02/09				2004	LOWER C	UARTIL	E RUNOFI	P							
TIME OF STUDY 10:52	:05			SHORT	EN NAVI	GATION	SEASON	31-DAYS	3				STUDY	NO	10
29FEB04 INI-SU	M 15MAR	2004 22MAR 31MA	R 30APR					AS INDIC				20	0.5	-	
FORT PECK NAT INFLOW 600	0 242	113 14		925	30JUN 1454			30SEP				3 0 N O V	31DEC	31JAN	28FEB
DEPLETION 26 EVAPORATION 42 MOD INFLOW 530	6	-5 -		165	279		-19	-89	- 5 9	167 -10 40	-	- 5	-61	212 -79	283 -40
RELEASE 562	2 149	118 15 69 8	9 494	760 646	1175 536	423	200	239	294	40 136 127	64	73	310	291	323
STORAGE 955	3 9658	49 6 9707 977	0 9773	114 9887	639 10527	-131	-322	-134	31	9	97 -34	- 54	-213	553 -262	500 -177
DISCH KCFS 9.1	7 2204.3 2) 5.0	204.7 2205. 5.0 5.			2209.8 9.0	2209.0	2207.0	2206.1	2206.3	9980 2206.4	2206.2	2205.8	2204.5	9417 2202.8	9240 2201.6
POWER AVE POWER MW	60	60 6	0 100	123	109	110			-	4.3	7.0	8.0	8.5	9.0	9.0
PEAK POW MW ENERGY GWH 818.3	133 21.6	133 13. 10.1 13.		134 91.8	182 78.8	181 82.1	179	76 177	52 178	52 178	85 177	97 177	102 175	107 173	106 171
GARRISON				5110	/0.0	02.1	//.0	54.6	38.6	18.7	14.2	18.5	75.9	79.7	71.5
NAT INFLOW 9400 DEPLETION 1263	36	207 260 17 2		1197 172	2521 625	1765 464		417	400	164	76	87	222	165	262
CHAN STOR (EVAPORATION 503			-36	-24	16	31	5	-64 24	69 21	-76 0	-35 -29	-41 -11	- 57 - 5	-37	-15
REG INFLOW 13255 RELEASE 13910	446	260 334 208 268		1647 1586	2448 1309	1824 1322	827	122 756	105 510	47 320	22 158	25 219	54 743	750	777
STOR CHANGE -655 STORAGE 11759	11913 1	51 66 1964 12030	5 2	60	1139	502	-464	974 -219	778 -268	376 -57	236 -78	286 -67	1230 -487	1322 -572	1194 -417
DISCH KCFS 24.0	1814.4 18 15.0	14.6 1814.9 15.0 15.0	1814.9	1815.1 25.8	1819.8	1821.8 21.5	1820.0	13050 1819.1	12782 1818.0	12725 1817.8		12580 1817.2	12093	11521 1812.7	11104
POWER AVE POWER MW	160	161 161		273	240	21.5	21.0	16.4	12.7	12.7	17.0	18.0	20.0	21.5	21.5
PEAK POW MW ENERGY GWH 1826.2	310 57.8	310 311 27.0 34.8	. 311	312 203.3	326 172.8	332 178.6	235 326 174.6	182 324	140 320	139 320	186 319	197 318	216 312	229 305	225 299
OAHE NAT INFLOW 1449						27010	1/1.0	130.9	104.1	50.2	31.3	37.8	161.0	170.1	151.3
DEPLETION 585	154 22	72 92 10 13	46	130 64	577 123	102 143	24 93	65 23	9 - 8				-35	-6	36
EVAPORATION 412	47	0		- 3 9	20	3 26	3 80	25 99	20 85	2	1 -23	1 -5	11 -11	16 -8	25
REG INFLOW 14375 RELEASE 14160 STOR CHANGE 215	625 432	270 347 261 367	1237	1613 1569	$1783 \\ 1429$	1257 1822	1145 1643	942 981	729 998	38 337	18 194	21 259	45 1128	1292	1205
STORAGE 11436		9 -20 1638 11617 79.6 1579.5		44 11673	354 12027	-564 11463	-498 10965	-39 10926	-268 10658	288 48 10706	148 46 10752	167 92	1110 18	981 311	727 478
DISCH KCFS 19.6 POWER		18.8 20.6	1579.6 1 20.8	579.8 1 25.5	L581.5 24.0	1578.8 29.6	1576.4 26.7		1574.8 : 16.2	1575.1 : 9.7	1575.3	10844 1575.8 10.5	1575.9 1		11651 1579.7
AVE POWER MW PEAK POW MW	160 567	208 227 567 567	229	281	266	327	291	179	175	104	115	10.5	18.1 195	16.0 173	13.1
ENERGY GWH 1876.2		34.9 49.1	567 165.2	568 209.4	577 191.9	563 243.3	550 216.3	549 128.6	542 130.2	543 37.6	544 19.3	547 21.8	547	555 128.9	144 567
BIG BEND EVAPORATION 129													115.1	120.9	96.8
REG INFLOW 14032 RELEASE 14032	432 432	261 367 261 367	1237 1237	1569 1569	1429	8 1814	24 1619	31 950	27 971	12 276	6 142	7 161	14 1096	981	727
STORAGE 1682 ELEV FTMSL 1420.0		682 1682	1682	1682	1429 1682	1814 1682	1619 1682	950 1682	971 1682	276 1682	142 1682	161 1682	1096 1682	981 1682	727 1682
DISCH KCFS 20.2 POWER		8.8 20.6	20.8	25.5	24.0	1420.0 : 29.5	26.3	1420.0 1 16.0	420.0 1 15.8	420.0 1 9.3	420.0 1 10.2		420.0 1 17.8	420.0 1 16.0	420.0
AVE POWER MW PEAK POW MW ENERGY GWH 812.5	69 517	88 96 510 509	97 509	119 509	112 509	138 509	125 518	79	80	47	52	51	88	78	63
ENERGY GWH 812.5	24.8 1	4.8 20.8	70.1	88.9		102.7	92.7	538 56.7	538 59.2	538 16.9	538 8.7	538 9.8	538 65.5	538 57.8	529 42.2
NAT INFLOW 500 DEPLETION 80	68 1	32 41 1 1	64	51	130	26	49	23	1						
EVAPORATION 134 REG INFLOW 14318	-	1 1 292 407	4	9	12	18 10	15 31	7 35	1 25	1 10	0 5	1	5	-5 3	15 3
RELEASE 14319 STOR CHANGE 0	226	157 390 135 17	1297 1297	1611 1611	1547 1547	1812 1812	1622 1796	931 1607	946 1349	266 266	137 137	5 155	13 1085	973	739
STORAGE 3124 ELEV FTMSL 1350.0	3397 3	532 3549	3549 1355.2 13	3549	3549	0 3549	-174 3375	-675 2700	-403 2297	0	2296	154 0 2297	719 366	701 272	550 189
DISCH KCFS 12.5 POWER		1.3 21.9			355.2 1 26.0	355.2 1 29.5	.353.1 1 29.2	344.1 1 27.0	337.5 13 21.9	337.5 1: 8.9	337.5 1 9.9	337.5 1 9.7	2663 343.5 13 11.7	2935 47.4 1	
AVE POWER MW PEAK POW MW	63 349	95 184 354 355	184 355	221 355	219	248	243	215	164	65	72	71	88	11.4	9.9
ENERGY GWH 1409.2	22.7 10	5.0 39.8			355 .57.6 :	355 184.2	348 181.0	313 154.8 :	283 121.7	283 23.5	283 12.1	283 13.6	311	89 329 66.5	80 338
GAVINS POINT NAT INFLOW 1251 DEPLETION 114	91	43 55	124	138	143	81							05.5	00.5	53.7
CHAN STOR 4	0 9	0 0 -7 -20	5	19 ~8	24	39 - 7	80 10	58 -5	105 2	47 5	22 2	25 3	70 10	68 1	101
REG INFLOW 15412		93 425	1416			3 1845	1 9 1858	4 11	9 10	24 5	-2 2	0 2	-4	ĩ	3
STOR CHANGE	_	93 425	1416			1845	1845 13	1662 1636 26	1451 1451	327 327	153 153	175 175	770 770	769 769	654 693
ELEV FTMSL 1206.0 1 DISCH KCFS 13.5	358 3 206.0 1206	58 358 .0 1206.0 1 .9 23.8	358 206.0 120	358 06.0 120	358 06.0 12	358			397	397	397	397	397	205	-39
POWER AVE POWER MW					28.0	30.0	30.0	27.5		07.5 12 11.0	07.5 12 11.0	207.5 12 11.0	07.5 12 12.5		06.0 12.5
PEAK POW MW ENERGY GWH 642.8	114 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		95 114	95 114	101 114	101 115	95 117	83 117	39 117	39	39	45	44	44
GAVINS POINT - STOUX	-	.1 17.6	58.7 7	70.9 6	58.6	75.1				14.1	117 6.6	117 7.5	78 33.1 3	78 33.0	76 29.6
NAT INFLOW 900 DEPLETION 247	115	54 69 3 4	90	174	125	75	56	35	24	13	c	-			
REGULATED FLOW AT SIOU KAF 16065	CITY	3 4 44 490	20 1486 1	34	30	36	34	22	9	6	6 3	7 3	13 12	-3 13	48 13
KCFS	14.7 17								1466 23.8 1	334 11.2 ;	156	178		753	728
TOTAL NAT INFLOW 19500	1114 52	20 668	1744 2	615 4	050							11.2	12.5 1	2.2	3.1
DEPLETION 2555 CHAN STOR 17 EVADOBATION 17	54	25 32 -7 -20	188		.093	2682 884		850 -106	863 14	390 -73	182 -34	208 - 39		431	745
EVAPORATION 1651 STORAGE 37913 3 SYSTEM POWER	8637 3888					-4 104 L181 39	8 324 0725	53 400		25 153	-55 71	-16 81		-83 -13	-14 3
AVE POWER MW	551 66	1 811												123 37	158
ENERGY GWH 7385.4 1	1990 199 98.5 111.	1 175.2 6	1990 1 39.3 82	993 2	063 2	054			.978 1	979 1	549 .979 1	568 980 1			662 981
	13.2 15.	9 19.5	21.3 20	5.7 2							2.2 10	9.1 54	5.9 53	6.1 44	5.0 5.9
TNT-DOM 1	JULIN 22MA	R 31MAR 3	OAPR 31	4AY 30.	JUN 31	JUL 31	LAUG 30)SEP 31	OCT 15	NOV 22					FEB
														20	

