

Northwestern Division Missouri River Basin Water Management Division

Missouri River Mainstem System 2004-2005 Annual Operating Plan

Annual Operating Plan Process 52 Years Serving the Misssouri River Basin

December 2004

DEPARTMENT OF THE ARMY NORTHWESTERN DIVISION, CORPS OF ENGINEERS 12565 WEST CENTER ROAD OMAHA, NEBRASKA 68144-3869

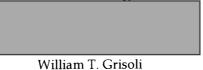
December 2004

This Annual Operating Plan (AOP) presents information regarding the Corps of Engineers' regulation of the Missouri River Mainstem Reservoir System (System) through December 2005. The information provided in this AOP is based on water management guidelines designed to meet the regulation objectives of the Missouri River Master Water Control Manual dated March 19, 2004. These guidelines are applied to computer simulations of System regulation assuming inflow scenarios based on water supply records from 1898 to 1997. This approach provides a wide range of water management simulations for dry, average, and wet conditions.

The AOP provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year to serve its Congressionally authorized project purposes. In addition, 5-year extensions to the AOP water management simulations, through March 2011, are presented to serve as guides for longer range planning. System water management is provided by my staff at the Missouri River Basin Water Management Division, Northwestern Division, U.S. Army Corps of Engineers located in Omaha, Nebraska.

On December 16, 2003, and in response to the Corps's request for the reinitiation of consultation, the U.S. Fish and Wildlife Service (USFWS) issued an amendment to its 2000 Biological Opinion (2003 Amended BiOp). The 2003 Amended BiOp includes a "reasonable and prudent alternative" (RPA) that calls for a "spring pulse" and a low summer release from the Mainstem Reservoir System. The 2003 Amended BiOp allows a two-year period of study prior to implementing the spring pulse to establish an acceptable flow management plan, which will likely avoid jeopardy to the continued existence of the pallid sturgeon and will not result in the destruction or adverse modification of critical habitat in the Missouri River. While a spring pulse is planned for 2006, the USFWS confirmed in their November 30, 2004 letter, that a spring pulse is not planned for 2005. The 2003 Amended BiOp includes a provision that the low summer release may be modified, in consultation with the USFWS, if 1200 acres of shallow water habitat (SWH) for the endangered pallid sturgeon is constructed. In their letter, the USFWS also affirmed the Corps' plan to provide minimum service flow support in the summer of 2005 based on the construction of over 1200 acres of shallow water habitat during 2004.

A "steady release – flow-to-target" schedule is planned during the 2005 nesting season of the interior least tern and piping plover, which are listed for protection under the Endangered Species Act. The initial steady release (SR) will be based on hydrologic conditions and the availability of habitat at that time. Once the majority of the birds have nested on the newly constructed, high elevation habitat, releases will be made to meet downstream targets (FTT). The purpose of this regulation is to continue to meet the project purposes while minimizing the loss of nesting threatened and endangered species and conserving water in the upper three reservoirs. It also provided certainty for downstream users that releases could be increased if needed to meet flow targets.


The ability to provide steady to rising pool levels in the upper three reservoirs during the spring fish spawn period is very dependent on the volume, timing, and distribution of runoff. The reservoir regulation simulations presented in this AOP for the Upper Decile, Upper Quartile, and Median runoff scenarios show that steady to rising pool levels would occur for the upper three System reservoirs. For Lower Quartile and Lower Decile runoff scenarios, the Corps will, to the extent reasonably possible, set releases to result in steady to rising pools at Oahe during April and May, and steady to rising pools at Fort Peck during May and June. In 2004, we initiated a strategy to

rotate emphasis among the upper three System reservoirs on a yearly basis during their forage fish spawns. Even though this strategy has been modified for the 2005 AOP, we intend to continue to use this strategy during drought, in an attempt to maximize the benefit to fish species in those reservoirs.

A draft of this AOP was made available to the public in September 2004. Seven fall public meetings on the Draft 2004-2005 AOP were held as follows: October 12, 2004 in Williston, North Dakota; October 13, 2004 in Glasgow, Montana and Pierre, South Dakota; October 14, 2004 in Kansas City, Missouri; October 26, 2004 in Omaha, Nebraska; October 27, 2004 in New Orleans, Louisiana; and October 28, 2004 in St. Louis, Missouri. The primary purposes of these meetings were to present a synopsis of the Draft AOP and to allow those in attendance to make comments in person to Corps of Engineers' staff. Attendees included representatives from the Tribes, Missouri River basin states, public and industry interest groups and private citizens. Copies of the comment letters received on the Draft AOP and a report on the comments received at the seven meetings are available upon request, as outlined below.

In addition to the AOP, two separate documents are also available entitled: "System Description and Operation" and "Summary of Actual Calendar Year 2004 Operations." To receive copies of those documents you may contact the Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. The System Description and Operation document is now available at the "Reports and Publications" link on our web site at: <u>www.nwd.usace.army.mil/rcc</u> while the Summary of Actual Calendar Year 2004 Operations will be available in April 2005 at the same site.

We thank you for your interest in the regulation of the System. During this extended drought, the Corps is attempting to balance the needs of the entire basin. We believe our recently revised Master Manual and this AOP provide an appropriate balance of benefits to the various Congressionally authorized System project purposes. The basin must work together as a team – Federal, State and local agencies, as well as, the diverse stakeholders – and remain committed to preserving the Missouri River as a National treasure, allowing everyone to enjoy its beauty and many resources.

Brigadier General, U.S. Army Division Engineer

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2004 - 2005

List of List of	Tables Plates Abbreviations tion of Terms	ii iii
I.	FOREWORD	1
II.	PURPOSE AND SCOPE	2
	MAINSTEM MASTER MANUAL REVIEW AND UPDATE AND ESA CONSULTATIONS	3
IV.	FUTURE WATER SUPPLY - AUGUST 2004 – DECEMBER 2005	4
V.	ANNUAL OPERATING PLAN FOR 2004-2005	5
	 A. General B. 2004-2005 AOP Simulations C. Regulation for Balance of 2004 Nav. Season and Fall of 2004 D. Regulation Plan for Winter 2004-2005 E. Regulation Plan During the 2005 Navigation Season 	9 11 12
VI.	SUMMARY OF RESULTS EXPECTED IN 2005	21
	 A. Flood Control B. Water Supply and Water Quality Control C. Irrigation D. Navigation E. Power F. Recreation, Fish and Wildlife G. System Storage H. Summary of Water Use by Functions 	21 22 22 22 22 22
	TENTATIVE PROJECTION OF REGULATION THROUGH MARCH 2011	27
	 A. Upper Decile Runoff B. Upper Quartile Runoff C. Median Runoff D. Lower Quartile Runoff E. Lower Decile Runoff 	29 29 30

TABLES

Ι	Natural and Gross Water Supply at Sioux City	5
II	Relation of System Storage to Navigation Service Level	6
III	Relation of System Storage to Navigation Season Length	7
IV	Gavins Point Releases Needed to Meet Target Flows	8
V	Navigation Service Support for the 2005 Season	15
VI	Reservoir Unbalancing Schedule	17
VII	MRNRC Recommended Res. Elevation Guidelines for Unbalancing	
VIII	Peaking Capability and Sales	23
IX	Energy Generation and Sales	23
Х	Anticipated December 31, 2005 System Storage	25
XI	Missouri River Mainstem System Water Use for Calendar Years 2003,	
	2004, and 2005 Above Sioux City, Iowa	26
XII	Navigation Service Support, AOP Extensions	28
XIII	March 1 Reservoir Unbalancing, AOP Extensions	

PLATES

- 1 Missouri River Basin Map
- 2 Summary of Engineering Data
- 3 System Storage and Fort Peck Elevations
- 4 Garrison and Oahe Elevations
- 5 System Storage
- 6 Gavins Point Releases
- 7 Fort Peck Elevations and Releases
- 8 Garrison Elevations and Releases
- 9 Oahe Elevations and Releases
- 10 Fort Randall Elevations and Releases
- 11 Reservoir Release and Unregulated Flow
- 12 System Gross Capability and Average Monthly Generation
- 13 Tentative Five-Year Extension of 2004-2005 AOP
- 14 Tentative Five-Year Extension of 2004-2005 AOP

ABBREVIATIONS

AOP	-	annual operating plan
ac.ft.	-	acre-feet
AF	-	acre-feet
В	_	Billion
cfs	-	cubic feet per second
COE	-	Corps of Engineers
CY	-	calendar year (January 1 to December 31)
elev	-	elevation
ft	-	feet
FY	-	fiscal year (October 1 to September 30)
GIS	-	Geographic Information System
GWh	-	gigawatt hour
KAF	-	1,000 acre-feet
Kcfs	-	1,000 cubic feet per second
kW	-	kilowatt
kWh	-	kilowatt hour
М	-	million
MAF	-	million acre-feet
MRBA	-	Missouri River Basin Association
MRNRC	-	Missouri River Natural Resources Committee
msl	-	mean sea level
MW	-	megawatt
MWh	-	megawatt hour
plover	-	piping plover
рр	-	powerplant
RCC	-	Reservoir Control Center
RM	-	river mile
tern	-	interior least tern
tw	-	tailwater
USFWS	-	United States Fish and Wildlife Service
USGS	-	United States Geological Survey
yr	-	year

DEFINITION OF TERMS

<u>Acre-foot (AF, ac-ft)</u> is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

MISSOURI RIVER MAINSTEM RESERVOIR SYSTEM

Annual Operating Plan 2004 - 2005

I. <u>FOREWORD</u>

This Annual Operating Plan (AOP) presents pertinent information and plans for regulating the Missouri River Mainstem Reservoir System (System) through December 2005 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the coming year to serve the Congressionally authorized project purposes. Regulation is directed by the Reservoir Control Center in the Missouri River Basin Water Management Division, Northwestern Division, U. S. Army Corps of Engineers (Corps). A map of the Missouri River basin is shown on *Plate 1* and the summary of engineering data for the six System projects is shown on *Plate 2*.

This plan may require adjustments when substantial departures from expected runoff occur, to meet emergencies, or to meet the provisions of applicable laws, including the Endangered Species Act (ESA).

Prior to the 1998-1999 AOP, a System description and discussion of the typical System regulation, a historic summary of the previous year's regulation, and the plan for future System regulation was included in one document. Since the 1998-1999 AOP, this information has been published in separate reports available upon request. This document provides the plan for future regulation of the System. To receive a copy of either the updated version of the "System Description and Operation," dated Spring 2002, or the "Summary of Actual Calendar Year 2003 Operations," dated April 2004, contact the Missouri River Basin Water Management Division at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports are currently available at the "Reports and Publications" link on our web site at: **www.nwd-mr.usace.army.mil/rcc**. The "Summary of Actual Calendar Year 2004 Regulation" will be available at the same site in the spring of 2005.

II. <u>PURPOSE AND SCOPE</u>

Beginning in 1953, projected System reservoir regulation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, State, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System regulation. The Coordinating Committee on Missouri River Mainstem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982, the Committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meeting is conducted to take public input on a draft of the AOP, which typically is published in early October each year. The spring meetings are conducted to update the public on the current hydrologic conditions and projected System regulation for the remainder of the year as it relates to implementing the Final AOP.

Last spring's public meetings were held at the following locations and dates: April 5, 2004 at Omaha, Nebraska; April 6, 2004 at Lewistown, Montana; April 7, 2004 at Bismarck, North Dakota; and April 8, 2004 at Kansas City, Missouri. The attendees were given an update regarding the outlook for 2004 runoff and projected Mainstem reservoir regulation for the remainder of 2004. Preliminary Draft 2004-2005 AOP data was presented to the Missouri River Basin Association (MRBA) and to the Missouri River Natural Resources Committee (MRNRC) on August 12, 2004. Seven fall public meetings on the Draft 2004-2005 AOP were held as follows: October 12, 2004 in Williston, North Dakota; October 13, 2004 in Glasgow, Montana and Pierre, South Dakota; October 27, 2004 in Kansas City, Missouri; October 26, 2004 in Omaha, Nebraska; October 27, 2004 in New Orleans, Louisiana; and October 28, 2004 in St. Louis, Missouri. In the spring of 2005, public meetings will be held to discuss the basin's hydrologic conditions and the effects those conditions are expected to have on the implementation of the 2004-2004 Final AOP.

III. MAINSTEM MASTER MANUAL REVIEW AND UPDATE AND ESA CONSULTATIONS

The Missouri River Master Water Control Manual (Master Manual) presents the water control plan and operational objectives for the integrated regulation of the Mainstem Reservoir System. First published in 1960 and subsequently revised during the 1970's, the Master Manual was revised again in March 2004 following the release of the U.S. Fish and Wildlife Service (USFWS) 2003 Amendment to the 2000 Biological Opinion (2003 Amended BiOp).

The "reasonable and prudent alternative" (RPA) presented in the 2003 Amended BiOp calls for a low summer release from the Mainstem Reservoir System of 25,000 cubic feet per second (cfs) each year beginning no later than July 1 and lasting for a minimum of 30 days. The 2003 Amended BiOp includes a provision that this low summer release may be modified, in consultation with the USFWS, if 1200 acres of shallow water habitat (SWH) for the endangered pallid sturgeon is constructed. During the summer of 2004 the Corps, in cooperation with the USFWS, other Federal agencies, and the states of Nebraska, Iowa, Kansas and Missouri, constructed more than 1200 acres of new SWH from Ponca State Park on the Nebraska-South Dakota border to the mouth of the Osage River in central Missouri to comply with the ESA. Therefore, this AOP and future AOPs will not include provisions for a low summer release.

The 2003 Amended BiOp also calls for a "spring pulse" from the System, but allows a two-year period of study to establish an acceptable flow management plan, which will likely avoid jeopardy to the continued existence of the pallid sturgeon and will not result in the destruction or adverse modification of critical habitat in the Missouri River. Although a spring rise is not planned in 2005, the Corps will be working closely with basin stakeholders over the coming year to develop a spring rise for inclusion in the 2005-2006 AOP.

IV. FUTURE WATER SUPPLY - AUGUST 2004 - DECEMBER 2005

Water supply (runoff) into the six System reservoirs is typically low and relatively stable during the August-to-February period. The August 1 calendar year runoff forecast is used as input to the Basic reservoir regulation simulation (Simulation) in the AOP studies for the period August 2004 to February 2005. Two other runoff scenarios based on the August 1 runoff forecast were developed for the same period. These are the 80 percent and 120 percent of the August 1 runoff forecast scenarios, which are input to the 80 percent and 120 percent of Basic Simulations for the August 2004 to February 2005 period.

Simulations for the March 1, 2005 to February 28, 2006 time period use five statistically derived inflow scenarios based on an analysis of water supply records from 1898 to 1997. This approach provides a good range of simulation for dry, average, and wet conditions, and eliminates the need to forecast future precipitation, which is very difficult.

The five statistically derived inflows are identified as the Upper Decile, Upper Quartile, Median, Lower Quartile and Lower Decile runoff conditions. Upper Decile runoff (34.5 million acre-feet (MAF)) has a 1 in 10 chance of being exceeded, Upper Quartile (30.6 MAF) has a 1 in 4 chance of being exceeded, and Median (24.6 MAF) has a 1 in 2 chance of being exceeded. Lower Quartile runoff (19.5 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile (15.5 MAF) has a 1 in 10 chance of the occurrence of less runoff. There is still a 20 percent chance that a runoff condition may occur that has not been simulated; i.e., a 10 percent chance runoff could be lower than Lower Decile, and a 10 percent chance runoff could be greater than Upper Decile.

The Upper Decile and Upper Quartile simulations extend from the end of the 120 percent of Basic simulation through February 2006. Likewise, the Median simulation extends from the end of the Basic simulation, and the Lower Quartile and Lower Decile simulations extend from the end of the 80 percent of Basin simulation through February 2006.

The estimated natural flow at Sioux City, the corresponding post-1949 water use effects, and the net flow available above Sioux City are shown in *Table I*, where water supply conditions are quantified for the period August 2004 through February 2006. The natural water supply for calendar year (CY) 2003 totaled 17.6 MAF.

TABLE I NATURAL AND GROSS WATER SUPPLY AT SIOUX CITY (Volumes in 1,000 Acre-Feet)

	<u>Natural</u> 1/ (Volu	<u>Post-1949 Depletions</u> umes in 1,000 Acre-Feet)	<u>Net</u> 2/
August 2004 through February 20	005 (Basic Runoff S	Scenario)	
Basic	5,800	-300	5,500
120% Basic	6,900	-100	6,800
80% Basic	4,600	-100	4,500
Runoff Year March 2005 through	February 2006 (Sta	atistical Analysis of Past Re	cords)
Upper Decile	34,500	-2,500	32,000
Upper Quartile	30,600	-2,600	28,000
Median	24,600	-2,600	22,000
Lower Quartile	19,500	-2,700	16,800
Lower Decile	15,500	-2,500	13,000

1/ The word "Natural" is used to designate flows adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck reservoir have also been eliminated during its period of regulation prior to 1949.

2/ The word "Net" represents the total streamflow after deduction of the post-1949 irrigation, upstream storage, and other use effects.

V. ANNUAL OPERATING PLAN FOR 2004-2005

A. <u>General</u>. The anticipated regulation described in this AOP is designed to meet the regulation objectives presented in the March 2004 Master Manual. Consideration has been given to all of the authorized project purposes, and to the needs of threatened and endangered (T&E) species. The plan relies on a wealth of regulation experience. Reservoir regulation experience available for preparation of the 2004-2005 AOP includes 13 years of regulation at Fort Peck (1940) by itself, plus 51 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) have been brought progressively into System regulation. This regulation experience includes lessons learned during the six consecutive years of drought from 1987 through 1992, the high runoff period that followed, and the current five-year drought that began in 2000. Runoff during the period 1993 to 1999 was greater than the Upper Quartile level in five of those seven years, including the record 49.0 MAF of runoff in 1997. In addition to the long period of actual System reservoir

regulation experience, many background regulation studies for the completed System are available for reference.

As described in the Master Manual, flow support for navigation and other downstream purposes is defined based on service level. A "full-service" level of 35,000 cfs results in target flows of 31,000 cfs at Sioux City and Omaha, 37,000 cfs at Nebraska City and 41,000 cfs at Kansas City. Similarly, a "minimum service" level of 29,000 cfs results in target values of 6,000 cfs less than the full service levels. Selection of the appropriate service level is based on the actual volume of water-in-storage (storage) in the System on March 15 and July 1.

The relation of System storage to navigation service level is presented in *Table II*. The volumes presented in *Table II* were derived from long-range model simulations that helped identify how the System should be regulated to meet authorized purposes during significant multi-year droughts. Straight-line interpolation defines intermediate service levels between full and minimum service. These service level determinations are for conservation and normal System regulation. During years when flood evacuation is required, the service level is calculated monthly to facilitate a smooth transition in System release.

As shown in *Table II*, the water control plan calls for suspension of navigation service if System storage is at or below 31 MAF on March 15 of any year. It should be noted that the occurrence of System storage at or below 31 MAF would likely coincide with a national drought emergency. If any of the reservoir regulation studies performed for the development of an AOP indicate that System storage will be at or below 31 MAF by the upcoming March 15, the Corps will notify the Secretary of the Army. Per the revised Master Manual, the Corps will obtain approval from the Secretary of the Army prior to implementation of back-to-back non-navigation years.

TABLE II RELATION OF SYSTEM STORAGE TO NAVIGATION SERVICE LEVEL

Date	<u>System Storage (MAF)</u>	Navigation Service Level
March 15	54.5 or more	35,000 cfs (full-service)
March 15	49.0 to 31	29,000 cfs (minimum-service)
March 15	31.0 or less	No navigation service
July 1	57.0 or more	35,000 cfs (full-service)
July 1	50.5 or less	29,000 cfs (minimum-service)

The System storage check for navigation season length is made on July 1 of each year. Assuming the System storage is above 31 MAF on March 15, a navigation season will be supported. A full 8-month navigation season will be provided if System storage is 51.5 MAF or above on July 1, unless the navigation season is extended to evacuate flood control storage. However, if System storage falls below 51.5 MAF on July 1, a shortened navigation season will be provided to conserve water. The specific technical criteria for season length are shown in *Table III*. Straight-line interpolation between 51.5 and 46.8 MAF of storage on July 1 provides the closure date for a season length between 8 and 7 months. If System storage on July 1 is between 46.8 and 41.0 MAF, a 7-month navigation season is provided. A straight-line interpolation is again used between 41.0 and 36.5 MAF, providing season lengths between 7 and 6 months. For System storage on July 1 below 36.5 MAF, a 6-month season is provided.

TABLE III RELATION OF SYSTEM STORAGE TO NAVIGATION SEASON LENGTH

Date	System Storage (MAF)	Season Closure Date <u>at Mouth of the Missouri River</u>
July 1	51.5 or more	December 1 (8-month season)
July 1	46.8 through 41.0	November 1 (7-month season)
July 1	36.5 or less	October 1 (6-month season)

The System release required to meet minimum and full service target flows varies by month in response to downstream tributary flows. An analysis of the average monthly Gavins Point release needed to meet flow targets was completed in 1999. As part of that study, the relationship between annual runoff upstream of Sioux City and the average Gavins Point release required for the navigation season was analyzed. The study showed that generally more water was needed downstream to meet flow targets during years with below normal upper basin runoff than during years with higher upper basin runoff. Therefore, regulation studies performed since 1999 use two levels of System release requirements; one for Median, Upper Quartile, and Upper Decile runoff scenarios, and another for Lower Quartile and Lower Decile scenarios. The updated release requirements for full and minimum service flow support are given in *Table IV*. Releases required for minimum service flow support are 6,000 cfs less than full service support. A final report detailing the procedures used in this study is available on our web site.

An examination of the data presented in *Table IV* reflects that, early in the season, the target location is generally at Sioux City with adequate tributary flows to meet the other downstream flow targets. As the runoff season progresses, tributary

flows normally recede during the summer, and the target location moves from Sioux City to Nebraska City and then to Kansas City. This requires higher flow support from the System as the season progresses through summer. Often the target moves upstream during the fall when higher downstream tributary flows return. This seasonal tributary flow pattern is reflected in the Gavins Point release data presented below.

The releases presented in *Table IV* are average monthly values during the period studied for various runoff conditions and do not reflect the range of daily releases that may be required during any given month to meet flow targets. Actual regulation, therefore, requires daily adjustments to fully serve the Congressionally authorized project purpose of navigation. An additional analysis was conducted in the spring of 2003 that concluded a 30,000 cfs release would be needed to provide a 90 percent assurance of meeting minimum service flow targets in July and August. That study was based on runoff data from the period of record 1898 through 1997.

TABLE IV GAVINS POINT RELEASES NEEDED TO MEET TARGET FLOWS FOR INDICATED SERVICE LEVEL 1950 to 1996 Data (Discharges in 1,000 cfs)

<u>Median, Upper Quartile, Upper Decile Runoff</u>							
A	pr May	Jun	Jul	Aug	Sep	Oct	

Nov

	1 1 P1	Iviay	Jun	Jui	1146	ocp	00	1101
Full Service	26.7	28.0	27.9	31.6	33.2	32.6	32.0	31.1
Minimum Service	20.7	22.0	21.9	25.6	27.2	26.6	26.0	25.1

Lower Quartile, Lower Decile Runoff

	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
Full Service	29.8	31.3	31.2	34.3	34.0	33.5	33.1	31.2
Minimum Service	23.8	25.3	25.2	28.3	28.0	27.5	27.1	25.2

In general, releases from Gavins Point are adjusted as needed to meet target flow levels on the lower Missouri River. However, during the nesting season of the endangered interior least tern (tern) and the threatened piping plover (plover), care must be taken to avoid impacts to nesting areas. These two bird species are listed as threatened and endangered under the ESA and are protected under that Act. Several scenarios have been used in past years to regulate the System during the nesting season. Under the Steady-Release (SR) scenario, when the birds begin to initiate nesting activities in early to mid-May, the release from Gavins Point is set to the level expected to be required to meet downstream flow targets through August and maintained at that level until the end of the nesting season. This regulation results in releases that exceed the amount necessary to meet downstream flow targets during the early portion of the nesting season, and may result in targets being missed if basin conditions are drier than expected during the summer. The SR scenario prevents the birds from nesting at low elevations that would subsequently be inundated if higher releases were required later in the nesting season. One tradeoff of the SR scenario is availability of habitat. Although the full habitat potential of the reach is not made available during the current nesting season, the SR scenario conserves habitat over the long run by preventing seed germination and by reducing erosion.

Gavins Point releases, under the Flow-to-Target (FTT) scenario, are adjusted as needed throughout the nesting season to meet downstream flow targets and would typically result in increasing releases as the nesting season progresses. This is due to reduced tributary inflows downstream as the summer heat builds, evaporation increases, and precipitation wanes. Increasing releases as the nesting season progresses can inundate nests and chicks on low-lying emergent sandbar habitat. Compared to the SR scenario, this scenario conserves more water in the System, which keeps the pool levels at the upper three System projects at relatively higher levels. However, this scenario also increases the risk of inundating nests. The FTT scenario also ensures that targets on the lower river are met throughout the nesting season.

A third scenario for Gavins Point releases, which combines features of the other two options, was used during the 2003 nesting season. This scenario, called the Steady Release – Flow-to-Target (SR-FTT) scenario, sets Gavins Point releases at an initial steady rate, and then allows releases to be adjusted upward or downward during the nesting season to meet downstream flow targets, if necessary. Compared to the SR scenario, this regulation may make a larger amount of habitat available early in the nesting season and save additional water in the upper three reservoirs depending on where the initial steady release is set. As with the SR scenario, the full habitat potential of the reach is not made available during the current nesting season, however, the SR-FTT scenario conserves habitat over the long run by preventing seed germination and by reducing erosion. The SR-FTT scenario also reduces the potential for flooding nests when compared to the FTT scenario. The SR-FTT regulation also provides certainty for downstream users that releases could be increased if needed to meet Missouri River flow targets.

B. <u>2004-2005 AOP Simulations</u>. AOP simulations for the five runoff scenarios are shown in the final section of this AOP as studies 4 through 8. Results of the simulations are shown in *Plates 3 and 4* for the System storage and the Fort Peck, Garrison and Oahe pool elevations. The March 15 and July 1 System storage checks from *Tables II* and *III* were used to determine the level of flow support and the navigation season length. For modeling purposes in this AOP, the SR regulation scenario is shown during the 2005 nesting season. The August minimum service release shown in *Table IV* was used for June through August. The May minimum service release shown in *Table IV* was used for two-thirds of the days in May and the August minimum service release was used for the other third to reflect every third day peaking

from Gavins Point. However, the planned regulation for the 2005 nesting season will be SR-FTT. This regulation is expected to use slightly less water than indicated in the AOP model runs depending on actual hydrologic conditions in the summer of 2005. The initial steady release (SR) will be based on hydrologic conditions and the availability of habitat at that time. Once the majority of the birds have nested on the newly constructed, high elevation habitat, releases will be made to meet downstream targets (FTT). It is anticipated that sufficient habitat will be available above the planned release rates to provide for successful nesting. The purpose of this regulation is to continue to meet the project purposes while minimizing the loss of nesting T&E species and conserving water in the upper three reservoirs.

Table IV values were used in all the AOP studies for navigation support during the spring and fall months. Winter 2004-2005 and winter 2005-2006 releases of 12,500 cfs are shown in the simulations. This is lower than recent actual winter releases required for downstream powerplants and water supply intakes, but on-going modification of intakes will permit lower winter releases as a conservation measure when System storage is low. Non-winter, non-navigation releases were modeled at 11,000 cfs as a further water conservation measure, although the goal is to reduce Gavins Point releases to as low as 9,000 cfs, as described in the 2004 Mainstem Master Manual, provided downstream tributary flows are adequate to serve water supply requirements. Adequate tributary flows in the Missouri River reach below the System allowed this goal to be achieved in the fall of 2004.

The Gavins Point releases shown in this and previous AOPs are not absolute. Adjustments are made as necessary based on hydrologic conditions to meet the Missouri River target flows whose values are determined by the March 15 and July 1 storage checks.

Application of the July 1 storage check shown on *Table III* indicates the navigation season will be shortened 27 days for Upper Decile, 31 days for Upper Quartile and Median, 56 days for Lower Quartile, and the maximum 61 days for Lower Decile runoff. Minimum service navigation flows are provided for all runoff conditions due to low System storage. None of the simulations reach the desired 57.1 MAF System storage level on March 1, 2006.

Intrasystem releases are adjusted to best serve the multiple purposes of the projects with special emphasis placed on regulation for non-listed fisheries starting in early April and for T&E bird species beginning in early May and continuing through August. During the late 1980 to early 1990 drought years, a two-day-down, one-day-up peaking cycle from Gavins Point was utilized during the nesting season. This regulation provided for lower flows for two out of three days to conserve water in the System while ensuring that T&E bird species did not nest on low-lying habitat. This cycling was successfully utilized in May 2004 during nest initiation as a water

conservation measure. Depending on hydrologic conditions, a peaking cycle may be used to conserve water at the beginning of the nesting season in 2005. It may also be necessary to cycle releases for flood control regulation during the T&E species' nesting season.

The Median, Upper Quartile, and Upper Decile simulations include releases that provide a steady to rising pool level in the three large upper reservoirs during the spring fish spawn period. Similar regulation in the past has resulted in a higher fish reproduction success.

Actual System regulation from January 1 through July 31, 2004 and the regulating plans for each project for CY 2005 using the five runoff scenarios described on page 5 are presented on *Plates 5 through 10*, inclusive. An exception is the omission of Big Bend, since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual regulation since 1953.

Plate 11 illustrates for Fort Peck, Garrison, Oahe, and Gavins Point the actual releases (Regulated Flow) as well as the Missouri River flows (Unregulated Flow) that would have resulted if the reservoirs were not in place during the period January 2003 through July 2004. *Plate 12* presents past and simulated gross average monthly power generation, and gross peaking capability for the System.

C. <u>Regulation for the Balance of the 2004 Navigation Season and Fall of 2004</u>. The regulation of the System for the period of August though November 2004 is presented in the following paragraphs.

<u>Fort Peck Dam.</u> Releases averaged near 7,000 cfs during August and the first half of September. In mid-September they were gradually reduced to the minimum of 4,000 cfs. The 4,000 cfs release rate will be held until late November. The Fort Peck pool fell to a new record low level of 2199.7 feet mean sea level (msl) in October. The record low elevation during the previous drought was 2208.7 feet msl set in April 1991.

<u>Garrison Dam.</u> Releases continued at 17,000 cfs until mid-September when irrigation ceased, then they were reduced to 12,000 cfs. In early October releases were further reduced to 11,500 cfs and held at that rate until late November as a water conservation measure. The Garrison pool level declined to a record low elevation of 1812.6 feet msl in November. The record low during the previous drought was 1815.0 in May 1991.

<u>Oahe Dam.</u> Releases averaged 23,900 cfs in August, and only 12,900 cfs in September to initiate an early fall drawdown of the Fort Randall pool as the navigation season closed early in 2004. The average daily release in October was a record low 7,000 cfs. Low release will continue in November to maintain Fort Randall at a low pool elevation until they are increased in the winter for power generation.

<u>Big Bend Dam.</u> Releases will parallel those from Oahe. Big Bend will generally fluctuate between 1420.0 and 1421.0 feet msl for weekly cycling during high power load periods.

<u>Fort Randall Dam.</u> Releases averaged 24,300 cfs in August and 22,900 cfs in September to back up the releases from Gavins Point Dam. When the navigation season ended in early October, releases were gradually lowered to as low as 7,000 cfs in November. The majority of the Fort Randall fall pool drawdown was accomplished by mid-October this year due to the shortening of the navigation season.

Gavins Point Dam. Releases from Gavins Point Dam averaged 25,000 cfs in August, and 24,400 cfs in September. They continued to support downstream minimum service flows until the first week of October when they were reduced by 3,000 cfs per day, reaching 12,000 cfs on October 10. From there, releases were reduced at a rate of 500 cfs every 5 to 7 days which allowed sufficient travel time for the release changes to reach the critical downstream intake locations prior to the next reduction. The minimum release of 9,000 cfs was reached on November 15. Intakes were closely monitored during this period to ensure their operability. Releases will be increased to the winter System release rate prior to significant river ice formation. It was understood that 9,000 cfs might be less than is required for downstream water supply intakes without sufficient incremental tributary inflow below the System. Tributary inflow was adequate in 2004 to allow a reduction to the 9,000 cfs level. We believe that this 9,000 cfs minimum spring-fall flow represents a reasonable long-term goal for water intake owners to strive for as they make improvements to their facilities. The navigation season was shortened 47 days in 2004 in accordance with the July 1 System storage check given in the Master Manual. The Gavins Point pool level was raised 1.5 feet to elevation 1207.5 feet msl in July when it was determined that T&E species were not nesting along the reservoir. The pool level will remain near that elevation during the fall and winter months.

D. <u>Regulation Plan for Winter 2004-2005</u>. The September 1 System storage check is used to determine the amount of the winter System release. During the winter of 2004-2005, we will strive to average 12,000 cfs System release. If mild weather conditions prevail, System releases may be set lower than 12,000 cfs, but only if downstream water supply intakes can remain operable. Conversely, 12,000 cfs may be less than is required for downstream water supply intakes without sufficient incremental tributary inflow below the System, and therefore, releases may need to be set at levels higher than 12,000 cfs at times to ensure downstream water supply intakes are operable. However, we believe that this minimum winter flow represents a reasonable long-term goal for water intake owners to strive for as they make

improvements to their facilities. It may be necessary at times to increase Gavins Point releases to provide adequate downstream flows if ice jams or blockages form which temporarily restrict flows, therefore the model results indicate an average winter System release of 12,500 cfs to allow for these increases. Based on past experiences, these events are expected to occur infrequently and be of short duration. It is anticipated that this year's winter release will be adequate to serve all downstream water intakes except for very short periods during significant river ice formation or ice jamming.

<u>Fort Peck Dam.</u> Releases are expected to average 6,500 cfs December through January, 3,500 to 5,000 cfs below the 1967-2003 average. The Basic simulation shows that the Fort Peck pool level will fall 2.2 feet by the end of the winter period. Carryover multiple purpose storage in the three large upper reservoirs will be near a balanced condition on March 1, 2005. The pool level is expected to rise nearly 1 foot to elevation 2198.1 feet msl by March 31, 33.7 feet below normal.

<u>Garrison Dam.</u> Releases will be adjusted to serve winter power loads and balance System storage. Releases will be scheduled at 16,000 to 17,000 cfs at the time of normal freeze-in and may have to be reduced for a short period during the freeze-in in the Bismarck area to prevent exceeding a targeted 13-foot stage at the Bismarck gage. Flood stage is 16 feet. Garrison releases are expected to average 16,000 cfs at the beginning of the winter period and increase very slightly to 17,000 cfs in January and February, 6,700 to 8,000 cfs less than normal. The Garrison pool level is expected to fall from near elevation 1812.1 feet msl to elevation 1807.1 feet msl by March 1, 27.4 feet below the base of the annual flood control storage zone. The Median simulation indicates the pool level will rise to elevation 1808.8 feet msl by March 31, which would be 26.3 feet below normal.

<u>Oahe Dam.</u> Releases for the winter season will provide backup for the Fort Randall and Gavins Point releases plus fill the recapture space available in the Fort Randall reservoir consistent with anticipated winter power loads. Monthly average releases may vary substantially with fluctuations in power loads occasioned by weather conditions but, in general, are expected to average 15,000 cfs. Daily releases will vary widely to best meet power loads. Peak hourly releases, as well as daily energy generation, will be constrained to prevent urban flooding in the Pierre and Fort Pierre areas if severe ice problems develop downstream of Oahe Dam. This potential reduction has been coordinated with the Western Area Power Administration.