DATE OF STUDY 02/09/04 TIME OF STUDY 10:52:05

2004 AOP EXTENSIONS, LOWER QUARTILE RUNOFF

TIME OF STUDY 10:52:09					EN NAVI				LE RUNC)F.F.			STUDY	NO	11
28FEB05 INI-SUM	15MAR 2	2005 2MAR 31MA	קקעטי א	VALUE	S IN 10	00 AF E	XCEPT A	S INDIC		1 5 1 6 1			06		
FORT PECK NAT INFLOW 6556 DEPLETION 546	264 15	123 15		1011	1589	692		275	354	183	85	98	31DEC 322	231	309
EVAPORATION 427 MOD INFLOW 5583 RELEASE 5175	249 134	116 14	9 462	656	1078	174 26 492	81 262	102 304	-69 90 333	41 175	-15 19 82	22 94	-111 47 386	-121 352	-83 392
STOR CHANGE 408 STORAGE 9240	115 9355	54 61 9409 947	9 105 8 9583	461 195 9778	542 10320	523 -31 10290	-261	-11	265 69 10086	47	69 12 10146	-49	553 -167 9929	553 -201 9728	472 -80 9648
DISCH KCFS 9.0 POWER	4.5	2.7 2203.2	5 6.0	/.5		2208.3 8.5	2206.7 8.5	2206.6 5.3	2207.0 4.3	2207.3 4.3	2207.4 5.0	2207.1 9.0	2206.1 9.0	2204.8 9.0	2204.3 8.5
AVE POWER MW PEAK POW MW ENERGY GWH 755.8	53 172 19.2	54 54 173 173 9.0 11.6	3 174	90 176 66.8	109 181 78.4	104 180 77.2	178	64 178 46.3	52 179 38.9		61 179 10.2	109 179 21.0	109 177 81.0	108 176 80.5	102 175 68.4
GARRISON NAT INFLOW 10069 DEPLETION 1100 CHAN STOR 6	475 21 50	221 285 10 13		1282 182 -17	2701 760 -16	1891 551 5	532 59	446 -112 34	428 17 11	175 -98	82 - 46	93 - 52	238 -102	177 -84	280 -56
EVAPORATION 503 REG INFLOW 13647 RELEASE 13152	637 476	274 352 222 286	2 1066	1545 1199	2460 1279	30 1838 1291	97 899 1261	121 787	105 581	48 354	-7 22 167	-43 25 220	54 839	814	5 814
STOR CHANGE 495 STORAGE 11104 ELEV FTMSL 1810.8 1	161 11265 11	52 67 317 11384 1.8 1812.1	-5	346	1181	546	-362	893 -106 12984	697 -116 12868	337 16 12884	167 1 12885	286 -66 12819	1230 -391 12428	1291 -477 11951	1166 -353 11599
DISCH KCFS 21.5 POWER AVE POWER MW	16.0 1 168	6.0 16.0 168 168	18.0	19.5	21.5	21.0	20.5	15.0	11.3	11.3	12.0	18.0	20.0	1814.5 21.0	1813.0 21.0
PEAK POW MW ENERGY GWH 1715.8 OAHE	302	302 303 8.2 36.4	303	308 153.3	232 322 167.2	231 405 171.9	226 400 168.3	165 398 118.9	125 396 92.8	125 396 44.9	132 396 22.1	197 396 37.8	217 390 161.3	225 382 167.1	222 377 149.0
NAT INFLOW 1761 DEPLETION 597 CHAN STOR 2	187 22 29	87 112 10 13		158 65 -8	701 126 -10	124 147 2	29 96 3	79 24 28	11 -8 19	2 0	1 - 3	1 -32	-42 11 -10	-7 16 -5	44 25
EVAPORATION 434 REG INFLOW 13884 RELEASE 13376		299 384 249 352	1211	1284 1374	1844 1215	27 1243 1706	84 1112 1501	105 871 974	90 645 989	40 296 285	19 144 146	22 232 165	47 1119 1103	1263 821	1185
ELEV FTMSL 1579.7 1	580.9 158	49 33 959 11992 1.1 1581.3	12073 1581.7	1581.3	629 12613 1584.1	-463 12150 1582.0	-389 11761 1580.2	-103 11658 1579.7	-344 11314	10 11324	-3 11321	66 11387	16 11403 1578.5	442 11846	872 313 12159
POWER AVE POWER MW	153	8.0 19.7 200 220	227	22.3 249	20.4 230	27.8 312	24.4 272	16.4 181	16.1 177	9.6	10.5	10.4	17.9	13.3	15.7
PEAK POW MW ENERGY GWH 1801.7 BIG BEND		575 576 3.7 47.5	578 163.7	575 185.5	591 165.4	579 232.2	570 202.1	567 130.7	559 131.9	559 38.0	559 19.5	561 22.0	561 146.6	148 572 110.0	176 580 118.0
EVAPORATION 129 REG INFLOW 13247		249 352	1211	1374	1215	8 1699	24 1476	31 943	27 962	12 273	6 141	7 159	14 1089	821	872
STORAGE 1682 ELEV FTMSL 1420.0 14 DISCH KCFS 13.1	1682 1 120.0 142	249 352 582 1682 0.0 1420.0 3.0 19.7	1211 1682 1420.0 20.4	1374 1682 1420.0 22.3	1215 1682 1420.0 20.4	1699 1682 1420.0 27.6	1476 1682 1420.0 24.0	943	962 1682	273 1682 1420.0	141 1682 1420.0	159 1682 1420.0	1089 1682 1420.0	821 1682 1420.0	872 1682 1420.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 768.2		84 92 510 509 4.2 19.9	95 509 68.6	105 509 77.8	96 509 68.8	129 509 96.2	114 518	78 538	79 538	9.2 47 538	10.1 51 538	10.0 51 538	17.7 88 538	13.3 66 538	15.7 75 529
FORT RANDALL NAT INFLOW 643	88	41 53	82	66	167	33	84.5 63	56.3	58.7	16.7	8.6	9.7	65.1	48.8	50.6
DEPLETION 80 EVAPORATION 134 REG INFLOW 13676	1 497 2	1 1 90 403	-4 1289	9 1431	12 1370	18 10 1704	15 31	30 7 35	2 1 25	1 10	0 5	1 5	6 3 13	-6 3	19 3
RELEASE 13677 STOR CHANGE 0 STORAGE 3124	223 1 273 1 3397 35	55 386 35 17	1289	1431	1370	1704	1493 1667 -174	931 1606 -675	938 1342 -403	263 263 0	135 136 0	153 153 0	1079 713 366	812 695 117	888 544 344
ELEV FTMSL 1350.0 13 DISCH KCFS 9.9 POWER	53.4 1359 7.5 11	.0 1355.2 .1 21.6	1355.2 1 21.7	L355.2 : 23.3	1355.2 1 23.0	3549 355.2 27.7	3375 1353.1 1 27.1	2700 1344.1 1 27.0	2297 1337.5 : 21.8	2296 1337.5 : 8.8	2296 L337.5 : 9.8	2296 1337.5 : 9.6	2662 1343.5 : 11.6	2779 1345.3 : 11.3	3123 L350.0 9.8
AVE POWER MW PEAK POW MW ENERGY GWH 1344.1	349 3	94 183 54 355 .8 39.4	183 355 131.7	196 355 146.0	194 355 139.9	233 355 173.4	226 348 168.3	215 313 154.8	163 283 121.1	65 283 23.2	71 283 12.0	70 283 13.5	87 311 64.7	88 319 65.3	78 338 52.7
GAVINS POINT NAT INFLOW 1335 DEPLETION 114	98 0	46 59 0 0	132 5	147 19	153 24	87	85	62	112	50	23	27	75	73	107
CHAN STOR -1 EVAPORATION 47 REG INFLOW 14849	5	-7 -20 93 425	0 1416	-3 1556	0	39 -9 3	10 1 9	-5 0 11	2 10 10	5 24 5	2 -2 2	3 0 2	10 -4 5	1 1	3
RELEASE 14849 STOR CHANGE STORAGE 358	326 1	93 425 58 358	1416	1556	1500 1500	1740 1740	1735 1722 13	1662 1636 26	$1451 \\ 1451$	327 327	153 153	175 175	769 769	767 767	654 693 -39
ELEV FTMSL 1206.0 12 DISCH KCFS 12.5 POWER	06.0 1206 11.0 13	.0 1206.0 .9 23.8	23.8	358 206.0 1 25.3	358 206.0 1 25.2	358 206.0 1 28.3	371 206.5 1 28.0	397 207.5 1 27.5	397 207.5 1 23.6	397 207.5 1 11.0	397 207.5 1 11.0	397 207.5 1 11.0	397 207.5 1 12.5	397 207.5 1 12.5	2 5 6
	114 1 13.8 8	49 82 14 114 .2 17.6	82 114 58.7	87 114 64.4	86 114 62.1	96 114 71.6	96 115 71.3	95 117 68.7	83 117 61.7	39 117 14.1	39 117 6.6	39 117 7.5	44 78 33.1	44 78 33.0	44 76 29.6
GAVINS POINT - SIOUX (NAT INFLOW 1135 DEPLETION 248 REGULATED FLOW AT SIOUX	145	58 87 3 4	113 20	219 34	158 30	95 37	70 34	44 22	31 9	16 6	7 3	9	16	-3	60
KAF 15736 KCFS 1		58 508 6 28.5	1509 25.4	1741 28.3	1628 27.4	1798 29.2	1758 28.6	1658 27.9	1473 24.0	338 11.4	158 11.4	3 180 11.4	12 773 12.6	13 751	13 740
DEPLETION 2685		1 39	1942 224	2883 664	5469 1463	2922 966	1066 158	936 -195	938	424	198	226	615	465	13.3 819
CHAN STOR 7 EVAPORATION 1674 STORAGE 37158 37	83 - 966 3825	7 -20	-27	-27	-26	-1 104	4 327	63 405	-48 39 347	-118 25 155	-55 -13 73	-63 -74 83	-177 -14 180	-172 -5	- 98 8
PEAK POW MW 2	540 64 029 202	9 798	848 2034	933 2037	947	1106 2143	1037	800	679	433	470	581	742	678	38568 697
DAILY GWH 1	4.5 109. 3.0 15.	0 172.4	610.7 6		581.8 8		2129 771.3 5 24.9		2072 505.1 : 16.3	2073 155.8 10.4	2073 79.0 : 11.3	2073 111.5 13.9	2055 551.7 9 17.8	2065	2074 168.2 16.7
INI-SUM 15	MAR 22MA	R 31MAR	30APR 3	MAY 3	BOJUN 3	1JUL :	31AUG 3	BOSEP 3	310CT 1	15NOV 2	2NOV	BONOV :			28FEB

2004 AOP EXTENSIONS, LOWER QUARTILE RUNOFF

DATE OF							2	004 AOI	P EXI	ENSIO	NS, LO	WER QU	ARTIL	E RUNC	OFF						
TIME OF :	STUDY	10:52	2:06				SI	HORTEN	NAVI	GATIO	N SEAS	ON 31-	DAVG					51	UDY NC		12
		EB06	JM 15M		2006		V	ALUES 1	IN 10	00 AF	EXCEP	T AS I	NDICA'	FED				2007	LODI NC	-	12
FORT	PECK-	-			MAR 31	MAR 31	DAPR 3:	LMAY 3	0 JUN	31J	UL 312	AUG 3	OSEP	31001	C 15NC	OV 22N	OV 30	NOV 31	DEC 3	1JAN	28FEB
NAT INFI DEPLETIC EVAPORAT MOD INFI	N NON	661 40 43 577)2 - 9	11	- 5	160 -6	50	019 312	1603 517	18	82 · 27	289 -52 84	278 131 105	357 - 73 92	- 3	33 -	86 15 19		325 111 48	233 -121	312 -83
RELEASE STOR CHA		525 51	7 1	34 43	62 67	166 80 86	529 417 112	707 492 215	1086 536 550		53 5	257 523	304 320	338 253	17 12	6	82	94	388 523	354 553	395 500
STORAGE ELEV FTM DISCH KC			8 97 3 2205	91 9 .2 220	358 9 5.6 220	944 10 6.2 220)056 10)6.9 220	271 1	0822		58 104	265 193 1(9 6 220	-16)477	85 10562	1061	i3 5 106 3 2210	35 106	-33 - 502 10	135 467 1	-199 0267	-105 10163
POWER AVE POWE		8.		.5 4 54	1.5 54	4.5 54		8.0	9.0	9.	.0 ε	8.5	5.4	4.1	4.			0.2 220 3.0	9.4 22 8.5	08.2 9.0	2207.5 9.0
PEAK POW ENERGY G	MW	779.	1	76 1	.77	177		97 180 2.4	111 185 79.7	11	34 1		66 182	51 183	18	3 18	56 33 1		104 182	110 180	110 179
GARRI NAT INFL		- 1013						2.1	/3./	82.	9 /8	3.0 4	7.7	37.8	18.	39.	.4 18			31.9	73.6
DEPLETIO CHAN STO	N	96	8	78 2 0 44	23 : 0	0	-1	204	2718 743	190 51			449 105	431 3	17 -10				240 104	178 -85	282
EVAPORAT REG INFL		52 1389	0 B 6:	57 2				-11 567 :	-11 2500	3 191-			33 125 782	13 109	4	9 2	4 - 3	37 26	-5 56	- 5	-57
RELEASE STOR CHAI STORAGE	NGE	1327 62 1159	7 18	31	91 1	250 1 17	012 1 147	199 368	1309 1191	132	2 12	91	782 909 127	585 680 -95	35: 329 22	9 22	2 3	01 12		811 353	839 1194
ELEV FTM: DISCH KC			0 1813	8 1814	71 119 .2 1814 .0 14	.7 181	135 12 5.3 1810 7.0 19	503 13 5.8 182	3693	1428	0 1822	93 13 .4 182	766 1.9 1	13672 821.6				90 -4 47 131 .1 1819	125 - 123 12 9.4 181	542 581	-355 12226
POWER AVE POWEI PEAK POW			16	59 1	49 1	49		210	241	21.9 242			5.3 172	+1.1	11.1	10.	0 19	.0 20	0.0 2	2.0	21.5
ENERGY G		1764.8	38 860.			83 : .2 13(891 5.9 17	409	417 179.9	7 4	11 4	409	124 408 92.6	124 408 44.7	8 40	8 4	06 4	00	240 392	231 387
~-OAHE NAT INFLO DEPLETION	W	1794		-		14 2	283 1	61	714	127	7 :	30	0.0				- 10	., 104		8.4	155.4
CHAN STOP EVAPORATI	2	613 -3 450	2		11 10		47	66	129 -13	151	1 10		80 25 29	11 -8 22	2		-	1	43 11	-7 16	45 26
REG INFLC RELEASE	W	13999 13356	66						882 210	28 1272	2 113	37 E	L08 884	93 627	42 286	20	0 2	22	49	-10 319	3 1216
STOR CHAN STORAGE ELEV FTMS		643 12159	26 1241	0 3	84 53 124	0	24	90	671	1705 -433 12626	-38	36 -1)49 .64 .75 1	891 -263	285 1	3 (5 16 D 9	55 11 98	02 19	977 343	716 499
DISCH KCF POWER	S .	1582.1	1583.	2 1583. 7 17.	4 1583 9 19	.4 1583 .6 20	.5 1583 .3 22	.1 158	6.0 1 0.3	1584.2 27.7	1582.	4 1581	.7 15	1812 80.5 14.5	11812 1580.5 9.6	1580.6	5 1581.	1 1581	.1 1582	2.7 1	12802 584.9
AVE POWER PEAK POW	MW		15 58						231 601	316 591		'9 1	98	162	107	117				5.9 .78	12.9 147
ENERGY GW		1822.5	55.	8 34.	0 47				6.6	234.9			78 .4 1	571 20.3	571 38.5	572 19.7		4 5	75 5	83	595 98.5
EVAPORATI REG INFLO	NC W	129 13228	40	9 24	8 35	50 12	08 13	77 1/	110	8			31	27	12	6		7 .	14		
RELEASE STORAGE ELEV FTMS		13228	409 1682 1420.0	24 2 168	8 35 2 168	0 12 2 16	08 13 82 16	72 12 32 16	210 210 582	1698 1698 1682		8 10	18	864 864	273 273	$141 \\ 141$	15 15	8 108 8 108	38 9	77 77	716 716
DISCH KCF: POWER	3	15.7	1420.0				.0 1420 .3 22	.0 1420		420.0 27.6		0 1420	.0 14	1682 20.0 1 14.0	1682 L420.0 9.2	1682 1420.0 10.1	1420.	0 1420	0 1420	.0 14	1682 120.0
AVE POWER PEAK POW M ENERGY GWH	ſW	P <i>cc i</i>	65 517	51	0 50		95 1(09 5(95 09	129 509	11: 51:		B4	71	46	51				.9 77	12.9 62
FORT RAND	ALL-	766.4	23.4	14.	1 19.	8 68.			.6	96.1	85.9		38 .4 5	538 52.7	538 16.7	538 8.6	53 9.		8 5	38	529 41.6
DEPLETION	I	659 80	90 1			4 8 1			71 12	34 18	65		31	2					7	-7	20
EVAPORATIC REG INFLOW RELEASE		135 13671 13671	497 223	29			88 143	0 13		10 1704	15 15 1517	L 3	7 5 6	1 25 838	1 10	05		L 5 1	3 3	3	3
STOR CHANG STORAGE	Е	0 3123	274 3397	135	5 1	7	0			1704 0	1666 -149	5 160 -60	6 1	342 503	262 262 0	135 135 0	153 153 (3 71	3 6		733 544
ELEV FTMSL DISCH KCFS POWER	1	350.0 9.8	1353.4 7.5	1355.0 11.1	1355.	2 1355.	2 1355.	2 1355	.2 13	3549 355.2 27.7	3400 1353.4 27.1	1345.	0 2 5 133	297 7.5 1	2297 337.5	2296 1337.5	2204	200	2 20		189 3123 50.0
AVE POWER PEAK POW M	MW W		62 349	94 354			3 19	61	94	233	226			1.8 164	8.8 64	5.1	9.6	• 11.	6 11.	3	9.8
ENERGY GWH		346.9	22.4	15.8					55 .8 1	355 73.4	349 168.4	32	0	283 1.9	283 23,2	71 283 12.0	70 283 13.5	31	1 32		79 338
GAVINS PO NAT INFLOW DEPLETION		1342 114	98 0	46					54	87	86	6	2	112	F.3						53.1
CHAN STOR EVAPORATIO	1	-1 47	4	0 - 7			5 1: 0 -:		24 0	39 -9	10 1	-		2 10	51 5 24	24 2 -2	27 3 0	10	, ,	3	108
REG INFLOW RELEASE STOR CHANGE	1	4851 4851	326 326	194 194	425 425					3 1740 1740	9 1735 1722	1 166:	2 14	10 451	5 327	2 153	2 175	5	5	1 7	3 655
STORAGE ELEV FTMSL		358 06.0 1	358	358	358	356					13	1630 20 391		\$51 897	327	153	175	769	76	7	694
DISCH KCFS POWER		12.5		13.9	23.8	23.8	3 358 3 1206.(3 25.3	1206. 25.	0 12	06.0 1 28.3	1206.5 28.0	1207.9	5 1207 5 23	7.5 12 8.6	207.5 1 11.0	207.5	1207.5 11.0	397 1207.5 12.5	39 1207. 12.	7 5 120 5 1	358
AVE POWER M PEAK POW MW ENERGY GWH	1	22.0	38 114 13.8	49 114	82 114	82 114	114	11		96 114	96 115	95 117		83 17	39	39	39	44	4		2.5 44
GAVINS POI	NT -	SIOUX		8.2	17.6	58.7	64.4	62.	1 .	71.6	71.3	68.7			117 14.1	117 6.6	117 7.5	78 33.1			76 9.6
NAT INFLOW DEPLETION REGULATED FL		1160 251 5 SLOU	149 6	69 3	89 4	116 21				97 37	72 34	45 22		31	16	7	9	17	- 3	3	61
KAF KCFS	19	5760	469 15.7	260 18.7	510 28.6	1511		163	1 1	1800	1760	1659		10 72	6 338	3 158	3	12	13	3	13
TOTAL NAT INFLOW	.	1702				25.4	28.4	27.	4 2	29.3	28.6	27.9		.9	11.4	11.4	180 11.4	774 12.6	751 12.2		742 3.4
DEPLETION CHAN STOR	2	2428 -10	1271 19 74	593 9 3	762 11 -20	1963 126	2909 645	552 145	5	946 938	1077 171	945 -187		44 65 -	427 -122	199 - 57	228	621	467		828
EVAPORATION STORAGE SYSTEM POWER	38	719 568	39426	39754	-20 39974	-42 40258	-27 40750	-23 43163		-7 107 258 4	9 335	62 416	3	44 57	25 160	-31 75	-65 -52 85	-179 -14 186	-173 -15		-98 5
AVE POWER MU PEAK POW MW			544 2028	632 2029	781	855	946	959	9 1	128	42078 1058	41197 832	404:	. .			40465	40291	40164	403	353
ENERGY GWH DAILY GWH	710	2.1 1		106.2 15.2	2031 168.8 18.8	2034 615.8 20.5	2038 703.6 22.7	2072 690.4 23.0	2 83	170 8.9 7	2156 787.5	2144 598.8	210 486	00 2 .9 15		514 2101 86.3	586 2102 112.6	745 2084 553.9	738 2100	21	572 .03
	INI-	SUM 1	5MAR	22MAR			31MAY				25.4 31AUG	20.0	15.	.7 1	.0.4	12.3	14.1	17.9	549.2 17.7		.9
										~			2100	12	ע ע טויייי	:∠NOV	10NOV	21000	31 TR		

2004 AOP EXTENSIONS, LOWER QUARTILE RUNOFF

TIME OF STUDY 10:52:06

SHORTEN NAVIGATION SEASON 31-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

TIME OF STU	DY 10:52	:06						GATION							STUDY	NO	13
2	8FEB07 INI-SUN	M 15MAR	200 22MAF)7 ₹ 31MAR	30APR				31AUG			15NOV	22NOV		08 31DEC	31JAN	29FEB
FORT PEC NAT INFLOW DEPLETION EVAPORATIO MOD INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL DISCH KCFS POWER	672(409 N 453 586(5274 E 586 10163 2207.5	9 -11 1 282 4 134 5 148 3 10310 5 2208.4	-5 131 62 69 10379 2208.9	5 -6 169 80 80 89 10468 2209.4	50 538 357 181 10649 2210.5	312 724 492 232 10881 2211.9	521 1108 536 572 11453	189 27 493 553 -61 11393 2214.9	-48 86 256 523 -267 11126 2213.3	-132 108 306 357 -51 11075 2213.0	2 -72 3 94 5 341 7 258 83 5 11158 0 2213.5	-33 43 178 125 53 11210 2213.8	-15 20 83 76 7 11217 2213.9	-18 23 95 127 -32	-110 49 391 523 -132 11053	237 -120 357 553 -196 10856 2211.7 9.0	-93 410 518 -108 10748 2211.1
AVE POWER PEAK POW M ENERGY GWH	W	55 180 2 19.8	181	. 182	183	185	113 190 81.1	189		187	187	53 188 19.0	188	100 188 19.3	106 186 79.1	112 185 83.3	184
GARRISO NAT INFLOW DEPLETION CHAN STOR EVAPORATIO REG INFLOW RELEASE STOR CHANG STORAGE ELEV FTMSL	10262 981 00 14019 13306 E 714 12226 1815.7	0 9 667 5 446 221 5 12447 7 1816.6	0 288 194 94 12541 1817.0	0 371 250 121 12662	-16 1119 1012 107 12769	-22 1571 1168 403 13172	2752 754 -11 2523 1309 1214 14386 1824.3	527 32 1921 1322 599 14985	897 1291 -395 14590	-108 26 129 817 893 -75 14515	-2 19 112 604 697 -94	179 -105 51 358 337 20 14441 1824-6		95 -56 -26 27 225 301 -77 14300 1824 0	243 -105 -5 58 807 1230 -422 13878 1822.4	180 -85 -5 813 1353 -540 13338	-63 867 1265 -399 12939
DISCH KCFS POWER AVE POWER PEAK POW M ENERGY GWH	N.	162 390	152	152 393	17.0 185 395 133.3	19.0 208 401 154.9	22.0 246 418 177.1	21.5 246 427	21.0 241 421	15.0 172 420	11.3 130 419	11.3 130 419	17.0 194 418	19.0 216 417	20.0 226 411	22.0 245 403	22.0 242 397
OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATIOI REG INFLOW RELEASE STOR CHANGI STORAGE ELEV FIMSL DISCH KCFS	1860 626 - 3 V 470 14067 13336	197 23 32 653 404 249 13051 1586.0	92 11 5 281 246 35 13085	118 14 355 347 8	294 47 -15 1244 1202 42 13135 1586.4 20.2	167 67 -10 1258 1367 -108 13027	740 132 -15 1902 1201 701 13728 1588.9 20.2	131 156 29 1270 1702 -432 13296	31 103 2 91 1131 1493 -363 12933	83 25 30 113 867 971 -104 12829	12 -9 18 98 987 -349 12481	46.8 2 44 292 284 12488 1583.5 9.6	32.6 1 -28 20 186 146 40 12529 1583.7 10.5	41.5 1 -10 23 267 165 102 12631 1584.2 10.4	-45 -2 -5 51 1117 1102 14 12645 1584.2 17.9	-7 17 -10 1319 977 342 12987 1585.7 15.9	168.2 46 26 1285 740 545 13532 1588.1 12.9
POWER AVE POWER M PEAK POW MW ENERGY GWH		156 601 56.1	204 601 34.2	223 601 48.2	232 602 167.2	255 600 189.8	234 615 168.1	321 606 238.5	279 598 207.4	187 595 134.5	183 587 135.9	109 587 39.1	119 588 20.1	118 591 22.7	204 591 151.6	182 599 135.1	149 611 103.6
BIG BENI EVAPORATION REG IMFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER PEAK POW MW	1 129 13207 13207 1682 1420.0 12.9	404 404 1682	246 246 1682 1420.0 17.7 83 510	347 347 1682 1420.0 19.4 91 509	1202 1202 1682 1420.0 20.2 95 509	1367 1367 1682 1420.0 22.2 104 509	1201 1201 1682 1420.0 20.2 95 509	8 1695 1695 1682 1420.0 27.6 129 509	24 1469 1469 1682 1420.0 23.9 113 518	31 940 940 1682 1420.0 15.8 78 538	27 960 960 1682 1420.0 15.6 79 538	9.1 46	10.1 51	10.0 50	17.7 87	15.9 77	740 740 1682 1420.0 12.9
ENERGY GWH FORT RANDA NAT INFLOW DEPLETION EVAPORATION	690 80	23.2 94 1	14.0 44 1	19.6 56 1	68.1 88 4	77.4 70 9	68.0 179 12	96.0 36 18	84.1 68 15	56.1 32 7	58.6 2 1	538 16.7	538 8.6 0	538 9.7 1	538 65.1 7 3	538 57.5 -7 3	529 43.0 21 3
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS POWER	13684 13684 0 3123 1350.0 9.8	497 223 274 3397 1353.4 7.5	289 154 135 3532 1355.0 11.1	402 385 17 3549 1355.2 21.6	1286 1286 3549 1355.2 21.6	1428 1428 3549 1355.2 23.2	1368 1368 3549 1355.2 23.0	10 1703 1703 0 3549 1355.2 27.7	31 1491 1665 -174 3375 1353.1 27.1	35 930 1605 -675 2700 1344.1 27.0	25 936 1340 -403 2297 1337.5 21.8	10 262 262 2296 1337.5 8.8	5 135 135 0 2296 1337.5 9.7	5 152 152 0 2296 1337.5 9.6	13 1079 713 366 2662 1343.5 11.6	967 695 272 2934 1347.4 11.3	758 569 189 3123 1350.0 9.9
AVE POWER M PEAK POW MW ENERGY GWH GAVINS POI	1346.0	62 349 22.4	94 354 15.7	182 355 39.3	183 355 131.4	196 355 145.7	194 355 139.7	233 355 173.3	226 348 168.1	215 313 154.7	162 283 120.9	64 283 23.2	71 283 11.9	70 283 13.5	87 311 64.7	89 329 65.9	80 338 55.6
NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	1359 114 -1 47 14881 14881 358 1206.0	100 0 4 328 328 328 328 1206.0	47 0 -7 194 194 358 1206.0	60 0 -20 425 425 358 1206.0	135 5 0 1416 1416 358 1206.0	150 19 -3 1556 1556 358 1206.0	155 24 0 1500 1500 358 1206-0	88 39 -9 3 1740 1740 358 1206.0	87 10 1 1735 1722 13 371	63 -5 0 11 1662 1636 26 397	114 2 10 10 1451 1451 397 1207.5	51 24 5 327 327 397	24 2 -2 153 153 397	27 3 0 2 175 175 397	76 10 -4 5 770 770 397	74 1 1 768 768 397	109 3 681 720 -39 358
DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH	12.5 N 623.3	11.0 39 114 13.9	14.0 49 114 8.2	23.8 82 114 17.6	23.8 82 114 58.7	25.3 87 114 64.4	25.2 86 114 62.1	28.3 96 114 71.6	28.0 96 115 71.3	27.5 95 117 68.7	23.6 83 117	11.0 39 117	11.0 39 117	11.0 39 117	1207.5 12.5 45 78	12.5 44 78	1206.0 12.5 44 76
GAVINS POIN NAT INFLOW DEPLETION REGULATED FLO KAF KCFS	1211 254	X CITY- 155 6		93 4 514 28.8	121 21 1516 25.5	234 35 1755 28.5	168 30 1638 27.5	101 37 1804 29.3	71.3 75 35 1762 28.7	47 23 1660 27.9	61.7 33 10 1474 24.0	14.1 17 6 339 11.4	6.6 8 3 158 11.4	7.5 9 3 181 11.4	33.1 17 12 775 12.6	-3 -3 13 752 12.2	30.7 64 14 770 13.4
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWEF AVE POWER MW		1301 19 86 41245 538	607 9 -2 41578 636	780 11 -20 41812 785	2003 126 -31 42142	2963 647 -34 42669	5623 1473 -25 45156	2992 966 -7 110 45262	1097 185 9 344 44077	962 -190 56 427 43198	961 -70 47 366 42435	434 -125 25 164 42515	203 -58 -44 77 42498	231 -67 -36 88 42491	628 -178 -14 191	474 -171 -15 42195	843 -113 3 42384
PEAK POW MW ENERGY GWH DAILY GWH	7187.6	2152 193.6 12.9	2153 106.8 15.3	785 2155 169.7 18.9	850 2159 612.1 20.4	22.8	967 2202 696.1 23.2	27.3	1061 2187 789.7 25.5	822 2170 592.0 19.7	690 2131 513.1 16.6	441 2133 158.8 10.6	544 2133 91.4 13.1	594 2134 114.1 14.3	755 2116 561.5 18.1	749 2132 557.0 18.0	688 2135 478.8 16.5
	INI-SUM	1 5MAR	22MAR	31MAR	30APR	31MAY	3 OJUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 0 N O V	31DEC	31JAN	29FEB