The Oahe pool level is expected to gradually rise from elevation 1574.0 feet msl at the end of the 2004 navigation season to elevation 1575.7 feet msl by March 1, then rise to elevation 1578.7 feet msl by the end of March, 27.1 feet below normal.

<u>Big Bend Dam</u>. The Big Bend pool level will be maintained in the normal 1420.0 to 1421.0 feet msl range during the winter.

<u>Fort Randall Dam.</u> Releases will average near 11,000 cfs. The Fort Randall pool level is expected to rise from a low elevation of 1337.5 feet msl to near elevation 1350.0 feet msl, the seasonal base of flood control, by March 1. However, if the plains snowpack flood potential downstream of Oahe Dam is quite low at that time, measures will be taken to raise the Fort Randall pool level to near elevation 1353.0 feet msl by March 1. It is likely that a pool level above elevation 1353.0 feet msl, to as high as 1355.2, will be reached by the end of the winter period on March 31, if runoff conditions permit. The Fort Randall pool level above the White River delta near Chamberlain, South Dakota will likely remain at a higher elevation than the pool level below the delta from early October through December, due to the damming effect of this delta area.

<u>Gavins Point Dam.</u> Releases are discussed in the first paragraph of this section. The Gavins Point pool level will be near elevation 1207.5 feet msl until late February when it will be lowered to elevation 1206.0 feet msl to create additional capacity to store spring runoff, primarily from the Niobrara River and Ponca Creek along the Fort Randall to Gavins Point reach.

System storage for all five runoff conditions will be substantially below the base of the annual flood control zone by March 1, 2005, the beginning of next year's runoff season.

E. **Regulation Plan During the 2005 Navigation Season.** The Upper Decile, Upper Quartile, Median, Lower Quartile, and Lower Decile runoff scenarios modeled for this year's AOP follow the specific technical criteria presented in the March 2004 Master Manual for navigation service flow support. The normal 8-month navigation season is shortened as a water conservation measure for all runoff scenarios as shown in Table V. Releases from Fort Peck, Garrison, and Fort Randall will follow repetitive daily patterns from early May, at the beginning of the T&E species' nesting season, to the end of the nesting in late August. As previously stated, the model runs included in this AOP have Gavins Point releases cycling two days down and one day up during May to keep birds from nesting at low elevations, then increasing on June 1 to the release required to meet downstream minimum service support to navigation flows through August. The planned regulation for the 2005 nesting season will be SR-FTT. The initial steady release (SR) will be based on hydrologic conditions and the availability of habitat at that time. Once the majority of the birds have nested on the newly constructed, high elevation habitat, releases will be made to meet downstream targets (FTT). The purpose of this regulation is to continue to meet the project purposes while minimizing the loss of nesting T&E species and conserving water in the upper three reservoirs.

FOR THE 2005 SEASON							
	Runoff	System S	torage	Flow Lev	el Above or	Season	
	Scenario	March 15	July 1	Below Fr	all Service	Shortening	
	(MAF)	(MAF)	(MAF)		cfs)	(Days)	
				<u>Spring</u>	Summer/Fa	<u>11</u>	
U.D.	34.5	37.9	47.5	-6,000	-6,000	27	
U.Q	30.6	37.7	45.4	-6,000	-6,000	31	
Med	24.6	35.7	41.3	-6,000	-6,000	31	
L.Q.	19.5	34.4	37.2	-6,000	-6,000	56	
L.D.	15.5	34.2	35.1	-6,000	-6,000	61	

TABLE V NAVIGATION SERVICE SUPPORT FOR THE 2005 SEASON

The reservoir regulation simulations presented in this AOP for the Upper Decile, Upper Quartile, and Median runoff scenarios show that steady to rising pool levels would occur during the spring fish spawn period for the upper three System reservoirs. The studies show that inflows are sufficient to maintain steady to rising pools at Fort Peck and Garrison in April and May for Lower Quartile and Lower Decile runoff scenarios, however Oahe would fall during this period. The ability to provide steady to rising pool levels in the upper three reservoirs in low runoff years is very dependent on the volume, timing, and distribution of that runoff. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2005, the Corps will, to the extent reasonably possible, set releases to result in steady to rising pools at Oahe during April and May, and steady to rising pools at Fort Peck during May and June. This will be accomplished by setting Fort Peck releases at a level that would maintain the rising pool, but no less than the minimum required to supply downstream irrigation. Oahe pool levels will be maintained by local runoff and releases from Garrison Dam. Adjustments to Garrison's releases, however, may be limited when the terns and plovers begin nesting. If the drought continues, emphasis during the fish spawn will be rotated between Garrison and Oahe. In years when Oahe is favored, Fort Peck releases will be set at a level that would maintain the rising pool, but no less than the minimum required to supply downstream irrigation. Management of the reservoirs during the fish spawn will continue with consideration of other Congressionally authorized project purposes, be opportunistic with regard to runoff potential, and will continue to evolve as additional information becomes available.

All five runoff scenarios studied for this year's AOP provide gradually increasing Gavins Point releases to meet navigation season flow rates at the mouth of the Missouri near St. Louis by April 1, 2005, the normal navigation season opening date. The corresponding dates at upstream locations are Sioux City, March 23; Omaha, March 25; Nebraska City, March 26; and Kansas City, March 28. However, if there is no

commercial navigation scheduled to use the upper reaches of the navigation channel, outside the tern and plover nesting season, we will consider eliminating flow support for targets in those reaches to conserve water in the System, as was done in 2004. The studies illustrated on *Plates 5 through 10* and summarized in *Table V* are based on providing minimum service flows (except May through July when flows may exceed minimum service) and a shortened navigation season for all runoff scenarios. Navigation season shortening is shown as 27 days from the normal 8-month season for Upper Decile, 31 days for Upper Quartile and Median, 56 days for Lower Quartile, and 61 days for Lower Decile.

Navigation flow support for the 2005 season will be determined by actual System storage on March 15 and July 1. Although all runoff scenarios modeled indicate minimum service flow support throughout the navigation season, if the July 1 System storage check indicates an increase in service level, any increase greater than 2,000 cfs will be delayed until the end of the T&E bird species' nesting season. Gavins Point releases may be quite variable during the 2005 navigation season but are expected to range from 22,000 to 28,000 cfs. Release reductions necessary to minimize downstream flooding are not reflected in these monthly averages but will be instituted as conditions warrant. Simulated storages and releases for the System and individual reservoirs within the System are shown on *Plates 5 through 10.* Ample storage space exists in the System to control flood inflows under all conditions studied.

Two modified reservoir regulation plans shown in previous AOPs, the Fort Peck "mini-test" and unbalancing the upper three reservoirs, will not be implemented in 2005 due to low System storage. When System storage recovers sufficiently, the Corps anticipates that both these plans will be implemented.

The first of these two modified plans is a test of flow modifications for the endangered pallid sturgeon. When Fort Peck has adequate water above the spillway crest by mid to late May of any year, a flow modification "mini-test" will be conducted in early June to monitor effects of higher spring releases and warmer water released from the spillway. The purposes of the "mini-test" are to allow for an evaluation of the integrity of the spillway structure, to test data collection methodology, and to gather information on river water temperatures with various combinations of flow from the spillway and powerhouse. Streambank erosion and fishing impacts will also be monitored. Stop protocol for the "mini-test" is identified in the Fort Peck Flow Modification Mini-Test Environmental Assessment, dated March 2004. Before either test is run, the Corps will fully coordinate with the Tribes of the Fort Peck Reservation, the State of Montana, and any other potentially affected stakeholders.

During the Fort Peck "mini-test," which will last about four weeks, flows will vary from 8,000 to 15,000 cfs as various combinations of spillway and powerplant releases are monitored. The maximum spillway release of 11,000 cfs will combine with a

minimum powerplant release of 4,000 cfs for six days. This test will be timed to avoid lowering the pool level during the forage fish spawn. The "mini-test" will not be conducted if sufficient flows will not pass over the spillway crest (elevation 2225 feet msl). A minimum pool level of about 2229 feet msl is needed during the test to avoid unstable flows over the spillway. Results of the AOP simulations show that this elevation will not be achieved in 2005 for any of the five runoff scenarios. A more extensive test with a combined 23,000 cfs release from Fort Peck is scheduled to be conducted beginning in early June in the year following the "mini-test" to allow further tests of the integrity of the spillway and to determine if warm water releases will benefit the native river fishery. Peak outflows during the full test would be maintained for two weeks within the four-week test period.

The second modified regulation plan involves unbalancing the three large upper reservoirs as shown on *Table VI* to benefit reservoir fishery and the three protected species. Reservoir unbalancing is computed based on the percentage of the carryover multiple purpose pool that remains in Fort Peck, Garrison and Oahe Reservoirs. The unbalancing would alternate at each project; high one year, float (normal regulation) the next year, and low the third year, as shown on *Table VI*. *Table VII* shows the pool levels proposed by the MRNRC at which the unbalancing would be terminated. *Table VII* indicates that no reservoir unbalancing should occur for any of the five runoff scenarios in 2005.

	Fort 1	Peck	Garr	ison	Oa	he
Year	March 1	Rest of Year	March 1	Rest of Year	March 1	Rest of year
1	High	Float	Low	Hold Peak	Raise & hold during spawn	Float
2	Raise & hold during spawn	Float	High	Float	Low	Hold peak
3	Low	Hold peak	Raise & hold during spawn	Float	High	Float

TABLE VI RESERVOIR UNBALANCING SCHEDULE

Notes: Float year: Normal regulation, then unbalance 1 foot during low pool years or 3 feet when System storage is near 57.1 MAF on March 1.

Low year: Begin low, then hold peak the remainder of the year.

High year: Begin high, raise and hold pool during spawn, then float.

TABLE VII MRNRC RECOMMENDED RESERVOIR ELEVATION GUIDELINES FOR UNBALANCING

	Fort Peck	Garrison	Oahe
Implement unbalancing			
if March 1 pool is above	2234	1837.5	1607.5
this level.	feet msl	feet msl	feet msl
Implement unbalancing if March 1 pool level is in this range and the pool is expected to raise more than 3 feet after March 1.	2227-2234 feet msl	1827-1837.5 feet msl	1600-1607.5 feet msl
Scheduling Criteria	Avoid pool level decline during spawn period which ranges from April 15 – May 30	Schedule after spawn period of April 20 - May 20	Schedule after spawn period of April 8 - May 15

Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement

As discussed in the previous section, the 2004-2005 AOP includes no provisions for unbalancing the Fort Peck, Garrison, and Oahe reservoirs for any of the runoff scenarios. The criteria for unbalancing are based on recommendations provided by the MRNRC and the USFWS. Under all simulations, System storage will be below the minimum levels under which unbalancing is recommended by either the MRNRC or the USFWS. <u>Fort Peck Dam.</u> Releases during the tern and plover nesting season will follow a repetitive daily pattern from early May to the end of the nesting season in late August. This regulation should result in habitat conditions for nesting terns and plovers similar to what was available in 2004. The State of Montana has requested that releases be restricted to 8,000 cfs or less. The 2004-2005 AOP studies show that releases from Fort Peck would not exceed 9,000 cfs. While it is possible to restrict releases to 8,000 cfs, this would not affect the annual volume of water released because intrasystem regulation is designed to balance the upper three reservoirs by the beginning of March of each year. Limiting releases to 8,000 cfs or less during the summer would result in relatively higher releases during the spring and fall when power demands are generally low, which would contribute to the upward pressure on hydropower rates paid by WAPA customers.

If flood flows enter the Missouri River below the project during the nesting season, hourly releases will be lowered to no less than 3,000 cfs in order to keep traditional riverine fish rearing areas continuously inundated while helping to lower river stages at downstream nesting sites. April releases should be adequate for trout spawning below the project. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2005, the Corps will, to the extent reasonably possible, set releases to result in a steady to rising pool at Fort Peck during May and June. This will be accomplished by setting releases at a level that would maintain the rising pool, but no less than the minimum required to supply downstream irrigation. A rising pool in May and June will be dependent upon the daily inflow pattern to the reservoir but appears possible with all runoff simulations. The T&E flow modification "mini-test" will not be run under any runoff scenario. The Fort Peck pool level must be at elevation 2229 msl to allow releases required for the "mini-test" through the spillway.

<u>Garrison Dam.</u> Daily average releases from Garrison will be much less than full powerplant capacity during the tern and plover nesting season under all runoff scenarios. Monthly average releases will decline 500 to 1,000 cfs during the summer nesting season. Hourly peaking will be limited to no more than 30,000 cfs for six hours if the daily average release is lower than 28,000 cfs. This will limit peak stages below the project for nesting birds.

Garrison elevations will not reach levels considered necessary for optimum fish spawning during the month of May for any of the runoff scenarios. The pool level may again approach a level that jeopardizes the volume of cold-water habitat in 2005. Given Median or higher runoff, the pool level should rise during the fish spawn season, however, the actual timing of the rise in pool level will be dependent upon the pattern of inflow at that time and the Garrison releases needed to support a steady or rising Oahe pool during its fish spawn. <u>Oahe Dam.</u> Releases in the spring and summer will back up those from Gavins Point Dam. Given Median or higher runoff, the pool level should be steady to rising in the spring. If runoff is not sufficient to keep all the pool levels rising during the fish spawn in 2005, the Corps will, to the extent reasonably possible, set releases to result in a steady to rising pool at Oahe during April and May. Oahe pool levels will be maintained by local runoff and releases from Garrison Dam. Adjustments to Garrison's releases, however, may be limited when the terns and plovers begin nesting. Under all AOP simulations, the Oahe pool will fall during the summer.

<u>Fort Randall Dam.</u> Fort Randall will be regulated to provide for a pool elevation near 1355 feet msl during the fish spawn period, provided water can be supplied from other reservoirs for downstream uses, and the pool will not be drawn down below elevation 1337.5 feet msl in the fall to ensure adequate supply for water intakes. Hourly releases from Fort Randall during the 2005 nesting season will be limited to 37,000 cfs for six hours. Daily average flows may be increased every third day to preserve the capability of increasing releases later in the summer if conditions turn dry.

<u>Gavins Point Dam.</u> Based on 2003 and 2004 nesting season results with the SR-FTT regulation and planned habitat development activities, it is anticipated that sufficient habitat will be available above the planned release rates to provide for successful nesting. All reasonable measures to minimize the loss of nesting T&E bird species will be used. These measures include, but are not limited to, such things as a relatively high initial SR during the peak of nest initiation, the use of the Kansas River basin reservoirs, moving nests to higher ground when possible, and monitoring nest fledge dates to determine if delaying an increase a few days might allow threatened chicks to fledge. The location of tows and river conditions at intakes would also be monitored to determine if an increase could be temporarily delayed with little or no impact. Cycling releases every third day may be used to conserve water during the month of May if extremely dry conditions develop. In addition, cycling may be used for downstream flood control regulation.

The Gavins Point pool will be regulated near 1206.0 feet msl in the spring and early summer with day-to-day variations due to rainfall runoff. Greater fluctuations occur in the river, increasing the risk of nest inundation in the upper end of the Gavins Point pool. Several factors contribute to the increased risk of nest inundation in the upper end of the Gavins Point pool. First, because there are greater numbers of T&E bird species nesting below the Gavins Point project, Gavins Point releases are restricted during the nesting season, to minimize loss of nests or chicks. Second, rainfall runoff between Fort Randall Dam and Gavins Point Dam can result in sudden pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs. Third, the regulation of Gavins Point for downstream flood control may necessitate sudden release reductions to prevent downstream T&E bird species losses. And finally, high releases required in wet years make nest inundation more likely. When combined, all these factors make it difficult and sometimes impossible to prevent inundation of nests in the upper end of the Gavins Point reservoir. The pool will be increased to elevation 1207.5 feet msl if it is determined that there are no terns or plovers nesting along the reservoir.

VI. SUMMARY OF RESULTS EXPECTED IN 2005

With regulation of the System in accordance with the 2004-2005 AOP outlined in the preceding pages, the following results can be expected.

A. <u>Flood Control</u>. All runoff scenarios studied will begin the March 1, 2005 runoff season substantially below the desired 57.1 MAF base of annual flood control and multiple use zone. Therefore, the entire System flood control zone, plus an additional 7.8 to 26.0 MAF of the carryover multiple use zone, will be available to store runoff. The System will be available to significantly reduce peak discharges and store a significant volume of water for all floods that may originate above the System.

Remaining storage in the carryover multiple use zone will be adequate to provide support for all of the other multiple purposes of the System, though at reduced levels.

B. <u>Water Supply and Water Quality Control</u>. Although below normal winter releases are being provided for all five runoff scenarios, all water supply and water quality requirements on the Missouri River both below Gavins Point Dam and between System reservoirs should be met for all flow conditions studied. It is possible with the low winter releases that ice formation or ice jams may temporarily reduce river stages to levels below which some intakes can draw water. Therefore, during severe cold spells, experience has shown that for brief periods it may be necessary to increase Gavins Point releases to help alleviate water supply problems along the lower river.

If the drought continues, reservoir pool levels and releases may continue to fall below their previous historic lows creating the potential for water supply problems at intakes, particularly those located on the upper three reservoirs. These intakes are primarily for the purposes of municipal and rural water supplies, nuclear and thermal powerplant cooling, and irrigation supplies. During the non-navigation periods in the spring and fall, System releases as low as 9,000 cfs are possible with adequate downstream tributary flow as occurred in the fall of 2004, to conserve water in the System for future use by all authorized purposes. If a non-navigation year would occur, summer releases as low as 18,000 cfs from the System are possible during the summer months. These lower release rates will result in reduced river levels that may impact some downstream intakes that have marginal access to the Missouri River. Historically, water access problems have been associated with an intakes' ability to access the river or reservoir rather than insufficient water supply. The lower flows associated with a non-navigation summer may also result in negative impacts to thermal powerplants given the restrictions of their water quality and safety permits. As with water supply in river reaches, the Corps will strive to provide, to the extent reasonably possible, releases that allow thermal powerplants to meet their water quality and safety permit requirements. The Corps continues to encourage intake operators throughout the System and along the lower river to make necessary modifications to their intakes to allow efficient operation over the widest possible range of hydrologic conditions.

C. <u>**Irrigation**</u>. Scheduled releases from the System reservoirs will be sufficient to meet the volumes of flow required for irrigation diversions from the Missouri River. Some access problems may be experienced, however, if drought conditions persist. Tributary irrigation water usage is fully accounted for in the estimates of water supply.

D. <u>Navigation</u>. Service to navigation in 2005 will be scheduled at minimum service flow support for all runoff scenarios. Although the AOP simulations provide a comparison of typical flow support under varying runoff conditions, the actual rate of flow support for the 2005 navigation season will be based on actual System storage on March 15 and July 1, 2005.

All simulations have a shortened navigation season. The anticipated service level and season length for all runoff conditions simulated are shown in *Table V*.

E. <u>Power</u>. *Tables VIII and IX* give the estimated monthly System load requirements and hydropower supply of the Eastern Division, Pick-Sloan Missouri Basin Program (P-S MBP), from August 2004 through December 2005. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments.

F. <u>Recreation, Fish and Wildlife</u>. The regulation of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a managed system. As a result of the drought, reservoir levels will remain well below normal and recreation access will be limited at several locations. Special regulation adjustments incorporating specific objectives for these purposes will be accomplished whenever possible. Conditions in the lower three reservoirs should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs and for increasing usage of the regulated reaches of the Missouri River downstream of the reservoirs.

TABLE VIII PEAKING CAPABILITY AND SALES (1,000 kW at plant)

	Estimated Committed	-		0 (5 0			_		_	- L 11				ected To			
	Sales*	EX		C of E C		/	EX	Expected Bureau Capability					System Capability				
2004	_		<u>120%</u>	Basic	<u>80%</u>			<u>120%</u>	<u>Basic</u>	<u>80%</u>			<u>120%</u>	<u>Basic</u>	<u>80%</u>		
Aug	2182		1994	1991	1987			181	178	178			2175	2169	2165		
Sep	1862		1976	1969	1955			183	181	178			2159	2150	2133		
Oct	1658		1958	1948	1938			187	184	181			2145	2132	2119		
Nov	1767		1965	1949	1936			187	186	180			2152	2135	2116		
Dec	1929		1942	1918	1909			183	186	178			2125	2104	2087		
2005																	
Jan	2036		1958	1933	1924			181	186	176			2139	2119	2100		
Feb	1877		1971	1943	1918			178	185	174			2149	2128	2092		
													20	2.20	2002		
		U.D.	<u>U.Q.</u>	Med	L.Q.	L.D.	U.D.	U.Q.	Med	L.Q.	L.D.	U.D.	<u>U.Q.</u>	Med	L.Q.	<u>L.D.</u>	
		<u>0.D.</u>	<u>0.q.</u>	mou	<u></u>	<u></u>	0.0.	<u>0.q.</u>	mou	<u></u>	<u> </u>	0.0.	<u>0.q.</u>	mou	<u></u>	<u></u>	
Mar	1778	2048	2039	2000	1970	1965	193	193	188	176	176	2241	2232	2188	2146	2141	
Apr	1668	2077	2062	2012	1968	1961	197	198	189	177	177	2274	2260	2201	2145	2138	
May	1647	2105	2085	2027	1969	1953	196	201	197	184	184	2301	2286	2224	2153	2137	
Jun	1912	2154	2128	2066	1997	1960	208	211	206	192	192	2362	2339	2272	2189	2152	
Jul	2187	2169	2139	2066	1987	1941	213	213	209	195	194	2382	2352	2275	2182	2135	
Aug	2182	2162	2137	2056	1969	1918	209	209	207	195	193	2371	2346	2263	2164	2111	
Sep	1862	2165	2128	2045	1932	1883	209	208	205	197	195	2374	2336	2250	2129	2078	
Oct	1658	2132	2120	2010	1932	1881	203	200	200	200	198	2339	2307	2215	2132	2079	
Nov	1767	2132	2100	2011	1932	1880	207	207	204	199	197	2350	2313	2218	2132	2073	
Dec	1929	2144	2095	1992	1932	1849	199	204 197	198	199	197	2330	2292	2190	2109	2077	
Dec	1929	2131	2095	1992	1913	1049	199	197	190	190	194	2330	2292	2190	2109	2043	

* Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements wil be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant.

TABLE IX ENERGY GENERATION AND SALES (Million kWh at plant)

Co	stimated	_					_							ected T		
	Sales*	Exp		C of E G		n	Ex	pected B			n **			m Gene		
2004			<u>120%</u>	Basic	<u>80%</u>			<u>120%</u>	Basic	<u>80%</u>			<u>120%</u>	Basic	<u>80%</u>	
Aug	836		662	671	680			38	31	31			701	702	711	
Sep	714		519	528	505			37	29	30			557	557	535	
Oct	720		353	352	385			38	30	30			391	382	415	
Nov	776		328	329	334			48	29	29			375	357	362	
Dec	886		478	453	485			49	30	29			527	483	514	
2005																
Jan	898		457	452	478			49	30	30			506	482	507	
Feb	857		411	408	432			44	27	26			454	435	458	
100	007		411	400	402				21	20			-0-	400	400	
		U.D.	<u>U.Q.</u>	Med	L.Q.	<u>L.D.</u>	U.C). U.Q.	Med	L.Q.	L.D.	<u>U.D.</u>	U.Q.	Med	L.Q.	L.D.
		0.0.	<u>0.q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>	0.1	<u>. o.a.</u>	INICO	<u>L.Q.</u>	<u>L.D.</u>	<u>0.D.</u>	<u>0.q.</u>	INICO	<u>L.Q.</u>	<u>L.D.</u>
Mar	791	404	435	426	428	424	4	8 48	29	29	29	452	483	456	457	452
Apr	740	461	496	511	597	583	6	6 61	44	26	26	527	556	554	624	610
May	684	585	629	646	699	689	8	5 78	54	30	30	670	707	700	729	719
Jun	748	664	695	706	709	702	10		55	32	32	765	783	761	741	733
Jul	835	741	766	783	780	768	13			48	38	871	881	856	828	806
Aug	842	758	743	738	738	720	g		73	48	38	857	836	811	787	758
Sep	713	629	571	582	494	442		5 89	77	47	37	724	660	659	541	479
Oct	721	448	510	502 504	319	310		8 90		48	44	546	600	581	367	354
Nov	779	363	376	364 364	354			o 90 2 85		40 52	44	455	461	438	406	384
	-					337							-			
Dec	<u>887</u>	<u>552</u>	<u>564</u>	<u>518</u>	<u>525</u>	<u>479</u>	5	<u>3 88</u>	<u>76</u>	<u>56</u>	<u>48</u>	<u>645</u>	<u>651</u>	<u>594</u>	<u>581</u>	<u>527</u>
CY TOT	9495	6473	6651	6637	6504	6362	99	9 927	688	472	424	7472	7578	7325	7025	6786

* Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant.

Boat ramps that were lowered and low water ramps that were constructed during the drought of the late 1980's to early 1990's and the further improvements made in 2003 and 2004 should provide adequate reservoir access this year even under the Lower Decile runoff scenario. However, boat ramps in some areas where the ramps cannot be extended may become unusable. This will affect the normal use patterns, as visitors will have to seek out areas with usable boat ramps. Boat ramp elevations for Fort Peck, Garrison, Oahe and Fort Randall reservoirs are available on the Missouri River Basin Water Management Division web site at <u>www.nwd-mr.usace.army.mil/rcc</u>.

The effects of the simulated System regulation during 2005 on fish and wildlife are included in the section entitled, "Summary of Reservoir Regulation Activities for T&E Species and Fish Propagation Enhancement."

G. <u>System Storage</u>. If presently anticipated runoff estimates based upon the August 1, 2004 Basic runoff forecast materialize, System storage will total about 34.8 MAF by the close of CY 2004, breaking the 2003 previous record low end-of-year storage of 38.7 MAF. This end-of-year storage is 19.7 MAF less than the 1967 to 2003 average. The previous record low storage was 40.8 MAF in January 1991 during the 1988-1992 drought. The end-of-year System storages have ranged from a maximum of 60.9 MAF, which occurred in 1975, to the 2003 minimum of 38.7 MAF. Forecasted System storage on December 31, 2005 is presented in *Table X* for the runoff scenarios simulated.

H. <u>Summary of Water Use by Functions</u>. Anticipated water use in CY 2004, under the regulation plan with the Basic Forecast of water supply is shown in *Table XI*. Actual water use data for CY 2003 are included for information and comparison. Under the simulated reservoir regulation scenarios, estimated water use in CY 2005 also is shown in *Table XI*.

Water Supply Condition	Total (12/31/05)	Carryover Storage Remaining 1/	Unfilled Carryover Storage 2/	Total Change CY 2005				
Condition	(Volumes in 1,000 Acre-Feet)							
Upper Decile Upper Quartile Median Lower Quartile Lower Decile	49,300 46,200 39,600 34,300 31,100	31,200 28,100 21,500 16,200 13,000	7,800 10,900 17,500 22,800 26,000	13,400 10,300 4,800 300 -2,800				

TABLE XANTICIPATED DECEMBER 31, 2005 SYSTEM STORAGE

- <u>1</u>/ Net usable storage above 18.1 MAF System minimum pool level established for power, recreation, irrigation diversions, and other purposes.
- 2/ System base of annual flood control zone containing 57.1 MAF.

TABLE XI MISSOURI RIVER MAINSTEM SYSTEM WATER USE FOR CALENDAR YEARS 2003, 2004, AND 2005 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF)

	CY 2003	CY 2004	Simulations for Calendar Year 2005				
	Actual	Basic	Upper	Upper		Lower	Lower
		Simulation	Decile	Quartile	Median	Quartile	Decile
Upstream Depletions (1) Irrigation, Tributary Reservoir							
Evaporation & Other Uses	2.0	2.3					
Tributary Reservoir Storage Change	0.0	0.0					
Total Upstream Depletions	2.0	2.3	2.5	2.6	2.7	2.8	2.7
System Reservoir Evaporation (2)	2.6	2.6	1.0	1.1	1.5	1.8	1.7
Sioux City Flows							
Navigation Season							
Unregulated Flood Inflows Between							
Gavins Point & Sioux City (3)	0.0	0.0					
Navigation Service Requirement	12.5	10.2	13.6	12.9	11.6	10.7	10.4
Supplementary Releases							
T&E Species (4)	0.5	1.0	0.5	0.5	0.5	0.2	0.2
Flood Evacuation (5)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Non-navigation Season							
Flows	3.8	4.1	3.3	3.2	3.4	3.5	3.2
Flood Evacuation Releases (6)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
System Storage Change	- 4.0	- 4.0	<u>13.6</u>	10.3	<u>4.9</u>	0.5	<u>-2.7</u>
Total	17.4	16.2	34.5	30.6	24.6	19.5	15.5
Project Releases							
Fort Peck	5.4	5.0	4.3	5.1	5.1	5.0	5.0
Garrison	12.9	12.2	12.8	12.8	12.5	12.3	11.7
Oahe	14.9	13.0	11.2	11.7	12.4	13.1	13.0
Big Bend	13.8	12.3	11.1	11.6	12.3	12.9	12.8
Fort Randall	14.9	13.1	12.4	12.6	13.1	13.2	13.1
Gavins Point	16.0	14.3	14.5	14.4	14.4	14.3	14.1

(1) Tributary uses above the 1949 level of development including agricultural depletions and tributary storage effects.

(2) Net evaporation is shown for 2005.

(3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point releases were held to as low as 6,000 cfs.

(4) Increased releases required to maintain navigation release flexibility during the T&E species' nesting season.

(5) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the normal December 1 closing date at the mouth of the Missouri River.

(6) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall release.

VII. TENTATIVE PROJECTION OF REGULATION THROUGH MARCH 2011

The five-year extensions to the AOP (March 2006 to March 2011) have been prepared to serve as a guide for the Western Area Power Administration's marketing activities and to provide data to allow basin interests to conduct long term planning. Due to the severity of the ongoing drought and record low System storage, all five statistically derived inflows are used in the extensions. Previous AOPs have not included Upper Decile and Upper Quartile extensions because System storage normally recovers rapidly with these high inflows. The record low System storage associated with the current drought results in a longer recovery period. These extensions provide additional information for planning purposes on the recovery of the reservoir levels in the large upper three reservoirs and total System storage. The five inflows are identified as Upper Decile, Upper Quartile, Median, Lower Quartile and Lower Decile runoff conditions. Upper Decile (34.5 MAF) has a 1 in 10 chance of being exceeded, Upper Quartile (30.6 MAF) has a 1 in 4 chance of being exceeded, Median (24.6 MAF) has a 1 in 2 chance of being exceeded. Lower Quartile runoff (19.5 MAF) has a 1 in 4 chance of the occurrence of less runoff, and Lower Decile (15.5 MAF) has a 1 in 10 chance of the occurrence of less runoff.

The navigation service level and season length criteria described in Section V, Chapter A were applied to the extensions. The March 15 and July 1 System storage checks shown in *Tables II and III* were used to determine the flow support for navigation and other downstream uses, and the navigation season length. *Table IV* releases, as computed by the March 15 and July 1 System storage checks, were used in the extension studies. It is expected that releases closer to those shown in *Table IV* will be provided in future years during the tern and plover nesting season as additional emergent sandbar habitat becomes available. The September 1 System storage check was used to determine the winter System release.

The extensions show a cycled release from Gavins Point in May and a steady release from June 1 through August 31 during the T&E species' nesting season. Navigation service support and season length, end of year System storage, and the winter release rate for the extensions are shown on *Table XII*.

TABLE XII
NAVIGATION SERVICE SUPPORT, AOP EXTENSIONS

UPPER DECILE	
Flow Level Below Full Service	
Spring (kcfs) -3.6 -0.7 ** **	**
Summer/Fall (kcfs) 0 ** ** **	**
	8+10 days
Dec 31 Storage (MAF) 55.1 57.5 57.8 57.9	57.9
Winter Release (kcfs) 16.2 20.0 23.0 22.5	22.0
UPPER QUARTILE	
Flow Level Below Full Service	
Spring (kcfs) -6.0 -1.1 0 **	**
Summer/Fall (kcfs) -2.7 0 0 **	**
Season Length (Months) 8 8 8+10 days 8+10 days 8	8+10 days
Dec 31 Storage (MAF) 52.1 55.4 57.2 57.6	57.6
Winter Release (kcfs)12.517.017.020.0	20.0
MEDIAN	
Flow Level Below Full Service	
Spring (kcfs) -6.0 -5.5 -2.3 -0.6	0
Summer/Fall (kcfs) -6.0 -5.5 -2.3 -0.6	0
Season Length (Months) 7 8–3 days 8 8	8
Dec 31 Storage (MAF) 44.6 48.5 50.9 52.1	52.8
Winter Release (kcfs)12.512.512.7	14.0
LOWER QUARTILE	
Flow Level Below Full Service	
Spring (kcfs) -6.0 -6.0 -6.0 -6.0	-6.0
Summer/Fall (kcfs) -6.0 -6.0 -6.0 -6.0	-6.0
Season Length (Months) 8-51 days 8-36 days 7 7	7
Dec 31 Storage (MAF) 35.8 37.5 39.4 41.2	43.7
Winter Release (kcfs)12.512.512.5	12.5
LOWER DECILE	
Flow Level Below Full Service	
Spring (kcfs) -6.0 * -6.0 -6.0	-6.0
Summer/Fall (kcfs) -6.0 * -6.0 -6.0	-6.0
Season Length (Months) 6 0 6 6	6
Dec 31 Storage (MAF) 29.2 32.0 31.6 31.9	32.4
Winter Release (kcfs) 12.5 12.5 12.5 12.5	12.5

No navigation service support in 2007 under Lower Decile runoff conditions. ** Releases exceed full service flow to evacuate excess flood control storage.

Upper Decile Runoff. Studies 9 through 13 present the computer simulation A. results for Upper Decile runoff (34.5 MAF) from 2006 through 2010. System storage on March 1, 2006 is 50.1 MAF, rising to the desired base of the annual flood control and multiple use storage of 57.1 MAF by March 1, 2008. Releases from the summer of 2007 through the 2010 navigation season exceed full service navigation flow requirements to evacuate excess flood control storage. A 10-day extension to the navigation season from 2007 through 2010 is also shown to evacuate excess flood control storage. Winter releases increase from 16,200 cfs during the winter of 2006-2007 to 23,000 cfs during the winter of 2008-2009. Releases during the last two winters of the simulations are slightly less due to decreasing runoff. Under Upper Decile runoff scenarios, the Fort Peck "mini-test" could be conducted in June of 2006 with releases averaging 12,800 cfs. The full test is shown in June of 2007 with releases averaging 18,200 cfs. The test includes a 19,000 cfs spillway release for five days. Unbalancing of reservoir storage at Fort Peck, Garrison, and Oahe would occur as shown in *Table XIII*. The pattern of "high", "float", "low" as described in Table VI would be followed. The amount of unbalancing was generally 4 feet at Fort Peck and 3 feet at Garrison and Oahe.

B. <u>Upper Quartile Runoff</u>. Simulations for Upper Quartile runoff (30.6 MAF) are shown as studies 14 through 18. March 1 System storage does not fully recover to 57.1 MAF until 2009. Full service support to navigation flows resumes in the summer of 2007. Releases during the 2009 and 2010 navigation season are in excess of full service to evacuate flood control storage. A 10-day extension to the navigation season is shown from 2008 through 2010. Winter releases are 12,500 cfs during winter of 2006-2007, 17,000 cfs in the winter of 2007-2008 and the winter of 2008-2009 and 20,000 cfs for the remaining two winter periods. The Fort Peck "mini-test" is shown in June of 2007 and the full test is shown in June of 2008. Reservoir unbalancing is shown each March 1 for all extension years.