DATE OF STUDY 02/09/04 TIME OF STUDY 10:52:06

2004 AOP EXTENSIONS, LOWER QUARTILE RUNOFF

TIME OF STUDY 10:52:06 2004 AOP EXTENSIONS, LOWER QUARTILE RUNOFF SHORTEN NAVIGATION SEASON 28-DAYS STUDY NO. 14														
29FEB08	2008		VALUE	EN NAVI ES IN 10	GATION 00 AF E	SEASON 2 XCEPT AS	28-DAYS S INDIC	ATED				STUDY	NO	14
INI-SUM 15		31MAR 30	APR 31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	200 30NOV		31JAN	28FEB
NAT INFLOW 6751 DEPLETION 422 EVAPORATION 466 MOD INFLOW 5863	272 127 -11 -5 283 132 134 62	-6 170	591 1041 50 313 541 728 557 1025	525 1111	712 196 28 488	-44 89 250	284 -132 111 305	365 -75 98 342	188 -35 44 178	88 -16 21 83	100 -18 24 95	332 -113 51 394	238 -123 361	318 -84 402
STOR CHANGE 562 STORAGE 10748 10 ELEV FTMSL 2211.1 221 DISCH KCFS 9.0 POWER	49 70 98 10967	89 11057 11 2212.9 221	357 492 184 236 241 11477 1.0 2215.4 5.0 8.0	546 12022 2218.5	553 -66 11957 2218.1 9.0	553 -303 11654 2216.4 9.0	327 -22 11631 2216.3 5.5	258 84 11715 2216.8 4.2	125 53 11768 2217.1 4.2	59 24 11792 2217.2 4.3	127 -32 11760	553 -160 11601	553 -192 11408 2215.0 9.0	500 -98 11311 2214.4 9.0
ENERGY GWH 813.1 2	56 56 .85 186 .2 9.4		75 101 .88 190 .2 75.0		115 193 85.8	115 191 85.3	70 191 50.3	54 192 39.9	54 192 19.3	55 192 9.2	102 192 19.6	114 191 85.0	114 189 84.6	113 188 76.1
GARRISON NAT INFLOW 10290 DEPLETION 999 CHAN STOR 0 EVAPORATION 553	85 226 48		79 1310 1 205 16 -21	2760 764 -16	1932 544 5	543 75	456 -111 36	438 -7 13	179 -110	84 -51 -1	95 -58 -39	243 -107	181 -87	287 -59
REG INFLOW 14039 RELEASE 13355 STOR CHANGE 684 STORAGE 12939 ELEV FTMSL 1818.6 DISCH KCFS 22.0		250 10	.8 1822.4	2545 1339 1207 15098 1827.0 22.5	34 1913 1353 560 15659 1829.1 22.0	107 915 1322 -407 15251 1827.6 21.5	133 797 952 -155 15096 1827.0	116 601 -99 14997 1826.6	52 361 339 23 15020 1826.7	24 169 159 10 15030 1826.8	28 214 286 -71 14958 1826.5	-10 60 833 1230 -397 14562 1825.0	821 1383 -562 14000 1822.9	846 1222 -376 13624 1821.4
PEAK POW MW	65 155 01 402 .5 26.0	155 1	89 212 05 411	256 428 184.5	256 436 190.6	251 430 186.7	16.0 186 428 134.1	11.4 132 427 98.6	11.4 132 427 47.7	11.5 133 427 22.4	18.0 208 426	20.0 230 421	22.5 255 413	22.0 246 407
OAHE NAT INFLOW 1877 J DEPLETION 641 CHAN STOR -1	99 93 23 11 34 5	14	97 168 48 68 14 -10	747 135	132 160	31 106	84 26	12 - 9	2	1	40.0	170.9 -45 12	-7 17	165.5 47 27
RELEASE 13396 4 STOR CHANGE 702 2 STORAGE 13532 137 ELEV FTMSL 1588.1 1589 DISCH KCFS 12.9 13	56 281 03 245 52 36 35 13820 1 .1 1589.2 15	355 12 346 12 9	46 1259 01 1366 45 -107 75 13768 .5 1589.0	-17 1934 1198 736 14504 1592.0 20.1		1589.0 1	L588.8 1	1586.9 1	46 291 281 10 13274 587.0 1	0 21 137 146 -10 13264 1586.9	-32 24 228 165 64 13328	-10 53 1110 1102 7	-12 1347 977 371 13706	2 1244 715 529 14235
	58 207 .7 617 0 34.7	227 2 617 6 49.0 170	6 260 8 616	237 631 170.8	27.7 327 623 242.9	24.3 284 616 211.5	16.3 191 615	17.6 204 605	9.5 110 605	10.5 122 605	10.4 120 607	17.9 207 607	15.9 185 615	12.9 152 626
BIG BEND EVAPORATION 129 REG INFLOW 13267 4 RELEASE 13267 4 STORAGE 1682 16	3 245	346 120 346 120 1682 168	1 1366 1 1366	1198 1198	8 1695 1695	24 1469 1469	31 940 940	152.0 27 1055 1055	39.4 12 269 269	20.5 6 140 140	23.1 7 158 158	154.3 14 1088 1088		101.8 715 715
ELEV FTMSL 1420.0 1420 DISCH KCFS 12.9 13 POWER AVE POWER MW	0 1420.0 14	20.0 1420. 19.4 20. 91 9	0 1420.0 : 2 22.2	1682 1420.0 1 20.1 94	27.6	23.9	15.8	17.2	1682 420.0 1 9.0	1682 420.0 1 10.1	1682	1682 420.0 1 17.7	1682	1682 420.0 12.9
PEAK POW MW 5: ENERGY GWH 769.3 23		509 50 19.6 68.	9 509	509 67.9	129 509 96.0	113 518 84.1	78 538 56.1	86 538 64.3	46 538 16.5	51 538 8.6	50 538 9.7	87 538 65.1	77 538 57.5	62 529 41.5
EVAPORATION 134 REG INFLOW 13750 49 RELEASE 13750 22 STOR CHANGE 0 27	1 1 7 289 3 154 4 135	57 8 1 402 128 385 128 17	4 9 6 1428	181 12 1367 1367	36 18 10 1703 1703 0	68 15 31 1491 1665 -174	32 7 35 930 1605	2 1 25 1032 1435	1 10 259 259	0 5 135 135	1 5 152 152	7 3 13 1079 713	-7 3 967 695	21 3 733 544
STORAGE 3123 339 ELEV FTMSL 1350.0 1353. DISCH KCFS 9.9 7. POWER AVE POWER MW 6	1 1355.0 13 5 11.1	21.6 21.0	2 1355.2 1 5 23.2	23.0	3549	3375	-675 2700 344.1 13 27.0	-403 2297 337.5 13 23.3	0 2297 337.5 13 8.7	0 2296 337.5 1: 9.7	0 2296 337.5 13 9.6		272 2934 47.4 13 11.3	189 3123 50.0 9.8
PEAK POW MW 34 ENERGY GWH 1351.6 22. GAVINS POINT	354	182 183 355 359 39.3 131.4	355	194 355 139.6 :	233 355 173.3	226 348 168.1 1	215 313 154.7 1	174 283 129.3	64 283 22.9	71 283 12.0	70 283 13.5	87 311 64.7	89 329 65.9	79 338 53.1
NAT INFLOW 1362 10 DEPLETION 114 CHAN STOR -1 EVAPORATION 47 REG INFLOW 14950 RELEASE 14950	0 -7 194	60 135 0 5 -20 0 425 1416	19 -3 1556	156 24 0 1500	88 39 -9 3 1740	87 10 1 9 1735	63 -5 0 11 1662	114 2 7 10 1543	51 5 27 5	24 2 -2 2	27 3 0 2	76 10 -4 5	75 1 1	110 3
RELEASE 14950 32. STOR CHANGE 358 351 STORAGE 358 351 ELEV FIMSL 1206.0 1206.0 DISCH KCFS 12.5 11.0	358 1206.0 120	425 1416 358 358 6.0 1206.0	358 1206.0 12	1500 358 206.0 12	1740 358		1636 26 397	397	327 327 397	153 153 397	175 175 397	770 770 397	769 769 397	657 696 -39 358
POWER MW 33 AVE POWER MW 34 PEAK POW MW 114 ENERGY GWH 626.1 13.2	49 114	3.8 23.8 82 82 114 114 7.6 58.7	25.3	25.2 86 114	28.3 96 114	96 115	27.5 95 117	88 117	39 11.7	39 11.7	07.5 12 11.0 39 117	07.5 120 12.5 : 45 78	12.5 44	12.5 44
GAVINS POINT - SIOUX CITY NAT INFLOW 1223 157 DEPLETION 255 6 REGULATED FLOW AT SIOUX CIT	73	94 122 4 21	236 35	62.1 170 30	71.6 102 38	71.3 (75 35	47	33	14.1 17	6.6			78 33.1 ; -3	76 29.7 65
KAF 15918 478 KCFS 16.1	264	515 1517 3.9 25.5	1757	1640	1804	1762 1		10 1566 25.5 1	6 339 11.4	3 158 11.4	3 181 11.4 1	12 776	13 753	14 747
- TOTAL NAT INFLOW 22199 1308 DEPLETION 2511 20 CHAN STOR 0 87 EVAPORATION 1821	9	785 2013 12 129 20 -30		5650 1490 -32	995 -2	4	966 192 63	964	435 131 28	203 -61 -3	232	631 183 -	477 176	.3.5 848 -99
STORAGE 42384 43280 SYSTEM POWER AVE POWER MW 545 PEAK POW MW 2183 ENERGY CTUR FOR 2183	2184 21	93 859 86 2190	959	989 1	156 1	5091 45 1085	440 211 44 835	378 352 44 739	169 438 44 444	79 461 44 471	90 1422 44	197 239 44		5 332 696
ENERGY GWH 7298.8 196.0 DAILY GWH 13.1 INI-SUM 15MAR	108.1 171 15.4 19	.3 618.5 .0 20.6	713.5 7 23.0	11.7 86 23.7 2	0.3 80	07.0 60	1.2 54	9.6 15	163 2 9.9 7	163 2 9.2 11	163 2 3.3 57	146 2 3.1 56	162 2 8.2 46	164 7.8 6.7

2004 AOP EXTENSIONS, LOWER QUARTILE RUNOFF

TIME OF STUDY 10:52:0				AOP EX1				LE RUNO	FF					
			SHOR' VALU	TEN NAVI ES IN 10	GATION	SEASON XCEPT A	12-DAYS S INDIC	ATED				STUDY	NO	15
28FEB09 INI-SUM	20 15MAR 22MA					31AUG			15NOV	22100	20			
FORT PECK NAT INFLOW 7022 DEPLETION 432	283 13 -11 -	2 170	615 1083 49 314	3 1702	741	307	295	379	196	91	104	31DEC 345	31JAN 248	
EVAPORATION 481 MOD INFLOW 6109	294 13	-	566 769		29	92	-132	-77	-36	-17 21	24	-114 53	-123	
RELEASE 5321 STOR CHANGE 788	134 6 160 7	2 80	357 492 209 277	2 536	553	553	312 318	355 288	185 137	86 76	127	406 553	371 553	416 500
STORAGE 11311 ELEV FTMSL 2214.4			1850 12127		12720	12421	-6 12414 2220.7	67 12482	49 12530	10 12541	12512	-147 12365	-182 12183	12099
DISCH KCFS 9.0 POWER	4.5 4.5		6.0 8.0			9.0	5.4	2221.1 4.7	2221.3 4.6	2221.4 5.5	2221.2 8.0	2220.4 9.0	2219.4 9.0	2218.9 9.0
AVE POWER MW PEAK POW MW	57 57 190 190	0 191	77 103 193 195		117 198	117 197	69 197	61 197	60	72	104	117	116	116
ENERGY GWH 832.0	20.5 9.6	5 12.4	55.1 76.3		87.4	87.0	50.0	45.3	197 21.5	197 12.0	197 20.0	196 86.8	195 86.4	195 77.8
GARRISON NAT INFLOW 10598	500 233	3 300	803 1349	2842	1990	559	470	451	105					
DEPLETION 1173 CHAN STOR 0	48		206 -16 -21	774	560	71	-123 37	451 8 7	185 -94	86 -44	98 - 50	251 -68	186 -46	295 -22
EVAPORATION 577 REG INFLOW 14169	682 296		.144 1614		35 1949	111 931	139 810	121	1 55	-9 26	-26 29	-10 63		
RELEASE 13213 STOR CHANGE 956	446 194 235 101	130	012 1138 133 476	1309	1322 627	1291 -361	952 -142	617 693 -77	361 335	171 208	221 286	800 1230	785 1353	817 1194
STORAGE 13624 ELEV FTMSL 1821.4	13859 13960 1822.3 1822.7	1823.2 182	223 14700 3.7 1825.5	15984 1830.2	16610	16250 1831.2	16107	16021	26 16056	-37	-65 15954	-430 15524	-567 14957	-377 14579
DISCH KCFS 22.0 POWER AVE POWER MW	15.0 14.0		7.0 18.5	22.0	21.5	21.0	16.0	11.3	11.3	15.0	1830.1	1828.6 20.0	1826.5 22.0	1825.1 21.5
PEAK POW MW ENERGY GWH 1865.9	168 158 411 412	414	193 211 416 423	256 440	256 448	251 443	191 441	134 440	134 441	178 440	213 439	235	255	247
OAHE	60.6 26.5	34.2 13	8.7 157.0	184.3	190.4	186.6	137.3	100.1	48.4	30.0	40.9	434 175.0	426 190.0	421 165.8
NAT INFLOW 2048 DEPLETION 652	217 101 23 11		324 183	815	144	34	92	13				-49	•	
CHAN STOR 3 EVAPORATION 511	33 5		48 69 -14 -7	138 -16	165 2	109 2	27 23	-10 22	1 0	0 - 17	1 -14	12	-8 17 -9	51 27
REG INFLOW 14101 RELEASE 13115	673 290 524 121		274 1245	1970	32 1271	99 1120	122 919	106 633	48 286	23 168	26 245	56 1103	1318	2
STOR CHANGE 986	149 169 14384 14552	46	186 1353 87 -108	1172 798	1695	1658 -538	1297 -378	438 195	262 25	145 23	164 81	1095	978 341	1220 708 513
ELEV FTMSL 1590.9 1 DISCH KCFS 12.9		1592.4 159		15375 1595.4		1591.7 :	1590.1 :	14231 1590.9 :		14279	14250	14367	14708 1592.8	15220
POWER AVE POWER MW	209 104		9.9 22.0 238 262	19.7	27.6	27.0	21.8	7.1	8.8	10.4	10.3	17.8	15.9	12.7
PEAK POW MW ENERGY GWH 1890.5	629 632 75.1 17.4	633	534 632 1.0 194.8	236 648 170.2	331 640	321 629	257 622	84 625	104 626	124 626	123 628	211 628	189 635	153 645
BIG BEND		2/	194.0	1/0.2	246.4	238.7	185.1	62.7	37.5	20.8	23.6	157.0	140.9	103.0
EVAPORATION 129 REG INFLOW 12986	524 121	321 1	86 1353	1172	8 1687	24	31	27	12	6	7	14		
RELEASE 12986 STORAGE 1682	524 121 1682 1682	321 1 1682 1	.86 1353 82 1682	1172	1687	1634 1634 1682	1266 1266	411 411	249 249	139 139	157 157	1081 1081	978 978	708 708
DISCH KCFS 12.9	420.0 1420.0 17.6 8.7	1420.0 1420	0.0 1420.0 0.9 22.0	1420.0 : 19.7	1420.0 1 27.4		1682 420.0 1 21.3		1682 420.0 1				1682 420.0	1682 1420.0
POWER AVE POWER MW PEAK POW MW	83 41	84	93 103	92	128	124	101	6.7 34	8.4	10.0	9.9	17.6	15.9	12.7
ENERGY GWH 748.0	510 509 29.7 6.8		09 509 .2 76.6	509 66.4	509 95.5	509 92.5	525 73.0	538 25.2	42 538 15.3	51 538 8.5	50 538	87 538	77 538	61 529
FORT RANDALL NAT INFLOW 779	106 49	<i></i>						23.2	+3.3	0.5	9.6	64.6	57.6	41.1
DEPLETION 80 EVAPORATION 141	106 49 1 1	64 1 1	00 79 4 9	203 12	41 18	76 15	36 7	2 1	1	0	1	8 3	- 8	23
REG INFLOW 13537 RELEASE 13537	629 170 220 153	383 12		1363	10 1700	32 1663	38 1256	27 377	10 238	5 134	5 152	13 1073	3	3
STOR CHANGE 0 STORAGE 3123	409 17	383 12	10 7510	1363	1700 0	1663 0	1603 -347	1254 -877	266 -28	134	152	707 366	967 695	728 539
ELEV FTMSL 1350.0 13 DISCH KCFS 9.8	55.0 1355.2 7.4 11.0	3549 35 1355.2 1355	.2 1355.2	3549 1355.2 1	3549 355.2 1	3549 355.2 13	3202 351.0 1	2325	2297	2297	2297	2663	272 2935 347.4 1	189 3124
POWER AVE POWER MW	62 93	21.5 21 181 1		22.9	27.6	27.0	26.9	20.4	8.9	9.7	9.5	11.5 I	11.3	350.0 9.7
PEAK POW MW ENERGY GWH 1343.9	354 355 22.2 15.7		55 355	193 355 139.2	233	228 355	223 341	157 285	65 283	70 283	70 283	86 311	89 329	78 338
GAVINS POINT				107.Z	173.0	169.3	160.5 1	117.1		11.8	13.4	64.1	65.9	52.6
NAT INFLOW 1401 DEPLETION 114 CHAN STOP	103 48 0 0	0	39 155 5 19	160 24	91 39	89 10	65	117	53	25	28	78	77	113
CHAN STOR -1 EVAPORATION 47 DEC INFLOR	5 -7	-20	0 -3	ō	-9	1 9	-5	2 12	5 21	2 -1	3 0	10 -4	1 0	3
REG INFLOW 14776 RELEASE 14776 STOR CHANGE	328 194 328 194	425 14 425 14		1500 1500	1740 1740	1735	11 1662 1636	10 1371	5 330	2 153	2 175	5 766	771	655
STORAGE 358	358 358	358 3	8 358			13	26	1371	330	153	175	766	771	694
DISCH KCFS 12.5 POWER	06.0 1206.0 1 11.0 14.0	L206.0 1206 23.8 23	0 1206.0 1 8 25.3	206.0 1:	206.0 12 28.3	206.5 12 28.0	27.5 12	207.5 12 22.3	397 07.5 12	397 07.5 12	397 207.5 12	397 207.5 12	397 07.5 1	358 206.0
AVE POWER MW PEAK POW MW	39 49	82 8	2 87	86	96	96	95	78		11.0	11.0	12.5	12.5	12.5
ENERGY OUT	114 114 13.9 8.2	114 11 17.6 58.		114 62.1	114 71.6	115	117	117	39 117 14.2	39 117	39 117	44 78	45 78	44 76
GAVINS POINT - SIOUX (NAT INFLOW 1356	CITY 174 81	104	E 0.55						-1.2	6.6	7.5	32.9	33.2	29.6
DEPLETION 262 REGULATED FLOW AT SIOUX	7 2	$ \begin{array}{cccc} 104 & 13 \\ 4 & 2 \end{array} $	5 262 2 35	188 31	113 38	84 36	52 23	37 10	19 6	9 3	10 3	20 13	-4	72
KAF 15870	495 272 6.6 19.6	525 152 29.4 25.	9 1783 7 29.0					1398	343	159	182	773	14 753	14 752
TOTAL		 _,		47,8	29.5	28.8	28.0	22.7					12.2	13.5
DEPLETION 2713	.383 645 20 9	829 211 12 12			3120 1023		1010	999	452	211	241	653	491	885
CHAN STOR -5 EVAPORATION 1886 STORAGE 44332 45	85 -2	-20 -3		~26	-7 116	202 3 366	-203 61	34	-116 22	-54 -28	-62 -39	.	-134 -9	-63
SYSTEM POWER		45918 4634		49712 4			456 7838 4'	393 7147 41	176 7217 47	82 7213 4	94	204		7062
PEAK POW MW 2	617 502 208 2213	777 86 2216 222	2228				937 2242 2	549 2203 2		534	599	780	771	699
		167.8 621. 18.6 20.	3 714.4 7	06.1 8	64.4 84	45.4 67	74.6 40	08.7 16	0.5 8	9.7 1	15.0 58	30.5 57	73.9 4	2203 69.9
INI-SUM 15	MAR 22MAR 3	31MAR 30AP	31MAY 3							.2.8 :	14.4]	L8.7 1	.8.5	16.8

2004 LOWER DECILE RUNOFF

TIME OF STUDY 10:51:57

SHORTEN NAVIGATION SEASON 43-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

TIME OF S			5/					TEN NAV: ES IN 10	IGATION DOO AF B							STUDY	NO	16
	29FEI		15MAR	200 22MAI		R 30API							15NOV	V 22NO		005 V 31DEC	C 31JA	N 28FEB
FORT P NAT INFL DEPLETIO EVAPORAT MOD INFL RELEASE STOR CHA STORAGE ELEV FTM DISCH KC	OW N ION OW NGE	5100 401 4295 5539 -1244 9553	-12 246 149 97	115 69 45 9696 2204.6	5 - 14 5 14 9 8! 5 51 5 9754 5 2205.0	7 92 7 42 9 464 8 -43 4 971 0 2204.5	4 23: 1 55: 4 52: 3 28 1 973: 7 2204.5	2 344 652 3 536 3 116 9 9856 9 2205.6	175 25 239 523 523 523 523 523 523 523 52203.8	20 78 155 492 -337 9235 2201.6) -5 9 20 20 20 20 39 20 20 5 904 5 2200.1	7 - 93 7 84 2 329 3 278 1 51 4 909 3 2200.7	-28 38 148 134 14 9109 2200.8	3 -1 3 1 3 6 4 9 4 -2 9 908 3 2200.0	3 -1 8 2 9 7 7 12 8 -4 0 903 6 2200.	5 -93 0 44 9 320 7 553 8 -233 2 8799 3 2198.7	-8 29 58 -29 850 2196.	8 - 54 3 329 4 528 1 - 199 8 8309 7 2195.3
POWER AVE POWE PEAK POW ENERGY G	MW	791.0	60 133 21.6	60 133 10.1) 60 8 133) 94 3 133	1 102 3 133	108	102 174	95 171	78	8 53 0 170	53 170	8 82) 170	2 9 0 17	4 105 0 167	10 16	9 108 4 162
GARRI NAT INFL DEPLETIO CHAN STO EVAPORAT REG INFL RELEASE STOR CHAI	OW N R ION OW	7299 1165 -6 476 11191 12980 -1789	270 36 44 427 506 -79	126 17 179 194 -16	21 230 250	- 85 -31 0 1048 0 1101	5 172 8 1246 1168	525 -5 2025 1220	379 5 30 1396 1230	5 93 695 1199	-82 15 115 653 1001	2 57 5 23 5 99 5 535 677	-57 0 45 307 327	-26 -2 21 150 208	5 8 5 - 3 7 - 1 1 24 0 20 3 27	5 108 0 -16 1 -11 4 50 3 616 0 1230	16 	0 223 14 9 737
STORAGE ELEV FTM DISCH KCI POWER AVE POWER	FS	11759 1813.7 24.0	11680 1813.4 17.0	11664 1813.3 14.0	11644 1813.2 14.0	11592 1813.0 18.5	11670 1813.3 19.0	12475 1816.7 20.5	12641 1817.4 20.0	1815.3	11789 1813.8) 11647 1813.2	11627	11569) 11508 9 1812.6	3 10894 5 1809.9	-52 1037 1807. 20.	2 9970 5 1805.5
PEAK POW PEAK POW ENERGY GW	MW √H	1661.5	181 307 65.1	149 307 25.1	306	306	307	220 317 158.3	218 319 162.0	211 313 157.3	180 308 129.9	306	117 306 42.2	305	305	297	210 290 155.9	284
NAT INFLC DEPLETION CHAN STOF EVAPORATI REG INFLC RELEASE STOR CHAN STORAGE ELEV FTMS DISCH KCF	ION W IGE	1049 585 18 382 13080 14027 -947 11436 1578.7 19.6	197 22 37 718 439 279 11715 1580.0 14.7	92 10 16 292 282 10 11725 1580.1 20.3	118 13 355 378 -23 11702 1580.0 21.1	46 -23 1215 1262 -47 11655	64 -3 1202 1592 -391 11264	215 123 -8 1304 1444 -140 11125 1577.2	82 143 3 24 1147 1840 -693 10432 1573.7	21 93 3 74 1056 1660 -604 9828 1570.5	15 91 966 916 50 9878 1570.8	-8 33 79 643 752 -109 9769 1570.2	-5 2 0 36 285 306 -21 9748 1570.0	1 -22 17 166 149 17 9765 1570.1	1 -11 236 169 67 9832 1570.5	11 -17 42 1112 952 160 9992	-12 16 -3 1230 966 264 10255 1572.8	25 1155 920 234
POWER AVE POWER PEAK POW ENERGY GW	. MW MW	1819.4	163 569 58.7	20.3 225 569 37.8	234 569 50.6	234 234 567 168.8	25.9 284 558 211.2	24.3 264 554 190.2	29.9 321 536 238.6	27.0 284 519 211.0	15.4 161 520 115.9	12.2 128 517 95.1	10.3 108 517 38.7	10.7 112 517 18.8	10.7 112 519 21.4	15.5 162 524	15.7 166 531 123.4	16.6 176 537
BIG BE EVAPORATI REG INFLO RELEASE STORAGE ELEV FTMS DISCH KCF POWER	ON W L 1 S	129 13898 13898 1682 1420.0 20.2	439 439 1682 1420.0 14.7	20.3	21.1	1262 1262 1682 1420.0 21.2	1592 1592 1682 1420.0 25.9	1444 1444 1682 1420.0 24.3	8 1832 1832 1682 1420.0 29.8	24 1636 1636 1682 1420.0 26.6	31 885 885 1682 1420.0 14.9	27 725 725 1682	12 294 1682 1420.0 9.9	6 143 143 1682	7 163 163 1682 1420.0 10.3	14 938 938 1682	966 966 1682	920 920 1682
AVE POWER PEAK POW ENERGY GW	MW H	805.6	70 518 25.1	95 510 16.0	99 509 21.4	99 509 71.5	121 509 90.2	114 509 81.8	139 509 103.7	126 518 93.7	74 538 53.3	60 538 44.3	50 538 18.0	52 538 8.8	52 538 10.0	77 538 56.9	77 538 57.5	80 529 53.4
FORT RAN NAT INFLO DEPLETION EVAPORATI REG INFLO RELEASE STOR CHAN STORAGE ELEV FTMSI DISCH KCFS POWER AVE POWER	W ON W JE L 1 S	300 80 132 13986 13987 -1 3124	55 1 492 232 260 3384 1353.2 7.8 65	26 1 307 159 148 3532 1355.0 11.5 97	33 1 410 393 17 3549 1355.2 22.0 186	43 4 1301 1301 3549 1355.2 21.9 185	35 9 1618 1618 0 3549 1355.2 26.3 222	26.1	29.5	29.3	27.0	15.5	-3 1 281 281 2296 1337.5 9.4	-1 0 5 137 137 0 2296 1337.5 9.9	-1 1 56 156 2296 1337.5 9.8	3 12 922 719 203 2499 1341.0 11.7	-6 3 957 707 250 2749 1344.8 11.5	12 3 555 374 3123 1350.0 10.0
PEAK POW M ENERGY GWH GAVINS PC	W H 1 DINT-	375.5	349 23.3	354 16.3	355 40.1	355 132.9	355 164.8	220 355 158.1	248 355 184.7	244 348 181.4	214 306 154.0	115 283 85.6	69 283 24.8	72 283 12.1	72 283 13.7	87 300 64.5	88 317 65.5	80 338 53.6
NAT INFLOW DEPLETION CHAN STOR EVAPORATIC REG INFLOW RELEASE STOR CHANG STORAGE	DN I	1200 114 47 15029 15029 358	87 0 9 329 329 358	41 0 -7 193 193 358	52 0 -20 425 425 358	120 5 0 1416 1416 358	131 19 -9 1722 1722 358	138 24 0 1666 1666	76 39 -7 3 1845 1845	76 10 1 1858 1845 13	55 -5 4 11 1662 1636 26	104 2 21 10 1064 1064	45 5 11 5 327 327	21 -1 2 153 153	24 3 2 175 175	67 10 -4 5 768 768	65 1 0 771 771	98 3 656 695 - 39
ELEV FTMSL DISCH KCFS POWER AVE POWER	MW	206.0 1 13.5	206.0 1 11.0 39			1206.0 : 23.8 82		358 1206.0 : 28.0 95	358 1206.0 1 30.0 101	371 1206.5 1 30.0 101	27.5	397 1207.5 1 17.3	11.0	11.0	11.0	397 1207.5 1 12.5	397 207.5 12.5	358
PEAK POW M ENERGY GWH GAVINS PO	INT -			114 8.2	114 17.6	114 58.7	114 70.9	114 68.6	114 75.1	115 75.4	95 117 68.7	61 117 45.5	$39 \\ 117 \\ 14.1$	39 117 6.6	39 117 7.5	44 78 33.0	45 78 33.2	44 76 29.7
NAT INFLOW DEPLETION REGULATED F KAF KCFS	LOW P	550 247 AT SIOU 15332	36 6 X CITY 359 12.1	17 3 207 14.9	22 4 443 24.8	77 20 1473 24.8	144 34 1832 29.8	106 30 1742 29.3	47 36 1856 30.2	22 34 1833 29.8	15 22 1629 27.4	14 9 1069 17.4	10 6 331 11.1	4 3 155 11.1	5 3 177 11.1	10 12 766 12.5	-5 13 753 12.3	26 13 708 12.8
- TOTAL- NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWN	1 N ER	.5498 2592 15 1569 7913				1638 254 -54 38547	2096 530 -19 38262	3595 1058 ~13 39044	1934 790 1 99 38234	769 242 9 308 36629	643 -92 34 379 35390	781 -32 77 324 34887	367 -71 12 145	171 -33 -51 68 34790	195 -38 -22 77 34747	408 -73 -31 168	407 -55 -8 33964	675 1 3 33933
AVE POWER N PEAK POW MW ENERGY GWH DAILY GWH	N	80.1 2		675 1988 113.4 16.2	810 1987 174.9 19.4	890 1985 640.7 21.4	1026 1976 763.1 24.6	1021 2026 734.8 24.5	1129 2007 839.9 27.1	1061 1984 789.4 25.5	803 1959 578.0 19.3	534 1932 397.7 12.8	436 1931 156.9 10.5	517 1931 86.9 12.4	548 1932 105.2 13.1	683 1903	695 1918 516.8	694 1927 466.1
	INI	-SUM 1	SMAR 2	22MAR	31MAR	30APR	31MAY	30JUN	31JUL :								16.7 31JAN	16.6 28FEB

DATE OF STUDY 02/09/04 TIME OF STUDY 10:51:57

2004 AOP EXTENSIONS, LOWER DECILE RUNOFF SHORTEN NAVIGATION SEASON 61-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

STUDY NO 17

.