C. <u>Median Runoff</u>. Studies 19 through 23 present the results of simulations for Median runoff (24.6 MAF) from 2006 through 2010. The March 1, 2006 System storage would be 39.8 MAF and would rise to 52.8 MAF by March 1, 2011, 4.3 MAF below the desired March 1 storage of 57.1 MAF, the base of the annual flood control and multiple use pool. Winter System releases would increase slightly from an average of the minimum 12,500 cfs to 12,700 cfs beginning the winter of 2009-2010. The winter releases of 2010-2011 would be 14,000 cfs. Fort Peck, Garrison, and Oahe pools rise to the elevation criteria described in *Table VII* for initiation of unbalancing by March 1, 2009. The Fort Peck "mini-test" could be conducted in 2009 by unbalancing the upper three reservoirs as shown in *Table XIII*. The Fort Peck release would average 12,800 cfs in June of 2009. Fort Peck would be favored again in 2010 to accommodate the full test.

TABLE XIII MARCH 1 RESERVOIR UNBALANCING, AOP EXTENSIONS (Feet)

Year	Fort Peck	Garrison	Oahe
2007	0.0	+3.0	-3.0
2008	-4.7	0.0	+3.0
2009	+4.2	-3.0	0.0
2010	0.0	+3.0	-3.0
2011	-4.6	0.0	+3.0
	Up	per Quartile Runoff	
		-	
Year	Fort Peck	Garrison	Oahe
2007	+4.3	-3.0	0.0
2008	0.0	+3.0	-3.0
2009	-4.8	0.0	+3.0
2010	+4.2	-3.0	0.0
2011	0.0	+3.0	-3.0
		Median Runoff	
Year	Fort Peck	Garrison	Oahe
2009	+4.3	-3.0	0.0
2009	+4.2	-3.0	0.0
2010	0.0	+3.0	-3.0
2011	0.0	.0.0	5.0

Upper Decile Runoff

D. <u>Lower Quartile Runoff</u>. Studies 24 through 28 show the results of Lower Quartile runoff extensions. System storage on March 1, 2006 is 34.1 MAF and rises to 43.8 MAF by March of 2011 with navigation service levels remaining at minimum service during the simulation period. The navigation season is shortened 51 days in 2006, 36 days in 2007 and 31 days from 2008 through 2010 as System storage increases. A 12,500 cfs average winter release is shown for the entire study period. Since the upper three reservoirs do not refill under Lower Quartile runoff, their percent of remaining carryover multiple use storage is balanced each March 1.

E. Lower Decile Runoff. Studies 29 through 33 show the results of Lower Decile runoff extensions. System storage is 30.8 MAF on March 1, 2006, reaching a low of 29.0 MAF on February 1, 2007, then rising to 32.5 MAF by March of 2011. The navigation season is shortened two months in 2006. March 15, 2007 Lower Decile System storage is 29.8 MAF, less than the 31 MAF March 15 navigation preclude and there would be no support to navigation flows in 2007. June through September releases from Gavins Point are shown at 18,000 cfs from June through September, but would be adjusted as needed to meet downstream water supply requirements. March 15 System storage is above 31 MAF in succeeding years and navigation service levels are minimum service with a minimum 6-month season length. A 12,500 cfs average winter release is shown for the entire study period.

Plate **13** presents System storage, Gavins Point, and System peaking capability for Upper Decile, Upper Quartile, Median, Lower Quartile, and Lower Decile runoff for the period 2006 through March of 2011. Peak power, or peaking capability, is the amount of power available when all powerplants are operating at maximum.

Plate 14 presents reservoir pool elevations for Fort Peck, Garrison, Oahe, and Fort Randall for Upper Decile, Upper Quartile, Median, Lower Quartile, and Lower Decile runoff for the period 2006 through March of 2011.

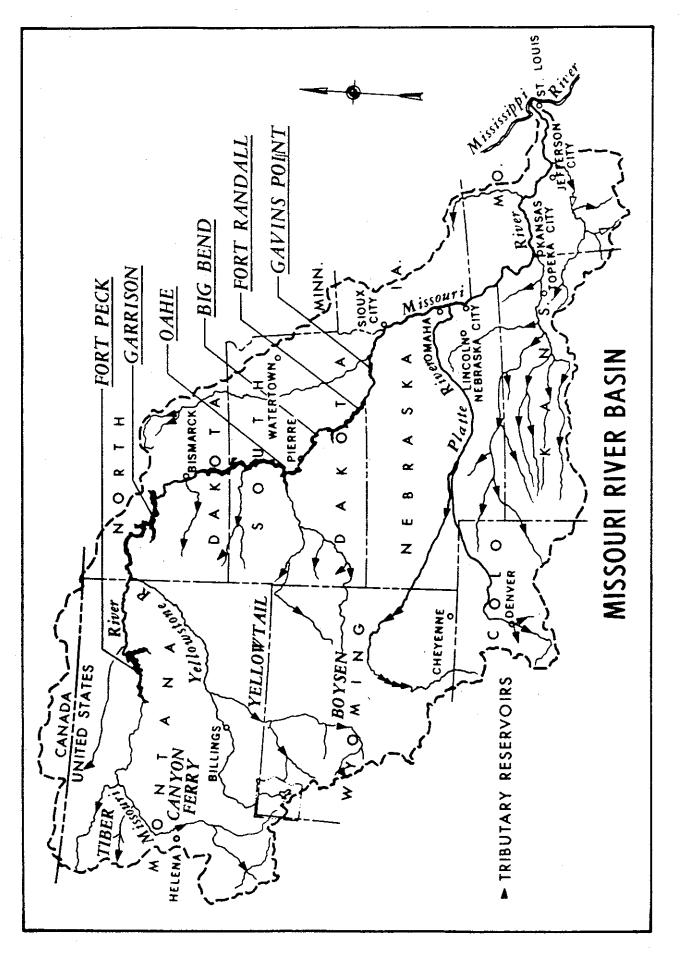
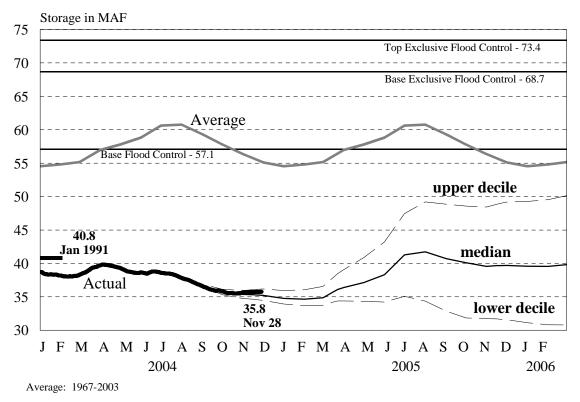



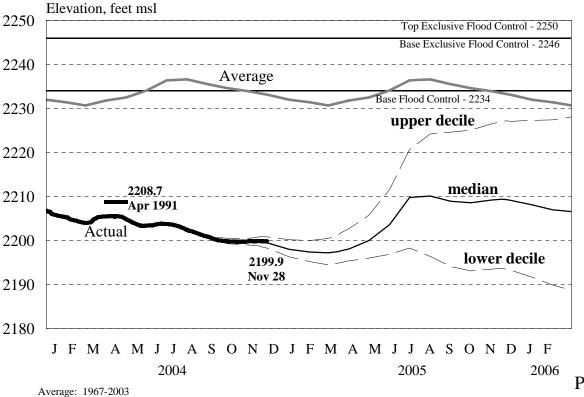
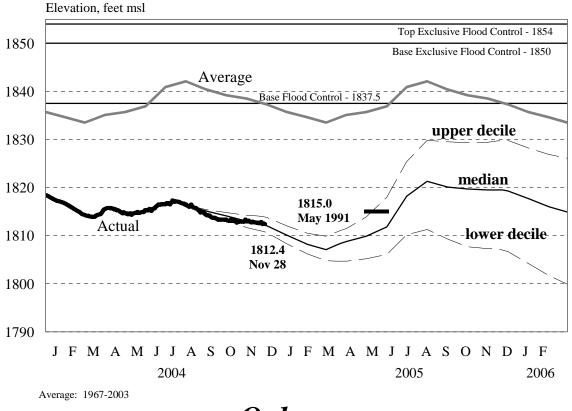
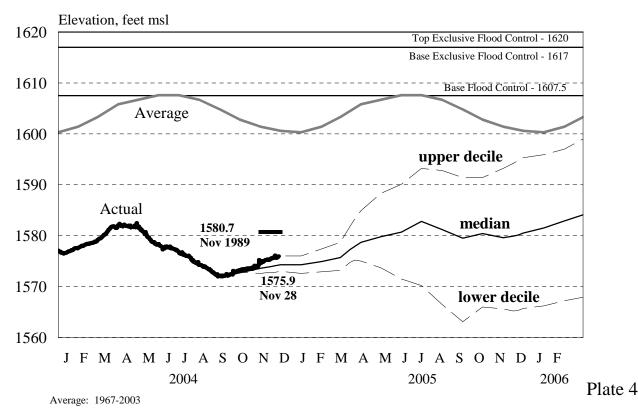
PLATE 1

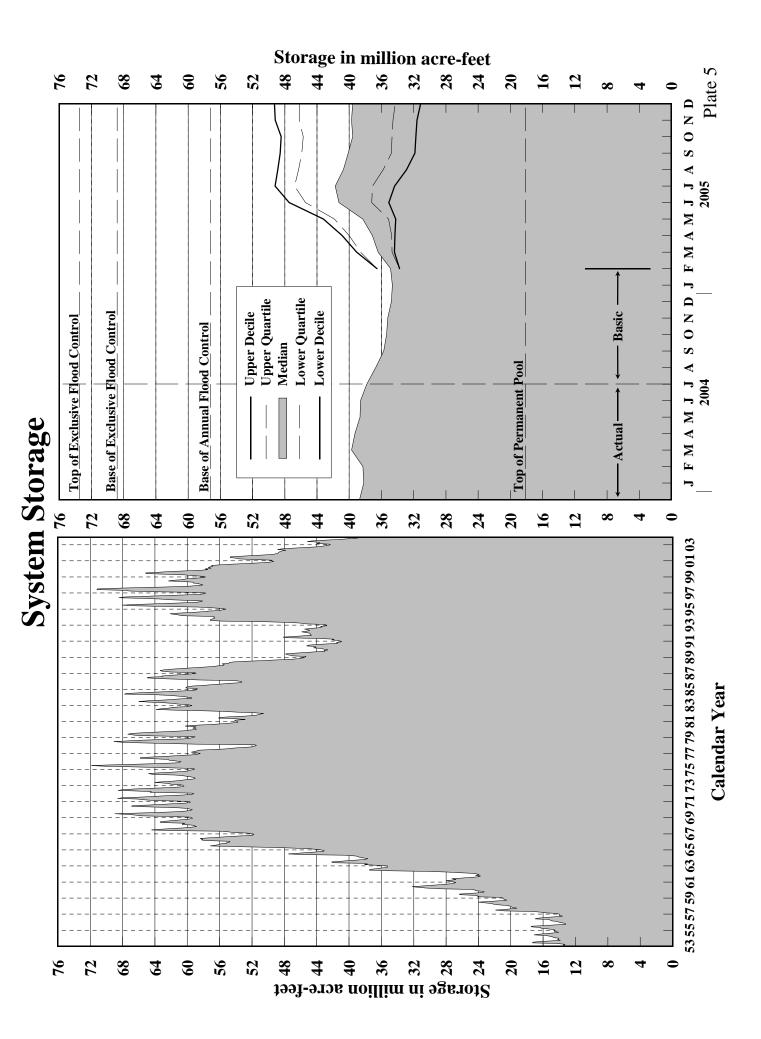
	Summ	ary of Engineering Data	Missouri River Mainstem S	System				
Item No.	Subject	Fort Peck Dam - Fort Peck Lake	Garrison Dam - Lake Sakakawea	Oahe Dam - Lake Oahe				
1	Location of Dam	Near Glasgow, Montana	Near Garrison, ND	Near Pierre, SD				
2 3	River Mile - 1960 Mileage Total & incremental drainage areas in square miles	Mile 1771.5 57,500	Mile 1389.9 181,400 (2) 123,900	Mile 1072.3 243,490 (1) 62,090				
4	Approximate length of full reservoir (in valley miles)	134, ending near Zortman, MT	178, ending near Trenton, ND	231, ending near Bismarck, ND				
5 6	Shoreline in miles (3) Average total & incremental	1520 (elevation 2234) 10,200	1340 (elevation 1837.5) 25,600 15,400	2250 (elevation 1607.5) 28,900 3,300				
7	inflow in cfs Max. discharge of record	137,000 (June 1953)	348,000 (April 1952)	440,000 (April 1952)				
8 9	near damsite in cfs Construction started - calendar yr. In operation (4) calendar yr.	1933 1940	1946 1955	1948 1962				
	Dam and Embankment	1						
10	Top of dam, elevation in feet msl	2280.5	1875	1660				
11	Length of dam in feet	21,026 (excluding spillway)	11,300 (including spillway)	9,300 (excluding spillway)				
12	Damming height in feet (5)	220	180	200 245				
13 14	Maximum height in feet (5) Max. base width, total & w/o	250.5	210 3400, 2050	245 3500, 1500				
14	berms in feet	3500, 2700	3400, 2030	5500, 1500				
15	Abutment formations (under dam & embankment)	Bearpaw shale and glacial fill	Fort Union clay shale	Pierre shale				
16	Type of fill	Hydraulic & rolled earth fill	Rolled earth filled	Rolled earth fill & shale berms				
17	Fill quantity, cubic yards	125,628,000	66,500,000	55,000,000 & 37,000,000				
18	Volume of concrete, cubic yards	1,200,000	1,500,000	1,045,000				
19	Date of closure	24 June 1937	15 April 1953	3 August 1958				
	Spillway Data							
20	Location	Right bank - remote	Left bank - adjacent	Right bank - remote				
21	Crest elevation in feet msl	2225	1825	1596.5				
22	Width (including piers) in feet	820 gated	1336 gated	456 gated				
23	No., size and type of gates	16 - 40' x 25' vertical lift gates	28 - 40' x 29' Tainter	8 - 50' x 23.5' Tainter				
24	Design discharge capacity, cfs	275,000 at elev 2253.3	827,000 at elev 1858.5	304,000 at elev 1644.4				
25	Discharge capacity at maximum operating pool in cfs	230,000	660,000	80,000				
	Reservoir Data (6)							
26	Max. operating pool elev. & area	2250 msl 246,000 acres	1854 msl 380,000 acres	1620 msl 374,000 acres				
20	Max. normal op. pool elev. & area	2246 msl 240,000 acres		,				
28	Base flood control elev & area	2234 msl 212,000 acres						
29	Min. operating pool elev. & area Storage allocation & capacity	2160 msl 90,000 acres						
30	Exclusive flood control	2250-2246 975,000 a.f.						
31	Flood control & multiple use	2246-2234 2,717,000 a.f.						
32	Carryover multiple use	2234-2160 10,785,000 a.f.						
33	Permanent	2160-2030 4,211,000 a.f.						
34	Gross	2250-2030 18,688,000 a.f.						
35	Reservoir filling initiated	November 1937	December 1953 7 August 1955	August 1958				
36 37	Initially reached min. operating pool Estimated annual sediment inflow	27 May 1942 18,100 a.f. 1030 yrs.		3 April 1962 19,800 a.f. 1170 yrs.				
51	Outlet Works Data	10,100 a.i. 1050 yis.	25,500 a.i. 520 yis.	17,000 a.i. 1170 yis.				
38	Location	Right bank	Right Bank	Right Bank				
39	Number and size of conduits	2 - 24' 8" diameter (nos. 3 & 4)	1 - 26' dia. and 2 - 22' dia.	6 - 19.75' dia. upstream, 18.25' dia. downstream				
40	Length of conduits in feet (8)	No. 3 - 6,615, No. 4 - 7,240	1529	3496 to 3659				
41	No., size, and type of service gates	1 - 28' dia. cylindrical gate	1 - 18' x 24.5' Tainter gate per	1 - 13' x 22' per conduit, vertical				
		6 ports, 7.6' x 8.5' high (net opening) in each control shaft	conduit for fine regulation	lift, 4 cable suspension and 2 hydraulic suspension (fine				
		1	1	regulation)				
42	Entrance invert elevation (msl)	2095	1672	1425				
43	Avg. discharge capacity per conduit	Elev. 2250	Elev. 1854	Elev. 1620				
44	& total Present tailwater elevation (ft msl)	22,500 cfs - 45,000 cfs 2032-2036 5,000 - 35,000 cfs	30,400 cfs - 98,000 cfs 1670-1680 15,000- 60,000 cfs					
45	Power Facilities and Data Avg. gross head available in feet (14)	194	161	174				
45 46	Number and size of conduits	194 No. 1-24'8" dia., No. 2-22'4" dia.	5 - 29' dia., 25' penstocks	7 - 24' dia., imbedded penstocks				
40	Length of conduits in feet (8)	No. 1 - 5,653, No. 2 - 6,355	1829	From 3,280 to 4,005				
48	Surge tanks	PH#1: 3-40' dia., PH#2: 2-65' dia.	65' dia 2 per penstock	70' dia., 2 per penstock				
49	No., type and speed of turbines	5 Francis, PH#1-2: 128.5 rpm, 1-164 rpm , PH#2-2: 128.6 rpm	5 Francis, 90 rpm	7 Francis, 100 rpm				
50	Discharge cap. at rated head in cfs	PH#1, units 1&3 170', 2-140' 8,800 cfs, PH#2-4&5 170'-7,200 cfs	150' 41,000 cfs	185' 54,000 cfs				
51	Generator nameplate rating in kW	1&3: 43,500; 2: 18,250; 4&5: 40,000	3 - 109,250, 2 - 95,000	112,290				
52	Plant capacity in kW	185,250	517,750	786,030				
53	Dependable capacity in kW (9)	181,000	388,000	534,000				
54 55	Avg. annual energy, million kWh (12) Initial generation, first and last unit	1,122 July 1943 - June 1961	2,387 January 1956 - October 1960	2,820 April 1962 - June 1963				
56	Estimated cost September 1999	\$158.428.000	\$205 274 000	\$346 521 000				
	completed project (13)	\$158,428,000	\$305,274,000	\$346,521,000				

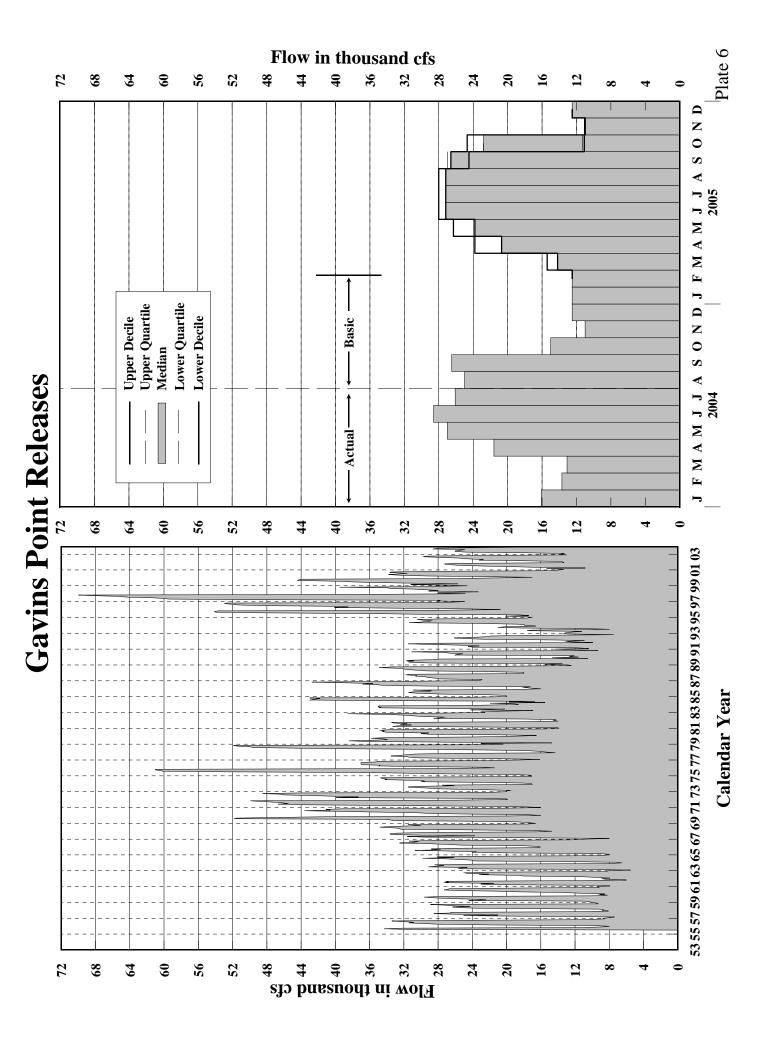
	S	ummary of Engineering I	Data Missouri River Ma	instem System						
	Big Bend Dam - Lake Sharpe	Fort Randall Dam - Lake Francis Case	Gavins Point Dam - Lewis & Clark Lake	Total	Item No.	Remarks				
21 miles Mile 987 249,330 (.4	Near Lake Andes, SD Mile 880.0 263,480 (1) 14,150	Near Yankton, SD Mile 811.1 279,480 (1) 16,000		1 2 3	 Includes 4,280 square miles of non-contributing areas. 				
80, endin	ig near Pierre, SD	107, ending at Big Bend Dam	25, ending near Niobrara, NE	755 miles	4	(2) Includes 1,350 square miles of non-contributing areas.				
200 (elev 28,900	vation 1420)	540 (elevation 1350) 30,000 1,100	90 (elevation 1204.5) 32,000 2,000	5,940 miles	5 6	(3) With pool at base of flood control.(4) Storage first available for				
440,000	(April 1952)	447,000 (April 1952)	480,000 (April 1952)		7	(4) Storage first available for regulation of flows.(5) Damming height is height				
1959 1964		1946 1953	1952 1955		8 9	from low water to maximum operating pool. Maximum				
78 95 1200, 700	ncluding spillway) 0 ale & Niobrara chalk	1395 10,700 (including spillway) 140 165 4300, 1250 Niobrara chalk	1234 8,700 (including spillway) 45 74 850, 450 Niobrara chalk & Carlile shale	71,596 863 feet	10 11 12 13 14 15	 height is from average streambed to top of dam. (6) Based on latest available storage data. (7) River regulation is attained by flows over low-crested spillway and through turbines. (8) Level former stream form 				
Rolled ea 17,000,00 540,000 24 July 1		Rolled earth fill & chalk berms 28,000,000 & 22,000,000 961,000 20 July 1952	Rolled earth & chalk fill 7,000,000 308,000 31 July 1955	358,128,000 cu. yds 5,554,000 cu. yds.	16 17 18 19	 (8) Length from upstream face of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985). (10) Affected by level of Lake 				
1385 376 gated 8 - 40' x 3	c - adjacent 1 38' Tainter at elev 1433.6	Left bank - adjacent 1346 1000 gated 21 - 40' x 29' Tainter 620,000 at elev 1379.3 508,000	Right bank - adjacent 1180 664 gated 14 - 40' x 30' Tainter 584,000 at elev 1221.4 345,000		20 21 22 23 24 25	Francis case. Applicable to pool at elevation 1350. (11) Spillway crest. (12) 1967-2003 Average (13) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract				
1423 msl 1422 msl 1420 msl 1415 msl	60,000 acres 57,000 acres	1365 msl 95,000 acres 1350 msl 77,000 acres	1208 msl 28,000 acres 1204.5 msl 24,000 acres	989,000 acres	26 27 28 29	Report Fiscal Year 1999. (14) Based on Study 8-83-1985				
1423-142 1422-142 1420-134 1423-134 Novembe 25 March 4,300 a.f.	20 117,000 a.f. 45 1,682,000 a.f. 45 1,859,000 a.f. er 1963 1964	1365-1350 1,309,000 a.f. 1350-1320 1,607,000 a.f. 1320-1240 1,517,000 a.f. 1375-1240 5,418,000 a.f. January 1953 24 November 1953	1208-1204.5 90,000 a.f. 1204.5-1160 321,000 a.f.	4,670,000 a.f. 11,656,000 a.f. 38,983,000 a.f. 18,084,000 a.f. 73,393,000 a.f. 92,500 a.f.	30 31 32 33 34 35 36 37					
None (7)		Left Bank 4 - 22' diameter 1013 2 - 11' x 23' per conduit, vertical lift, cable suspension	None (7)		38 39 40 41					
1385 (11)	1229 Elev 1375 32,000 cfs - 128,000 cfs	1180 (11)		42 43					
1351-135	55(10) 25,000-100,000 cfs	1228-1239 5,000-60,000 cfs			44					
	rect intake	117 8 - 28' dia., 22' penstocks 1,074	48 None: direct intake	764 feet 55,083	45 46 47					
None 8 Fixed b	blade, 81.8 rpm	59' dia, 2 per alternate penstock 8 Francis, 85.7 rpm	None 3 Kaplan, 75 rpm	36 units	48 49					
67'	103,000 cfs				50					
494,320 497,000 1,030	6, 5 - 58,500 1964 - July 1966	40,000 320,000 293,000 1,824 March 1954 - January 1956	44,100 132,300 74,000 752 September 1956 - January 1957	2,435,650 kw 1,967,000 kw 9,935 million kWh July 1943 - July 1966	51 52 53 54 55	Corps of Engineers, U.S. Army Compiled by Northwestern Division				
	\$107,498,000	\$199,066,000	\$49,617,000	\$1,166,404,000	56	Missouri River Region January 2004				

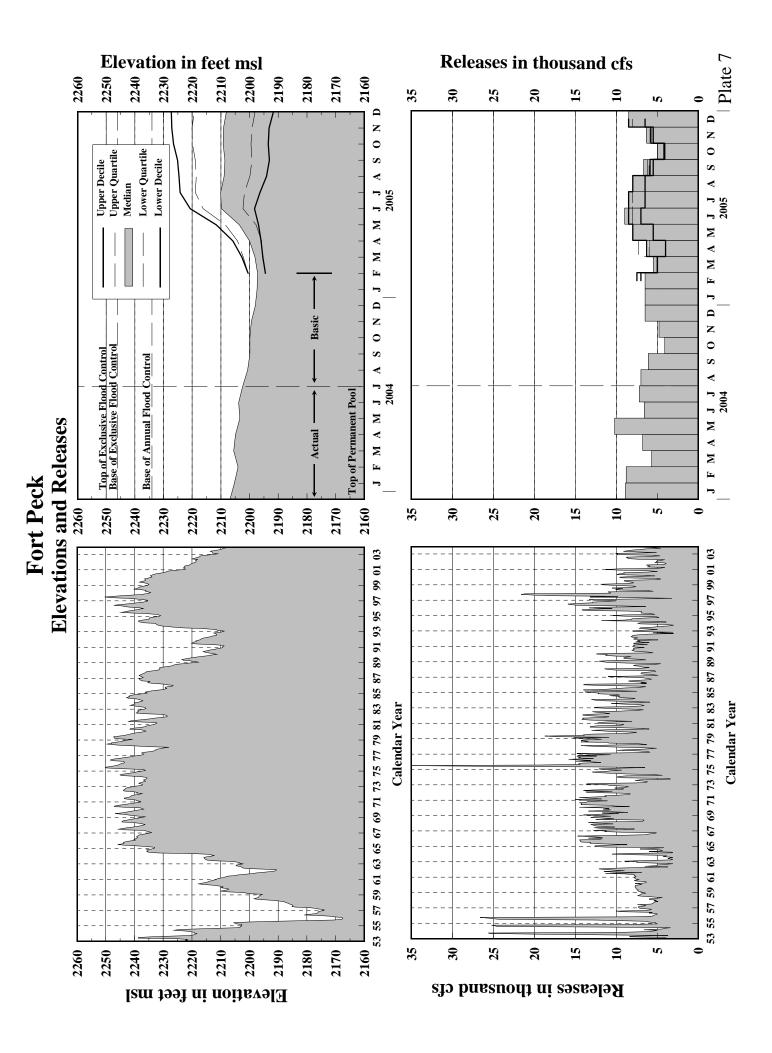
System Storage 2004-2005 Final AOP

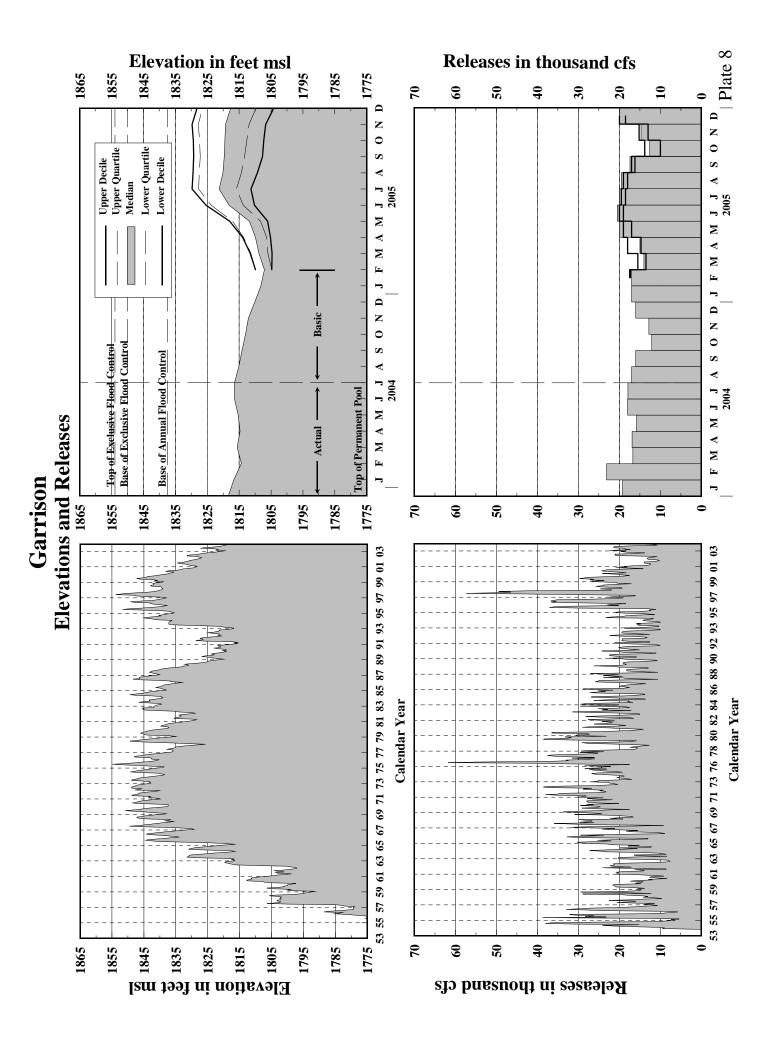
Fort Peck 2004-2005 *Final AOP*

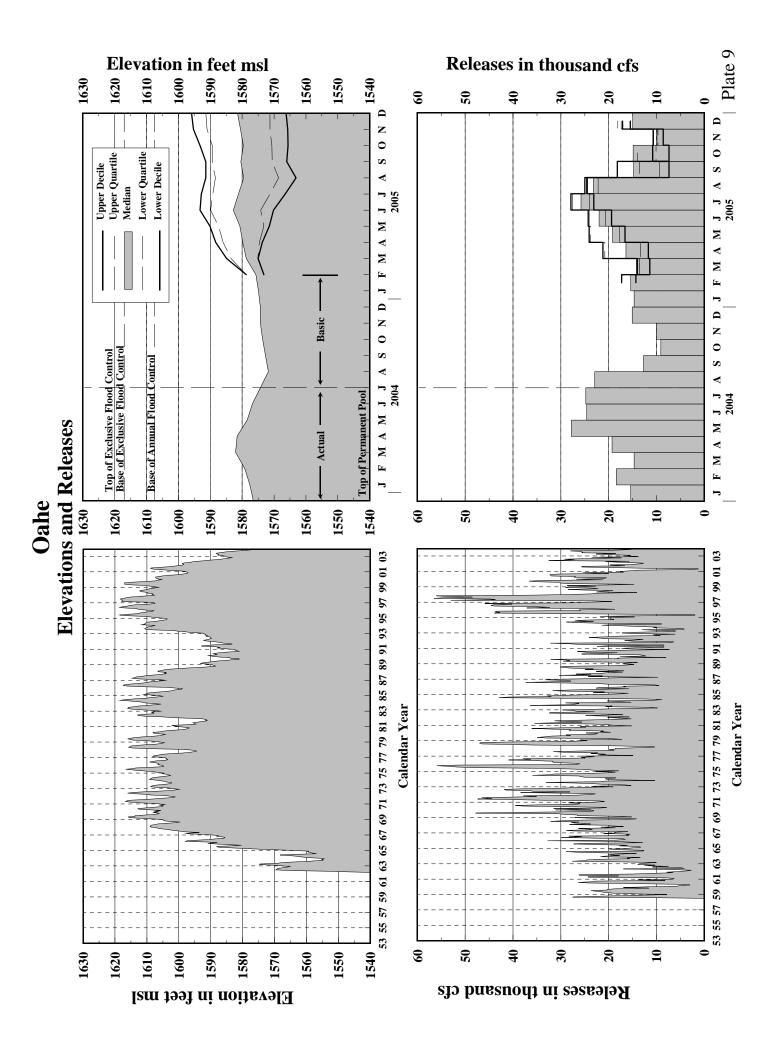




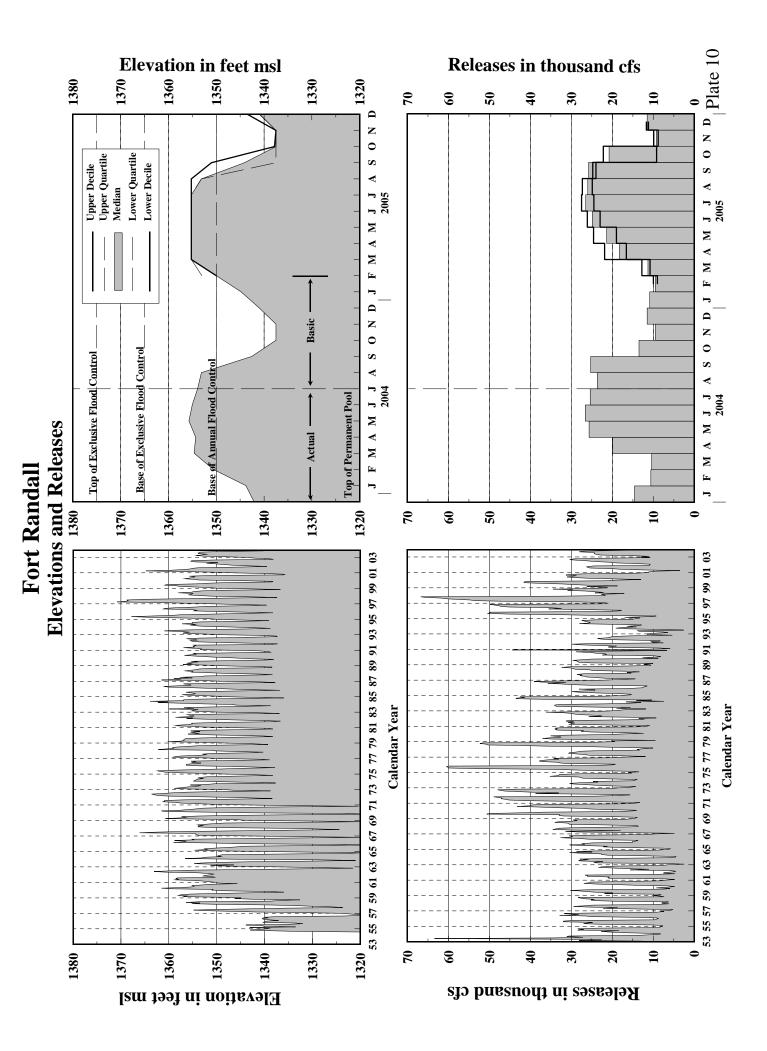

Plate 3

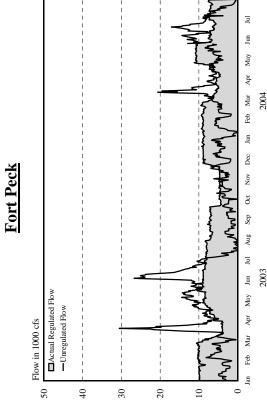

Garrison 2004-2005 Final AOP

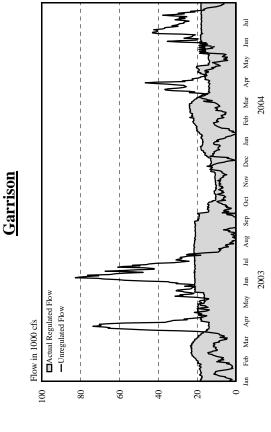


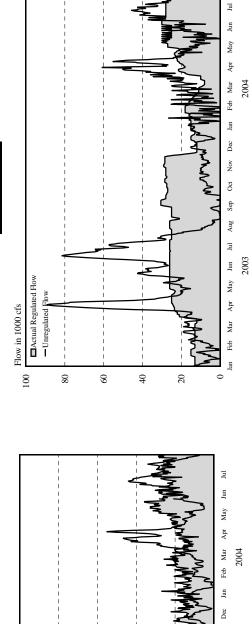

Oahe 2004-2005 Final AOP










Reservoir Release and Unregulated Flow

Oahe

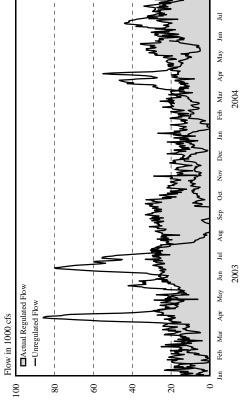
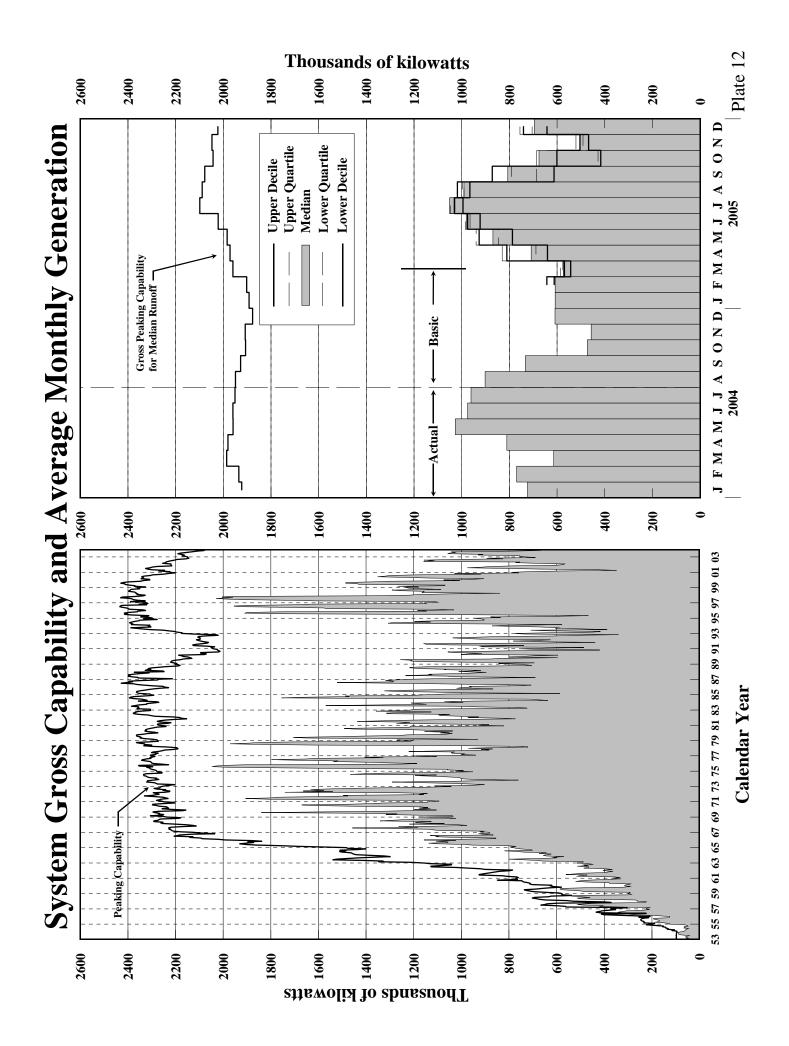
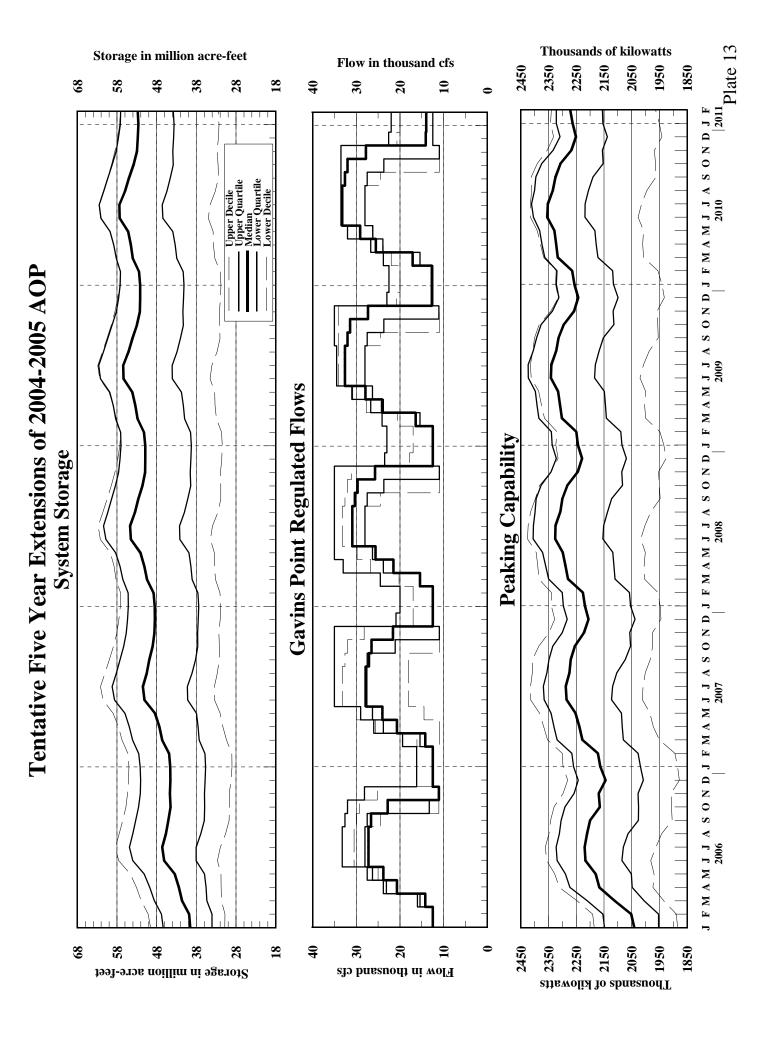
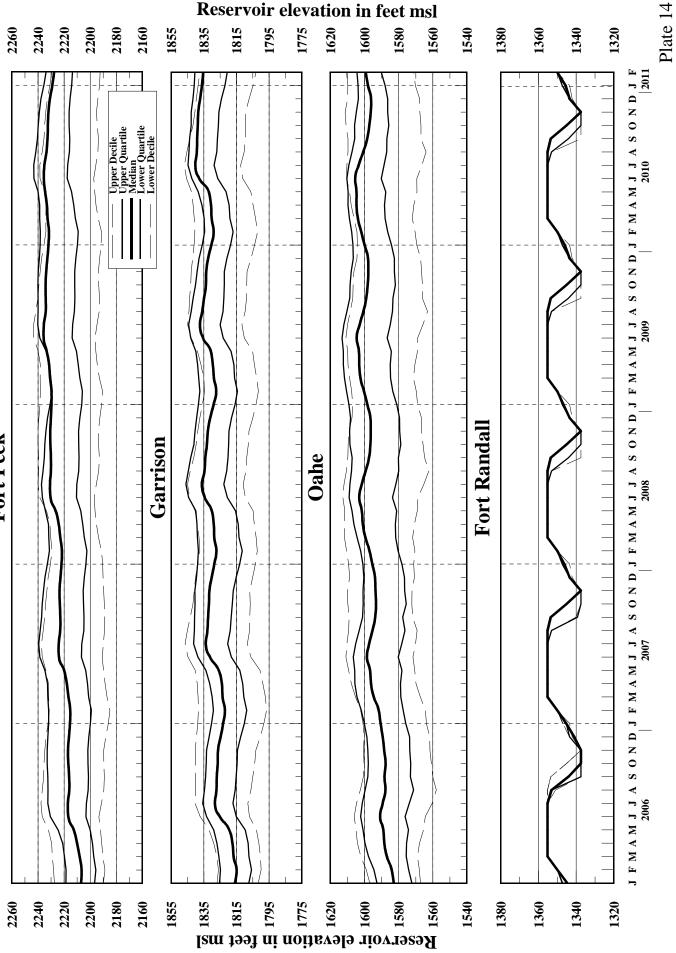





Plate 11

TIME OF STUDY 10:56:22

2004-2005 AOP BASIC SIMULATION

SHORTEN NAVIGATION SEASON 47-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

TIME OF STODI	10.30.2	-				VALUES	IN 100	0 AF EX	CEPT AS	INDICAT
_	04 NI-SUM	31AUG	2004 30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCU KCES	2492 -774	250 18 62 170 430 - 260 9097 2200.7 7.0	250 -67 77 240 364 -124 8973 2199.9 6.1	280 -38 67 251 251 0 8973 2199.9 4.1	140 4 30 106 122 -16 8957 2199.7 4.1	65 2 14 69 -20 8937 2199.6 5.0	75 2 16 56 95 - 39 8898 2199.4 6.0	240 5 35 200 400 -199 8699 2198.0 6.5	308 400 -92 8607	365 28 337 361 - 24 8583 2197.2 6.5
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH		83 129 61.7	72 128 51.9	48 128 35.8	48 127 17.4	59 127 9.9	70 127 13.5	76 125 56.5	76 124 56.2	75 124 50.6
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW	2250 20 7 353	/3	340 -80 10 91	380 83 22 79	150 -40 0 35	70 -19 -10 16	80 -21 -11 19	180 4 -6 40 530	260 18 642	360 19 702
RELEASE STOR CHANGE STORAGE	-2101 12401 1816.4	733 1045 -312 12089 1815.1 17.0	702 952 -250 11839 1814.1 16.0	492 744 -253 11587 1813.0 12.1	277 360 -83 11503 1812.6 12.1	132 180 -49 11454 1812.4 13.0	167 222 -55 11399 1812.1 14.0	984 -453 10946	1045 -404 10542 1808.2 17.0	944 -242 10300
POWER AVE POWER MW PEAK POW MW		184 312 136.8	172 309 123.6	129 306 96.2	129 305 46.3	138 304 23.1	148 303 28.4	167 297 124.6	175 292 130.2	173 289 116.2
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE	280 175 5	35 90 5	65 23 6 74	21	20 3 0 30	9 1 -5 14	11 1 -5 16	14 -11 35	10 19 -5	90 30 0
	10540 1574.2	936 1407 -471 10069 1571.8 22.9	10007	66 746 563 183 10421 1573.6 9.1	348 294 54	170 140 30 10504	210 161 49 10553	924 927 - 3 10550	1031 903 128 10677 1574.9 14.7	1004 855 150 10827 1575.7 15.4
POWER AVE POWER MW PEAK POW MW ENERGY GWH		242 526 180.2	135 530 97.0	97 535 72.5	106 537 38.0	108 538 18.2	109 539 20.8	162 539 120.2	158 542 117.3	166 546 111.4
ELEV FTMSL DISCH KCFS	97 5910 5938	20 1387 1415 1682 1420.0 23.0	25 733 733 1682 1420.0 12.3	22 541 541 1682 1420.0 8.8	10 284 284 1682 1420.0 9.5	5 136 137 1681 1420.0 9.8	5 155 155 1681 1420.0 9.8	11 916 916 1682 1420.0 14.9	903 903 1682 1420.0 14.7	855 855 1682 1420.0 15.4
POWER AVE POWER MW PEAK POW MW ENERGY GWH	352.5	109 518 80.8	61 538 44.2	45 538 33.2	48 538 17.4	50 538 8.4	50 538 9.5	75 538 55.6	72 538 53.8	74 529 49.6
FORT RANDALI NAT INFLOW DEPLETION EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	151 34 97 5957 6263 -305 3428 1353.8	-53 3375 1353.1	30 7 27 729 1504 -775 2600 1342.6 25.3	7 19 527 831 -304 2296 1337.5 13.5	8 278 278 0 2296 1337.5	2206	1337.5	203 2499 1341.0 11.5	2749 2749 1344.8 10.9	902 528 374 3123 1350.0 9.5
AVE POWER MW PEAK POW MW ENERGY GWH	592.1	197 348 146.7	200 306 144.1	101 283 74.9	68 283 24.6	70 283 11.8	70 283 13.5	85 300 63.4	317	76 338 51.0
GAVINS POINT NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE	F 665 28 29 36 6893 6925	10	80 -5 -3 9 1577 1577	80 2 22 8 922 922	50 5 8 4 327 327	23 2 -1 2 153 153		- 4	1 1 770	
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	- 32	7 397 1207.5	207	1207.5	1207.5	1207.5	397 1207.5 11.0	1207.5	1207.5	1206.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH	295.6	88 117 65.2	93 117 66.9	117	117	117	39 117 7.5	78	78	76
GAVINS POIN NAT INFLOW DEPLETION REGULATED FLO KAF KCFS	465 114	110 34 OUX CIT	80 22	9 973	6 352	3 164	3 188	12 792	13 792	13 766
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE	5791 332 42 1179 37826	223 10 246	12 304	51 65 260	-22 7 117	-10 -15 55	-12 -16 62	48 -20 135	61 -4	93 3
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH		902 1949 671.4 21.7	1928 527.7	1907 352.1	1907 157.7	1907 78.0	1908 93.3	1877 453.3	1892 452.7	1902 408.4
	INI-SUM	1 31AUG	30SEP	31001	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

STUDY NO 1

2005

2005

DALE OF STODI	11/15/0	-								
TIME OF STUDY	10:44:3	9				SHORTEN	NAVIGA IN 100	TION SE 0 AF EX	ASON 47 CEPT AS	-DAYS INDICAT
31JUL I	04 NI-SUM	31AUG	2004 30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB
31JUL FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER MUE POWER MW	2376 -230	300 36	300 -41	336	168 -18 12	78 - 8	90 -9 6	288 -74 27	378 -75	438 -46
EVAPORATION MOD INFLOW	206 2400	46 218	283	280	173	81 69	92	335 430	453 480	484 417
RELEASE STOR CHANGE	-289	-213	-75	275 5 9074	40	11 9125	-3 9122	-95 9027	-27 9001	67 9068
ELEV FIMSL	2202.4	2201.0	2200.5	2200.5	2200.8 4.5	2200.9 5.0	2200.9 6.0	2200.2 7.0	2200.0 : 7.8	2200.5 7.5
POWER AVE POWER MW	,	83	71	53	53	59	71	83	92	88
AVE POWER MW PEAK POW MW ENERGY GWH									92 128 68.2	
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	2700 -44	516 80	408 -82	456 48 17	180 -52	84 -24 -5	96 -28 -11	216 -16 -11	312 5 -9	432 25 3
EVAPORATION	244 5186	55 813	69 789	60 640	14 351	7 166	8 200	31 621	778	827
RELEASE STOR CHANGE	6695 -1510	1045 -232	953 -164	768 -128	372 -20	194 -29	238 -38	1045 -425	1107 -329	972 -145
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	12401 1816.4	12169 1815.4						11365	11036	10891
DISCH KCFS POWER	17.9	17.0	16.0	12.5	12.5	14.0	15.0	17.0	18.0	17.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH	861.5	184 313 136.9	173 311 124.3	134 309 100.0	134 309 48.3	309 25.2	308 30.8	303 134.0	299 140.1	297 122.0
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER			= 0		24	11	13		12	108
NAT INFLOW DEPLETION	336 175	42 90	23	48 -6	24	1	1	14 -11	19 -5	30
EVAPORATION	203	45 957	56 958	50 791	12 381	6 191	7 238	27 994	1094	1053
RELEASE	5763	1367 -410	721	534 258	268 113	131 59	148 90	983 11	815 280	797 256
STORAGE ELEV ETMSL	10540	10130	10367	10625 1574.7	10738 1575.2	10797 1575.5	10887 1576.0	10898 1576.0	11178 1577.4	11433 1578.7
DISCH KCFS POWER	24.8	22.2	12.1	8.7	9.0	9.5	9.3	16.0	13.2	14.3
AVE POWER HW PEAK POW MW ENERGY GWH	750.2	527 175.3	534 92.5	541 69.2	544 35.0	545 17.2	548 19.3	548 128.7	555 107.2	562 105.7
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	. 66	15	19	16	4	2	2	9		
REG INFLOW	5697 5725	1352	702 702	517 517	265 265	130 130	146 146	974 974	815 815	797 797
STORAGE ELEV FTMSL	1710 1420,5	1682 1420.0	1682 1420.0	1682 1420.0	1681 1420.0	1681 1420.0	1681 1420.0	$\begin{array}{r}1682\\1420.0\end{array}$	1682 1420.0	1682 1420.0
DISCH KCFS POWER	22.2	22.4	11.8	8.4	8.9	9.3	9.2	15.8	13.2	14.3
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH		106 518	59 538	43 538	45 538	47 538	46 538	538	538	529
FORT RANDALI NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	180	36	36	8 1	4	2	2 1	8 3	24 3	60 3
EVAPORATION BEC INFLOW	67 5804	18	20 711	15 509	3 265	1 129	2 145	8 972	836	854
RELEASE	6108	1436	1486	813 - 303	266 -1	129 1	145 0	689 283	646 190	500 354
STORAGE ELEV FTMSL	3428 1353.8	3375 1353.1	2600 1342.6	2296 1337.5	2296 1337.5	2296 1337.5	2296 1337.5	2579 1342.2	2769 1345.1	3123 1350.0
										70
POWER AVE POWER MW PEAK POW MW ENERGY GWH		194 348	198 306	99 283	283	283	283	305	81 318 60.3	338
	_						12.9	02.1	00.5	10.1
GAVINS POINT NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE	798	120	96 - 5	96 2	60 5	28 2 -1 153 153	32 3	96 10	120 1	150
CHAN STOR	20 30 25	4	-3	22 6	8 1	-1	0	-4 3	1	3
CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE	6884 6916	$1544 \\ 1537$	1577 1577	922 922	327 327	153 153		768 768	766 766	653 692
STOR CHANGE	- 32									-39 358
STORAGE ELEV FTMSL DISCH KCFS POWER	1207.2 26.1	1207.5 25.0	1207.5 26.5	1207.5 15.0	1207.5 11.0	1207.5 11.0	1207.5	1207.5	1207.5	1206.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH		88	93	53	39	39 117 6.6	39 117	44	44	44
				39.5	14.1	6.6	7.5		32.9	
GAVINS POIN NAT INFLOW	T - SIO 558 114		 96	72 9	36	17 3	19 3	42 12		102 13
DEPLETION REGULATED FL	OW AT S	TOTIX CT	TV							
KAF KCFS	1200	26.6	27.7	16.0	12.0	12.0	12.0	13.0	795 12.9	14.1
TOTAL NAT INFLOW	6948	1146	1014	1016	472	220 -26	252 -30	650 -51	- 34	25
DEPLETION CHAN STOR EVAPORATION	77 29 810	265 11 185	- /6 13 230	57 198	- 56 8 47	-14	-16 25	-25 104	-13	9
DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER	37826	36897	36120	35952	36082	36125	36174	35949	36063	36556
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH		891 1952	722 1934	475 1917	435 1920	464 1921	485 1923	642 1900	615 1916	612 1930 411.2
ENERGY GWH DAILY GWH	3209.3	662.5 21.4	519.7 17.3	353.1 11.4	156.5	77.9 11.1	93.2 11.6	477.9 15.4	457.3	411.2
	THE COM	21210	30SEP	31001	15NO	/ 22NOV	30NOV	31DEC	31JAN	28FEB

INI-SUM 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB

 2004-2005 AOP 80 PERCENT SIMULATION
 99001 9901 9901 PAGE
 1

 SHORTEN NAVIGATION SEASON 47-DAYS
 STUDY NO
 3

 VALUES IN 1000 AF EXCEPT AS INDICATED
 2005

TIME OF STUDY 10:56:3	3
-----------------------	---

						VALUES	IN 100	O AF EX	CEPT AS	INDICA	111
	NI-SUM	31AUG	2004 30SEP	310CT	15NOV	22NOV	3 0 N O V	31DEC	31JAN	28FEB	
FORT PECK NAT INFLOW DEPLETION EVAPORATION	1584 -183 373	200 2 77 121 430	200 -90 96 194	224 -66 83 207	112 -5 37 80	52 -2 17 37	60 -3 20 43	192 -12 43 161	252 -12 264	292 5 287	
MOD INFLOW RELEASE	2563	430	353	246	119	69	95	430	430 -166	389 -102	
STOR CHANGE STORAGE	-1109	- 309	-159 8889	-39 8850	-39 8810	-32 8778	-53 8725	-269 8456	8290	8188	
ELEV FTMSL DISCH KCFS	2202.4 7.2	2200.4 7.0	2199.3 5.9	2199.0 4.0	2198.8 4.0	2198.5 5.0	2198.2 6.0	2196.3	2195.2	2194.5	
POWER AVE POWER MW PEAK POW MW			70 127 50.3	47 127 34.9	47 126 16.9	58 126 9.8	70 126 13.4	81 123 60.3	80 121 59.7	80 120 53.5	
GARRISON											
NAT INFLOW DEPLETION	1800	344 57	272 -86	304 72	120 -59	56 -27	64 -31	144 -25	208 7	288 14	
CHAN STOR	2	2 92	12 114	21 97		-11 20	-11 23	-11 49			
EVAPORATION REG INFLOW	4004	628 1045	609 959	402 738	254 357	121 180	156 222	539 1045	631 1076	663 961	
RELEASE STOR CHANGE	6584 -2580	-418	~350	-336	-103	- 59 11135	-66 11070	-506	-445 10119	-298 9821	
ELEV FTMSL	12401 1816.4	1814.7	11634 1813.2	11297 1811.7	11194 1811.2	1811.0	1810.7	1808.3	1806.2	1804.8	
	17.9	17.0	16.1	12.0	12.0	13.0	14.0	17.0	17.5	17.3	
POWER AVE POWER MW PEAK POW MW ENERGY GWH	830.2	184 311 136.5	172 306 123.9	127 302 94.6	126 301 45.5	136 300 22.9	146 299 28.1	175 292 130.6	177 286 132.0	173 282 116.1	
OAHE		20	52	32	16	7	9		8	72	
NAT INFLOW DEPLETION	175	28 90 5 74 914	23	- 6	3	1	ī	14 -16	19 - 3	30	
CHAN STOR EVAPORATION	3 367	5 74	5 93	23 82	37	17	20	43 972	1062	1004	
RELEASE	6473	1446	642	716 743	333 308	164 149	204 169	1053	1006	958 46	
STOR CHANGE STORAGE	-204	-532	258 10266	-26 10239	25 10264	15 10280	35 10315	-81 10234	57 10290	10336	
ELEV FTMSL DISCH KCFS		1571.5 23.5	1572.8 10.8	1572.7	1572.8 10.4	1572.9 10.7	1573.1 10.7	1572.6	1572.9 16.4	15/3.2	
POWER AVE POWER MW		249	114	128	110	114	113	181	173	183	
PEAK POW MW ENERGY GWH		524 185.0	531 82.2	530 95.4	531 39.6	531 19.1	532 21.8	530 135.0	532 129.0	533 123.1	
BIG BEND			-								
EVAPORATION REG INFLOW		25 1421	31 611	27 716	12 296	6 143	7 163	14 1038	1006	958	
RELEASE	6381 1710	1449	611 1682	716 1682	297 1681	143 1681	163 1681	1038 1681	1006 1681	958 1681	
ELEV FTMSL	1420.5	1420.0	1420.0	1420.0	1420.0	1420.0	1420.0	1420.0 16.9	1420.0 16.4	1420.0 17.3	
DISCH KCFS POWER	22.2	23.6 111	52	59	51	52	52	84	80	82	
AVE POWER MW PEAK POW MW ENERGY GWH	377.4	518 82.8	538 37.4		538 18.2	538 8.7	538 10.0	538 62.4	538 59.3	518 54.8	
FORT RANDALI NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE	 122	24	24	6	3	1	2	6	16	40	
DEPLETION	34	15	7	1 23	1 10		1 5			3	
REG INFLOW	6341	1428	587 1522	697 849	289 289	139	158		1019 689	995 555	
RELEASE STOR CHANGE STORAGE ELEV FTMSL	-67	- 53	-935	-151	0	2200	2288	303	330 2921	440 3361	
ELEV FTMSL	1353.8	1353.1	1340.0	2288 1337.3	2288 1337.3	1337.3	1337.3	1342.4	1347.3	1353.0	
DISCH KCFS POWER			25.6	13.8	9.7	10.0			87	82	
AVE POWER MW PEAK POW MW ENERGY GWH	605.7	200 348 148.9	200 294 144.2	102 283 75.6	71 283 25.5	73 283 12.3	73 283 14.0	88 306 65.4	328 65.0	348 54.9	
GAVINS POIN	Г							<i>.</i>		100	
NAT INFLOW DEPLETION	532 28			64 2		2	3	10	1		
CHAN STOR EVAPORATION	29 45	2 9	-3 12	22 10	8 5	2	2	5			
REG INFLOW RELEASE	6895 6927	1544		922 922	327 327	153 153	175 175			697	
STOR CHANGE	-32	7	207	207	397	397	397	397	397	-39 358	
STORAGE ELEV FTMSL	1207.2	1207.5	1207.5 26.5	1207.5	1207.5	1207.5	1207.5 11.0	1207.5	1207.5 12.5	1206.0 12.5	
POWER		25.0					39			44	
AVE POWER MW PEAK POW MW ENERGY GWH		117 65.2	117	117	117	117		78	78		
GAVINS POIN	r - SIO	UX CITY						28	28	68	
NAT INFLOW DEPLETION	372 114	34	22								
REGULATED FLO KAF	W AT SI 7185	1591	1919								
KCFS		25.9	27.2	15.6	11.6	11.6	11.6	12.8	12.7	13.5	
TOTAL NAT INFLOW	4634										
DEPLETION CHAN STOR	90 26	10	6	66	8	-17	-16	- 31	2		
EVAPORATION	1466 37826									33745	;
SYSTEM POWER AVE POWER MW		914			444						
PEAK POW MW ENERGY GWH	3299.6	1946	1913	1897	1896		94.7	486.9	477.8	432.1	Ļ
DAILY GWH		21.9	16.8	12.4	10.7	11.3	11.8				
	INI-SUM	1 31AUG	30SEP	31001	15NOV	22NOV	3 0 N O V	31DEC	31JAN	I 28FEÈ	1
											_

TIME OF STUDY 10:44:39

TIME OF STUDY	10:44:3	9			5	VALUES	IN 100	O AF EX	CEPT AS	INDICA	red			200	c		
28FEE I	05 NI-SUM	15MAR	2005 22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV		31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	9600 398 275 8927 4204 4723 9068 2200.5	319 6 314 179 135 9203 2201.4 6.0	149 3 146 56 91 9294 2202.0 4.0	192 3 188 71 117 9411 2202.7 4.0	797 85 712 238 474 9885 2205.8	1604 319 1285 338 947 10832 2211.6	2491 486 2005 417 1588 12420 2220.7 7.0	1219 163 18 1038 400 639 13059 2224.2 6.5	456 -70 57 469 400 70 13128 2224.6 6.5	379 -113 72 420 327 93 13221 2225.1 5.5	531 -67 64 259 275 13496 2226.5 4.2	210 -24 15 218 126 93 13589 2227.0 4.2	98 -11 7 102 25 13614 2227.2 5.5	112 -13 8 116 127 -11 13603 2227.1 8.0	346 -125 34 437 400 37 13641 2227.3 6.5	297 -150 447 430 17 13657 2227.4 7.0	400 -95 495 361 134 13791 2228.1 6.5
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH	7.5	71 129 25.5	48 130 8.0	48 131 10.3	48 134 34.7	68 141 50.4	89 151 64.2	85 155 63.5	86 155 64.0	73 156 52.5	56 157 41.8	56 157 20.3	73 157 12.3	107 157 20.5	87 157 64.6	93 157 69.6	87 158 58.4
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	14199 1071 12 309 17035 13079 3955 10891 1809.9 17.5	515 41 17 670 476 193 11085 1810.7 16.0	240 19 22 299 208 91 11176 1811.1 15.0	309 25 356 268 88 11264 1811.5 15.0	1376 -5 1619 1071 548 11812 1813.9 18.0	1934 128 -16 2128 1168 959 12771 1818.0 19.0	3530 859 -16 3071 1190 1881 14652 1825.4 20.0	2647 637 5 20 2395 1199 1196 15848 1829.8 19.5	841 67 1109 1168 -59 15789 1829.5 19.0	574 -122 10 952 1012 -60 15729 1829.3 17.0	652 -25 13 71 878 846 33 15762 1829.4 13.8	260 -107 17 475 409 66 15828 1829.7 13.8	121 -50 -13 8 227 208 18 15846 1829.7 15.0	139 -57 -26 9 288 286 2 15848 1829.8 1829.8 18.0	20.0	348 -124 -5 897 1230 -333 15077 1826.9 20.0	20.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1804.5	166 299 59.9	157 300 26.4	157 302 34.0	190 309 137.0	205 320 152.8	225 342 161.9	227 438 168.7	224 437 166.7	200 436 144.3	163 437 120.9	163 438 58.6	177 438 29.8	213 438 40.8	235 432 174.6	232 428 173.0	231 425 155.1
- OAHE- NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	3850 597 -11 283 16039 11140 4899 11433 1578.7 14.3	559 22 8 1020 320 700 12133 1582.0 10.8	261 10 5 463 173 290 12423 1583.3 12.5	335 13 0 589 209 380 12804 1584.9 11.7	474 46 -15 1484 694 790 13594 1588.3 11.7	347 65 -5 1445 1018 427 14021 1590.1 16.6	881 126 -5 1940 1157 783 14805 1593.2 19.4	297 147 2 19 1333 1423 -90 14715 1592.8 23.1	123 96 2 59 1139 1508 -369 14345 1591.4 24.5	163 24 9 74 1086 1085 1 14347 1591.4 18.2	102 -8 15 65 906 457 449 14796 1593.2 7.4	109 2 16 501 233 268 15064 1594.2 7.8	51 1 -6 7 245 131 114 15178 1594.7 9.4	58 1 -14 9 321 147 173 15351 1595.3 9.3	22 11 -9 36 1196 1051 145 15497 1595.9 17.1	10 16 1224 914 310 15806 1597.0 14.9	59 25 1145 619 526 16332 1599.0 11.1
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1602.4	120 579 43.1	141 586 23.7	133 595 28.8	135 613 97.0	194 621 144.2	231 637 166.0	276 635 205.4	291 628 216.5	216 628 155.5	89 637 66.1	94 642 34.0	114 644 19.2	113 647 21.6	207 650 154.2	181 656 134.9	137 665 92.3
BIG BEND- EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER	71 11069 11069 1682 1420.0 14.3	10.8	173 173 1682 1420.0 12.5 58	209 209 1682 1420.0 11.7 55	694 694 1682 1420.0 11.7 55	1018 1018 1682 1420.0 16.6 78	1157 1157 1682 1420.0 19.4 91	5 1418 1418 1682 1420.0 23.1 108	15 1493 1493 1682 1420.0 24.3 114	19 1066 1066 1682 1420.0 17.9 85	16 441 1682 1420.0 7.2 36	4 229 229 1682 1420.0 7.7 39	2 129 129 1682 1420.0 9.3 47	2 145 145 1682 1420.0 9.2 46	17.0 84	14.9 72	11.1 54
AVE POWER MW PEAK POW MW ENERGY GWH	639.1	51 517 18.4	509 9.8	509 11.8	509 39.3	509 57.7	509 65.6	509 80.3	509 84.6	525 61.5	538 27.1	538 14.1	538 7.9	538 8.9	538 62.3	538 53.9	529 36.0
FORT RANDAL NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STORAGE ELEV FIMSL DISCH KCFS POWER AVE POWER MW PEAK POW MW	1501 80 78 12407 12406 1 3123 1350.0 9.0	1353.6 7.3 61 350	1355.2 9.2 78 355	114 1 322 322 0 3549 1355.2 18.0 153 355 33.0	298 4 988 988 1355.2 16.6 141 355 101.3	159 9 1168 1168 3549 1355.2 19.0 161 355 119.6	224 12 1369 1369 0 3549 1355.2 23.0 194 355 139.8	111 18 6 1505 1505 0 3549 1355.2 24.5 206 355 153.5	24.9 210 355	92 7 23 1128 1475 -347 3202 1351.0 24.8 205 341 147.9	60 1 16 478 1365 -887 2315 1337.8 22.2 171 284 127.2	230 248 -18 2297 1337.5	2 0 1 129 130 0 2297 1337.5 9.3 68 284 11.5	3 1 2 146 146 2297 1337.5 9.2 67 284 12.9	23 8 1055 689 366 2663 1343.5 11.2 84 311 62.5	85	49 3 665 461 204 3124 1350.0 8.3 67 338 45.0
ENERGY GWH GAVINS POIN NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	2252 114 0 26 14518 14518 358	107 0 3 328 328 328 1206.0	50 0 -4 174 174 358 1206.0	64 0 -17 370 370 358 1206.0	246 5 3 1232 1232 358	319 19 -5 1463 1463 358	281 24 -8 1619 1619 358 1206.0 27.2		-1 5 1685 1672 13 371 1206.5	1207.5		5 26 1 327 327 327 397 1207.5	28 2 1 153 153 397 1207.5 11.0	32 3 0 1 175 175 397 1207.5 11.0	95 10 -4 3 767 767 397 1207.5 12.5	1 770 770 397 1207.5	191 5 657 696 -39 358 1206.0 12.5
POWER AVE POWER MV PEAK POW MW ENERGY GWH		39 114	44 114	71	71 114 51.4	82 114 60.7	93 114 66.8	93 114 69.0	115	92 117 66.6		117	39 117 6.6	39 117 7.5	44 78 33.0	78	44 76 29.7
GAVINS POIN NAT INFLOW DEPLETION REGULATED FI KAF KCFS	3100 248	195 6 10UX CI	91 3 TY 262	4 483	2218	34 1982		1881	34 1822	22 1688	9 1576	6 347 11.7	3 162 11.7	3 185 11.7	12 785 12.8	2 13 5 769 8 12.5	13 788 14.2
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWEL AVE POWER M		76 28	36 24 38482	46 -17 39067	155 -12 40879	574 -26 43213 787	1537 -29 47466 923	1041 5 69 49210 995	152 1 219 48864 5 1018	-187 20 276 48578 872	-88 28 239 48447	-118 26 26 57 48855 48855	-55 -21 27 49013 519	-63 -39 30 49178 584	- 224 126 49288 741	L -241 3 -4 3 49539 L 709	-134 10 50133 620
AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH	6546.8 INI-SUN	1988 182.7 12.2	8 1994 7 88.2 2 12.6	2007 133.4 14.8	2034 460.7	2061 585.3 18.9	2108 664.2 22.1	740.4	757.3 24.4	629.2 21.0	447.5	5 163.1 10.9	87.4 12.5	112.3 14.0	551.2 17.8	2 527.4 3 17.0	416.5) 14.9