28FEB05		2005		VALUE	S IN 10	00 AF	EXCEPT	AS INDIC	SCATED				STUDY	NO	17
	JM 15MAR		MAR 30APP	R 31MAY	3 O J UN	31JU	L 31AU	G 30SEE	P 310C1	15NOV	22NOV		06 31DEC	י גד.דג	J 28FEB
FORT PECK NAT INFLOW 543 DEPLETION 40 EVAPORATION 36	08 -1	116 0	150 549 -1 79		1061 479	15:	2 - 4		3 341	169	79	90 -18	289	218	293
MOD INFLOW 464 RELEASE 508	7 251	117 56	150 470 71 476		582		3 24	3 290) 318	166	77	19 88	42		
STOR CHANGE -43 STORAGE 830	4 132	61	79 -6 582 8575	90	506 76	-230	0 -24	9 - 37	60	41		111 -23	523	523	472
ELEV FTMSL 2195. DISCH KCFS 9.	3 2196.2	2196.7 219		2197.8	8741 2198.3 8.5	2196.7	7 2195.	0 2194.7	2195.1	2195.4	2195.5	8312 2195.3		7964	7875
POWER AVE POWER MW PEAK POW MW ENERGY GWH 699.	46 164	46 164	46 92 165 165 0.0 66.2	81 166	98 167	98 164	9 162	1 62 2 161	48 162	4.2 48 162	5.0 57 163	7.0 79 162		8.5	8.5 94
GARRISON NAT INFLOW 802 DEPLETION 116	6 297	138	178 770	993	70.7 2221	72.8 1404	391			17.2	9.6 83	15.3 94	71.3	70.7	63.4
CHAN STOR 1 EVAPORATION 44 REG INFLOW 1150	1 62 5 8 441		22 67 -45 227 1134		760 -17 1950	495 0 27 1404	86	28 107	9 15 93	-90 42	-42 -9 20	-48 -22 22	119 -78 -17 48	176 -53	245 -48 0
STOR CHANGE - 53	1 -5	10	214 1131 13 3	222	1131 819	1138 267	1107	952		350 305 44	165 142	208 270	655 1138	752 1168	765 1055
ELEV FTMSL 1805.	5 1805.5	1805.6 1805		10214 1806.7	11033 1810.5	11300	10936		10672	10667	23 10690	-61 10629	-482 10146	-417 9730	-290 9439
DISCH KCFS 20.1 POWER AVE POWER MW			19.0	17.0	19.0	18.5	18.0	16.0	10.3	10.3	1808.9 10.3	1808.6 17.0	1806.4 18.5	1804.4 19.0	1802.9 19.0
PEAK POW MW ENERGY GWH 1469.(OAHE	150 284 0 54.0	284 2	20 190 84 284 .0 136.6	171 288 127.1	194 299 139.9	192 372 142.7	186 366 138.6	361	105 361 78.1	105 362 37.8	105 362 17.7	173 361 33.3	186 353 138.6	188 345 139.8	185 340 124.4
NAT INFLOW 1184 DEPLETION 597 CHAN STOR 6 EVAPORATION 366	7 <u>22</u> 3 30		34 206 13 46 -38	113 65 11	242 126 -11	92 147 3	24 96 3	72 24 12	6 - 8 32	-6 2 0	-3 1 0	-3	-54 11	-13 16	47 25
REG INFLOW 12266 RELEASE 12810	677		34 1253	1104	1236	23 1062	69 968	87	78 599	35 263	16 123	-38 19	-9 40	- 3	
STOR CHANGE -544 STORAGE 10489	249	1 -	69 1250 35 3	1411 -307	1248 -12	1732 -670	1526 -558	435 489	673 ~74	318	148	209 169	1024 1022	1136 801	1077 1002
	1575.2 1	575.2 1575	.1 1575.1	10400 1573.5 :	10387 1573.5	9717 1569.9	9159 1566.7	9648	9574	9518	9493	40 9533	9535	335 9870	75 9946
POWER AVE POWER MW	154	19.9 20 213 2		22.9	21.0	28.2	24.8	7.3	11.0	10.7	10.7	1568.9 10.7	1568.9 16.6	13.0	1571.1 18.0
PEAK POW MW ENERGY GWH 1627.5	544		22 225 43 543 .0 162.3	245 535 182.2	223 535	295 516	255 499	76 514	114 511	111 510	110 509	110 510	172 510	136 520	189
BIG BEND		10	.0 102.3	102.2	160.5	219.5	189.5	54.4	84.6	39.9	18.5	21.2	127.8	100.9	522 126.9
EVAPORATION 129 REG INFLOW 12681	428	276 36	59 1250	1411	1248	1705	24	31	27	12	6	7	14		
RELEASE 12681 STORAGE 1682	428 1682	276 30 1682 168	59 1250	1411 1682	1248 1248 1682	1725 1725	1502 1502	405 405	646 646	306 306	142 142	163 163	1008 1008	801 801	1002 1002
DISCH KCFS 16.6	1420.0 1 14.4	420.0 1420 19.9 20	0 1420.0	1420.0 1 22.9	420.0 :						1682 1420.0 1	1682 420.0	1682 1420.0 ;	1682	1682 1420.0
POWER AVE POWER MW	68	93 9	98	107	21.0 98	28.0 131	24.4	6.8	10.5	10.3	10.2	10.2	16.4	13.0	18.0
PEAK POW MW ENERGY GWH 735.0	518 24.5	510 50 15.6 20.	9 509	509 79.9	509 70.7	509 97.7	116 518 86.0	35 538 24.9	53 538	52 538	52 538	52 538	82 538	65 538	87 529
FORT RANDALL NAT INFLOW 366	67						00.0	24.9	39.6	18.7	8.7	10.0	60.8	48.0	58.1
DEPLETION 80 EVAPORATION 128	1		0 52 1 4	42 9	146 12	16 18	44 15	-12	-62 1	-3 1	-1 0	-2	_	- 7	15
REG INFLOW 12828 RELEASE 12829	493 232	306 40 159 39		1444	1382	10 1713	31 1500	32 343	22 561	10 292	5 136	1 5	3 13	3	3
STOR CHANGE -1 STORAGE 3123	261 3385	147 1	7	1444	1382	1713 0	1674 -174	1422 -1079	561 0	292	136 136 0	155 155 0	992 719	791 701	1014 550
	1353.2 13	3532 354 355.0 1355. 11.4 21.	2 1355.2 1	3549 .355,2 1:		3549 355.2 :	3375 1353.1	2296	2296	2296	2296 337.5 1	2296	273 2569	90 2659	464 3123
POWER AVE POWER MW	65	96 18		23.5	23.2	27.9	27.2	23.9	9.1	9.8	9.8	9.8	11.7	11.4	.350.0 9.9
PEAK POW MW ENERGY GWH 1260.7 GAVINS POINT	349	354 35 16.2 40.	5 355	198 355 147.4 1	196 355 L41.1	234 355 174.3	227 348 169.0	185 282 133.4	67 283 49.6	72 283 25.8	71 283 12.0	71 283 13.7	87 305 64.8	87 311 64.9	79 338 52.8
NAT INFLOW 1229 DEPLETION 114	89 0	42 5. 0		134 19	141	78	78	56	107	46	21	25	69	67	100
CHAN STOR -1 EVAPORATION 47	4	-7 -2		- 3	24 0	39 -9	10 1	-5 6	2 27	5 -1	2	3	10 -4	1	100
REG INFLOW 13896 RELEASE 13896	326 326	194 42 194 42			1500 1500	3 1740	9 1735	$11\\1478$	10 683	5 327	2 153	2 175	5 770	768	3 653
STOR CHANGE STORAGE 358	358	358 350	250			1740	1722	1452 26	683	327	153	175	770	768	692 -39
ELEV FTMSL 1206.0 DISCH KCFS 12.5	1206.0 12 11.0	06.0 1206.0 13.9 23.8	1206.0 1	206.0 12	06.0 12 25.2	358 206.0 1 28.3	206.5 1	397 207.5 1:	397 207.5 12	397 207.5 12	397 207.5 12	397 07.5 12	397 207.5 12	397	
POWER AVE POWER MW PEAK POW MW	38	49 82	82	87	86	28.3 96	28.0 96			11.0	11.0	11.0	12.5	12.5	12.5
ENERGY GWH 582.2	114 13.8	114 114 8.2 17.6	114	114	114 62.1	114 71.6	115	85 117	40 117	39 117	39 117	39 117	44 78	44 78	44 76
GAVINS POINT - SIOUX NAT INFLOW 664				-			71.3	61.3	29.4	14.1	6.6	7.5	33.1	33.0	29.5
NAT INFLOW 664 DEPLETION 248 REGULATED FLOW AT SIOL	44 6 IX CITV	21 26 3 4		173 34	128 30	57 37	26 34	18 22	17	12	5	6	12	- 6	32
KAF 14312 KCFS	364	211 448				1760	1714	22 1448	9	6	3	3	12	13	13
TOTAL	12.2 1	15.2 25.1	25.0			28.6	27.9		691 11.2	333 11.2	156 11.2	178 11.2	770 12.5	749 12.2	711 12.8
NAT INFLOW 16904 DEPLETION 2613	969 65	452 581				2115	839	697	838	305	104	0.1.5			
CHAN STOR 8 EVAPORATION 1497	96	30 39 9 -20	221 -83		L431 -27	888 -6	175 10	-191 35		395 -110 -1	184 -51			435 -145	732 -97
STORAGE 33933 SYSTEM POWER	34569 34	789 34863	34863 3	4868 35	5751 3	94	292	359	310	140	-9 65 2893 34	-61 75	-29 162	- 2	3
AVE POWER MW PEAK POW MW		618 752 971 1971	871	888	896	1046	970	607	426	427 427	2893 32 435				2423
ENERGY GWH 6373.7 DAILY GWH	187.7 10	3.8 162.5 4.8 18.1	627.2 6	60.9 64	4.9 7	78.5 7	22.0 4	1974	1973 :	1972 :	1972 1			615 1951	677 1963
INI-SUM						25.1	23.3	14.6							55.1 16.3
	- 81	MAR 31MAR	Svark 3.	-mmi 30	JUN 31	LJUL 3	1AUG 3	OSEP 3	10CT 15	SNOV 22	NOV 30	NOV 31	DEC 31	JAN 2	RFFR

2004 AOP EXTENSIONS, LOWER DECILE RUNOFF

SHORTEN						
VALUES	IN	1000	AF	EXCEPT	AS	INDICATED

DATE OF STUD								TENSION			LE RUNOF	F			STUD	Y NO	18
28F	EB06 INI-SU	IM 15MA	20 R 22MA	06 R 31MA	R 30AP	VALU	ES IN 1	000 AF	EXCEPT	AS IND	ICATED EP 310C	T 15NO	V 22NO		007	-	
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE	561 40 37 484 501 -17 787	0 5 0 25 7 11 8 13 5 801	8 12 2 1 6 11 9 5 7 6 2 807	0 15 1 15 5 7 4 8 5 815	5 56 1 7: 3 494 1 291 2 196 7 8354	7 86 3 30 4 55 8 43 5 12 4 848	2 109 5 47 7 62 0 53 7 8 0 856	7 48 4 15 3 30 6 52 7 -22 8 834		79 26 22 -12 22 8 9 30 3 32 3 -2	56 35 24 -5 39 7 01 33 27 25 27 7	2 17 8 -3 8 3 2 17 3 12 9 5	5 8 4 -1 6 1 2 8 2 5 0 2	1 9 6 -1 7 1 0 9 7 12 3 -3	3 298 8 -108 9 41 2 365 7 523 5 -158	B 221 B -121 L 352 B 552 B -202	5 303 5 -91 2 394 3 500 1 -106
ELEV FTMSL DISCH KCFS POWER AVE POWER M PEAK POW MW ENERGY GWH		5 4. 4 15	0 4.0 5 49 9 160	0 4.0 5 45 0 161	0 5.0 5 51 L 163	7 8 3 16	5 2197. 0 9. 0 10 4 16	1 2195. 0 8. 3 9 5 16	62193. 58. 79	6 2193. 5 5. 6 6	4 2194. 5 4.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2194. 1 4. 7 4	52194. 18. 79	3 2193.1 0 8.5 0 95	2191.7 5 9.0 5 100	7 2190.9) 9.0) 99
GARRISON NAT INFLOW	683. 844									3 44.	5 34.5						
DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	94 44 1207 1227 -20 943	6 -1: 5 5: 0 494 9 446 9 48 9 948	2 -5 L 207 5 167 3 40 7 9527	266 214 51 9579	7 - 24 -11 5 1120 893 228 9806	21: -2: 1242 1107 135 9941	L 72 3 -2: 2 212 7 122 5 90 L 1084	4 50 3 2 5 147 0 116 5 310 7 1115	0 6 6 7 8 8 78 8 119 0 -41	8 -12 3 5 10 7 69 9 93 2 -23	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	L -87 5 (2 7 354 L 310 L 44	7 -41 2 19 4 165 9 145 4 21	L -40 -44 22 5 20 5 270 5 270 -63	5 -93 4 -6 2 47 7 688 0 1168 3 -481	-72 -6 805 1261 -456	-48 806 1139 -333
DISCH KCFS POWER AVE POWER MW	1802.9 19.0			12.0	15.0	18.0		5 19.0		2 1808. 5 15.	1 1808.0 7 10.4	1808.2 10.4	1808.3	1808.1	. 1805.8	1803.5	1801.8
PEAK POW MW ENERGY GWH OAHE	1486.2	341	342		347	178 349 132.2	365	5 370	36	3 35	9 359	359	360	359	350	201 342 149.7	198 336 133.0
NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	1263 613 355 12566 12762 -196 9946	23 22 683 421 262	11 17 283 272 11 10219	143 14 343 364 -21 10198	47 -17 1049 1243 -194 10004	120 66 -17 1144 1404 -260 9744	129 -14 1336 1231 105 9849	151 22 1103 1729 -627 9222	100 1055 1055 1521 -467	0 2: 3 2: 7 8: 5 92: L 43: 7 48:	5 -8 2 30 4 75 3 610 6 680 7 -70	2 34 269 318 -50	1 0 16 125 148	1 -38 18 210 169 41	11 -12 39 1049 1022 26	-14 16 -9 1222 802 420 9588	50 26 1163 1001 162
DISCH KCFS POWER AVE POWER MW	18.0	14.2		1572.5 20.4 216	1571.4 20.9 220	1570.0 22.8 238	20.7	28.1	24.7	7.3	2 1566.8 3 11.1	1566.5 10.7	1566.4 10.7				9749 1570.0 18.0
PEAK POW MW ENERGY GWH ~-BIG BEND-	1593.8	530 53.8	530 34.8	529 46.6	524 158.2	516 177.2	520	501	488	502	2 500	109 498 39.3	109 498 18.2	109 499 20.9	169 500 126.0	134 512 99.8	187 517 125.6
EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	129 12633 12633 1682 1420.0 18.0	421 421 1682	272 272 1682 1420.0 19.6	364 364 1682 1420.0 20.4	1243 1243 1682 1420.0 20.9	1404 1404 1682 1420.0 22.8	1231 1231 1682 1420.0 20.7	8 1722 1722 1682 1420.0 28.0	1497 1682	405 405 1682	653 653 1682 1420.0	12 306 306 1682 1420.0 10.3	6 142 142 1682 1420.0 10.2	7 163 163 1682 1420.0 10.3	14 1008 1008 1682 1420.0 16.4	802 802 1682 1420.0 13.0	1001 1001 1682 1420.0 18.0
AVE POWER MW PEAK POW MW ENERGY GWH	732.3	67 518 24.1	92 510 15.4	96 509 20.6	98 509 70.4	107 509 79.5	97 509 69.7	131 509 97.5	115 518 85.7	35 538 24,9	538	52 538	52 538	52 538	82 538	65 538	86 529
FORT RANDALI NAT INFLOW DEPLETION EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	404 80 128 12818 12818 12818 1 3123	74 1 494 232 262 3385 1353.2 7.8	35 1 306 158 147 3532 1355.0 11.4	44 1 408 391 17 3549 1355.2 21.9	58 4 1297 1297 3549 1355.2 21.8	47 9 1442 1442 3549 1355.2 23.4	161 12 1380 1380	18 18 10 1712 1712	48 15 31 1499 1673 -174	-13 7 32 343 1421 -1078	-69 1 22 560 560 0	-4 1 10 292 292 292 0 2296 1337.5 9.8	8.7 -2 0 5 135 135 0 2296 1337.5 9.8	10.0 -2 155 155 2296 1337.5 9.8	60.8 3 13 992 719 273 2569 1342.1 11.7	48.1 -8 3 791 701 90 2659 1343.5 11.4	58.1 16 3 1014 550 464 3123 1350.0 9.9
AVE POWER MW PEAK POW MW ENERGY GWH GAVINS POINT	1259.7	65 349 23.3	96 354 16.2	185 355 39.9	184 355 132.5	198 355 147.1	196 355 140.9	234 355 174.2	227 348 168.9	185 282 133.3	67 283 49.5	72 283 25.8	71 283 12.0	71 283 13.7	87 305 64.8	87 311 64.9	79 338 52.8
NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	1242 114 -1 47 13898 13898 358 1206.0 12.5	90 0 4 327 327 358 1206.0 11.0	42 0 -7 194 194 358 1206.0	54 0 -20 425 425 358 1206.0	124 5 0 1416 1416 358 1206.0	136 19 -3 1556 1556 358 1206.0	143 24 0 1500 1500 358 1206.0	79 39 -9 3 1740 1740 358 1206.0	79 10 1735 1722 13 371 1206,5	57 -5 6 11 1478 1452 26 397 1207,5	108 27 10 683 683 397 1207.5	47 5 -1 327 327 397	22 2 153 153 397	25 3 0 175 175 397	69 10 -4 5 770 770 770	67 1 768 768 397	101 3 654 693 - 39 358
POWER AVE POWER MW PEAK POW MW		38 114	14.0 49 114	23.8 82 114	23.8 82 114	25.3 87 114	25.2 86 114	28.3 96 114	28.0 96 115	24.4 85 117	40	11.U 39	11.0 39	11.0 39	12.5 44	12.5 44	12.5 44
ENERGY GWH GAVINS POINT NAT INFLOW	582.3 - SIOU 730	13.9 X CITY 48	8.2	17.6 29	58.7	64.4	62.1	71.6	71.3	61.3	117 29.4	117 14.1	117 6.6	117 7.5	78 33.1	78 33.0	76 29.6
DEPLETION REGULATED FLOW KAF KCFS	251	6	23 3 213 15.4	450 25.2	102 21 1497 25.2	191 35 1712 27.8	141 30 1611 27.1	63 37 1766 28.7	29 34 1717 27.9	20 22 1450 24.4	18 10 691 11.2	13 6 334 11.2	6 3 156 11.2	7 3 178 11.2	13 12 771 12.5	-7 13 748 12.2	35 13 715 12.9
- TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER AVE POWER MW	17698 2404 -26 1474 32423					2401 645 -43 33755	4138 1393 -36 34853	2219 904 5 93 34314	878 185 -2 288 33001	727 -198 52 354 32175	866 -52 73 305 32169	411 -108 -1 138 32214	192 -50 64 32235	219 -57 -82 74 32178	447 -165 -21 160	449 -165 -14	763 -97 3 31840
PEAK POW MW ENERGY GWH 6 DAILY GWH		510 2010 183.6 12.2 15MAR	14.5	17.8	18.9	21.3	21.7	25.0	984 1992 731.7 23.6	601 1958 432.4 14.4	425 1958 316.4 10.2	425 1957 152.9 10.2	424 1957 71.2 10.2	533 1957 102.4 12.8	668 1930	631 1938	693 1951 465.5 16.6
					JUNER .	∍±riA1	SUJUN	JULL	31AUG	30SEP	310CT	15NOV	22NOV	3 0 N O V	31DEC 3	31JAN 2	28FEB