2004-2005 AOP UPPER QUARTILE RUNOFF SIMULATION 99001 9901 9901 PAGE

STUDY NO

DATE OF STUDY 11/15/04 TIME OF STUDY 10:56:22

28FEB05

2004-2005 AOP MEDIAN RUNOFF SIMULATION 99001 9901 4 PAGE 1

SHORTEN NAVIGATION SEASON 31-DAYS STUDY NO 6 VALUES IN 1000 AF EXCEPT AS INDICATED VALUES IN IVUU AF EACEFI AS INDICATED 2005 28FEB05 2005 INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB 100 99 100 310 261 349

	IN1-SUM	15MAR	ZZMAR	3 IMAR	JUNER	JTHAT	50000	51002									
FORT PECK- NAT INFLOW	- 7400 234	264 37	123 17	158 22	628 -5	1210 171	1851 315	829 240	324 -42	319 -113	398 - 76	188 -23	88 -11	100 -12	310 -94	261 -117	349 -77
DEPLETION EVAPORATION MOD INFLOW	349 6817	227	106	136	633	1039	1536	21 568 523	66 300 492	83 349 398	73 401 309	33 177 149	15 83 97	18 94 127	38 366 523	378 553	426 500
RELEASE STOR CHANGE	5392 1426 8583	179 48 8631	69 36 8668	89 47 8715	357 276 8991	492 547 9538	536 1000 10538	45 10584	-192 10391	-50 10341	92 10434	28 10462	-15 10447	-33 10415	-157	-175	-74 10008
STORAGE ELEV FTMSL DISCH KCFS	2197.2 6.5		2197.8 5.0	2198.1 5.0	2200.0 6.0	2203.6 8.0	2209.8 9.0	2210.1 8.5	2208.9 8.0	2208.6 6.7	2209.2 5.0	2209.4 5.0	2209.3 7.0	2209.1 2 8.0	2208.1 2 8.5	2207.0 2 9.0	2206.6 9.0
POWER AVE POWER MW		70 125	58 125	58 126	70 128	95 132	109 139	105 139	99 138	82 138	62 138	62 138	86 138	98 138	104 137	110 136	109 135
PEAK POW MW ENERGY GWH	792.5	25.1	9.8	12.6	50.6	70.6	78.7	78.1	73.4	59.3	46.0	22.2	14.5	18.9	77.6	81.7	73.5
GARRISON- NAT INFLOW	11001	469 48	219 23	282 29	853 78	1423 226	2958 766	2066 565	581 99	497 -130	454 -9	192 -94	89 -44	102 -50	253 -102	237 -79	326 -44
DEPLETION CHAN STOR EVAPORATION	1282 -28 404	48	11		-11	-22	-11	5 24	5 77	14 97	18 85 705	0 38 396	-21 18 191	-11 20 248	-5 44 829	-5 864	870
REG INFLOW RELEASE	14680 12942	605 417 189	277 194 83	342 250 92	1121 893 228	1667 1230 437	2716 1220 1497	2005 1230 775	902 1199 -297	942 1034 - 92	775 -70	378 18	208 -17	286 -37	1230 -401	1261 -397	1139 -269
STOR CHANGE STORAGE ELEV FTMSL	1737 10300 1807.1	10489	10571	10663	10891 1809.9	11328 1811.8	12825 1818.2	13600 1821.3	13303 1820.1	13211 1819.7		13159 1819.5 12.7	13141 1819.5 15.0	13104 1819.3 18.0	12703 1817.7 20.0	12306 1816.0 20.5	12037 1814.9 20.5
DISCH KCFS POWER	17.0	14.0 143	14.0 143	14.0 144	15.0 155	20.0 208	20.5 220	20.0 220	19.5 216	17.4 192	12.6 140	140	166	198	219	221	219
AVE POWER MW PEAK POW MW ENERGY GWH	1689.5	291 51.3	292 24.1	294 31.1	297 111.5	302 154.9	321 158.3	407 164.0	403 161.0	401 138.4	400 103.9	401 50.6	400 27.8	400 38.1	394 162.6	388 164.7	384 147.3
OAHE	2300	317	148	190	364	236	689	162	33	118	14	5	2	3	-20		40
NAT INFLOW DEPLETION CHAN STOR	2300 597 -18	22 16	10	13	46	65 -26	126 -3	147 3	96 3	24 11 83	-8 25 73	2 0 33	1 -12 15	1 -16 18	11 -10 39	16 -3	25
EVAPORATION REG INFLOW	349 14279 12497	727 403	332 212	426 258	1205 977	1375 1183	1780 1310	21 1226 1589	66 1072 1427	1056 878	749 918	348 285	183 143	254 162	1150 924	1242 942 300	1154 886 268
RELEASE STOR CHANGE STORAGE	1781 10827	323 11150	120 11270	168 11438	228 11666	191 11858	470 12328	-363 11965 1581.2	-354 11610	178 11788 1580.4	-169 11619	63 11683 1579.9	40 11722 1580.1	93 11815 1580,5	225 12040 1581,5	12341 1582.9	12608
ELEV FTMSL DISCH KCFS	1575.7 15.4	1577.3 13.6	1577.9 15.3	1578.7 14.5	1579.8 16.4	1580.7 19.2	1582.8 22.0	25.8	23.2	14.8	14.9	9.6	10.3	10.2	15.0	15.3 172	15.9 181
POWER AVE POWER MU PEAK POW MW		147 555	167 558	159 562	181 568	213 572	246 584 177.3	289 575 215.0	257 566 191.3	164 571 117.8	166 566 123.2	106 568 38.3	114 569 19.2	113 571 21.8	168 577 124.8	584 128.1	590 121.4
ENERGY GWH	1682.7	53.0	28.0	34.3	130.5	158.8	1//.3	215.0									
BIG BEND EVAPORATION REG INFLOW	103 12394	403	212	258	977	1183	1310	6 1583	20 1407 1407	25 853 853	22 896 896	10 275 275	5 138 138	5 156 156	11 913 913	942 942	886 886
RELEASE STORAGE	12394 1682	403 1682 1420.0	212 1682 1420.0	258 1682 1420.0	977 1682 1420.0	1183 1682 1420.0	1310 1682 1420.0	1583 1682 1420.0	1682 1420.0	1682	1682 1420.0	1682 1420.0	1682 1420.0	1682 1420.0		1682 1420.0	
ELEV FTMSL DISCH KCFS POWER	1420.0 15.4	13.6	15.3	14.5	16.4	19.2	22.0	25.7	22.9 108	14.3 71	14.6 74	9.2 47	10.0 50	9.9 50	14.8 74	15.3 75	15.9 77
AVE POWER M	₩ 720.0	64 517 23.1	71 509 12.0	68 509 14.6	77 509 55.4	90 509 67.0	103 509 74.2	120 509 89.6	518 80.6	538 51.0	538 54.7	538 16.9	538 8.5	538 9.6	538 55.4	538 56.1	529 51.4
ENERGY GWH	LL						185	74	57	42	2	2	1	1	10		19
NAT INFLOW DEPLETION EVAPORATION	900 80 107	122 1	57 1	73 1	115 4	140 9	12	18	15 25	7 28	1 20	1 8	0	1	3 10 910	3 939	3 902
REG INFLOW RELEASE	13108 13107	524 232	268 134	331 331	1088 1088	$1314 \\ 1314$	1483 1483 0	1631 1631 0	1424 1598 -174	860 1536 -675	878 1281 -403	268 [,] 268 0	135 135 0	152 152 0	707	689 250	528 374
STOR CHANGE STORAGE ELEV FTMSL	1 3123 1350.0	292 3415 1353.6	3549	3549 1355.2	3549 1355.2	3549 1355.2	3549	3549 1355.2	3375 1353.1	2700 1344.1	2297 1337.5		2296 1337.5	2296 1337.5 9.6	2499 1341.0 11.5	2749 1344.8 11.2	3123 1350.0 9.5
DISCH KCFS POWER	9.5	7.8	9.7	18.5	18.3	21.4 181	24.9 210	26.5 223	26.0 217		20.8 155	9.0 66	9.7 71	9.6 70	85	86	76
AVE POWER M PEAK POW MW ENERGY GWH		65 350 23.3		157 355 33.9	155 355 111.4	355 134.3		355	348	313	283 115.7		283 11.9	283 13.5	300 63.4	317 63.8	338 51.0
GAVINS POI	NT		43	55	148	174	166	86	103	77	122	50	23	27	77	79	127
NAT INFLOW DEPLETION CHAN STOR	1450 114 -1	0	0		5	19	24	39 - 3	10 1	0	9	22	2 -1 2	3 0 2	10 -4 4	1	3
EVAPORATION REG INFLOW	14404	328		370 370	1232 1232		1619 1619		1685	1609	1402	331	153 153	175 175	766 766	767 767	658 697 -39
RELEASE STOR CHANGE STORAGE	14404 358					250	250	250	13	26	397	397	397	397 1207.5	397 1207.5	397 1207.5	358
ELEV FTMSL DISCH KCFS	1206.0 12.5		1206.0 12.5	1206.0 20.7	1206.0 20.7	1206.0 23.8	1206.0 27.2	27.2	27.2	1207.5 26.6	11.0				12.5	12.5	12.5
POWER AVE POWER M PEAK POW MW		39 114	114	114	114	114	114	114	115	5 117	117	117	117	39 117 7.5	44 78 32.9	44 78 33.0	76
ENERGY GWH	604.1			15.4	51.4	60.7	66.8	69.0									
GAVINS POI NAT INFLOW DEPLETION	1550 248) 169 I 6) 79 ; 3										7 3		21 12		13
REGULATED FI KAF	OW AT SI 15706	OUX CIT	. 250												775 12.6		
KCFS TOTAL									; 1194	1113	1032	452			651		
NAT INFLOW DEPLETION	24601 2555 - 46	5 115	5 54	69	148	524	1273	3 1046) 5	212	2 -195 9 25	5 -81 5 52	-104	-48 -35	-55 -26	-160 -19 146	- 7	
CHAN STOR EVAPORATION STORAGE	1 1348 34872	3						83) 41737						39708	39579	39557	
SYSTEM POWE AVE POWER M PEAK POW MW	IW	527 1952				2 1984	2022	2 2099	2089	9 2078	3 204	3 2045	2046	2048	2023	2041	2052
ENERGY GWH DAILY GWH	6775.7		95.1	142.0	510.7	646.4	706.5	5 781.8				2 165.9 2 11.1	. 12.6	5 13.7	16.7	17.0) 16.9
	INI-SUN	1 15MAI	R 22MAI	R 31MAF	R 30API	R 31MAY	30JUI	N 31JUI	5 31AU	3 30SE1	9 310C	C 15NO\	22NOV	7 30NOV	31DEC	31JAN	1 28FEB

DATE OF S	STUDY	11/15/0	4									F SIMUL	ATION	99001	9901 9	901 PA	NO 7	±,
TIME OF S	STUDY	10:56:3	8				SHORTEN VALUES	NAVIGA	ATION S	EASON 5 CEPT AS	6-DAYS INDICA	TED				STUDY I	NO A	, ,
	28FE 1	B05 NI-SUM	15MAR	2005 22 MA R	31MAR	30APR	31MAY			31AUG		310CT	15NOV	22NOV	200 30NOV		31JAN	28FEB
FORT F NAT INFL DEPLETIC EVAPORAT	LOW DN FION	6000 280 398	242 23 219	113 11 102	145 14 131	525 48 477	925 162 763	1454 288 1166	633 189 24 420	263 -23 76 210	252 -99 95 256	324 -67 83 308	167 -16 38 145	78 -7 18 68	89 -8 20 77	295 -93 43 345	212 -100 312	283 -41 324
MOD INFL RELEASE STOR CHA STORAGE ELEV FTM DISCH KC	ange MSL	5322 5162 160 8188 2194.5 7.0	149 70 8258	69 33 8291	89 42 8333	434 43 8376	492 271 8647	476 690 9337	492 -72 9265 2201.8 8.0	492 -282 8982 2199.9 8.0	370 -114 8869 2199.2 6.2	261 47 8915 2199.5 4.2	126 18 8933 2199.6 4.2	97 -30 8904 2199.4 7.0	127 -50 8854 2199.1 8.0	492 -147 8707 2198.1 8.0	523 -211 8496 2196.6 8.5	472 -148 8348 2195.6 8.5
POWER AVE POWE PEAK POW ENERGY C	WM W	727.0	57 121 20.5	57 121 9.6	57 122 12.4	84 122 60.1	92 125 68.5	94 130 67.6	95 130 70.7	94 128 70.2	73 127 52.5	50 127 37.1	50 127 18.0	82 127 13.8	94 127 18.0	93 125 69.4	98 123 73.1	97 122 65.5
GARRI NAT INFI DEPLETIC CHAN STO	LOW DN DR	9400 1344 -17	443 40 23	207 19	266 24	712 70 -26	1197 153 -8	2521 607	1765 495 29	496 123 92	417 -54 20 114	400 70 22 98	164 -71 44	76 -33 -30 21	87 -38 -11 23	222 -43 _50	165 -19 -6	262 1 0
EVAPORAT REG INFI RELEASE STOR CHI STORAGE ELEV FTM DISCH KO	low Ange Msl	471 12730 12535 195 9821 1804.8 17.3	575 446 129 9950 1805.4 15.0	258 208 49 9999 1805.7 15.0	331 268 64 10063 1806.0 15.0	1050 952 98 10161 1806.4 16.0	1528 1138 390 10552 1808.3 18.5	2390 1190 1200 11751 1813.7 20.0	1733 1199 534 12286	773 1168 -395 11891 1814.3 19.0	746 961 -214 11676 1813.3 16.1	514 675 -161 11516 1812.6 11.0	316 327 -10 11505 1812.6 11.0	156 236 -81 11425 1812.2 17.0	217 286 -68 11356 1811.9 18.0	707 1199 -492 10864 1809.7 19.5	701 1199 -498 10366 1807.4 19.5	733 1083 -350 10016 1805.8 19.5
POWER AVE POWE PEAK POWE ENERGY (W MW	1567.8	150 284 53.9	150 284 25.2	151 285 32.5	161 287 115.9	187 292 139.5	208 308 150.0	208 388 154.5	203 381 150.9	171 378 123.2	116 375 86.4	116 375 41.7	178 374 29.9	188 373 36.1	202 365 149.9	198 356 147.2	195 350 130.8
OAI NAT INF DEPLETIC CHAN ST EVAPORA	LOW ON OR	1449 597 -12 378	154 22 13	72 10	92 13 0	229 46 -5	130 65 -14	577 126 -8	102 147 3 23	24 96 3 71	65 24 16 89	9 - 8 29 80	2 0 36	1 -34 17	1 -6 19	-35 11 -8 42	-6 16 1177	36 25 1094
REG INFI RELEASE STOR CHI STORAGE ELEV FTI DISCH K	low Ange MSL	12997 12797 200 10336	591 278 312 10648 1574.8 9.4	270 185 85 10733 1575.2 13.3	347 367 -20 10713 1575.1 20.6	1130 1237 -107 10605 1574.6 20.8	1189 1461 -272 10333 1573.2 23.8	1633 1432 201 10534 1574.2 24.1	1133 1695 -561 9973 1571.3 27.6	1028 1520 -492 9480 1568.6 24.7	929 557 372 9852 1570.6 9.4	641 619 22 9874 1570.7 10.1	289 314 -25 9849 1570.6 10.6	185 146 39 9888 1570.8 10.5	260 167 93 9981 1571.3 10.5	1103 1110 -8 9973 1571.3 18.1	981 196 10169	727 367 10536
POWER AVE POW PEAK PO ENERGY	W MW	1635.4	100 542 36.1	143 544 24.0	221 543 47.7	223 540 160.4	253 533 188.1	256 539 184.2	291 523 216.3	256 509 190.7	97 520 70.2	106 520 78.5	111 519 39.8	110 521 18.5	111 523 21.3	189 523 140.9	168 529 125.0	139 539 93.6
BIG EVAPORA REG INF RELEASE STORAGE ELEV FT DISCH K	TION LOW	- 12668 12668 1681 1420.0 17.3	278 278 1681	185 185 1681 1420.0 13.3	367 367 1681 1420.0 20.6	1237 1237 1681 1420.0 20.8	1461 1461 1681 1420.0 23.8	1432 1432 1681 1420.0 24.1	8 1687 1687 1681 1420.0 27.4	24 1496 1496 1681 1420.0 24.3	31 526 526 1681 1420.0 8.8	27 592 592 1681 1420.0 9.6	12 302 302 1681 1420.0 10.1	6 140 140 1681 1420.0 10.1	7 161 161 1681 1420.0 10.1	14 1096 1096 1681 1420.0 17.8	16.0	727 727 1681 1420.0 13.1
POWER AVE POW PEAK PO ENERGY	w MW	733.2	44 514 15.9	62 510 10.5	96 509 20.8	97 509 70.1	111 509 82.8	113 509 81.1	128 509 95.5	115 518 85.6	45 538 32.2	49 538 36.3	51 538 18.5	51 538 8.6	51 538 9.8	88 538 65.5	78 538 57.8	63 529 42.2
FORT R NAT INF DEPLETI EVAPORA REG INF RELEASE STOR CH STORAGE ELEV FT	LOW ON TION LOW LANGE	500 80 129 12950 13189 -239	1 345 232 113	32 1 216 158 58 3532 1355.0	41 1 407 390 17 3549 1355.2	64 4 1297 1297 0 3549 1355.2	51 9 1503 1503 0 3549 1355.2	130 12 1550 1550 3549 1355.2	26 18 10 1685 1685 0 3549 1355.2	49 15 31 1499 1673 -174 3375 1353.1	23 7 501 1580 -1079 2296 1337.5 26.5	1 22 570 570 2296 1337.5 9.3	291 291 0 2295 1337.5	0 135 135 0 2295 1337.5 9.7	5 155 155 0 2295 1337.5	1343.5	-5 3 973 701 272 2933 1347.4 11.4	15 3 739 550 189 3122 1350.0 9.9
DISCH K POWER AVE POW PEAK PO ENERGY	VER MW W MW	10.0	7.8 66 352	11.4 96	21.8 184 355 39.8	21.8 184 355 132.5	24.4 206 355	26.1 219 355 157.9	27.4 231 355	27.2 227 348	2013 205 282 147.9	68 283 50.4	71 283	71 283 11.9	71 283	88 311	89 329 66.5	80 338 53.7
GAVINS NAT INF DEPLETI CHAN SI EVAPORA REG INF RELEASE	FLOW ION IOR ATION FLOW	IT 1251 114 -1 47 14278 14278	0 4 3 328	0 -7 194	-20 425	124 5 0 1416 1416	1617	143 24 -3 1666 1666	81 39 -3 1722 1722	10 0 9 1735	1607	32 10 695 695	5 -1 5 327	153	3 0 2 175	10 -4 5 770	68 1 1 769 769	101 3 654 693 -39
STOR CH STORAGE ELEV FT DISCH F	E FMSL KCFS	358 1206.0 12.5	1206.0	1206.0	1206.0	358 1206.0 23.8	1206.0	358 1206.0 28.0	358 1206.0 28.0	371 1206.5	397 1207.5	397 1207.5	1207.5	1207.5	1207.5 11.0	1207.5 12.5	12.5	358 1206.0 12.5
POWER AVE POW PEAK PO ENERGY	WER MW DW MW	₹ 597.4	39 114 13.9	114	114		114	95 114 68.6	95 114 70.9	115	117	117	117	117	117	78	44 78 33.0	44 76 29.6
GAVINS NAT INE DEPLETI REGULATE	FLOW ION	900 248) 115 3 6	54				125 30	75 37	34	22	9	6	3	3	12	-3 13 753	48 13 728
KAF KCFS	S	JW AT SI 1493(100x C11) 437 14.7	245				1761 29.6	1760 28.6				5 11.2	11.2	2 11.2	12.5	12.2	13.1
TO NAT IN DEPLET CHAN S EVAPOR STORAGI	FLOW ION TOR ATION E	19500 2663 -39 1553 33749	3 92 9 40 1	43) -7	55 -20	193 -31	442 - 27	1087 -11	2682 925 07 37111	5 255) 3 7 303	-105 28 373	82 82 1321	7 -73 2 -1 145	-34 -64	4 -39 4 -17 3 77 0 34565	-100 7 -12 7 168 5 34284	-86 -5 34044	745 1 3 34063
SYSTEM AVE PON PEAK PO ENERGY DAILY (WER M OW MW GWH	6559.	10.9	5 1928 93.7 93.4	1929 170.8 19.0	1928 597.8 19.9	1928 699.0 22.5	1955 709.5 23.7	779.4 25.1	2000 737.6 23.6	1962 493.6 16.5	1962 318.6 10.3	2 1960 5 157.8 3 10.5	1960 89.4 12.8	0 1961 4 106.4 8 13.3	1941 524.2 16.9	1953 502.6 16.2	415.4 14.8
		THE OF	4 1 E M 7 E	220076		30405	31MAY	30JUN	31JUI	_ 31AUG	; 30SEI	- 310C.	L TONO/	22N0	·			

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 310CT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB

TIME OF STUDY 10:57:00

STUDY NO 8 SHORTEN NAVIGATION SEASON 61-DAYS VALUES IN 1000 AF EXCEPT AS INDICATED

TIME OF STUDY 10:57:00		SHOR	TEN NAVIG ES IN 100	0 AF EX	CEPT AS	INDICA	TED			200	e		
28FEB05 INI-SUM 15MAF	2005 22MAR 31MAR	. 30APR 31MA						15NOV	22NOV	200 30NOV		31JAN	28FEB
FORT PECK NAT INFLOW 5100 234 DEPLETION 352 23 EVAPORATION 374 MOD INFLOW 4374 212 RELEASE 5157 14 STOR CHANGE -783 63 STORAGE 8188 8253 ELEV FIMSL 2194.5 2194.5 DISCH KCFS 7.0 5.0	11 14 99 127 69 89 29 38 8280 8317 2195.1 2195.4	48 16 467 62 375 49 92 12 8410 853 2196.0 2196	2 288 1 708 2 506 9 202 9 8741 9 2198.3	439 172 23 244 523 -279 8462 2196.4 8.5	253 18 72 163 492 -329 8133 2194.1 8.0	242 -64 89 217 351 -135 7998 2193.1 5.9	320 -66 78 308 251 57 8055 2193.5 4.1	159 -26 35 149 119 30 8085 2193.7 4.0	74 -12 17 69 97 -28 8057 2193.5 7.0	85 -14 19 79 127 -48 8009 2193.2 8.0	271 -85 40 316 523 -207 7802 2191.7 8.5	205 -74 279 523 -244 7559 2189.9 2 8.5	275 -43 318 472 -154 7405 2188.7 8.5
POWER AVE POWER MW 57 PEAK POW MW 122 ENERGY GWH 706.5 20.5	57 57 121 121	122 12		98 123 73.1	91 120 67.8	67 118 48.0	46 119 34.3	45 119 16.3	79 119 13.3	90 118 17.3	95 116 70.6	94 113 69.8	93 112 62.3
GARRISON NAT INFLOW 7299 270 DEPLETION 1141 44 CHAN STOR -17 23 EVAPORATION 438 REG INFLOW 10860 400 RELEASE 11814 417 STOR CHANGE -954 -11 STOR CHANGE -954 -15 STORAGE 9821 9800 ELEV FTMSL 1804.8 1804.7 DISCH KCFS 17.3 14.0 POWER	19 24 2 177 227 7 180 232 5 -4 -5 5 9803 9798 7 1804.7 1804.7	70 19 -15 -1 990 122 875 104 5 115 17 9913 1009 1805.2 1806	3 507 9 -6 3 2013 5 1131 7 883 1 10973 1 1810.2	1277 407 1365 1138 228 11201 1811.3 18.5	361 89 6 684 1107 -423 10778 1809.3 18.0	277 -73 23 106 619 966 -347 10431 1807.7 16.2	390 53 20 91 517 615 -98 10333 1807.3 10.0	161 -63 1 302 298 5 10338 1807.3 10.0	15.0	17.0	18.5	160 -3 686 1168 -483 9209 1801.7 19.0	18.5
AVE POWER MW 135 PEAK POW MW 285 ENERGY GWH 1432.2 50.3	2 282 282	283 28	6 298	191 370 142.3	185 363 138.0	165 358 118.9	101 356 75.5	101 356 36.4	151 355 25.4	170 354 32.7	183 345 136.2	184 336 136.9	176 329 118.3
OAHE NAT INFLOW 1049 19' DEPLETION 597 2' CHAN STOR -7 11 EVAPORATION 349 REG INFLOW 11911 61 RELEASE 12889 28' STOR CHANGE -978 32' STORAGE 10336 1065' ELEV FTMSL 1573.2 1574. DISCH KCFS 17.3 9.	2 10 13 3 5 0 268 337 5 201 377 4 67 -40 9 10776 10686 8 1575.2 1575.0	46 6 -9 -1 7 1003 100 7 1262 141 0 -259 -41 5 10427 1000 1573.7 1571	5 126 3 -11 68 1208 64 1447 7 -239 0 9771 5 1570.2	82 147 3 22 1053 1713 -659 9112 1566.5 27.9	21 96 3 66 969 1537 -568 8544 1563.1 25.0	64 24 10 83 934 440 494 9038 1566.0 7.4	5 -8 36 74 590 666 -76 8962 1565.6 10.8	-5 2 33 258 319 -61 8901 1565.2 10.7	-2 1 -29 15 161 148 13 8914 1565.3 10.7	10.7	15.5	-12 16 -3 1137 966 171 9232 1567.2 15.7	16.6
POWER MW 10 AVE POWER MW 10 PEAK POW MW 54 ENERGY GWH 1609.1 37.	2 544 543	536 5	55 254 24 517 .5 182.6	285 498 212.3	250 481 186.1	75 496 53.7	110 494 81.8	108 492 39.0	108 492 18.1	108 494 20.8	157 497 116.7	160 502 119.1	170 505 114.0
BIG BEND EVAPORATION 129 REG INFLOW 12760 28 RELEASE 12760 28 STORAGE 1681 168 ELEV FTMSL 1420.0 1420. DISCH KCFS 17.3 9. POWER	6 201 37 1 1681 168 0 1420.0 1420.0	7 1262 14 1 1681 16 0 1420.0 1420 1 21.2 24	34 1447 31 1681 .0 1420.0 .1 24.3	27.7	24.6	31 409 409 1681 1420.0 6.9	10.4	10.3	6 142 142 1681 1420.0 10.3 52	7 163 163 1681 1420.0 10.3 52	14 938 938 1681 1420.0 15.3 76	966 966 1681 1420.0 15.7 77	920 920 1681 1420.0 16.6 80
AVE POWER MW 4 PEAK POW MW 51 ENERGY GWH 739.4 16.	4 510 50	9 509 5	13 114 09 509 .1 82.0		116 518 86.6	35 538 25.1	53 538 39.1	52 538 18.8	538 8.7	538 10.0	538 56.9	538 57.5	529 53.4
FORT RANDALL NAT INFLOW 300 5 DEPLETION 80 EVAPORATION 128 REG INFLOW 12841 34 RELEASE 13080 23 STOR CHANGE -239 10 STORAGE 3361 346 ELEV FTMSL 1353.0 1354. DISCH KCFS 10.0 7. POWER AVE POWER MW 35 ENERGY GWH 1286.2 23.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 4 0 1301 15 3 1301 15 7 3549 35 2 1355.2 1355 0 21.9 24 6 185 2 5 355 .3	10 1555 49 3549 .2 1355.2 .6 26.1 07 220 55 355	18 10 1690 3549 1355.2 27.5 231 355	27.3 228 348	-10 7 32 350 1429 -1079 2296 1337.5 24.0 186 282 134.0	-52 1 22 563 564 0 2295 1337.5 9.2 67 283 49.8	-3 1 10 293 293 0 2295 1337.5 9.9 72 283 25.9	-1 0 5 136 136 2295 1337.5 9.8 72 283 12.0	-1 156 156 2295 1337.5 9.8 72 283 13.8	3 12 922 719 203 2498 1340.9 11.7 87 299 64.5	-6 3 957 250 2748 1344.8 11.5 88 317 65.5	12 3 929 555 374 3122 1350.0 10.0 80 338 53.6
DEPLETION 114 CHAN STOR -1 EVAPORATION 47 REG INFLOW 14118 32 RELEASE 14118 32 STOR CHANGE 358 35 ELEV FTMSL 1206.0 1206. DISCH KCFS 12.5 11.	4 -7 -2 7 194 42 7 194 42 8 358 35 0 1206.0 1206.	0 5 0 0 5 1416 16 5 1416 16 8 358 3 0 1206.0 1206	17 1666	39 -3 3 1722 1722 358 1206.0	1722 13 371 1206.5	55 -5 6 11 1484 1458 26 397 1207.5 24.5	104 2 27 10 683 683 397 1207.5 11.1	1207.5 11.0	11.0	11.0	12.5		12.5
POWER AVE POWER MW 3 PEAK POW MW 11 ENERGY GWH 591.0 13.		4 114 1	90 95 14 114 .8 68.6	114	115	85 117 61.5	40 117 29.4	39 117 14.1	39 117 6.6	39 117 7.5	44 78 33.0		44 76 29.7
	6 17 2 6 3 TY 7 208 44	4 20 3 1473 17	44 106 34 30 27 1742 .1 29.3) 37 2 1732	34 1710	15 22 1451 24.4	9	331	3 155	5 3 177 11.1	10 12 766 12.5	13 753	26 13 708 12.8
CHAN STOR -36 4 EVAPORATION 1464 STORAGE 33745 3422 SYSTEM POWER	2 43 5 15 -2 -2 22 34380 3439	5 193 4 0 -24 - 0 34338 342		7 820) 0 93 1 34364	262 9 287 32882	30 352 31841	-9 84 302 31725	0 137 31698	-35 -63 64 31623	-23 73 31586	-18 157	-44 -3 30826	642
AVE POWER MW 45 PEAK POW MW 195 ENERGY GWH 6364.1 161 DAILY GWH 10 INI-SUM 15M	25 1925 192 .9 93.4 168. .8 13.3 18.	4 1920 19 4 583.7 68	.2 23.4	9 1970 0 767.1 4 24.8	1947 719.0 23.2	1909 441.3 14.7	1907 310.0 10.0	1905 150.5 10.0	1904 84.1 12.0	1905 102.0 12.8	1873 478.0 15.4	1884 482.0 15.6	1889 431.4 15.4

2004-2005 AOP EXTENSIONS, UPPER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1

STUDY NO

9

DATE OF STUDY 11/15/04 TIME OF STUDY 10:44:39

DATE OF STODY	10.44.2	- 0												S	TUDY NO	9	
TIME OF STUDY 28FE		2	2006				IN 1000						0.01011	2007	31DEC	31JAN	28FEB
20FE	INI-SUM	15MAR		31 MA R	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 ONOV	SIDEC	JIUAN	201 10
FORT PECK- NAT INFLOW DEPLETION	8634 398	287 6	134 3	172 3	717 85	1443 319	2240 486	1096 163 21	410 -70 67	341 -113 83	477 -67 72	189 -24 17	88 -11 8	101 -13 9	311 -125 37	267 -150	360 -95
EVAPORATION MOD INFLOW RELEASE	315 7921 7288	282 179	131 83	169 143	632 536	1124 615	1754 762	912 676	413 646	371 595	472 517	195 250	91 125	104 143 -39	399 615 -216	417 738 -321	455 666 -211
STOR CHANGE	633 13791	103 13895	48 13943	26 13969	96 14065	509 14574	992 15567	236 15802	-232 15570	-224	-45 15300		-34 15212 2235.0		14957	14636	14425
ELEV FTMSL DISCH KCFS	2228.1 6.5		2228.8 6.0	2229.0 8.0	2229.5 2 9.0	2232.0 : 10.0	2236.7 2 12.8	2237.7 11.0	2236.7 : 10.5	2235.6	2235.4 8.4	8.4	9.0	9.0	10.0	12.0	12.0
POWER AVE POWER MW PEAK POW MW		80 158	81 158	107 159	121 205 86.8	134 207 100.1	174 210 125.1	151 211 112.2	144 210 107.2	137 210 98.5	115 209 85.5	115 209 41.3	123 209 20.6	123 209 23.6	136 208 101.2	162 207 120.8	162 206 108.7
ENERGY GWH	1197.2 12574	29.0 457	13.5 213	23.2 274	1218	1713	3126	2344	744	509	578	230	107	123	246	308 -124	384 -80
NAT INFLOW DEPLETION CHAN STOR EVAPORATION	12574 1071 -57 357	41 5	19	25 -21	-5	128 -10	859 -28	637 18 23	67 5 75	-122 5 94	-25 16 82	-107 0 20	-50 -6 9	-57 10	-135 -10 43	-124 -20 1150	1130
REG INFLOW RELEASE	18378 14856	599 476	277 236	371 303	1748 1220	2190 1383	3000 1369	2378 1383	1253 1353	1137 1160	1053 1049 4	568 508 60	267 250 17	312 301 11	943 1230 -287	1383	1250
STOR CHANGE STORAGE	3522 14846	123 14970	41 15011	68 15079	528 15607	806 16413 1831.8	1632 18045 1837.3	995 19040	-100 18940 1840 1	-24 18916 1840.1	18920	18980	18997	19008	18721	18488	18369 1838.3
ELEV FTMSL DISCH KCFS	1826.1 20.0	1826.5	1826.7	1827.0 17.0	1828.9 20.5	22.5	23.0	22.5	22.0	19.5	17.1	17.1	18.0	19.0	20.0	22.5 281	22.5 280
POWER AVE POWER MW PEAK POW MW ENERGY GWH	2211.3	185 426 66.6	197 427 33.1	197 428 42.6	239 435 171.9	266 445 197.9	279 466 201.1	281 477 208.9	277 476 206.1	246 476 176.8	215 476 160.2	215 476 77.6	227 477 38.2	240 477 46.0	251 473 187.1	471 209.2	469 188.3
OAHE NAT INFLOW DEPLETION	3025 597	439 22	205 10	263 13	372 46	273 65	692 126	233 147	97 96	128 24	80 - 8	86 2	40 1 -4	46 1 -4	17 11 -4	8 16 -11	47 25
CHAN STOR EVAPORATION	-10 322	17	- 4		-15	-8	-2 1933	2 22 1449	2 69 1287	10 85 1190	10 73 1075	17 574	8 277	9 333	38 1193	1365	1272
REG INFLOW RELEASE	16952 16006	910 437 474	426 233 193	553 292 261	1531 956 575	1583 1348 235	1627 306	1858 -409	1927 -640	1693 -503	1200 -126	583 -9	269 8	249 84	1297 -103	1162 203	875 396
STOR CHANGE STORAGE ELEV FTMSL	945 16332 1599.0	16806	16999	17260	17835 1604.2	18070	18376	17968 1604.7							2000.2	16881 1600.9 18.9	17277 1602.3 15.8
DISCH KCFS POWER	11.1	14.7	16.8	16.4	16.1	21.9	27.3	30.2	31.3 395	28.5 355	19.5 243	19.6 244	19.4 241	15.7 196	21.1 262	236	19.0
AVE POWER MW PEAK POW MW ENERGY GWH	2437.2	182 674 65.6	210 678 35.2	206 683 44.4	203 693 146.4	279 697 207.7	349 703 251.3	385 695 286.4	684 294.1	675 256.0	672 180.9	672 87.8	672 40.5	674 37.6	672 195.2	676 175.2	683 132.9
BIG BEND- EVAPORATION	71	42.5		202	056	1348	1627	5 1853	15 1912	19 1675	16 1184	4 579	2 267	2 247	9 1288	1162	875
REG INFLOW RELEASE	15936 15936	437 437 1682	233 233 1682	292 292 1682	956 956 1682	1348 1682	1627 1682	1853 1682	1912 1682	1675 1682	1184 1682	579 1682	267 1682	247 1682	1288 1682	1162 1682 1420.0	875 1682
STORAGE ELEV FTMSL DISCH KCFS	1682 1420.0 11.1			1420.0			1420.0 27.3	1420.0 30.1	1420.0 31.1	1420.0 28.1	1420.0 19.3	1420.0 19.5	1420.0 19.3	1420.0 15.6	21.0	1420.0	15.8
POWER AVE POWER MV		70	78	77	75	103	128	141	146 509	133 517	94 538	98 538	97 538	78 538	103 538	92 538	76 529
PEAK POW MW ENERGY GWH	919.5	517 25.0	509 13.2	509 16.6	509 54.1	509 76.4	509 92.1	509 104.9	108.3	96.0	70.3	35.1	16.3	15.1	76.9	68.4	50.8
FORT RANDAJ NAT INFLOW DEPLETION	LL 1144 80	145 1		87 1	227 4	121 9	171 12	85 18	55 15	70 7	46	4 1 4	2 0 2	2 1 2	17 3 8	8 3	37 3
EVAPORATION REG INFLOW	82 16919	580		378	1179	1460	1786	6 1914	19 1933	24 1714 1858	18 1211 1848	579 883	267 412	247 269	1294 928	1167 910	909 705
RELEASE STOR CHANGE	16918 0	289 291	134	378		1460 3549	1786 3549	1914 0 3549	1933 0 3549	-144	-637	-304 2464	-145 2319	- 22 2297	366 2663	257 2920	204 3124
STORAGE ELEV FTMSL	3124 1350.0	1353.6	1355.2	3549 1355.2 21.2	3549 1355.2 19.8			1355.2 31.1				1340.4 29.7	1337.9 29.7	1337.5 17.0	1343.5 15.1	1347.2 14.8	1350.0 12.7
DISCH KCFS POWER AVE POWER M	8.3 w	9.7 80		179	167	200	252	261	264	260	240	224 297	217 285	123 284	113 312	116 328	102 338
PEAK POW MW ENERGY GWH	1671.8	350	355	355 38.7	355 120.6	355 149.0	355 181.5	355 194.4	355 196.3	349 187.4	318 178.7	80.6	36.4	23.7	84.0	86.0	68.7
GAVINS POI NAT INFLOW DEPLETION	1814 114	0	0	52 0 -18	5	257 19 -8	226 24 -12	170 39 -2	137 10 -1	109 -5 0		49 5 1	23 2 0	26 3 24	77 10 3	1	154 4
CHAN STOR EVAPORATION REG INFLOW	-10 26 18583			413		1691	1976	2 2041	5 2054	7 1966		1 925 925	1 432 432	1 315 315	3 996 996	995	863 902
RELEASE STOR CHANGE	18583		202			1691	1976	2041	2041	1940 26 397			432 397	397	397		-39 358
STORAGE ELEV FTMSL DISCH KCFS	358	1206.0	1206.0	358 1206.0 23.1	1206.0	358 1206.0 27.5	358 1206.0 33.2	358 1206.0 33.2		1207.5 32.6	1207.5 32.0	1207.5 31.1	1207.5 31.1	1207.5 19.9 70		1207.5 16.2	1206.0 16.2 57
POWER AVE POWER M PEAK POW MW ENERGY GWH		44 114 15.8	114	114	114	94 114 69.7	108 114 77.9	108 114 80.5	109 115 80.8	109 117 78.3	117	117	106 117 17.8	117	78 42.6	78	76 38.4
GAVINS POI NAT INFLOW	2309	145	5 68					183 37		95 22			9 3	10 3	22 12		78 13
DEPLETION REGULATED F KAF	248 LOW AT S 20644	SIOUX CI	TY		2103	2069	2183	2187	2144	2013	2008	939	438 31.6		1006 16.4		967 17.4
KCFS		17.2		27.8	35.3	33.6		35.6							690		1060
NAT INFLOW DEPLETION	29500 2508	3 76	5 36	46	155	574	1537	1041	152	-187	-88	-118	269 -55 -10	-63	-224 -11	-241 -30	-134
CHAN STOR EVAPORATION	-76 1171	5 20 L						79	249	311	269	63	29	33	138 55098	1	55234
STORAGE SYSTEM POWE	50133 ER	51125 642					1290	1327	1334	1240	1016	1002	1011		923 2281		
AVE POWER N PEAK POW MW ENERGY GWH	₩ ₩ 9196.5	2240	0 2242 0 120.4	224 182.6	7 2311 5 636.9	2328 800.7	2357 928.8	2362 987.4	992.8	893.0) 756.3	360.7	169.9	159.3		702.2	587.7
DAILY GWH		15.4	4 17.2	20.3								15NOV					
	INI-SUN	1 15MA	r 22Mar	C 3 IMAI	R 30APR	SIMAI	. 5000M	51001									

2004-2005 AOP EXTENSIONS, UPPER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1

STUDY NO 10

DATE OF STUDY 11/15/04 TIME OF STUDY 10:44:40

TIME OF STUDY	10:44:40	C				VALUES	IN 1000	AF EX	CEPT AS	INDICA	TED			200			
28FEB I	07 NI-SUM	15MAR	2007 22 M AR	31MAR	30APR	31MAY	3 O JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV		31JAN	29FEB
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE	8363 398 312 7653 8044 -391	278 6 272 208 64	130 3 127 97 30	167 3 163 143 21	694 85 609 565 44	1397 319 1078 676 402	2170 486 1684 1083 601	1062 163 21 878 738 140 15726	398 -70 66 402 707 -305 15420	330 -113 83 360 595 -235 15186	462 -67 72 457 602 -145 15041	183 -24 17 190 291 -102 14939	85 -11 88 136 -47 14892	98 -13 9 101 159 -58 14834	301 -125 37 389 615 -226 14609	259 -150 409 738 -329 14280	349 -95 444 690 -246 14034
STORAGE ELEV FTMSL DISCH KCFS POWER	14425 2231.3 12.0	14489 2231.6 7.0 94	14519 2231.7 : 7.0 95	14539 2231.8 8.0 108	14583 2232.0 9.5 128	14985 2233.9 11.0 149	15586 2236.7 2 18.2 209	15726 2237.4 12.0 164		2234.9 10.0 136	2234.2 9.8 133	2233.7 9.8 133	2233.5 2 9.8 133	2233.2 10.0 136	2232.2 10.0 135	2230.5 2 12.0 162 206	2229.3 12.0 161 205
AVE POWER MW PEAK POW MW ENERGY GWH	1292.9	207 34.0	207 15.9	207 23.3	207 92.4	208 110.8	210 150.5	211 122.3	210 117.1	209 98.3	208 99.2	208 47.9	208 22.3	208 26.0	207 100.7	120.2	374
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION	12238 1071 -2 375	444 41 49	207 19	266 25 -10	1186 -5 -15	1667 128 -15	3043 859 -71	2281 637 60 25	724 67 5 81	495 -122 14 100	562 -25 2 85	224 -107 20	105 -50 9	119 -57 -2 11	240 -135 0 43	300 -124 -20 1142	- 80
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	18835 19096 -261 18369	661 565 96 18464 1838.6 19.0	285 264 21 18486 1838.7 19.0	375 428 -54 18432 1838.5 24.0	1741 1607 135 18567 1839.0 27.0	2201 1783 417 18984 1840.3 29.0	3196 1726 1471 20455 1844.7 29.0	2416 1783 633 21088 1846.5 29.0	1288 1783 -495 20593 1845.1 29.0	1127 1726 -599 19994 1843.3 29.0	1106 1655 -550 19444 1841.7 26.9	602 801 -199 19245 1841.1 26.9	24.0	20.0	20.0	1599 -456 18459 1838.6 26.0	1496 -351 18108 1837.5 26.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH	2917.1	237 471 85.3	237 471 39.9	299 470 64.6	336 472 241.9	362 477 269.6	367 499 264.2	373 500 277.6	374 499 277.9	370 497 266.7	341 481 253.8	340 479 122.5	303 479 50.9	253 479 48.5	252 476 187.8	325 470 241.7	322 466 224.3
OAHE NAT INFLOW DEPLETION CHAN STOR	2854 597 -15	414 22 15	193 10	248 13 -21	351 46 -12	257 65 ÷8	653 126	220 147 24	91 96 76	121 24 95	76 -8 83	81 2 20	38 1 11 9	43 1 15 11	16 11 0 44	7 16 -23	44 25
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	362 20976 18462 2514 17277 1602.3 15.8	972 556 416 17693 1603.7 18.7	447 283 163 17857 1604.3 20.4	643 350 293 18150 1605.3 19.6	1899 1149 751 18901 1607.7 19.3	1967 1456 511 19412 1609.3 23.7	2253 1753 499 19912 1610.9 29.5	1832 1980 -148 19763 1610.4 32.2	1702 2046 -344 19419 1609.3 33.3	1728 1845 -117 19301 1609.0 31.0	1664 1393 271 19573 1609.8 22.7	860 704 156 19729 1610.3 23.7	372 325 47 19777 1610.4 23.4	32.5	25.5	1566 1403 163 19410 1609.3 22.8	19.7
POWER AVE POWER MW PEAK POW MW ENERGY GWH	2907.3	236 691 85.0	259 693 43.5	250 699 53.9	248 712 178.9	308 720 228.8	385 728 277.2	422 726 313.8	434 720 322.9	403 718 290.3	296 723 220.0	310 725 111.5	307 726 51.5	425 724 81.5	333 717 247.8	297 720 221.2	258 726 179.5
BIG BEND- EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS	71 18391 18391 1682	556 556 1682 1420.0 18.7	283 283 1682 1420.0 20.4	350 350 1682 1420.0 19.6	1149 1149 1682 1420.0 19.3	1456 1456 1682 1420.0 23.7	1753 1753 1682 1420.0 29.5	5 1976 1976 1682 1420.0 32.1	152032203216821420.033.0	19 1827 1827 1682 1420.0 30.7	16 1377 1377 1682 1420.0 22.4	4 700 1682 1420.0 23.5	2 323 323 1682 1420.0 23.3	32.4	9 1562 1562 1682 1420.0 25.4	22.8	1133 1133 1682 1420.0 19.7
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1061.7	89 517 31.9	96 509 16.1	92 509 19.8	90 509 65.1	111 509 82.5	138 509 99.3	150 509 111.9	155 509 115.0	145 517 104.7	110 538 81.6	118 538 42.3	116 538 19.6	161 538 30.9	125 538 93.0	111 538 82.5	94 529 65.7
FORT RANDAL NAT INFLOW DEPLETION EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FTMSL	1087 80 82 19316 19316 0	138 1 692 402 291 3415 1353.6	64 1 347 213 134 3549 1355.2	83 1 432 432 3549 1355.2	216 4 1361 1361 3549 1355.2	115 9 1562 1562 3549 1355.2	162 12 1903 1903 3549 1355.2		52 15 2050 2050 0 3549 1355.2	67 24 1863 2007 -144 3405 1353.5	1345.1		2 0 2 322 467 -145 2319 1337.9	2 512 534 -22 2297 1337.5 33.7	16 3 1567 1201 366 2663 1343.5 19.5	7 3 1407 1150 257 2920 1347.2 18.7	35 3 961 204 3124 1350.0 16.7
DISCH KCFS POWER AVE POWER MW PEAK POW MW ENERGY GWH	12.7	13.5 112 350 40.1	15.3 129 355	24.2 204 355 44.0	22.9 193 355 138.9	25.4 214 355 159.2	268 355	33.1 277 355 206.2	33.3 279 355 207.9	33.7 281 349 202.1	264 318	33.7 254 297 91.4	33.7 245 285 41.2	242 284 46.5	146 312 108.3	146 328 108.4	134 338 93.2
GAVINS POIN NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE	IT 1731 114 -9 26 20899 20899	82 0 -2 483 483	0 -4	49 0 -17 464 464	189 5 3 1547 1547	245 19 -5 1783 1783	216 24 -13 2083 2083	162 39 -2 2152 2152	131 10 -1 5 2165 2152 13	104 -5 -1 2109 2083 26	2 1 2152 2152	1041	21 2 0 1 486 486 397	25 3 0 1 555 555 397	73 10 26 3 1287 1287 397	81 1 2 1231 1231 397	147 4 1111 1150 -39 358
STORAGE ELEV FTMSL DISCH KCFS POWER	358 1206.0 16.2	358 1206.0 16.2	358 1206.0 17.9	26.0	26.0	29.0	1206.0 35.0	55.0	55.0	397 1207.5 35.0 114	1207.5 35.0	1207.5 35.0	1207.5 35.0 115	1207.5 35.0 115	1207.5 20.9 72	1207.5 20.0 70	20.0 69
AVE POWER MV PEAK POW MW ENERGY GWH	839.0		114 10.4	89 114 19.2	114	99 114 73.3	114	112 114 83.3	112 115 83.7		117	117	117 19.3	117 22.1	78 53.8	52.0	76 48.3
GAVINS POIN NAT INFLOW DEPLETION REGULATED FI	2127 248 LOW AT S	134 6 10UX CI	62 3 TY	80 4	20	34	30	169 37	34		. 9	6	8 3 492	9 3 562		13	72 13 1209
KAF KCFS TOTAL	22778	610 20.5	307 22.1		37.3	34.6	38.2	2284	36.5	36.1	35.6	35.4	35.4	35.4	21.1	19.9	21.0 1021
NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE	28400 2508 -26 1226 55234	76 63	36 -4	46 -47	155 -24	574 -28	1537 -83	3975 1041 57 83 62165	152 4 262	-187 14 326	-88 11 5 281	-118 -1 66	-55 11 31	-63 12 35	-224 26 143	-241 -42	-134 4 57096
SYSTEM POWER AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH	R W	824 2348	878 2349 147.4	1041 2354 224.9	2368 781.0	2383 924.2	2415 1065.1	2415 1115.1	2409 1124.6	2408 1044.]	3 2385 1 936.7	2364 457.0	2353 204.9	2349 255.6	2328 791.3	2340 825.9	722.9
			ם מארכי כ	21 MAG	30205	31MAV	7 30.TTN	31.JU	31AUG	30SEI	2 310CT	15NOV	22NOV	30NOV	7 31DEC	31JAN	29FEB

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB

2004-2005 AOP EXTENSIONS, UPPER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE

VALUES IN 1000 AF EXCEPT AS INDICATED

STUDY NO

DATE OF STUDY 11/15/04 TIME OF STUDY 10:44:40

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 29FEB08 31DEC 31JAN 28FEB -FORT PECK--11 85 6 -13 10 99 NAT INFLOW DEPLETION -67 -24 -125 -150 - 95 22 -113 -70 329 87 EVAPORATION 528 170 MOD INFLOW 312 91 42 RELEASE - 88 14203 STOR CHANGE 16329 16343 2240.1 2240.1 2240.1 STORAGE ELEV FTMSL DISCH KCFS 2238.2 2229.3 2239.3 2238.5 2239.4 2239.4 2239.9 2240.0 2230.0 2230.2 6.0 7.0 2230.9 2238.6 2229.8 2233.5 9.5 6.0 5.2 5.2 5.2 7.0 9.0 8.5 9.5 9.0 12 0 6.0 212 POWER 213 AVE POWER MW 12.1 18.6 92.5 PEAK POW MW ENERGY GWH 92.6 97.5 87.9 93.5 87.5 59.8 53 6 26.0 29.0 13.5 20.3 72.7 85.5 942.7 -GARRISON--107 -5 -5 NAT INFLOW DEPLETION - 57 -135 -124 - 80 -50 -122 -25 24 60 97 R 19 -18 - 5 -10 -10 -10 CHAN STOR EVAPORATION 1388 1691 1691 1577 1537 REG INFLOW -171 RELEASE -506 20106 463 20570 19034 - 592 -681 STOR CHANGE -900 838.7 20.0 1838.9 STORAGE 1839.2 1837.5 1835.9 1834.5 1838.9 843.7 1845 0 1843.3 1841.2 1837.9 340.4 ELEV FTMSL DISCH KCFS 1837.5 .837.9 20.0 24.5 25.0 21.3 21.3 27.5 27.5 26.5 26.0 18.0 18.0 20.0 22.0 25.0 471 460 POWER 479 241.5 471 499 261.7 AVE POWER MW PEAK POW MW 204.6 200.3 96.3 48.0 185.1 224.2 261.4 53.7 197.1 232.9 250.4 80.5 37.6 ENERGY GWH 2621.4 --OAHE-11 147 96 NAT INFLOW _ A DEPLETION -18 - 2 97 1578 -11 - 9 CHAN STOR EVAPORATION - 8 4 3 516 1829 143 REG INFLOW RELEASE 277 -66 -12 -160 -541 -108 20261 -116 -251 STOR CHANGE -959 STORAGE ELEV FTMSL 22.7 1607.0 1609.6 609.6 23.7 1607.4 1612.0 1610.6 1609.8 1609.6 1609.1 1610.5 19.7 1611.3 611.5 11.8 1611.9 611.6 23.4 32.5 28.2 25.8 26.4 29.7 29.4 32.3 33.3 31.1 26.9 DISCH KCFS 22.6 26.1 708 721 722 POWER 734 317.2 727 723 722 738 733 76.7 732 AVE POWER MW PEAK POW MW ENERGY GWH 730 731 733 271.6 247.6 197.1 111.3 51.3 325.9 292.5 221.0 279.4 3180.0 107.0 251 0 291.6 -BIG BEND 1381 701 1682 514 1682 1420.0 EVAPORATION 1725 1748 1980 672 1682 1572 REG INFLOW RELEASE 1682 1682 1682 STORAGE 420.0 420.0 20.0 1420.0 120.0 420.0 20.0 1420.0 120.0 420.0 1420.0 19.7 1420.0 ELEV FTMSL DISCH KCFS 1420.0 420.0 1420.0 1420.0 23.5 23.3 32.4 28.0 25.8 22.7 29.7 30.8 26.9 . 4 29 4 32.2 33.1 22.6 26.1 POWER AVE POWER MW 538 509 30.9 PEAK POW MW ENERGY GWH 102.5 93.2 73.1 99.0 112.1 115.3 104.9 81.8 42.4 19.6 89.0 103.6 38.5 20.5 27 2 1153.6 FORT RANDALL 3 18 7 1 NAT INFLOW DEPLETION à 82 2035 EVAPORATION 1003 366 REG INFLOW 0 RELEASE 291 -637 2768 -144 -304 -145 -22 ō STOR CHANGE 355.2 31.9 STORAGE 1350.0 347.2 21.7 50.0 43.5 55.2 33.1 55.2 1353.5 33.8 345.1 33.2 340.4 33.7 337.9 1337.5 ELEV FTMSL DISCH KCFS POWER AVE POWER MW 1355.2 355.2 1355.2 29.9 1355.2 31.4 1353.6 33.7 33.7 22.2 19.6 33.4 16.7 17.3 297 285 284 355 122.7 125.5 PEAK POW MW 105.4 208.2 202.3 197.0 91 4 41.2 46.5 192.4 ENERGY GWH 2054.1 51.3 29.5 56.9 180.9 196.3 -GAVINS POINT 5 - 1 5 3 19 NAT INFLOW DEPLETION 21 0 1 - 2 2 0 - 5 -7 - 1 -20 -3 -1 CHAN STOR - 6 EVAPORATION 1275 1444 2152 321 REG INFLOW -39 RELEASE 1207.5 35.0 STOR CHANGE 1207.5 1206.0 1207.5 1207.5 1207.5 STORAGE 1207.5 1206.0 1206.0 1206.0 1206.0 1206.5 1207.5 1206.0 ELEV FTMSL DISCH KCFS 1206.0 1206.0 20.0 20.0 1206.0 23.5 23.0 23.0 35.0 35.0 35.0 35.0 35.0 23.1 33.0 33.0 35.0 POWER AVE POWER MW 83.7 85.5 83.3 77.6 57.5 51.3 PEAK POW MW 41.4 19.3 22.1 58.3 82.0 80.6 83.3 ENERGY GWH 887.3 24.8 13.3 - SIOUX CITY 13 -- GAVINS POINT 12 13 3 34 37 9 NAT INFLOW DEPLETION 248 6 REGULATED FLOW AT SIOUX CITY 24.0 23.6 37.1 22.9 35.4 KAF 36.1 35.6 35.4 35.4 36.4 24.1 27.3 43.9 40.4 38.0 37.1 KCFS -- TOTAL NAT INFLOW DEPLETION - 55 -63 -11 -134 -118 - 224 2 -241 - 88 -24 -187 -22 -1 -38 -10 -20 CHAN STOR EVAPORATION STORAGE SYSTEM POWER 2341 247.3 30.9 2395 993.2 32.0 2389 AVE POWER MW 1073.2 258.1 28.7 408.7 719.4 839.2 189.8 27.1 832.9 845.5 868.2 28.9 995.4 33.2 983.0 1082.0 ENERGY GWH 10839.1 331.1 22.1 26.9 27.1 34.6 34.9 32.8 DAILY GWH 24.6 22NOV 30NOV 31DEC 31JAN 28FEB 31MAY 30JUN 31JUL 31AUG 30SEP 310CT 15NOV INI-SUM 15MAR 22MAR 31MAR 30APR

DATE OF STUDY 1	1/15/04	L		2	004-200	5 AOP EX	TENSION	NS, UPP	ER DECI	LE RUNO	FF SIMUI	LATION	99001		901 PAG		1
TIME OF STUDY 1	0:44:4()				VALUES	IN 100) AF EX	CEPT AS	INDICA	TED			201	STUDY NO	0 12	
28FEBO IN		15MAR	2009 22MAR		30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV		31DEC	31JAN	28FEB
FORT PECK NAT INFLOW DEPLETION	8039 398	268 6	125 3	161 3	667 85	1343 319	2086 486	1021 163 23	382 -70 71	317 -113 88	444 -67 76	176 -24 18	82 -11 8	94 -13 9	290 -125 39	249 -150	335 -95
EVAPORATION MOD INFLOW RELEASE	332 7309 8239	262 238	122 111	157 161	582 595	1024 676	1600 803	835 799	381 769	342 714	435 614 -179	182 297 -116	85 139 -54	97 159 -62	376 615 -239	399 799 -400	430 750 -320
STOR CHANGE STORAGE	-930 15896 238.2	24 15919	11 15930 2238.3	-4 15927 2238.3	-13 15914 2238.2	348 16261 2239.8 2	797 17058 2243.2	36 17094 2243.4			16156 2239.3	16040 2238.8	15986 2238.6	15924	15685 2237.2 1 10.0	15285	14965
DISCH KCFS POWER AVE POWER MW	9.5	8.0	8.0 110	9.0 124	10.0 138	11.0 152	13.5 186	13.0 181	12.5 174	12.0 166	10.0 138	10.0 138	10.0	138	137	177 209	182 208
PEAK POW MW ENERGY GWH 1	373.0	211 39.7	211 18.5	211 26.8	211 99.1	213 112.8	215 134.1	215 134.6	214 129.5	213 119.7	212 102.7	212 49.6	212 23.2	211 26.4	211 102.2	131.8	122.3
GARRISON NAT INFLOW DEPLETION CHAN STOR	11830 1071 -40	430 41 15	200 19	258 25 -10	1146 -5 -10	1611 128 -10	2941 859 -25	2205 637 5	700 67 5	479 -122 5	543 -25 19 86	217 -107 20	101 -50 0 10	115 -57 0 11	232 -135 0 45	290 -124 -29	362 -80 -5
EVAPORATION REG INFLOW	375 18583 16728	642 536	292 250	384 339	1736 1250	2149 1476	2861 1607	25 2347 1629	79 1327 1599	99 1220 1369	1115 1352	600 654	280 312	320 317	937 1230	1184 1476	1187 1333
STOR CHANGE	1855 17208	106 17314	42 17356	45 17401	486 17887	674 18561	1254 19815 1842.8	718 20533 1844.9	-272 20261 1844.1	-148 20113 1843.7	-237 19876 1843.0	-54 19822 1842.8	-32 19789 1842.7	3 19792 1842.7	-292 19500 1841.9		-146 19062 1840.5
DISCH KCFS POWER	25.0	18.0	18.0	19.0	21.0	24.0 297	27.0	26.5	26.0	23.0 294	22.0 281	22.0 280	22.5 286	20.0 255	20.0 254	24.0 303	24.0 303
AVE POWER MW PEAK POW MW ENERGY GWH 2	2553.5	219 457 79.0	220 457 36.9	232 458 50.1	258 464 185.5	472 221.3	491 244.9	499 251.7	499 247.8	498 211.8	492 208.7	490 100.8	488 48.1	489 48.9	482 189.0	479 225.7	477 203.4
OAHE NAT INFLOW DEPLETION CHAN STOR	2658 597 4	386 22 28	180 10	231 13 -4	327 46 -8	240 65 -12	608 126 -12	205 147 2	85 96 2	112 24 12	70 -8 4	76 2	35 1 -2	40 1 10	15 11 0	7 16 -16	41 25
EVAPORATION REG INFLOW	350 18443 19351	927 770	419 359	553 361	1523 1215	1639 1602	2077 1740	24 1665 1964	75 1515 2027	92 1376 1856	80 1355 1403	19 709 706	9 336 326	10 357 517	41 1193 1708	1450 1557	1349 1240
RELEASE STOR CHANGE STORAGE	-908 18833	157 18989	60 19049	192 19242	307 195 4 9	38 19587 1609.9	337 19923	-299 19625 1610.0	-512 19113 1608.4	-480 18632 1606.9	-48 18584 1606.7	3 18587 1606.7	10 18597 1606.7	-160 18437 1606.2	-515 17922 1604.5		
ELEV FTMSL 1 DISCH KCFS POWER	1607.5 22.7	1608.0 25.9	25.9	1608.8 20.2	20.4	26.0	29.2	31.9	33.0	31.2 402	22.8 294	23.7 305	23.5 302	32.6 417	27.8 354	25.3 321	22.3 284
AVE POWER MW PEAK POW MW ENERGY GWH 3	3026.3	335 713 120.5	335 714 56.3	263 717 56.8	267 722 191.9	340 723 253.2	383 728 275.6	418 724 310.9	428 715 318.7	707 289.7	706 218.5	706 110.0	706 50.7	704 80.1	694 263.6	693 239.1	695 190.7
BIG BEND EVAPORATION REG INFLOW	71 19281	770	359	361	1215	1602	1740	5 1959	15 2012	19 1838	16 1387	4 703	2 324	2 515	9 1699	1557 1557	1240 1240
RELEASE	19281 1682 1420.0	770 1682	359 1682 1420.0	361 1682	1215 1682 1420.0	1602 1682 1420.0	1740 1682 1420.0	1959 1682 1420.0	2012 1682 1420.0	1838 1682 1420.0	1387 1682 1420.0	703 1682 1420.0	324 1682 1420.0		1699 1682 1420.0	1682 1420.0	1682 1420.0
DISCH KCFS POWER	22.7	25.9	25.9	20.2	20.4	26.0	29.2	31.9 149	32.7 153	30.9 146	22.6 110	23.6 118	23.3 117	32.4 162	27.6 136	25.3 123	22.3 107
AVE POWER MW PEAK POW MW ENERGY GWH	1112.8	123 517 44.1	121 509 20.3	509 20.4	509 68.8	509 90.7	509 98.6	509 110.9	509 113.9	517 105.3	538 82.2	538 42.5	538 19.6	538 31.0	538 101.0	538 91.4	529 71.9
FORT RANDALL NAT INFLOW DEPLETION	1021	129 1	60 1	77 1	203 4	108 9	152 12	76 18	49 15	63 7	41 1	4 1 4	2 0 2	2 1 2	15 3 8	7 3	33 3
EVAPORATION REG INFLOW RELEASE	82 20139 20139	898 607	419 285	438 438	1414 1414	1701 1701	1880 1880	6 2011 2011	19 2027 2027	24 1870 2014	18 1408 2045	701 1005	324 469	514 536	1704 1338 366	1561 1304 257	1270 1066 204
STOR CHANGE STORAGE	0 3124 1350.0	291 3415 1353.6	134 3549 1355.2	3549	3549 1355.2	3549 1355.2	3549 1355.2	0 3549 1355.2	0 3549 1355.2	-144 3405 1353.5		-304 2464 1340.4	-145 2319 1337.9	-22 2297 1337.5	2663 1343.5	2920 1347.2	3124
DISCH KCFS POWER	19.6	20.4	20.5	24.5 207	23.8	27.7 233	31.6 265	32.7 274	33.0 276	33.8 282	33.3 265	33.8 254	33.8 246	33.8 243	21.8 162	21.2 165	154
AVE POWER MW PEAK POW MW ENERGY GWH	1978.0	350 60.4	355 28.9	355 44.6	355 144.3	355 173.1	355 190.9	355 204.1	355 205.7	349 202.8	318 197.4	297 91.6	285 41.3	284 46.6	312 120.4	328 122.6	338 103.3
GAVINS POINT NAT INFLOW DEPLETION	1633 114	77 0	36 0	46 0	178 5	232 19	204 24	153 39 -2		98 ~5 ~2	114 2 1	44 5 -1	20 2 0	23 3 0	69 10 22	77 1 1	138 4
CHAN STOR EVAPORATION REG INFLOW	0 26 21632	-2 683	0 321	-8 477	1 1589	-7 1906	-8 2053	2 2121	5 2134	7 2109	6 2152	1 1041 1041	1 486 486	1 555 555	3 1416 1416	1381 1381	1208 1247
RELEASE STOR CHANGE STORAGE	21632 358	683 358	321 358	477 358	1589 358	1906 358	2053 358	2121	2121 13 371	2083 26 397	2152 397	397	397		397	397 1207.5	-39 358
ELEV FTMSL DISCH KCFS POWER	1206.0 23.0	1206.0 23.0	1206.0 23.1	1206.0 26.7	1206.0 26.7	31.0	34.5	34.5	34.5	35.0	1207.5	35.0	35.0	35.0	23.0	22.5	22.5 75
AVE POWER MW PEAK POW MW ENERGY GWH	864.0	79 114 28.4	79 114 13.3	91 114 19.7	91 114 65.6	103 114 76.8	111 114 79.9	111 114 82.5	115	114 117 82.0	115 117 85.5	115 117 41.4	117 19.3	117	78 57.6	78 56.6	76 50.5
GAVINS POINT NAT INFLOW DEPLETION	- SIO 1919 248	JX CITY 121 6	 56 3		622 20	343 34	197 30	152 37		79 22		16 6			18 12	7 13	65 13
REGULATED FLO KAF KCFS	W AT S 23303	IOUX CI 798 26.8		545	2191 36.8	2215 36.0	2220 37.3	2236 36.4		2140 36.0		1052 35.4			1422 23.1	1375 22.4	1299 23.4
TOTAL NAT INFLOW	27100	1410	658				6188 1537	3812 1041		1148 -187	-88		- 55	-63		637 -241	-134
DEPLETION CHAN STOR EVAPORATION	2508 -37 1236	76 41	36	- 22	-16	-29	-44 62385	84	6 6 264	15 329	25 283	66	31	35	144	-45 57308	
STORAGE SYSTEM POWER AVE POWER MW	57099	1033	1038	1011	1049	1247	1422	1471	. 1476	1405	1203	1210	1204	1329	1121	1166 2325	2323
PEAK POW MW	10907.7	2362 372.0 24.8	174.3	218.4	755.2	927.9	2413 1024.0 34.1	1094.6	5 1098.5	1011.4	895.1	435.8	202.2	255.1	833.7 26.9	867.2 28.0	742.1 26.5
	INI-SUM	15MAR	22MAF	31MAR	30APF	31MAY	3 OJUN	31JUI	31AUG	30SEF	9 310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

2004-2005 AOP EXTENSIONS, UPPER DECILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1	2004-2005 AOP	EXTENSIONS,	UPPER	DECILE	RUNOFF	SIMULATION	99001	9901	9901	PAGE	1
---	---------------	-------------	-------	--------	--------	------------	-------	------	------	------	---