SHORTEN NAVIGATION SEASON 61-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

DATE OF ST									S, LOWE			F					
TIME OF ST 2	8FEB07	1:57 UM 15MA	20 R 22MA		R 30APF	VALU	ES IN 1	000 AF	SEASON EXCEPT A	AS INDI	CATED	r 15NOV	/ 22NO\		STUDY		19
FORT PE NAT INFLO DEPLETION	¥ 57		4 12	3 15	8 580	88:	2 112	3 49	5 285	5 27.	3 36:	1 179	9 83		7 31DE0		
EVAPORATION MOD INFLO RELEASE	ON 3	73 65 26	7 12	5 16	0 504	57:	3 64:	2: L 30	3 71 6 252	2 30	9 78 8 343	36 3176	5 17 5 82	7 19 2 94	9 41 1 370	-124	-99 5 409
STOR CHAN STORAGE ELEV FTMS DISCH KCF	76 L 2190	.9 2192.	6 791 0 2192.	5 800 5 2193.	9 206 3 8210 1 2194.6	14 835 2195.6	3 10: 2 845: 5 2196.4	5 -21 3 8243 1 2194.1	7 -24(1 8001 8 2193.1) -19 798 2193.(9 81 2 8069 0 2193.6	7 54 9 8123	-1 8122	-33	-152 3 7936	-180 7756	- 80
POWER AVE POWER PEAK POW I	MW 1W	4. 15	4 49 7 158	5 45	5 56	79	9 102	2 90	6 90) 62	2 47	46	68	9(95	96	93
ENERGY GW GARRISC NAT INFLO	DN) 73.7	71.8	8 66.8	44.3	3 34.8	3 16.7	11.3	17.2	70.5		
DEPLETION CHAN STOR EVAPORATIO	9: DN 4:	92 : 6 51 39	3 1 7	L			. 728	516	5 74 5 6	-126	5 -4 3 15	-91 1	-42 -21	-49	-99	-78 -2	- 59
REG INFLOW RELEASE STOR CHANC STORAGE	123	55 417 81 81	7 167 1 39	7 214 9 50	893 893 228	1281 1107 174	1220 990	1230 289	8 771 0 1199 9 -428	708 893 -185	652 654 -2	366 320 46	176 149 26	234 286 -52	699 1168 -469		1179
ELEV FTMSI DISCH KCFS POWER	1801 20	8 1802.3 5 14.0	8 1802.4) 12.0	1802.7	1803.9	9803 1804.7 18.0	1809.4	1810.7	7 1808.8	1807.9	1807.9	1808.1		1808.0	1805.8	9560 1803.5 20.5	9199 1801.7
AVE POWER PEAK POW M ENERGY GWH	IW 1491.	135 338 1 48.7	338	339	344	177 347 131.3	364	369	361	358	358		110 359 18.4		350	201 342 149.7	198 336 137.6
OAHE- NAT INFLOW DEPLETION CHAN STOR	132 62		11	14		126 67 -17	132	156	103	81 25	- 9		-3 1	-3 1	-61 12	-15 17	52 26
EVAPORATIC REG INFLOW RELEASE STOR CHANG	1270 1275	2 0 680 0 415	283 269	350 361	1060 1238	1149 1401		22 1158	66 1059	26 84 892 438	74 620	-1 34 278 319	0 16 130 148	-42 18 221 169		-9 1220 804	1205
STOR CHANG STORAGE ELEV FTMSL DISCH KCFS	E -4 974 1570. 18.	9 10013 0 1571.5	10028 1571.6	10018 1571.5	9840 1570.5	-252 9588 1569.2 22.8		-571 9144 1566.6 28.1	-459 8685	455 9140 1566.6	-58 9081 1566.3	-41 9040 1566.0	-18 9022 1565.9	52 9074 1566.2	29 9104	416 9520	1025 180 9700 1569.8
POWER AVE POWER PEAK POW M ENERGY GWH	W	146 524 6 52.6	203 525	212 524	218 519	236 512	212 516	288 499	248 485	7.4 74 499	112 497	10.7 109 496	10.7 108 496	10.7 108 497	16.6 169 498	13.1 134 510	17.8 185 515
BIG BEN EVAPORATIO	D N 12	9		45.8	156.7	175.8	152.7	214.2	184.5	53.6		39.2 12	18.2	20.8	125.5	99.8	128.4
REG INFLOW RELEASE STORAGE ELEV FTMSL	1262 1262 168 1420.	1 415 2 1682	269 1682	361 1682	1238 1238 1682 1420.0	1401 1401 1682 1420.0	1218 1218 1682	1721 1721 1682	1493 1493 1682	407 407 1682	652 652 1682	306 306 1682	142 142 1682	163 163 1682	14 1007 1007 1682	804 804 1682	1025 1025 1682
DISCH KCFS POWER AVE POWER I PEAK POW M	18. ww	0 14.0 66	19.3 91	20.2 95	20.8 97	22.8 107	1420.0 20.5 96	1420.0 28.0 131	1420.0 24.3 115	1420.0 6.8 35	1420.0 10.6 54	1420.0 10.3 52	1420.0 10.2 52	1420.0 10.3 52	1420.0 16.4 82		1420.0 17.8
ENERGY GWH	731.	518 5 23.8	510 15.2	509 20.4	509 70.1	509 79.4	509 69.0	509 97.4	518 85.5	538 25.0	538 39.9	538 18.8	538 8.7	538 10.0	538 60.7	538 48.2	85 529 59.5
NAT INFLOW DEPLETION EVAPORATION REG INFLOW	43: 8 128 1283) 1 3	37 1 305	48 1 408	62 4	50 9	174 12	19 18 10	52 15 31	-15 7 32	-75 1 22	-4 1 10	-2 0 5	-2 1 5	3 13	- 9 3	17 3
RELEASE STOR CHANGE STORAGE	1283 3123	5 232 0 262 3 3385	158 147 3532	391 17 3549	1296 1296 3549	1442 1442 3549	1380 1380 3549	1712 1712 0 3549	1499 1673 -174 3375	343 1421 -1078 2297	553 553 0 2296	292 292 0	135 135 0	155 155 0	991 719 272	792 701 91	1039 575 464
ELEV FTMSL DISCH KCFS POWER AVE POWER N) 1353.2) 7.8 65	1355.0 11.4 96	1355.2 21.9 185	1355.2 21.8 184	1355.2 23.4 198	1355.2 23.2	1355.2 27.8	1353.1 27.2	1337.5 23.9	1337.5 9.0	2296 1337.5 9.8	2296 1337.5 9.8	2296 1337.5 9.8	2568 1342.1 11.7	2659 1343.5 11.4	3123 1350.0 10.0
PEAK POW MW ENERGY GWH GAVINS POI	1261.4	349	354 16.1	355 39.9	355 132.4	355 147.2	196 355 140.9	234 355 174.2	227 348 168.9	185 282 133.3	66 283 48.9	72 283 25.8	71 283 12.0	71 283 13.7	87 305 64.8	87 311 64.9	79 338 55.2
NAT INFLOW DEPLETION CHAN STOR EVAPORATION	1246 114 -1	04	42 0 -7	54 0 -20	125 5 0	136 19 -3	143 24 0	79 39 -9	79 10 1	57 -5 6	108 2 28	47 5 -2	22 2 0	25 3	70 10	68 1	101
REG INFLOW RELEASE STOR CHANGE	13919 13919	327	194 194	425 425	1416 1416	1556 1556	1500 1500	3 1740 1740	9 1735 1722	11 1478 1452	10 676 676	5 327 327	2 153 153	0 2 175 175	-4 5 771 771	1 769 769	3 679 718
STORAGE ELEV FTMSL DISCH KCFS POWER	358 1206.0 12.5	358 1206.0 11.0	358 1206.0 14.0	358 1206.0 23.8	358 1206.0 1 23.8	358 206.0 25.3	358 1206.0 25.2	358 1206.0 28.3	13 371 1206.5 28.0	26 397 1207.5 24.4	397 1207.5 11.0	397 1207.5 : 11.0	397 1207.5 : 11.0	397 1207.5 11.0	397 1207.5 : 12.5		-39
AVE POWER M PEAK POW MW ENERGY GWH		39 114 13.9	49 114 8.2	82 114 17.6	82 114 58.7	87 114 64.4	86 114 62.1	96 114 71.6	96 115 71.3	85 117 61.3	39 117 29.1	39 117 14.1	39 117 6.6	39 117 7.5	45 78 33.1	44 78 33.0	44 76
GAVINS POI NAT INFLOW DEPLETION RECULATED FLO	785 254	52 6	- 24 3	31 4	110 21	205 35	151 30	68 37	31 35	21 23	20 10	14	6	7	14	- 7	30.6 38
REGULATED FLO KAF KCFS	DW AT SI 14450	OUX CITY 373 12.5	215 15.5	452 25.3	1505 25.3	1726 28.1	1621 27.2	1771 28.8	1718 27.9	23 1450 24.4	686 11.2	6 335 11.3	3 156 11.3	3 179 11.3	12 773 12.6	13 749 12.2	14 742 12.9
TOTAL NAT INFLOW DEPLETION CHAN STOR	18297 2476 -5	1060	494 14	636 18	1948 158	2483 650	4287 1408	2297 932	906 199	749 -200	889 -60	422 -111	197 -52	225	458	460	786
EVAPORATION STORAGE SYSTEM POWER	1468 31840	98 32596		-20 33010	-28 33267	-43 33332	-36 34554	-1 92	10 286	51 352	67 304 31992	-2 137	-21 64	-59 -64 73 32026	-168 -15 159 31705	-168 -10 31574	-115 5 31738
AVE POWER MV PEAK POW MW ENERGY GWH DAILY GWH	6329.2	495 2000 178.2 11.9	600 2000 100.7 14.4	734 2001 158.6 17.6	783 2003 563.8 18.8	883 2000 657.0 21.2	897 2022 646.1	1051 2008 782.0		594 1954 427.4		428 1954 153.9	448 1954 75.2	543 1954 104.2	667 1928	628 1936	684 1949 476.4
	INI-SUM				18.8 30APR :		21.5 30JUN	25.2 31JUL	23.4 31AUG	14.2	10.2	10.3	10.7	13.0	16.0	15.1	476.4 16.4 29FEB

2004 AOP EXTENSIONS, LOWER DECILE RUNOFF

.