DATE OF STUDY 11/15/04 TIME OF STUDY 10:44:40

TIME OF STUDY				_										5	STUDY N	0 13	
28FE		v	2010				IN 1000							2013		21 775	28FEB
	INI-SUM	15MAR		31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	ZOFED
FORT PECK- NAT INFLOW DEPLETION	- 7887 398 315	262 6	122 3	157 3	655 85	1318 319	2046 486	1002 163 21	375 -70 67	311 -113 83	436 -67 72	173 -24 17	81 -11 8	92 -13 9	284 -125 37	244 -150	329 -95
EVAPORATION MOD INFLOW RELEASE	7174 8089	257 238	120 111	154 161	570 595	999 738	1560 803	818 799	378 769	341 655	431 538	179 260	84 128	95 159	372 615 -243	394 799 -405	424 722 -298
STOR CHANGE	-915 14965	19 14984	9 14992	-7 14986	-25 14961	261 15222	757 15978	18 15997	-391 15606	-314 15292	-107 15185 2234.9	-81 15104 2234.5	-44 15060 2234.3	-63 14997 2234.0	14754	14348	14050
ELEV FTMSL DISCH KCFS	2233.9 13.5	2233.9 8.0	2234.0 8.0	2234.0 9.0	2233.8 10.0	2235.1 12.0	2238.5 : 13.5	2238.6 13.0	2236.8 12.5	2235.4 11.0	8.7	8.7	9.2	10.0	10.0	13.0	13.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1330.2	109 208 39.2	109 208 18.3	122 208 26.4	136 208 97.8	163 209 121.4	$183 \\ 212 \\ 132.0$	178 212 132.7	172 210 127.7	150 209 108.3	119 209 88.8	119 209 42.9	125 209 21.0	136 208 26.1	136 207 100.9	175 206 130.0	174 205 116.8
GARRISON NAT INFLOW DEPLETION	11635 1071	423 41	197 19	253 25 -10	1127 -5 -10	1585 128 -19	2893 859 -15	2169 637	688 67 5	471 -122 14	534 -25 22	213 -107	99 -50 -4	114 -57 -8	228 -135 0	285 -124 -29	356 -80
CHAN STOR EVAPORATION	4 375 18282	54 673	289	380	1717	2175	2823	26 2311	81 1313	100 1162	86 1033	20 560	9 263	11 311	43 935	1179	1158
REG INFLOW RELEASE STOR CHANGE	19220	565 108	264 25	393 -13	1488 230	1845 331	1785 1038	1845 466	1845 -531	1785 -624	1670 -637	808 -248	361 -98	357	1230 -295	1537 -358 18410	1444 -286 18124
STORAGE ELEV FTMSL	19062 1840.5	19170	19195	19182	19412 1841.6								19110 1840.7 26.0	19064 1840.5 22.5	18769 1839.6 20.0	1838.5 25.0	
DISCH KCFS POWER	24.0	19.0	19.0	22.0	25.0	30.0	30.0 383	30.0 387	30.0 387	30.0 384	27.2 344	27.2 343	328	22.5	252	312	322
AVE POWER MW PEAK POW MW ENERGY GWH	2949.5	240 479 86.4	240 479 40.4	278 479 60.0	316 481 227.5	379 487 282.2	500 275.6	501 288.1	500 288.0	498 276.2	481 256.2	479 123.5	478 55.0	477 54.5	474 187.3	470 232.1	466 216.5
OAHE NAT INFLOW	2571 597	373 22	174 10	224 13	316 46	231 65	588 126	198 147	82 96	109 24	68 -8	73 2	34 1	39 1	15 11	7 16	40 25
DEPLETION CHAN STOR EVAPORATION	-9 366	20	10	-12	-12	-20		24	76	96	11 85	0 20	4 10	13 11	9 45 1199	-19 1509	-4 1455
REG INFLOW RELEASE	20820 18936	937 762	427 356	591 365	1746 1226	1991 1675	2247 1687	1871 1908	1754 1970 -216	1774 1771 3	1672 1315 357	859 663 196	389 305 84	397 494 -96	1686	1533 -24	1219 236
STOR CHANGE STORAGE	1884 17924	175	71 18170	226 18396	519 18916 1607.8	316 19231 1608.8	560 19792 1610.5	-37 19755 1610.4	19539	19543	19900	20096	20180	20084	19596	19572 1609.8	
ELEV FTMSL DISCH KCFS	1604.5 22.3	25.6	25.7	1606.1 20.4	20.6	27.2	28.3	31.0	32.0	29.8	21.4	22.3	22.0	31.1	27.4	24.9	22.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH	2986.9	326 698 117.3	327 699 55.0	262 703 56.6	266 712 191.3	353 717 262.6	370 726 266.2	406 726 302.1	418 722 311.3	388 722 279.5	280 728 208.6	293 731 105.6	290 732 48.8	409 731 78.6	360 723 267.6	326 723 242.5	288 726 193.3
BIG BEND- EVAPORATION	- 71							5	15	19	16 1298	4 659	2 304	2 492	9 1678	1533	1219
REG INFLOW RELEASE	18865 18865	762 762	356 356	365	1226 1226	1675 1675 1682	1687 1687 1682	1904 1904 1682	1955 1955 1682	1752 1752 1682	1298	659 1682	304 1682	492 1682	1678 1682	1533 1682	1219 1682
STORAGE ELEV FTMSL	1682 1420.0		1682 1420.0 25.7	1682 1420.0 20.4	1682 1420.0 20.6					1420.0 29.5			1420.0 21.9	1420.0 31.0	1420.0 27.3	1420.0 24.9	1420.0 22.0
DISCH KCFS POWER AVE POWER MV	22.3	25.6 121	120	20.4	20.0	128	133	145	149	140	103	111	110	154	134	121	105
PEAK POWER MW ENERGY GWH	1088.7	517 43.6	509 20.2	509 20.7	509 69.5	509 94.9	509 95.5	509 107.8	509 110.7	517 100.5	538 77.0	538 39.9	538 18.4	538 29.6	538 99.8	538 90.0	529 70.7
FORT RANDAI	-L	100	59	75	197	105	148	74	47	61	40	4	2	2	15	6	32
NAT INFLOW DEPLETION EVAPORATION	992 80 82	126 1	1	1	4	105	12	18	15 19	7 24	1 18	1 4	0 2	1 2	3	3	3
REG INFLOW RELEASE	19695 19695	886 595	414 280	440 440	1419 1419	$1771 \\ 1771$	1823 1823	1954 1954	1968 1968	1783 1927	1319 1956	658 962	303 448 -145	490 512 -22	1682 1316 366	1536 1279 257	1248 1044 204
STOR CHANGE STORAGE	0 3124	291 3415	134 3549	3549	3549	3549	3549	3549	0 3549 1355.2	-144 3405 1353.5	-637 2768 1345.1	-304 2464 1340.4	2319	2297	2663	2920	3124 1350.0
ELEV FTMSL DISCH KCFS	1350.0 19.2	1353.6 20.0	1355.2 20.2	1355.2 24.6	1355.2 23.9	28.8	1355.2 30.6	1355.2 31.8	32.0	32.4	31.8	32.3	32.3	32.3	21.4	20.8	18.8
AVE POWER M	ą	164 350	170 355	208 355	201 355	242 355	257 355	267 355	269 355	270 349	254 318	244 297	235 285	232 284	159 312	162 328	151 338 101.2
PEAK POW MW ENERGY GWH	1935.8	59.2		44.8	144.8	180.1	185.2	198.3	199.8	194.2	189.0	87.7	39.6	44.6	118.5	120.3	101.2
GAVINS POID NAT INFLOW	1588	76		45 0	173 5	225 19	198 24	149 39	120 10	95 - 5		43 5	20 2	23 3	67 10	75 1	134
DEPLETION CHAN STOR	114	0 - 2		- 9	5	-9	-4	-2	0 5	-1 7	- 1 6	- <u>1</u> 1	0 1	0 1	20 3	1	4
EVAPORATION REG INFLOW RELEASE	26 21143 21143	670 670		477 477	1589 1589	1968 1968	1993 1993	2060 2060	2073 2060	2019 1993	2060	997 997	465 465	532 532	1390 1390	1354 1354	1182 1221 -39
STOR CHANGE	358	358	358	358	358	358	358	358	13 371	26 397	397	397	397 1207.5	397 1207.5	397 1207.5	397 1207.5	358
ELEV FTMSL DISCH KCFS	1206.0 22.5	1206.0	1206.0 22.7	1206.0 26.7	1206.0 26.7	1206.0 32.0	1206.0 33.5	1206.0 33.5	33.5	33.5		1207.5 33.5	33.5	33.5	22.6	22.0	22.0
POWER AVE POWER M	W	77		91 114		106 114	109 114	109 114	109 115	111 117	112 117	112 117	112 117	112 117	76 78	75 78	74 76
PEAK POW MW ENERGY GWH	851.0	114 27.8		19.7	65.6	78.5	78.3	81.0	81.3	79.7		40.2	18.8	21.4	56.8	55.8	49.8
GAVINS POI NAT INFLOW	NT - SIO 1827	UX CITY 115	54	69		326		145	108	75 22		15 6	7 3	8 3	18 12	7 13	62 13
DEPLETION REGULATED F	248 LOW AT S	10UX CI	3 TY	4				37	34 2134	22			470		1396	1348	
KAF KCFS	22722	778 26.1				2260 36.7	2150 36.1	2168 35.3	34.7	34.4		33.8	33.8	33.8	22.7	21.9	22.9
TOTAL NAT INFLOW	26500	1374	641					3737	1420				242		627 -224	624 -241	
DEPLETION CHAN STOR	2508 -5	76 73	; 36	46	155			1041	4	-187 14 328	34	- 1	-55 0 31	5	-224 30 144		
EVAPORATION STORAGE	57116		57947	58153	58877	59785	62139	83 62586					58747	58520	57860		
SYSTEM POWE AVE POWER M	W	1038 2365			2280	2391	2416	1492 2416	2411	2413	2391	2370	1200 2359	2355	1117 2332		2340
PEAK POW MW ENERGY GWH DAILY GWH	11142.1		175.4	228.2	796.5	.1019.7	1032.9	1110.0	1118.7	1038.4	902.7 29.1		201.6 28.8	254.9 31.9	830.9 26.8		
DALDI GMI	INI-SUM						30JUN	31JUL	31AUG	30SEF	9 310CI	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB

DATE OF STUDY 11/15/04		200	4-2005 <i>A</i>	OP EXTI	ENSIONS,	UPPER	QUARTII	LE RUNO	FF SIMUI	LATION 9	99001		901 PA		1
TIME OF STUDY 10:48:15				VALUES	IN 1000) AF EX	CEPT AS	INDICA	TED				STUDY NO	0 14	
28FEB06 INI-SUM		2006 MAR 31MAR	30APR							15NOV	22NOV	200 30NOV	7 31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 8215 DEPLETION 398 EVAPORATION 333	6	L28 164 3 3	682 85	1373 319 1054	2131 486 1645	1043 151 20 872	390 -66 63 393	324 -126 80 370	454 -65 70 449	180 -23 32 171	84 -11 15 80	96 ~12 17 91	296 -120 37 379	254 -142 396	343 -91 434
ELEV FTMSL 2218.5 2	179 89 12113 123 219.0 2219	9.3 2219.7	597 357 240 12480 2221.1	430 624 13104	476 1169 14273	461 411 14684	430 -38 14646	357 13 14659	316 133 14792	155 16 14808 2233.1 5.2	90 -11 14798 2233.1 6.5	111 -20 14778 2233.0 7.0	492 -113 14665 2232.4 8.0	523 -127 14538 2231.8 8.5	444 -10 14528 2231.8 8.0
DISCH KCFS 8.5 POWER AVE POWER MW PEAK POW MW ENERGY GWH 807.0	77 149	5.0 5.0 65 65 150 150 0.9 14.0	6.0 78 197 56.0	92 201 68.2	107 206 76.7	101 207 75.3	95 207 70.5	81 207 58.5	70 208 51.8	71 208 25.4	88 208 14.8	95 208 18.2	108 207 80.6	115 207 85.5	108 207 72.6
GARRISON NAT INFLOW 12053 DEPLETION 1128 CHAN STOR 5	450 41 26	210 270 19 25 10	1168 23 -10	1610 169 -10	2996 820 -10	2246 607 5	714 60 5	488 -129 10	554 -14 9	221 -102 -1 34	103 -48 -13 16	118 -54 -5 18	243 -120 -10 39	295 -105 -5	368 -64 5
EVAPORATION 357 REG INFLOW 15554 RELEASE 14393 STOR CHANGE 1161 STORAGE 14493	476 138 14631 14 825.3 182	271 335 208 268 62 67 693 14760 5.5 1825.8 5.0 15.0	1492 1160 331 15091 1827.0 19.5	1861 1353 508 15600 1828.9 22.0	2642 1369 1273 16873 1833.3 23.0	22 2084 1383 700 17573 1835.7 22.5	69 1021 1353 -332 17241 1834.6 22.0	86 898 1101 -203 17038 1833.9 18.5	75 818 936 -118 16920 1833.5 15.2	443 458 -15 16905	212 222 -10 16895	260 301 -41 16853	806 1230 -424 16430	918 1353 -435 15994 1830.3 22.0	881 1222 -340 15654 1829.1 22.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2074.7	422	172 173 422 423 9.0 37.3	225 428 162.0	256 435 190.5	273 451 196.7	273 460 203.3	268 456 199.7	225 453 161.9	185 452 137.4	187 452 67.2	194 451 32.6	230 451 44.1	240 445 178.7	261 440 194.4	259 435 174.0
OAHE NAT INFLOW 2764 DEPLETION 597 CHAN STOR -8	397 22 18	$ \begin{array}{cccc} 185 & 238 \\ 10 & 13 \\ 4 & 0 \end{array} $	340 46 -20	246 65 -11	647 126 -4	213 147 2 21	89 96 2 66	117 24 15 81	73 -8 14 70	78 2 -1 32	36 1 -3 15	42 1 -13 17	16 11 -4 37	4 16 -9	43 25 0
EVAPORATION 339 REG INFLOW 16212 RELEASE 14169 STOR CHANGE 2044 STORAGE 15126 ELEV FTMSL 1594.5 J DISCH KCFS 12.2	529 340 15466 15 1595.8 159	387 492 99 263 289 230 755 15985 6.8 1597.7 7.1 14.7	1435 844 590 16575 1599.8 14.2	1523 1213 310 16885 1600.9 19.7	1885 1480 405 17290 1602.3 24.9	1430 1711 -280 17010	1282 1769 -487 16523	1127 1554 -426 16097 1598.1 26.1	961 1057 -96 16000 1597.8 17.2	502 517 -14 15986 1597.7 17.4	240 238 2 15988 1597.7 17.1	312 197 115 16104 1598.1 12.4	1193 1070 123 16227 1598.6 17.4	1332 925 407 16634 1600.1 15.0	1240 704 536 17170 1601.9 12.7
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2123.5		87 180 655 659 4.6 38.9	175 670 126.3	246 676 182.7	311 683 224.0	348 678 259.0	357 669 265.7	322 661 231.5	211 659 157.2	213 659 76.7	210 659 35.3	153 661 29.3	214 663 159.5	186 671 138.7	159 681 106.6
DISCH KCFS 12.2	529 529 1682 1 1420.0 142 17.8	99 263 99 263 682 1682 0.0 1420.0 7.1 14.7	844 844 1682 1420.0 14.2	1213 1213 1682 1420.0 19.7	1480 1480 1682 1420.0 24.9	5 1706 1706 1682 1420.0 27.7	15 1754 1754 1682 1420.0 28.5	19 1535 1535 1682 1420.0 25.8	16 1041 1041 1682 1420.0 16.9	7 509 1682 1420.0 17.1	3 235 235 1682 1420.0 16.9	4 193 193 1682 1420.0 12.2	9 1062 1062 1682 1420.0 17.3	925 925 1682 1420.0 15.0	12.7
POWER AVE POWER MW PEAK POW MW ENERGY GWH 812.7	83 510 30.0	33 69 509 509 5.6 14.9	66 509 47.8	92 509 68.7	116 509 83.8	130 509 96.6	133 509 99.3	122 517 88.0	83 538 61.9	86 538 30.9	85 538 14.3	61 538 11.8	85 538 63.5	73 538 54.6	61 529 40.9
FORT RANDALL NAT INFLOW 1054 DEPLETION 80 EVAPORATION 88 REG INFLOW 14978 RELEASE 14977 STOR CHANGE 1 STORAGE 3123 ELEV FIMSL 1350.0 DISCH KCFS 8.8	1355.0 135	58 75 1 1 156 337 139 337 17 1549 3549 55.2 1355.2 0.0 18.9	210 4 1050 1050 3549 1355.2 17.7	132 9 1336 1336 3549 1355.2 21.7	172 12 1640 1640 3549 1355.2 27.6	78 18 6 1760 1760 0 3549 1355.2 28.6	57 15 19 1777 1777 0 3549 1355.2 28.9	56 7 24 1561 1706 -145 3404 1353.5 28.7	33 1 18 1055 1691 -636 2768 1345.1 27.5	2 1 7 503 807 -304 2464 1340.4 27.1	1 0 3 232 377 -145 2319 1337.9 27.2	1 3 191 213 -22 2297 1337.5 13.4	16 3 8 1067 701 366 2663 1343.5 11.4	4 3 926 689 237 2900 1347.0 11.2	34 3 735 511 224 3124 1350.0 9.2
DISCH KCFS 8.8 POWER AVE POWER MW PEAK POW MW ENERGY GWH 1484.9	68 354	85 160 355 355 14.3 34.5	149 355	183 355 136.5	232 355 166.9	241 355 179.0	243 355 180.7	239 349 172.3		205 296 73.8	199 285 33.4	98 284 18.8	85 311 63.6	88 327 65.2	74 338 49.8
GAVINS POINT NAT INFLOW 1684 DEPLETION 114 CHAN STOR -2 EVAPORATION 28 REG INFLOW 16516 RELEASE 16516	83 0 1 328 328	39 50 0 0 -4 -17 175 370 175 370	5 2 1232	228 19 -8 1537 1537	210 24 -11 1815 1815	158 39 -2 2 1875 1875	5 1888 1875	101 -5 0 7 1805 1779 26	6 1802 1802	45 5 1 845 845	21 2 0 1 394 394	24 3 25 1 258 258	76 10 4 3 767 767	79 1 0 767 767	143 4 658 697 -39
STOR CHANGE STORAGE 358 ELEV FTMSL 1206.0 DISCH KCFS 12.5		358 358 06.0 1206.0 12.6 20.7	1206.0	358 1206.0 25.0	358 1206.0 30.5	358 1206.0 30.5	1206.5	397 1207.5	397 1207.5	28.4	28.4	16.3	12.5	397 1207.5 12.5	358 1206.0 12.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 686.3	39 114 13.9	44 71 114 114 7.4 15.4	114	86 114 63.6	102 114 73.5	102 114 75.9	115	102 117 73.8	117	99 117 35.8	99 117 16.7	117	44 78 33.0	33.0	44 76 29.7
GAVINS POINT - SIOU NAT INFLOW 2030 DEPLETION 248 REGULATED FLOW AT SI KAF 18298	147 6 OUX CITY 469	69 88 3 4 240 454	20 1870	330 34 1833	1990	161 37 1999 32.5	34 1961	22 1836	9 1836	17 6 856 28.8	400	3 264	20 12 775 12.6	13 762	13 752
KCFS TOTAL NAT INFLOW 27800 DEPLETION 2565	1475 76	17.3 25.4 688 885 36 46	3242 183	615	1498	32.5 3899 999 5	1497 149	1165	1274 -75	543 - 112 - 1	253 -52 -16	289 - 59 8	667 -204 -11	644 -214 -13	999 -114
CHAN STOR -4 EVAPORATION 1223 STORAGE 46807 SYSTEM POWER DUE DOWER MW	46 47782 4 666	11 -17 8206 48573 487 718	49735	51177	54024	75 54855 1195	237 54011 1199	296 53277 1092	256 52559 871	114 52242 861	52078 875	52110 694	52063 778	52146 768	705
AVE POWER MW PEAK POW MW ENERGY GWH 7989.1 DAILY GWH	2199 239.9 16.0	2206 2210 81.9 155.0 11.7 17.2) 2273) 551.0 2 18.4	2289 710.2 22.9	2319 821.7 27.4	2323 889.2 28.7	2311 892.2 28.8	786.0	647.9	309.9 20.7	147.1 21.0	133.2 16.7	578.9 18.7	571.3	473.7 16.9
INI-SUM	15MAR 2	2MAR 31MAF	C JUAPR	. JIMAI	JUUUN	31001	, JINUG								

DATE OF STUDY 11/15/0	4		200	4-2005	AOP EXT	ENSIONS	, UPPER	QUARTI	LE RUNO	FF SIMU	LATION	99001	9901 9	STUDY N		T
TIME OF STUDY 10:48:1	5				VALUES	IN 100	0 AF EX	CEPT AS	INDICA	TEĎ			200		5 15	
28FEB07 INI-SUM	15MAR	2007 22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV		31DEC	31JAN	29FEB
FORT PECK NAT INFLOW 8115 DEPLETION 398 EVAPORATION 351 MOD INFLOW 7366	270 6 264 179	126 3 123 83	162 3 158 143	674 85 589 536	1356 319 1037 615	2105 486 1619 762	1031 151 22 858 676	386 -66 68 384 646	320 -126 85 361 595	449 -65 73 441 537	178 - 23 33 167 259	83 -11 15 78 125	95 -12 18 89 159	292 -120 38 374 615	251 -142 393 799	338 -91 429 748
ELEV FTMSL 2231.8 DISCH KCFS 8.0 POWER	86 14614 2232.2 6.0	40 14654 2232.4 6.0 81	16 14669	53 14723	422 15145	857 16002	182 16184 2239.4 11.0	-262 15923	-234 15689 2237.2 10.0 137	-97 15593 2236.8 8.7 120	-92 15501 2236.4 8.7 119	-47 15454 2236.1 9.0 123	-70 15384 2235.8 10.0 137	-241 15144 2234.7 10.0 136	13.0 176	-319 14418 2231.2 13.0 175
AVE POWER MW PEAK POW MW ENERGY GWH 1233.3	81 207 29.2	207 13.7	207 23.4	207 87.7	209 101.0	212 125.9	212 112.8	211 107.7	211 98.9	210 89.2	210 42.9	210 20.7	210 26.2	209 101.5	207 130.8	206 121.7
GARRISON NAT INFLOW 11925 DEPLETION 1128 CHAN STOR -51 EVAPORATION 395	445 41 21	208 19 272	267 25 -21 365	1155 23 -10 1657	1593 169 -10 2029	2965 820 -28 2878	2223 607 18 23 2287	706 60 5 76 1221	482 -129 5 95 1116	548 -14 12 83 1029	218 -102 0 37 542	102 -48 -3 17 254	116 -54 -10 20 300	240 -120 0 43 932	292 -105 -29 1167	365 -64 1177
REG INFLOW 17827 RELEASE 15124 STOR CHANGE 2702 STORAGE 15654 ELEV FTMSL 1829.1 DISCH KCFS 22.0	603 476 127 15781 1829.5 16.0	236 36 15817	303 61 15878	1220 437 16316	1383 645	1398 1480 18441	1414 872 19313	1383 -163 19151	1160 -44 19106 1840.7 19.5	1098 -69 19037	533 9 19046 1840.5 17.9	18.0	301 -2 19048 1840.5 19.0	20.0	23.0	1323 -146 18356 1838.3 23.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2266.0	189 437 67.9	201 438 33.7	201 438 43.4	243 444 175.0	270 452 200.7	288 470 207.4	289 480 214.8	284 478 211.6	246 478 177.4	226 477 167.9	226 477 81.4	227 477 38.2	240 477 46.1	252 474 187.2	287 471 213.8	286 469 199.3
OAHE NAT INFLOW 2704 DEPLETION 597 CHAN STOR -4	388 22 25	181 10 -4	233 13	333 46 -14	241 65 -8	633 126 -4	208 147 2	87 96 2	114 24 12	72 - 8 7	77 2 0	36 1 0	41 1 -4	15 11 -4 38	4 16 -13	42 25
EVAPORATION 355 REG INFLOW 16872 RELEASE 16776 STOR CHANGE 96 STORAGE 17170 ELEV FTMSL 1601.9 DISCH KCFS 12.7	867 531 336 17506 1603.1 17.8	403 140 262 17769 1604.0 10.1	523 357 166 17935 1604.5 20.0	1493 1142 350 18285 1605.7 19.2	1551 1527 25 18310 1605.8 24.8	1901 1644 257 18567 1606.6 27.6	22 1455 1881 -426 18141 1605.2 30.6	69 1307 1938 -631 17510 1603.1 31.5	85 1178 1718 -541 16969 1601.2 28.9	74 1111 1224 -113 16857 1600.8 19.9	33 574 598 -24 16833 1600.8 20.1	15 269 276 -7 16826 1600.7 19.9	18 320 265 55 16881 1600.9 16.7	1191 1347 -156 16725	1389 1201 188 16913 1601.0 19.5	1340 987 353 17266 1602.3 17.2
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2564.3	225 687 80.9	128 692 21.5	254 695 54.9	245 701 176.6	318 701 236.4	354 706 254.9	391 698 290.9	399 687 296.8	362 677 260.5	249 675 185.0	251 675 90.2	248 675 41.6	208 676 40.0	273 673 203.0	244 676 181.2	215 683 149.8
BIG BEND EVAPORATION 78 REG INFLOW 16698 RELEASE 16698 STORAGE 1662 ELEV FTMSL 1420.0 DISCH KCFS 12.7	531 531 1682 1420.0 17.8	140 140 1682 1420.0 10.1	357 357 1682 1420.0 20.0	1142 1142 1682 1420.0 19.2	1527 1527 1682 1420.0 24.8	1644 1644 1682 1420.0 27.6	5 1876 1876 1682 1420.0 30.5	15 1923 1923 1682 1420.0 31.3	19 1700 1700 1682 1420.0 28.6	16 1208 1208 1682 1420.0 19.6	7 590 590 1682 1420.0 19.8	3 272 272 1682 1420.0 19.6	4 261 261 1682 1420.0 16.4	9 1338 1338 1682 1420.0 21.8	1201 1201 1682 1420.0 19.5	987 987 1682 1420.0 17.2
POWER AVE POWER MW PEAK POW MW ENERGY GWH 963.0	84 510 30.1	47 509 7.9	94 509 20.2	90 509 64.7	116 509 86.5	129 509 93.1	143 509 106.2	146 509 108.9	135 517 97.4	96 538 71.7	99 538 35.8	99 538 16.6	83 538 15.9	107 538 79.8	95 538 70.8	82 529 57.3
FORT RANDALL NAT INFLOW 1036 DEPLETION 80	122 1	57 1	73 1	206 4	130 9	168 12	77 18	56 15	55 7	33 1	2	1 0	1	16 3 8	4 3	34 3
EVAPORATION 88 REG INFLOW 17567 RELEASE 17567	652 244	197 180	430 430	1344 1344	1648 1648	1800 1800	6 1929 1929	19 1945 1945	24 1724 1868	18 1222 1859	7 584 888	3 270 415	3 258 280	1344 978 366	1202 965 237	1018 794 224
STOR CHANGE 0 STORAGE 3124 ELEV FTMSL 1350.0	408 3532 1355.0	17 3549 1355.2	3549 1355.2	0 3549 1355.2 22.6	3549 1355.2 26.8	0 3549 1355.2 30.3	0 3549 1355.2 31.4	0 3549 1355.2 31.6	-144 3405 1353.5 31.4	-637 2768 1345.1 30.2	-304 2464 1340.4 29.9	-145 2319 1337.9 29.9	-22 2297 1337.5 17.7	2663	2900 1347.0 15.7	3124 1350.0 13.8
DISCH KCFS 9.2 POWER AVE POWER MW PEAK POW MW ENERGY GWH 1735.4	8.2 68 354 24.6	12.9 110 355 18.4	24.1 203 355 43.8	191 355 137.3	226 355 167.8	254 355 182.9	263 355 195.9	265 355	262 349 188.4	242 318 179.7	225 297 81.1	218 285 36.7	128 284 24.7	119 312 88.4	122 327 91.1	111 338 77.1
GAVINS POINT NAT INFLOW 1654 DEPLETION 114 CHAN STOR -10 EVAPORATION 28	81 0 2	38 0 -9	49 0 -21	181 5 3	224 19 -8	206 24 - 7	155 39 -2 2	125 10 0 5	99 -5 0 7	115 2 2 6	44 5 1 3	2 0 1	23 3 23 1	75 10 3 3	78 1 0	140 4 937
REG INFLOW 19068 RELEASE 19068 STOR CHANGE	328 328	209 209	457 457	1523 1523	1845 1845	1976 1976	2041 2041	2054 2041 13	1966 1940 26	1968 1968 397	925 925 397	432	322 322 397	1043 1043 397	1043 1043 397	976 -39 358
STORAGE 358 ELEV FTMSL 1206.0 DISCH KCFS 12.5 POWER	358 1206.0 11.0	15.0	25.6	25.6	30.0	33.4	33.2	371 1206.5 33.2 109	397 1207.5 32.6 109	1207.5 32.0	1207.5 31.1 106	1207.5 31.1	1207.5 20.3 72	1207.5 17.0	1207.5 17.0 60	1206.0 17.0 60
AVE POWER MW PEAK POW MW ENERGY GWH 778.3	39 114 13.9	52 114 8.8	88 114 18.9	87 114 63.0	101 114 75.1	108 114 77.9	108 114 80.5	115 80.8	117 78.3	117 80.6	117 38.2	117	117 13.7	78 44.6	78 44.6	76 41.5
GAVINS POINT - SIO NAT INFLOW 1966 DEPLETION 248	143 6	67 3	86 4	638 20	319 34	198 30	156 37	116 34	76 22				9 3	19 12	8 13	66 13
REGULATED FLOW AT S KAF 20786 KCFS	10UX CI1 464 15.6	272 19.6		2141 36.0	2130 34.6	2144 36.0	2160 35.1	2123 34.5	1994 33.5		936 31.5			1050 17.1	1038 16.9	1029 17.9
TOTAL NAT INFLOW 27400 DEPLETION 2565 CHAN STOR -64 EVAPORATION 1295	1450 76 48	676 36 -13	46 -42	183 -22	3863 615 -26	6275 1498 -39	3850 999 18 80	149 6 252	1146 -207 18 314 57249	-75 22 271	-112 1 121	~ 52 - 3 56	-59 9 64	657 -204 -1 139 55361	637 -214 -42 55132	4
STORAGE 52516 SYSTEM POWER AVE POWER MW	685	53828 619	948	978	1166	1309	59227 1346	1348	57249 1251 2349	1040	1027	1022	868	947	984 2297	929
PEAK POW MW ENERGY GWH 9540.3 DAILY GWH	16.4	2315 104.1 14.9	204.7 22.7	704.3 23.5	867.4 28.0	942.2 31.4	1001.1 32.3	1003.2 32.4	901.0 30.0	774.1 25.0	369.8 24.7	171.6 24.5	166.6 20.8	704.5	732.3 23.6	646.6 22.3
INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	JUTOF	3 LUUL	STAUG	JUSEP	31001	TONON	221000	3 0 24 0 V			

2004-2005 AOP EXTENSIONS, UPPER QUARTILE RUNOFF SIMULATION 99001 9901 9901 PAGE 1

	20	04-2005 AOP 1	EXTENSIONS	. UPPER	QUARTII	LE RUNO	FF SIMUI	ATION 9	99001 !	9901 9:	901 PA	GE	1
DATE OF STUDY 11/15/04 TIME OF STUDY 10:48:15		WAVIGA		N							STUDY NO		
29FEB08 INI-SUM 15MA	2008 R 22MAR 31MAB	30APR 31M					310CT	15NOV	22NOV	200 30NOV	9 31DEC	31JAN	28FEB
	7 124 160 6 3 3		39 2079 19 486	1018 151 21	381 -66 66	316 -126 83	443 -65 72	176 -23 32	82 -11 15	94 -12 17	289 -120 37	248 -142	334 -91
EVAPORATION 343 MOD INFLOW 7273 26 RELEASE 7669 20 STOR CHANGE -397 5 STORAGE 14418 1447 ELEV FTMSL 2231.2 2231.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	506 5 74 4 14583 150 2232.0 2234	53 1083 67 510 50 15560 .3 2236.6	846 676 170 15730 2237.4	2236.2	359 595 -236 15229 2235.1	2234.8 2		77 115 -38 15041 2234.2 8.3	88 159 -70 14971 2233.9 10.0	372 615 -243 14728 2232.7 10.0	390 799 -409 14319 2230.7 13.0	425 722 -297 14022 2229.2 13.0
DISCH KCFS 13.0 7. POWER	0 7.0 8.0 4 95 104 6 207 207	3 115 1 7 207 2	.0 18.2 22 209 08 210 .8 150.6	11.0 151 211 112.2	10.5 144 210 107.0	10.0 137 209 98.3	8.2 112 209 83.3	8.3 113 209 40.7	113 208 19.0	136 208 26.1	136 207 100.9	175 206 130.0	174 205 116.8
	0 205 26 1 19 2 9 -1	5 23 1	76 2933 69 820 -5 -90	2199 607 69	698 60 5	477 -129 5	542 -14 17	216 -102 -1	101 -48	115 -54 -17 20	238 -120 0 43	289 -105 -29	361 -64
EVAPORATION 408 REG INFLOW 17930 66 RELEASE 18181 53 STOR CHANGE -251 14 STORAGE 18356 1844	6 250 35 1 34 1 8 18521 1853 7 1838.8 1838.	7 1517 17 5 103 2 7 18640 188 9 1839.2 1839	22 1666 34 1440 74 20314 .9 1844.3	25 2312 1722 591 20904 1846.0 28.0	80 1208 1722 -513 20391 1844.5 28.0	99 1107 1607 -500 19891 1843.0 27.0	85 993 1635 -641 19249 1841.1 26.6	38 526 684 -158 19091 1840.6 23.0	18 246 292 -45 19046 1840.5 21.0	292 317 -26 19020	930 1230 -300 18720 1839.4 20.0	1164 1537 -373 18347 1838.3 25.0	1147 1388 -241 18106 1837.5 25.0
POWER AVE POWER MW 21 PEAK POW MW 4 ENERGY GWH 2774.9 80	5 225 25 1 471 47	1 473 4	50 354 75 499 .4 255.0	360 500 267.5	360 499 267.7	344 493 247.9	336 479 250.2	290 478 104.6	265 477 44.5	252 477 48.4	251 473 187.1	312 469 231.8	310 466 208.1
CHAN STOR -8	0 177 22 2 10 1 1 -	3 46	35 619 65 126 10	204 147 24	85 96 74	112 24 4 92	70 -8 2 81	75 2 14 37	35 1 8 17	40 1 4 20	15 11 0 43	4 16 -20	41 25
EVAPORATION 388 REG INFLOW 19833 9 RELEASE 17306 7 STOR CHANGE 2527 1 STORAGE 17266 174 ELEV FTMSL 1602.3 1603 DISCH KCFS 17.2 24	5 186 37 9 231 18 6 17697 1788 0 1603.7 1604.	4 1216 15 9 557 3 6 18443 188 4 1606.2 1607		1755 1886 -131 19184	1637 1941 -304 18880 1607.6 31.6	1606 1721 -115 18765 1607.3 28.9	1633 1227 406 19171 1608.6 20.0	735 598 136 19307 1609.0 20.1	316 276 40 19347 1609.1 19.9	341 460 -119 19228 1608.8 29.0	1191 1379 -188 19040 1608.2 22.4	1506 1201 304 19344 1609.1 19.5	1404 955 450 19793 1610.5 17.2
POWER AVE POWER MW 3 PEAK POW MW 6 ENERGY GWH 2706.5 108	690 69	4 704 7	18 359 10 719 5.5 258.7	398 716 296.2	408 711 303.6	373 709 268.6	259 716 192.5	262 718 94.3	259 719 43.6	377 717 72.3	291 714 216.7	254 719 189.2	225 726 151.4
	.0 1420.0 1420.	4 1216 19 2 1682 16 0 1420.0 1420	519 1651 519 1651 582 1682 5.0 1420.0 5.7 27.7	5 1881 1881 1682 1420.0 30.6	15 1926 1926 1682 1420.0 31.3	19 1703 1703 1682 1420.0 28.6	16 1211 1211 1682 1420.0 19.7	7 591 591 1682 1420.0 19.9	3 273 273 1682 1420.0 19.6	4 456 456 1682 1420.0 28.7	9 1370 1370 1682 1420.0 22.3	1201 1201 1682 1420.0 19.5	955 955 1682 1420.0 17.2
	13 63 9 10 509 50 .6 10.5 21.	9 509 5	116 130 509 509 5.0 93.5	143 509 106.5	147 509 109.0	136 517 97.6	97 538 71.9	100 538 35.8	99 538 16.6	143 538 27.5	110 538 81.7	95 538 70.8	82 529 55.4
DEPLETION 80 EVAPORATION 88 REG INFLOW 18073 8 RELEASE 18073 4	1 1 33 241 44 25 224 44 08 17 32 3549 354 .0 1355.2 1355.	1 4 5 1414 16 5 1414 16 0 9 3549 3 2 1355.2 135	127 165 9 12 537 1804 537 1804 537 1804 537 1804 537 1804 537 1804 537 1804 549 3549 5.2 1355.2 5.6 30.3	18 6 1932 1932 0 3549 1355.2	55 15 1947 1947 0 3549 1355.2 31.7	54 7 24 1726 1870 -144 3405 1353.5 31.4	32 1 18 1224 1861 -637 2768 1345.1 30.3	2 1 7 585 889 - 304 2464 1340.4 29.9	1 0 3 270 415 -145 2319 1337.9 29.9	1 3 452 474 -22 2297 1337.5 29.9	15 3 8 1375 1009 366 2663 1343.5 16.4	4 3 1202 965 237 2900 1347.0 15.7	33 3 985 761 224 3124 1350.0 13.7
POWER AVE POWER MW 1	19 137 21 54 355 35 .7 23.0 45.	5 355	224 255 355 355 6.7 183.3	355		262 349 188.6	242 318 179.9	225 297 81.2	218 285 36.7	215 284 41.4	123 312 91.2	122 327 91.1	110 338 73.9
RELEASE 19556 5		0 5 7 2 7 1589 1	220 203 19 24 -5 -7 832 1976 832 1976	39 -2 2 2041	10	97 -5 0 1966 1940 26	113 2 6 1968 1968	44 5 1 925 925	20 2 0 1 432 432	23 3 0 1 493 493	74 10 25 3 1095 1095	77 1 1043 1043	138 4 903 942 -39
ELEV FTMSL 1206.0 1206 DISCH KCFS 17.0 17		0 1206.0 120	358 358 6.0 1206.0 9.8 33.2	1206.0	371 1206.5	307	32.0	31.1	31.1	1.16	17.0	17.0	358 1206.0 17.0
ENERGY GWH 798.0 21	14 114 11 .2 10.8 19	4 114	100 108 114 114 4.7 77.9	114	115	109 117 78.3	108 117 80.6	106 117 38.2	106 117 17.8	106 117 20.4	63 78 46.8	60 78 44.6	60 76 40.0
DEPLETION 248 REGULATED FLOW AT SIOUX	38 65 i 6 3	4 20 56 2186 2	309 192 34 30 107 2138) 37 8 2155	34 2120		40 9 1999	16 6 936	7 3 437 31.5	9 3 499 31.5	1101	1037	64 13 993 17.9
KCFS 21 TOTAL NAT INFLOW 27000 14	.4 23.0 31 25 665 8	.1 36.7 3 55 3129 3	4.3 35.9 806 6191 615 1498	1 3799	1455	33.5 1130 -207	32.5 1240 -75	31.5 528 -112	246 - 52	282 - 59	649 -204	629 -214	971 -114
DEPLETION 2565 CHAN STOR -12 EVAPORATION 1333 STORAGE 55205 555 SYSTEM POWER	79 -4 - 96 56302 565	35 -25 20 57255 58	-20 -97 319 60777	7 67 82 7 61406	4 259 60337	323 59369	279 58427	14 125 58020 1097	58 57832	66 57595	142 57230	56988	57084
AVE POWER MW PEAK POW MW 2 ENERGY GWH 10287.6 32	.9 18.1 24	50 2361 2 .1 778.6 91 .6 26.0 2	230 1415 372 2406 5.1 1018.9 9.5 34.0	5 2405 9 1059.0 0 34.2	2399 1065.9 34.4	2395 979.4 32.6	2377 858.5 27.7	2356 394.8 26.3	2345 178.2 25.5	2341 236.2 29.5	2322 724.4 23.4	2337 757.4 24.4	2340 645.6 23.1
INI-SUM 15	IAR 22MAR 31M	AR 30APR 31	MAY 30JU	N 31JUI	31AUG	30SEP	9 310CT	15NOV	22NOV	3 0 NOV	31DEC	31JAN	28FEB