TIME OF STUDY 10.5					AOP EXT					•					
TIME OF STUDY 10:5 29FEB08	1:57			SHORT VALUE	EN NAVI S IN 10	GATION 00 AF E	SEASON EXCEPT A	61-DAYS S INDIC	S CATED				STUDY	' NO	20
INI-S	JM 15MAR	2008 22MAR 31	MAR 30API	R 31MAY	3 0 JUN	31JUI	J 31AUG	30SEF	9 310CT	15NOV	22NOV		009 / 31DEC	31JAN	28FEB
DISCH KCFS 8	19 -3 76 24 275 53 119 72 156 76 7832 77 2191.9	-1 128 56 73 7905 7 2192.4 219	163 598 -2 76 165 522 71 298 93 224 98 8223 3.1 2194.7 1.0 5.0	5 310 2 599 3 430 4 169 8 8391 7 2195.9	486 670 506 164 8555 2197.0	509 173 23 313 523 -210 8346 2195.6 8.5	-34 72 256 523 -266 8079 2193.7	-125 90 316 327 -11 8069	-62 79 354 261 94 8162 2194.3	-35 36 183 126 57	-16 17 85 69 16 8236 2194.8	-19 19 12 12 22 8206 2194.6	-110 41 383 523 -140 58066 52193.6	-127 365 523 -158 7909 2192.5	-92 411 472 -61 7848
POWER AVE POWER MW PEAK POW MW ENERGY GWH 674.	44 157 9 15.9		45 56 59 161 9.7 40.5	163	97 165 69.9	97 163 72.1	160	62 160 44.5	48 161	48 161 17.2	57 162	90 161 17.3	95 160	95 158	94 157 63.3
EVAPORATION 44 REG INFLOW 1269 RELEASE 1248	4 0 0 52 4 0 510	0 214 2	204 881 0 1 -11 275 1166 14 893	212 -23 1332	2542 744 -17 2287 1250	1607 532 0 27 1570 1261	•	349 -128 33 107 731 893		203 -95 0 42 381	95 -44 -9 20 180	108 -50 -33 22 229	-103 -6 48 708	-81 805	281 -56 0 809
DISCH KCFS 20. POWER	9 9292 7 1802.2	1802.4 1802	61 273 00 9674 .7 1804.1 .0 15.0	225 9899 1805.2	1037 10936	310 11246	-418	-161 10666	9 10676	321 60 10736 1809.1 10.8	150 30 10766 1809.3 10.8	286 -56 10710 1809.0 18.0	-522 10188 1806.6	-456 9732 1804.4	1139 -329 9403 1802.7 20.5
AVE POWER MW PEAK POW MW ENERGY GWH 1515. OAHE	135 337 4 48.6	338 3	17 146 39 344 .2 105.4	348	211 366 152.1	212 371 157.4	206 364 153.3	154 362 110.6	112 362 83.3	111 363 39.8	111 363 18.6	184 362 35.3	202 353 150.0	203 345 150.7	199 339 134.0
NAT INFLOW 140 DEPLETION 64 CHAN STOR EVAPORATION 35	1 23 1 37 7		59 245 14 48 -17	134 68 -17	288 135 -17	110 160 3 22	28 106 3 67	86 26 29 85	7 - 9 23 76	-7 2 1 34	-3 1 0	-3 1 -42	-64 12 -11	-16 17 -3	56 27
POWER 17.	7 408 9 287 0 9986 8 1571.3 1		.5 1570.6	1156 1395 -239 9618 1569.3 22.7	1386 1200 186 9803 1570.3 20.2	1191 1726 -535	1088 1512 -425 8843	897 439 458 9302	636 685 -49 9253	280 319 -39 9214 1567.0 10.7	16 130 148 -18 9196 1566.9 10.7	18 222 169 52 9248 1567.2 10.7	40 1103 1022 80 9329 1567.7 16.6	1225 804 421 9750 1570.0 13.1	1168 998 170 9919 1571.0 18.0
AVE POWER MW PEAK POW MW ENERGY GWH 1583.	143 523 2 51.6		09 217 24 520 .2 156.0	235 513 175.2	209 518 150.7	289 503 214.8	249 490 185.0	75 504 54.1	114 502 85.0	110 501 39.5	109 501 18.3	109 502 21.0	170 505 126.6	135 517 100.7	188 522 126.0
BIG BEND EVAPORATION 12: REG INFLOW 1254: RELEASE 1254: STORAGE 168: ELEV FTMSL 1420.0 DISCH KCFS 17.8 POWER	3 408 3 408 2 1682 0 1420.0 1	265 3. 1682 16	32 1682 0 1420.0	1395 1395 1682 1420.0 22.7	1200 1200 1682 1420.0 20.2	8 1719 1719 1682 1420.0 28.0	24 1488 1488 1682 1420.0 24.2	31 408 408 1682 1420.0 6.9	27 658 658 1682 1420.0 10.7	12 306 306 1682 1420.0 10.3	6 142 142 1682 1420.0 10.2	7 163 163 1682 1420.0 10.3	$14 \\ 1008 \\ 1008 \\ 1682 \\ 1420.0 \\ 16.4$	804 804 1682 1420.0 13.1	998 998 1682 1420.0 18.0
AVE POWER MW PEAK POW MW ENERGY GWH 727.5	65 518 23.4	89 5 510 50 15.0 20		106 509 79.0	94 509 68.0	131 509 97.3	115 518 85.2	35 538 25.0	54 538 40.3	52 538 18.8	52 538 8.7	52 538 10.0	82 538 60.8	65 538 48.2	86 529 57.9
POWER	1 494 232 262 3385 1353.3 1	1 305 40 158 39	0 1296 7 9 3549 2 1355.2	55 9 1441 1441 3549 1355.2 23.4	191 12 1379 1379 1355.2 1 23.2	21 18 10 1712 1712 0 3549 355.2 27.8	57 15 31 1499 1673 -174 3375 1353.1	-16 7 32 1421 -1078 2297 1337.5 23.9	-82 1 22 552 552 0 2296 1337.5 9.0	-4 10 291 291 0 2296 1337.5 1 9.8	-2 0 135 135 0 2296 1337.5 9.7	-2 155 155 2296 1337.5 9.7	3 13 992 719 273 2569 1342.1 11.7	-10 3 791 90 2659 1343.5 11.4	19 3 1014 550 464 3123 1350.0 9.9
AVE POWER MW PEAK POW MW ENERGY GWH 1258.5 GAVINS POINT	65 349 23.3	96 18 354 35 16.1 39.	5 355	198 355 147.0	196 355 140.8	234 355 174.2	227 348 168.9	185 282 133.3	66 283 48.8	72 283 25.7	71 283 11.9	71 283 13.7	87 305 64.8	87 311 64.9	79 338 52.8
NAT INFLOW 1252 DEPLETION 114 CHAN STOR -1 EVAPORATION 47 REG INFLOW 13895 RELEASE 13895 STOR CHANGE	91 0 4 328 328	42 5 0 -7 -2 194 42 194 42	0 5 0 0 5 1416	137 19 -3 1556 1556	144 24 0 1500 1500	79 39 -9 3 1740 1740	79 10 1 9 1735 1722	57 -5 6 11 1478 1452	109 28 10 676 676	47 5 -2 5 327 327	22 2 0 2 . 153 153	25 3 0 2 175 175	70 10 -4 5 770 770	68 1 1 769 769	102 3 655
STORAGE 358 ELEV FTMSL 1206.0 DISCH KCFS 12.5 POWER	358 1206.0 12 11.0	358 35 206.0 1206. 14.0 23.	0 1206.0 :	358 1206.0 1 25.3	358 206.0 1 25.2	358 206.0 1 28.3	13 371 206.5 1 28.0	26 397	397	397	207	207	397 1207.5 1 12.5		694 -39 358 206.0 12.5
AVE POWER MW PEAK POW MW ENERGY GWH 582.2	39 114 13.9	49 8 114 11 8.2 17.0	114	87 114 64.4	86 114 62.1	96 114 71.6	96 115 71.3	85 117 61.3	39 117 29.1	39 117 14.1	39 117 6.6	39 117 7.5	45 78 33.1	44 78 33.0	44 76 29.6
GAVINS POINT - SIOU NAT INFLOW 862 DEPLETION 255 REGULATED FLOW AT SIO KAF 14502	57	27 34 3 4 218 456	21	225 35	166 30	74 38	34 35	23 23	22 10	15 6	7 3	8 3	16 12	-8 13	41 14
KCFS TOTAL NAT INFLOW 19102		15.7 25.5 519 667	25.5	1746 28.4	1636 27.5	1776 28.9	1721 28.0	1452 24.4	688 11.2	337 11.3	157 11.3	180 11.3	774 12.6	748 12.2	721 13.0
DEPLETION 2513 CHAN STOR -10 EVAPORATION 1482 STORAGE 31738 SYSTEM POWER	28 93	13 17 4 -20 2829 33003	155 -28	2596 653 -43 33497 3	4487 1431 -33 34884 3	2400 960 -6 93 4449	946 211 4 289 33178 (780 -202 59 355 32412	918 -66 65 307 32466 3	438 -117 -1 139 32544 3	204 -54 -8 65 32573	234 -62 -75 74 32540	472 -176 -21 161 32232	473 -174 -2 32129 3	818 -104 3
AVE POWER MW PEAK POW MW ENERGY GWH 6341.6 DAILY GWH	176.7 1 11.8 :	595 730 1999 2001 00.0 157.6 14.3 17.5	2004 562.8 18.8	21.2	2028 543.5 7 21.5	25.4	23.7	596 1963	433 1963 322.0 1	431 1964 155.1	439 1964 73.7 1	545 1964	681 1938 506.3 4	629 1947 468.0 4	690 1961 63.5
INI-SUM	15MAR 22	2MAR 31MAR	30APR	31MAY 3	S NULO	1JUL 3	BIAUG 3						16.3		16.6

2004 AOP EXTENSIONS, LOWER DECILE RUNOFF

TIME OF STUDY 10:51:57

SHORTEN NAVIGATION SEASON 61-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

TIME OF STUDY 10:51:57			SHORTEN VALUES					TED				STUDY	NU Z	T
28FEB09 INI-SUM 15	2009 MAR 22MAR 31	MAR 30APR						310CT	15NOV	22NOV	201 30NOV	0 31DEC	31JAN	28FEB
DEPLETION 433 EVAPORATION 382 MOD INFLOW 5146 RELEASE 4963 STOR CHANGE 184 STORAGE 7848 ELEV FIMSL 2192.0 219 DISCH KCFS 8.5	-3 -1 277 129 119 56 158 74 005 8079 8 3.2 2193.7 219	164 602 -2 76 166 526 71 298 95 228 174 8402 4.4 2196.0 4.0 5.0	915 311 604 430 174 8576 2197.2 2 7.0	1164 491 673 506 167 8743 198.3 8.5	513 180 23 310 523 -213 8530 2196.8 8.5	296 - 29 73 252 523 - 270 8260 2195.0 8.5	283 -125 91 317 325 -7 8252 2194.9 5.5	374 -64 80 358 250 109 8361 2195.7 4.1	185 -36 184 119 65 8426 2196.1 4.0	86 -17 17 86 69 16 8442 2196.2 5.0	99 -19 98 127 -29 8413 2196.0 8.0	317 -110 42 385 523 -138 8276 2195.1 8.5	240 -128 368 553 -185 8090 2193.8 9.0	321 -92 413 472 -59 8031 2193.3 8.5
		45 57 161 163 9.8 40.9	80 165 59.6	98 167 70.5	98 165 72.8	97 162 71.9	62 162 44.5	46 163 34.4	46 164 16.5	57 164 9.6	91 163 17.5	96 162 71.8	101 160 75.3	95 159 63.9
DEPLETION 1101 CHAN STOR 1 EVAPORATION 452 REG INFLOW 12703 RELEASE 12475 STOR CHANGE 228 STORAGE 9403 PELEV FTMSL 1802.7 DISCH KCFS 20.5 1 POWER 2 5	52 514 216 387 167 127 49 530 9579 9 3.4 1803.6 180 3.0 12.0 1	206 891 -1 -1 277 1178 214 893 63 286 643 9928 3.9 1805.3 2.0 15.0 118 148	1150 212 -23 1346 1076 270 10198 1806.6 1 17.5 174	2572 754 -17 2307 1279 1028 11225 811.4 21.5 219	1626 548 0 28 1573 1291 282 11507 1812.6 21.0 219	460 85 810 1199 -389 11118 1810.9 19.5 203	353 -131 34 734 893 -159 10960 1810.2 15.0 155	496 -13 16 94 680 698 -18 10941 1810.1 11.3 117	205 -98 1 380 338 42 10984 1810.3 11.4 118		109 -52 -33 232 286 -53 10953 1810.1 18.0 185	137 -75 -6 49 680 1199 -519 10434 1807.7 19.5	204 -52 -6 804 1261 -457 9977 1805.6 20.5 205	284 -30 6 792 1139 -347 9631 1803.9 20.5 201
PEAK POW MW	342 343	344 349 5.4 106.5	354	371 157.4	375 162.8	369 151.0	366 111.8	366 87.4	367 42.3	367 19.8	366 35.6	358 147.7	350 152.2	344 135.3
DEPLETION 652 CHAN STOR 1 EVAPORATION 364 REG INFLOW 12889 RELEASE 12664 STOR CHANGE 225 STORAGE 9919 DELEV FTMSL 1571.0 DISCH KCFS 18.0 POWER AVE	23 11 42 6 674 287 406 263 268 23 188 10211 10 2.4 1572.5 157 3.6 19.0 1 144 200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		293 138 -22 1412 1196 216 10016 571.5 20.1 210 524	112 165 3 1218 1726 -508 9508 1568.7 28.1 291 510	29 109 9 68 1059 1510 -451 9057 1566.1 24.6 251 497	87 27 26 892 439 454 9511 1568.7 7.4 76 510	7 -10 21 77 659 687 -28 9483 1568.6 11.2 115 509	-7 1 0 35 295 319 -24 9459 1568.4 10.7 111 508	-3 0 16 138 148 -10 9449 1568.4 10.7 110 508	-4 1 -38 19 225 169 56 9505 1568.7 10.7 110 510	-65 12 -9 40 1073 1022 51 9555 1569.0 16.6 172 511	-16 17 -6 1222 804 418 9973 1571.3 13.1 136 523	56 27 1168 997 171 10144 1572.2 17.9 189 528
ENERGY GWH 1594.1 5	1.7 33.7 4	5.3 156.8	176.3	151.3	216.6	186.4	54.5	85.9	39.8	18.5	21.2	127.8	101.5	126.9
RELEASE 12535 STORAGE 1682 1 ELEV FTMSL 1420.0 142	406 263 682 1682 1 0.0 1420.0 142	354 1230 354 1230 682 1682 0.0 1420.0 9.8 20.7 93 97	1394 1394 1682 1420.0 1 22.7 106	1196 1196 1682 420.0 2 20.1	8 1719 1719 1682 1420.0 28.0 131	24 1486 1486 1682 1420.0 24.2 114	31 408 408 1682 1420.0 6.9 35	27 660 660 1682 1420.0 10.7 54	12 306 306 1682 1420.0 10.3	6 142 142 1682 1420.0 10.2 52	7 163 163 1682 1420.0 10.3 52	14 1008 1008 1682 1420.0 16.4 82	804 804 1682 1420.0 13.1	997 997 1682 1420.0 17.9 86
PEAK POW MW	518 510	509 509 0.1 69.7	509 79.0	509 67.8	509 97.3	518 85.1	538 25.0	538 40.4	538 18.8	538 8.7	538 10.0	538 60.8	538 48.2	529 57.9
RELEASE 12805 STOR CHANGE 0 STORAGE 3123 3 ELEV FTMSL 1350.0 135 DISCH KCFS 9.9 POWER AVE POWER MW PEAK POW MW	232 158 262 147 385 3532 3 3.3 1355.0 135 7.8 11.4 2 65 96 349 354	54 70 1 4 407 1296 390 1296 17 549 549 3549 52 1355.2 1.9 21.8 184 184 355 355 9.8 132.4	23.4 198 355	195 12 1379 1379 0 3549 355.2 23.2 196 355 140.8	21 18 10 1712 1712 0 3549 1355.2 27.8 234 355 174.2	59 15 31 1499 1673 -174 3375 1353.1 27.2 227 348 168.9	-16 32 343 1421 -1078 2297 1337.5 23.9 185 282 133.3	-84 1 22 552 552 0 2296 1337.5 9.0 66 283 48.8	-4 10 291 2296 1337.5 9.8 72 283 25.7	-2 0 5 135 2296 1337.5 9.7 71 283 11.9	-2 155 155 2296 1337.5 9.7 71 283 13.7	3 13 992 719 273 2569 1342.1 11.7 87 305 64.8	-10 3 791 701 90 2659 1343.5 11.4 87 311 64.9	20 3 1014 550 464 3123 1350.0 9.9 79 338 52.8
RELEASE 13895 STOR CHANGE STORAGE 358 ELEV FTMSL 1206.0 120	328 194 328 194 358 358 6.0 1206.0 120	55 125 0 5 -20 0 425 1416 425 1416 358 358 6.0 1206.0 3.8 23.8	137 19 -3 1556 1556 358 1206.0 1 25.3	144 24 0 1500 1500 358 206.0 25.2	79 39 -9 3 1740 1740 358 1206.0 28.3	79 10 1 1735 1722 13 371 1206.5 28.0	57 -5 6 11 1478 1478 26 397 1207.5 24.4	109 2 28 10 676 676 1207.5 11.0	47 5 -2 5 327 327 327 1207.5 11.0	22 2 153 153 397 1207.5 11.0	25 3 0 175 175 397 1207.5 11.0	70 10 -4 5 770 770 397 1207.5 12.5	68 1 1 769 769 397 1207.5 12.5	102 3 655 694 -39 358 1206.0 12.5
AVE POWER MW PEAK POW MW		82 82 114 114 7.6 58.7	87 114 64.4	86 114 62.1	96 114 71.6	96 115 71.3	85 117 61.3	39 117 29.1	39 117 14.1	39 117 6.6	39 117 7.5	45 78 33.1	44 78 33.0	44 76 29.6
GAVINS POINT - SIOUX C NAT INFLOW 879 DEPLETION 262 REGULATED FLOW AT SIOUX KAF 14512 KCFS 1	ITY 58 27 7 3 CITY 379 218	35 123 4 22 456 1517 5.5 25.5	230 35 1751 28.5	169 31 1638 27.5	76 38 1778 28.9	35 36 1721 28.0	24 23 1453 24.4	22 10 688 11.2	15 6 336 11.3	7 3 157 11.3	8 3 179 11.3	16 13 773 12.6	-8 14 747 12.1	42 14 722 13.0
DEPLETION 2642 CHAN STOR -10 EVAPORATION 1502 STORAGE 32333 33 SYSTEM POWER AVE POWER MW PEAK POW MW 2	28 13 97 -1 149 33441 33 483 597 ⁷ 011 2011 2	575 2060 17 154 -20 -28 523 33984 732 785 013 2016	882 2015	4537 1450 -39 35574 903 2040	2427 988 -6 94 35134 1069 2028	958 226 10 293 33863 987 2009	788 -204 56 360 33098 598 1975	924 -74 63 311 33160 438 1976	441 -121 -1 141 33244 437 1977	206 -56 -11 66 33272 447 1977	235 -64 -71 75 33246 549 1978	475 -147 -18 163 32914 680 1951	478 ~145 -11 32779 639 1960	825 -78 8 32969 694 1974
		7.6 18.8		649.8 21.7	795.3 25.7	734.6 23.7	430.5 14.3	326.0 10.5 310CT	157.2 10.5 15NOV	75.1 10.7 22NOV	105.4 13.2 30NOV	505.9 16.3	475.2 15.3 31JAN	466.3 16.7 28FEB