DATE OF STUDY 11/15/04 2004-2005 AOP EXTENSIONS, UPPER QUARTILE RUNOFF SIMULATION 99001												9901 9	901 PA	GE	1		
TIME OF STUDY						AVIGATI	ON SEAS	ON							STUDY N	0 17	
28FE			2009 22MAR	31MAR	30APR				CEPT AS 31AUG		310CT	15NOV	22NOV	201 30NOV		31JAN	28FEB
FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	- 7811 398 363 7050 5173 1877 14022 2229.2 13.0	260 6 254 179 76 14097 2229.6 6.0	121 3 119 69 49 14146 2229.9 5.0	156 3 152 89 63 14209 2230.2 5.0	648 85 563 357 206 14415 2231.2 6.0	1305 319 986 461 525 14940 2233.7 7.5	2027 486 1541 476 1065 16005 2238.6 8.0	992 151 22 819 461 358 16363 2240.2 7.5	371 -66 69 368 430 -63 16301 2240.0 7.0	308 -126 87 347 357 -10 16291 2239.9 6.0	432 -65 76 421 373 48 16338 2240.1 6.1	171 -23 35 159 -20 16319 2240.0 6.0	80 -11 16 74 97 -23 16296 2239.9 7.0	91 -12 18 85 127 -42 16254 2239.8 8.0	281 -120 361 523 -161 16092 2239.0 8.5	242 -142 384 523 -139 15954 2238.4 8.5	326 -91 417 472 -55 15899 2238.2 8.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH		81 205 29.0	67 205 11.3	67 205 14.5	81 206 58.2	102 208 75.6	110 212 78.9	104 213 77.2	97 213 72.2	83 213 59.9	84 213 62.6	83 213 29.9	97 213 16.3	111 213 21.3	117 212 87.4	117 212 87.2	117 211 78.7
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION DEC LNELOW	11537 1128 44 399 15227	431 41 69 638	201 19 10 261	258 25 323	1118 23 -10 1442	1541 169 -15 1818	2868 820 -5 2519	2150 607 5 25 1984	683 60 5 78 980	467 -129 10 97 866	530 -14 -1 83 833	211 -102 1 37 455	98 -48 -10 17 216	113 -54 -10 20 264	232 -120 -5 42 828	283 -105 911	353 -64 0 889
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	16122 -895 18106	476 162 18267	222 39 18306 1838.1 16.0	321 2 18308	1250 193 18500	1445 373 18874 1839.9 23.5	1517 1002 19875 1843.0 25.5	1537 447 20322 1844.3 25.0	1506 -527 19796 1842.7 24.5	1262 -396 19400 1841.6 21.2	1308 -474 18925 1840.1 21.3	21.2	21.0	317 -53 18622 1839.1 20.0	20.0	24.0	1333 -444 17211 1834.5 24.0 293
AVE POWER MW PEAK POW MW ENERGY GWH	2446.2	199 468 71.6	199 469 33.5	224 469 48.4	262 471 188.4	294 475 218.7	322 493 232.1	319 499 237.3	312 489 232.5	269 481 193.6	269 476 199.9	266 474 95.8	263 473 44.2	250 472 48.1	249 468 185.5	296 461 220.0	455 196.6
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	2527 597 4 396 17660 18618 -958 19793 1610.5 17.2	363 22 35 851 722 129 19922 1610.9 24.3	169 10 381 196 185 20108 1611.4 14.1	218 13 -8 518 398 120 20228 1611.8 22.3	311 46 -11 1503 1290 213 20441 1612.4 21.7	225 65 -9 1596 1593 2 20444 1612.4 25.9	591 126 -7 1975 1712 263 20707 1613.2 28.8	195 147 2 5 1562 1942 -380 20327 1612.1 31.6	81 96 2 78 1416 1997 -581 19746 1610.4 32.5	107 24 13 95 1262 1811 -549 19197 1608.7 30.4	67 -8 0 1300 1356 -56 19141 1608.5 22.1	72 2 0 37 664 688 -24 19116 1608.4 23.1	33 1 17 308 317 -9 19107 1608.4 22.8	38 1 4 20 339 507 -168 18939 1607.8 32.0	14 11 0 42 1191 1568 -377 18561 1606.6 25.5	4 16 -16 1448 1392 56 18617 1606.8 22.6	39 25 1347 1128 219 18836 1607.5 20.3
POWER AVE POWER MW PEAK POW MW ENERGY GWH	2947.9	319 728 114.8	186 731 31.3	294 733 63.5	287 736 206.6	343 736 255.2	381 740 274.5	418 734 310.9	427 725 317.3	396 717 285.4	287 716 213.3	300 715 108.2	297 715 49.8	413 712 79.3	329 706 244.7	291 707 216.8	262 710 176.2
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS	78 18540 18540 1682	722 722 1682 1420.0 24.3	196 196 1682 1420.0 14.1	398 398 1682 1420.0 22.3	1290 1290 1682 1420.0 21.7	1593 1593 1682 1420.0 25.9	1712 1712 1682 1420.0 28.8	5 1937 1937 1682 1420.0 31.5	15 1982 1982 1682 1420.0 32.2	19 1792 1792 1682 1420.0 30.1	16 1340 1340 1682 1420.0 21.8	7 681 1682 1420.0 22.9	3 314 314 1682 1420.0 22.6	4 503 503 1682 1420.0 31.7	25.4	1392 1392 1682 1420.0 22.6	1128 1128 1682 1420.0 20.3
POWER AVE POWER MU PEAK POW MW ENERGY GWH	1069.7	114 510 41.0	66 509 11.1	104 509 22.5	101 509 73.1	121 509 90.2	135 509 96.9	147 509 109.7	151 509 112.2	143 517 102.7	107 538 79.4	114 538 41.2	113 538 19.0	158 538 30.3	125 538 92.8	110 538 81.9	97 529 65.4
FORT RANDAJ NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	978 80 88 19349 19349 0	116 1 836 428 408 3532 1355.0 14.4	249 232 17	69 1 466 466 3549 1355.2 26.1	194 4 1480 1480 0 3549 1355.2 24.9	122 9 1706 1706 3549 1355.2 27.8	159 12 1859 1859 3549 1355.2 31.2	73 18 6 1986 1986 0 3549 1355.2 32.3	53 15 19 2001 2001 0 3549 1355.2 32.5	52 7 24 1814 1958 - 144 3405 1353.5 32.9	31 18 1352 1989 -637 2768 1345.1 32.3	2 1 7 675 979 - 304 2464 1340.4 32.9	1 0 311 456 -145 2319 1337.9 32.9	32.9	15 3 8 1564 198 366 2663 1343.5 19.5	18.8	32 3 1157 933 224 3124 1350.0 16.8
AVE POWER MU PEAK POW MW ENERGY GWH	¥ 1903.8	120 354 43.0	142 355 23.8	220 355 47.5	210 355 150.9	233 355 173.7	262 355 188.8	271 355 201.6	273 355 203.1	274 349 197.2	258 318 192.1	248 297 89.2	240 285 40.3	236 284 45.4	145 312 108.0	146 327 108.8	135 338 90.4
GAVINS POI NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	1566 114 -7 28 20766 20766	77 0 -1 505 505 1206.0 17.0	36 0 -4 264 264 358 1206.0 19.0	46 0 -18 495 495 1206.0 27.7	171 5 2 1648 1648 1648 1206.0 27.7	212 19 -6 1894 1894 358 1206.0 30.8	195 24 -7 2023 2023 358 1206.0 34.0	147 39 -2 2091 2091 358 1206.0 34.0	118 10 0 5 2104 2091 13 371 1206.5 34.0	94 -5 -1 7 2049 2023 26 397 1207.5 34.0	109 2 1 6 2091 2091 397 1207.5 34.0	42 5 -1 3 1012 1012 397 1207.5 34.0	19 2 0 1 472 472 397 1207.5 34.0	22 3 0 1 540 540 540 1207.5 34.0	71 10 25 3 1280 1280 1280 397 1207.5 20.8	74 1 1230 1230 397 1207.5 20.0	133 4 1070 1109 -39 358 1206.0 20.0
POWER AVE POWER M PEAK POW MW ENERGY GWH	N 837.7	59 114 21.2	66 114 11.0	94 114 20.4	94 114 67.9	103 114 76.5	110 114 79.1	110 114 81.7	110 115 82.1	112 117 80.5	113 117 83.9	113 117 40.6	113 117 18.9	113 117 21.7	72 78 53.6	70 78 52.0	69 76 46.5
GAVINS POI NAT INFLOW DEPLETION REGULATED F KAF KCFS	1781 248	129 6 IOUX CI	60 3	77 4 568 31.8	578 20 2206 37.1	289 34 2149 34.9	180 30 2173 36.5	141 37 2195 35.7	105 34 2162 35.2	69 22 2070 34.8	38 9 2120 34.5	15 6 1021 34.3	7 3 477 34.3	8 3 545 34.3	17 12 1285 20.9	7 13 1224 19.9	60 13 1156 20.8
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWE AVE POWER M PEAK POW MW ENERGY GWH DAILY GWH	W	103 57858 891 2381 320.6 21.4	17.4	24.1	24.8	615 -30 59846 1196 2398 889.8 28.7	1320 2423 950.3 31.7	32.9	6 264 61444 1370 2406 1019.4	1097 -207 22 328 60371 1277 2393 919.3 30.6 30SEP	283 59251 1117 2377 831.3 26.8	27.0	-9 58 58474 1122 2341 188.6 26.9	-59 -7 66 58189 1281 2336 246.0 30.8	772.0	614 -214 -15 57204 1031 2322 766.7 24.7 31JAN	943 -114 4 57109 973 2320 654.0 23.4 28FEB

DATE OF STUDY	11/15/04	1				AOP EXTI			QUARTI	LE RUNOF	FF SIMUI	LATION	99001		901 PA		1
TIME OF STUDY 28FE		5	2010				IN 100	O AF EXO		INDICAT		1.5NOV	22NOV	201 30NOV	1	31JAN	28FEB
FORT PECK-	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY							79	91	280	240	324
NAT INFLOW DEPLETION EVAPORATION	7762 398 365	258 6	121 3	155 3	644 85	1297 319	2013 486	986 151 23	369 -66 71	306 -126 88	429 -65 76	170 -23 34	-11 16 74	-12 18 85	-120 39 361	-142 382	-91 415
MOD INFLOW RELEASE	6999 7941 -942	253 179 74	118 83 35	152 143 9	559 565 -6	978 707 271	1527 774 753	812 769 44	364 738 -374	344 655 -311	418 536 -119	158 260 -101	121 -47	159 -74	615 -254 15798	861 -479 15319	778 -363 14957
STOR CHANGE STORAGE ELEV FTMSL	15899 2238.2	15973	16007	16016	16010 2238.7 9.5	16281	17034 2243.1 13.0	17078 2243.3 12.5	16704 2241.7 12.0	16394 2240.4 : 11.0	16275 2239.8 : 8.7	16173 2239.4 8.7	16126 2239.2 8.7	16052 2238.9 10.0	15798 2237.7 10.0	2235.5 14.0	
DISCH KCFS POWER AVE POWER MW	8.5	83	83 212	110 212	131 212	159 213	180 215	174 215	167 214	153 213	121 213	121 212	120 212	138 212	138 211	189 209	188 208
PEAK POW MW ENERGY GWH	1322.6	212 29.8	13.9	23.8	94.3	118.0	129.6	129.7	124.3	109.8	89.9	43.4	20.2	26.5	102.4	140.7	126.2
GARRISON NAT INFLOW DEPLETION	11471 1128	428 41 25	200 19	257 25 -20	1111 23 -15	1532 169 -20	2852 820 -15	2138 607 5	679 60 5	464 -129 10	527 -14 22	210 -102 0	98 -48	112 -54 -12	231 -120 0	281 -105 -39	351 -64
CHAN STOR EVAPORATION REG INFLOW	-55 412 17817	591	264	355 339	1638 1220	2050 1383	2791 1488	25 2280 1506	79 1282 1476	99 1158 1291	86 1013 1367	39 533 536	18 249 250	21 292 301	45 921 1230	1208 1476	1193 1333
RELEASE STOR CHANGE STORAGE	15981 1836 17211	536 55 17266	250 14 17280	16 17296	418 17714	667 18381	1303 19684	773 20457 1844.7	-193 20264	-134 20130 1843.7	-354 19777 1842.7	-3 19774 1842.7	-1 19773 1842.7	-9 19763 1842.7	-308 19455 1841.7	-268 19187 1840.9	-140 19047 1840.5
ELEV FTMSL DISCH KCFS POWER	1834.5 24.0	18.0	1834.7 18.0	19.0	20.5	22.5	25.0	24.5	24.0	21.7	22.2	18.0 229		19.0 242	20.0 254	24.0 303	24.0 303
AVE POWER MW PEAK POW MW ENERGY GWH	2437.2	219 456 79.0	219 456 36.9	232 456 50.0	251 462 180.6	278 470 206.9	314 486 226.4	499 232.5	499 228.9	498 200.0	488 210.8	488 82.6	488 38.5	487 46.4	481 188.8	479 225.7	477 203.3
OAHE NAT INFLOW DEPLETION	2496 597	359 22	168 10	215 13	307 46	222 65	585 126	192 147	80 96 2	105 24 9	66 - 8 - 2	71 2 17	33 1	38 1 -4	14 11 -4	4 16 -17	38 25
CHAN STOR EVAPORATION REG INFLOW	0 378 17502	24 896	407	-4 537	-6 1475	-8 1533	-10 1937	2 24 1529	74 1388	91 1291 1782	79 1360 1327	35 586 673	16 266 310	19 315 499		1447 1392	1346 1135
RELEASE STOR CHANGE STORAGE	18427 -925 18836	807 89 18925	214 193 19118	376 161 19279	1235 240 19519	1548 -15 19504	1687 250 19754	1913 -384 19371	1968 -580 18790	-491 18299	33 18332	-87 18245	-45 18200	-184 18017	-372 17644	55 17699	211 17911 1604.5
ELEV FTMSL DISCH KCFS POWER	1607.5 20.3	1607.8 27.1	1608.4 15.4	1608.9 21.1	20.8	25.2	28.3	1609.2 31.1	32.0	29.9	21.6	22.6	22.3	31.5 400	25.4	22.6	20.4
AVE POWER MW PEAK POW MW ENERGY GWH	2873.8	350 712 126.1	201 715 33.7	274 718 59.2	271 722 195.0	329 722 244.5	370 726 266.7	406 719 301.9	414 710 308.1	384 701 276.6	276 702 205.7	700 104.3	699 48.0	696 76.8	690	691 213.2	694 174.3
BIG BEND- EVAPORATION REG INFLOW	 78 18349	807	214	376	1235	1548	1687	5 1908	15 1953	19 1763	16 1310	7 666	3 307	4 495 495		1392 1392	1135 1135
RELEASE STORAGE ELEV FTMSL	18349 1682 1420.0	807 1682	214 1682	376 1682 1420.0	1235 1682 1420.0	1548 1682 1420.0	1687 1682 1420.0	1908 1682 1420.0	1953 1682 1420.0	1763 1682 1420.0		666 1682 1420.0	307 1682 1420.0	1682 1420.0	1682 1420.0	1682 1420.0	1682
DISCH KCFS POWER	20.3	27.1		21.1	20.8	25.2 118	28.3 133	31.0 145	31.8 149	29.6 140	21.3 104	22.4 112	22.1 111	31.2	124	22.6 110	98
AVE POWER MU PEAK POW MW ENERGY GWH	1058.7	510 45.8	509	509 21.3	509 70.0	509 87.6	509 95.5	509 108.1	509 110.6	517 101.1	538 77.7	538 40.3	538 18.6	538 29.8		538 81.9	529 65.8
FORT RANDAL NAT INFLOW DEPLETION	5L 967 80	114 1		68 1	192 4	121 9	157 12	72 18	52 15 19	52 7 24	31 1 18	2 1 7	1 0 3	1 1 3	. 3	4 3	31 3
EVAPORATION REG INFLOW RELEASE	88 19147 19147	920 512	250	444 444	1423 1423	1660 1660	1832 1832	6 1956 1956	1971 1971	1785 1929 -144	1322 1959 -637	660 964 -304	304 449 -145	492 514	1557 1191	1393 1156 237	1163 939 224
STOR CHANGE STORAGE ELEV FTMSL	0 3124 1350.0	408 3532 1355.0		3549 1355.2	1355.2	3549 1355.2	3549 1355.2	0 3549 1355.2	0 3549 1355.2	3405 1353.5	2768 1345.1	2464	2319 1337.9	2297 1337.5	2663 5 1343.5	2900	3124 1350.0 16.9
DISCH KCFS POWER AVE POWER M	16.8	17.2 143	18.0	24.9 209	23.9 202	27.0	258	267	269	270	254	244	236	233	144	146	
PEAK POW MW ENERGY GWH	1884.1	354 51.3	355	355 45.2			355 186.1	355 198.6		349 194.4	318 189.3	297 87.9					
GAVINS POID NAT INFLOW DEPLETION	NT 1551 114	76 0	0	46 0	5	19	193 24	146 39	10		108 2 1	42 5 - 1	2	3	3 10	1	
CHAN STOR EVAPORATION REG INFLOW	-1 28 20555	. 588	284	-13 477	1589	1845	-7 1993		5 2073	7 2019	6 2060 2060	3 997 997	1 465	532	1 3 2 1272	1229	1073
RELEASE STOR CHANGE STORAGE	20555	588	284	477 358			1993 358	2060 358	13	26	207	307	397	397	7 397	397	-39
ELEV FTMSL DISCH KCFS POWER	20.0	19.8	3 20.5	26.7	26.7	30.0	1206.0 33.5 109		55.5		1207.5 33.5 112	33.5			5 1207.5 5 20.7 2 72	70	20.0 69
AVE POWER M PEAK POW MW ENERGY GWH	W 832.5	68 114 24.6	114	91 114 19.7	114	114	109 114 78.3	114	115	117	117 83.1	117 40.2	117	11	7 78	78	
GAVINS POI NAT INFLOW DEPLETION	1753 248	127	7 59 5 3				177 30					15 6			8 17 3 12	13	13
REGULATED F KAF KCFS	LOW AT S 22060	10UX C: 709 23.8	9 341				2140 36.0										
TOTAL NAT INFLOW DEPLETION	26000 2565	70	5 36	46	5 183	615		999	149	-207	-75	-112	- 52	2 - 5	9 -204	-214	-114
CHAN STOR EVAPORATION STORAGE	- 57	4						83	263	327	282	126	5 58	36	6 143		57078
SYSTEM POWE AVE POWER M PEAK POW MW	R	99 235	0 798	1015	2374	2382	2405	5 2412	2401	2396	2375	2352	2340) 233	4 2309	2322	2 2322
ENERGY GWH DAILY GWH	10409.0	356. 23.	5 134.1 8 19.2	219.3 24.4	3 750.6 1 25.0	5 901.1) 29.1	982.5 32.8		34.0) 32.1	. 27.6	26.6	26.3	3 30.	7 25.3	26.5	5 25.3
	INI-SUM	1 15MA	R 22MAF	31MAI	R 30API	R 31MAY	100 C	1 31JUI	. 31AUC	j 30SEP	× 310C1	TONG	22110		V 31DEC		

TIME OF STUDY 10:56:23

2004-2005 AOP EXTENSIONS, MEDIAN RUNOFF SIMULATION 99001 9901 4 PAGE 1 STUDY NO 19 SHORTEN NAVIGATION SEASON 31-DAYS

TIME OF STUDY 10:56:23		SHORT VA	EN NAVIGATI LUES IN 100	ON SEASON 3 0 AF EXCEPT	31-DAYS T AS INDICA	TED				STUDY I		9
28FEB06 INI-SUM 15MAR	2006 22MAR 31MA	R 30APR 31	MAY 30JUN	31JUL 317	AUG 30SEP	310CT	15NOV 2	22NOV	2007 30NOV		31JAN	28FEB
FORT PECK NAT INFLOW 7400 264 DEPLETION 399 -21 EVAPORATION 372 MOD INFLOW 6629 285 RELEASE 5175 179 STOR CHANGE 1454 107 STORAGE 10008 10115 ELEV FTMSL 2206.6 2207.2 DISCH KCFS 9.0 6.0	-10 -1 133 17 69 8 64 8 10179 1026 2207.6 2208.	2 18 1 610 9 298 2 312 0 10573 10 1 2210.0 221	210 1851 338 630 872 1221 461 506 411 715 984 11699 2.5 2216.7 7.5 8.5	215 22 592 523 69 11768 11 2217.1 221					100 -21 19 102 111 -9 11756 217.0 7.0	310 -132 41 401 523 -122 11635 2216.3 8.5	261 -145 406 553 -147 11487 2215.5 9.0	349 -98 447 -25 11462 2215.3 8.5
DISCH KCFS 9.0 6.0 POWER MW 73 PEAK POW MW 136 ENERGY GWH 789.5 26.3	61 6 136 13 10.3 13.	1 61 7 183	93 107 186 192 59.2 77.0	108 192	108 76 191 191 0.3 54.9	62 191 46.1	62 192 22.4	62 192 10.4	89 192 17.1	108 191 80.4	114 190 84.8	107 190 72.2
GARRISON NAT INFLOW 11001 469 DEPLETION 954 1 CHAN STOR 6 33 EVAPORATION 437 REG INFLOW 14790 680 RELEASE 13028 417 STOR CHANGE 1762 263 STORAGE 12037 12301 ELEV FTMSL 1814.9 1816.0 DISCH KCFS 20.5 14.0	0 11 299 37 194 28 104 8 12405 1249 1816.4 1816.	1 4 0 1147 1 6 1012 1 5 135 0 12625 13 8 1817.4 181	.423 2958 177 755 -27 -11 .680 2698 .168 1220 512 1478 137 14615 19.4 1825.2 9.0 20.5	542 0 26 2020 1230 1 791 15405 1528.2 1828.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	454 -11 12 92 684 824 -139 14966 1826.5 13.4			102 -52 -22 221 286 -64 14895 826.3 : 18.0	253 -102 -16 47 815 1230 -415 14480 1824.7 20.0	237 -82 -5 867 1261 -393 14087 1823.2 20.5	326 -48 5 -287 -287 13800 1822.1 20.5
POWER AVE POWER MW 150 PEAK POW MW 388 ENERGY GWH 1784.6 54.1	151 17 389 39	3 184 1 393	208 230 400 422 54.5 165.6	231 432	227 192 429 428 8.9 138.1	156 426 115.8	155 426 55.8	155 426 26.0	208 425 39.9	229 419 170.6	233 414 173.0	230 410 154.9
OAHE NAT INFLOW 2300 317 DEPLETION 613 23 CHAN STOR 1 32 EVAPORATION 391 REG INFLOW 14325 743 RELEASE 12497 520 STOR CHANGE 1828 2233 STORAGE 12608 12832 ELEV FTMSL 1584.1 1585.1	11 1 331 45 95 25 237 15 13068 1326 1586.1 1586	4 47 0 -5 2 1324 1 8 977 1 4 346 2 13608 13 9 1588.4 158	236 689 66 129 -10 -7 1329 1773 1183 1310 145 462 3754 14216 39.0 1590.9 19.2 22.0	2 24 1219 1 1589 1 -370 - 13846 13 1589.4 158	33 118 100 25 2 15 75 94 060 996 427 878 367 118 479 13597 7.8 1588.3 3.2 14.8	14 ~8 15 82 779 918 -139 13458 1587.77 14.9	5 2 37 364 285 79 13537 1588.1		3 -22 20 245 162 84 13648 .588.5 10.2	-20 11 -10 43 1146 924 221 13869 1589.4 15.0	16 -2 1242 972 270 14140 1590.6 15.8	40 26 1153 856 297 14437 1591.7 15.4
DISCH KCFS 15.9 17.5 POWER AVE POWER MW 199 PEAK POW MW 595 ENERGY GWH 1765.1 71.6	79 16 601 60	7 191 5 613	224 258 616 625 56.9 186.0	303 618	270 172 610 613 0.9 123.7	174 610 129.3	112 611 40.2	120 612 20.1	119 614 22.8	176 618 130.8	186 624 138.3	182 630 122.6
BIG BEND EVAPORATION 103 REG INFLOW 12393 520 RELEASE 12393 520 STORAGE 1682 1682 ELEV FTMSL 1420.0 1420.0 DISCH KCFS 15.9 17.5 POWER	95 25 1682 168 1420.0 1420 6.8 14	8 977 1 2 1682 1 0 1420.0 142 5 16.4 1	1183 1310 1183 1310 1682 1682 20.0 1420.0 19.2 22.0 90 103	1583 1 1682 1 1420.0 142 25.7 2	20 25 407 853 407 853 682 1682 0.0 1420.0 2.9 14.3 108 71	22 897 897 1682 1420.0 14.6 74	10 275 275 1682 1420.0 1 9.2 47	5 138 138 1682 420.0 1 10.0 50	5 156 156 1682 420.0 9.9	11 913 913 1682 1420.0 14.8 74	972 972 1682 1420.0 15.8 78	856 856 1682 1420.0 15.4 74
AVE POWER MW 82 PEAK POW MW 510 ENERGY GWH 719.7 29.5	509 50	9 509	509 509 57.0 74.2	509	518 538 0.6 51.0	538 54.7	538 16.9	538 8.5	538 9.6	538 55.4	538 57.7	529 49.7
FORT RANDALL NAT INFLOW 900 122 DEPLETION 80 1 EVAPORATION 107 REG INFLOW 13107 641 RELEASE 13107 232 STOR CHANGE 0 409 STORAGE 3123 3532 ELEV FTMSL 1350.0 1355.0 DISCH KCFS 9.5 7.8 POWER AVE POWER MW 655	1 151 3 134 3 17 3549 35 1355.2 1355 9.7 18	1 1088 1 9 3549 3 2 1355.2 135 5 18.3 2	140 185 9 12 1314 1483 1314 1483 5549 3549 55.2 1355.2 21.4 24.9 181 210	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	57 42 15 7 25 28 424 860 598 1536 174 -675 375 2700 3.1 1344.1 6.0 25.8 217 206	2 1 20 878 1281 -403 2297 1337.5 20.8 155	2 1 8 268 268 0 2297 1337.5 1 9.0	9.7 71	9.6 70	11.5 85	11.2 86	19 3 872 528 344 3124 1350.0 9.5 76
PEAK POW MW 354 ENERGY GWH 1287.0 23.4	355 3	5 355	355 355 34.3 151.2		348 313 1.5 148.1	283 115.7	283 23.7	283 11.9	283 13.5	300 63.4	319 64.0	338 51.1
GAVINS POINT NAT INFLOW 1450 92 DEPLETION 114 C CHAN STOR -1 3 EVAPORATION 38 REG INFLOW 14404 326 RELEASE 14404 326 STOR CHANGE STORAGE 358 356 ELEV FIMSL 1206.0 1206.C DISCH KCFS 12.5 11.C	0 -4 -174 3 174 3 174 3 3 174 174 174 174 174 174 174 174	0 1232 1 0 1232 3 8 358 0 1206.0 120	174 166 19 24 -6 -7 1463 1619 1463 1619 163 1619 358 358 06.0 1206.0 23.8 27.2	39 -3 2 1672 1 1672 1 1672 1 358 1206.0 120	$\begin{array}{ccccc} 103 & 77 \\ 10 & -5 \\ 1 & 0 \\ 7 & 9 \\ 685 & 1609 \\ 672 & 1583 \\ 13 & 26 \\ 371 & 397 \\ 6.5 & 1207.5 \\ 7.2 & 26.6 \end{array}$	122 2 9 1402 1402 397 1207.5 22.8	50 5 22 4 331 331 397 1207.5 1 11.1	23 2 -1 2 153 153 397 207.5 1 11.0	27 3 0 2 175 175 175 397 1207.5 11.0	77 10 -4 766 766 397 1207.5 12.5	79 1 1 767 767 397 1207.5 12.5	127 3 658 697 -39 358 1206.0 12.5
POWER AVE POWER MW 39 PEAK POW MW 114 ENERGY GWH 604.1 13.9	114 1		82 93 114 114 60.7 66.8		93 92 115 117 9.3 66.6	80 117 59.7	40 117 14.3	39 117 6.6	39 117 7.5	44 78 32.9	44 78 33.0	44 76 29.7
GAVINS POINT - SIOUX CITY NAT INFLOW 1550 165 DEPLETION 251 6 REGULATED FLOW AT SIOUX CIT KAF 15703 491 KCFS 16.5	7 79 1 5 3 74 250 4	02 199 4 21 57 1410 3	310 224 35 30 1738 1813 28.3 30.5		96 60 34 22 734 1621 8.2 27.2	10 1434	16 6 342 11.5	7 3 158 11.4	9 3 180 11.4	21 12 775 12.6	5 13 759 12.3	82 13 766 13.8
TOTAL NAT INFLOW 24601 1435 DEPLETION 2411 10 CHAN STOR 6 66 EVAPORATION 1449 STORAGE 39817 40815 SYSTEM POWER AVE POWER MW 600) 5 3 7 - 9 41240 416	6 99 27 -4	3493 6073 644 1580 -43 -25 3462 46118 877 1001	1002 -1 89 46608 45 1079 1	194 1113 126 -237 3 41 281 350 6664 45085 .023 809	-80 36 301 44497 701	481	211 -58 -1 63 44664 497	241 -66 -44 72 44675 575	651 -198 -29 157 44562 717	582 -194 -7 44572 740	943 -104 8 44862 714
PEAR POW MW 2091 ENERGY GWH 6950.0 218.9 DAILY GWH 14.6 INI-SUM 15MAN	3 2105 21 9 75.5 150 5 10.8 16	1 2167 6 532.3 6 7 17.7	2180 2217 52.6 720.8 21.1 24.0	2220 2 802.6 76 25.9 2	211 2200 1.5 582.2 4.6 19.4	521.2 16.8	2168 173.2 11.5 15NOV	11.9	2169 110.5 13.8 30NOV	2144 533.6 17.2 31DEC	2163 550.7 17.8 31JAN	2172 480.1 17.1 28FEB

TIME OF STUDY 10:56:23

TIME OF STUDY 10:56:23				SHC	VALUES	AVIGATIC IN 1000)N SEAS() AF EX(ON 3-DAY CEPT AS	INDICA:	red			200	STODI	NO 21	,
28FEB07 INI-SUM 1	.5MAR 2	2007 22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB
ELEV FTMSL 2215.3 22				628 43 585 357 228 11908 2217.9 6.0	1210 349 861 492 369 12277 2219.9 8.0	1851 565 1286 565 721 12998 2223.9 9.5	829 223 24 582 553 29 13027 2224.1 9.0	324 -72 75 321 523 -202 12825 2223.0 8.5	319 -155 94 380 387 -7 12818 2222.9 6.5	398 -75 82 391 315 76 12894 2223.3	188 -39 37 189 152 37 12931 2223.5 5.1	88 -18 17 88 83 5 12936 2223.6 6.0	100 -21 20 101 111 -11 12925 2223.5 7.0	310 -130 43 397 523 -126 12799 2222.8 8.5	261 -143 404 553 -149 12650 2222.0 2222.0	349 -108 457 518 -61 12589 2221.7 9.0
DISCH KCFS 8.5 POWER AVE POWER MW PEAK POW MW ENERGY GWH 861.4	76 190 27.4	64 191 10.7	64 191 13.8	77 193 55.2	103 196 76.5	124 200 89.0	118 200 88.0	111 199 82.9	85 199 61.3	67 199 50.0	67 200 24.1	79 200 13.2	92 200 17.6	111 199 82.8	117 198 87.4	117 198 81.5
ELEV FTMSL 1822.1 18 DISCH KCFS 20.5			282 1 369 286 84 14155 823.5 16.0	853 14 -11 1185 1071 114 14270 1823.9 18.0	1423 177 -21 1717 1199 518 14787 1825.9 19.5	2958 766 -16 2742 1279 1462 16250 1831.2 21.5	2066 560 28 2037 1291 745 16995 1833.8 21.0	581 45 5 974 1261 -286 16709 1832.8 20.5	497 -138 20 112 930 1041 -111 16598 1832.4 17.5	454 -19 14 97 704 836 -132 16466 1831.9 13.6	192 -103 0 44 402 405 -3 16464 1831.9 13.6	89 -48 -9 21 191 222 -31 16432 1831.8 16.0	18.0	20.0	21.5	326 -57 901 1237 -336 15179 1827.3 21.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1944.1	180 413 64.9	181 414 30.4	181 415 39.1	204 417 147.0	223 424 165.7	251 443 180.9	252 453 187.4	247 449 184.0	211 448 151.6	164 446 121.7	163 446 58.8	192 446 32.2	215 445 41.3	238 439 176.8	253 434 188.0	250 429 174.2
OAHE NAT INFLOW 2300 DEPLETION 626 CHAN STOR -4 EVAPORATION 423 REG INFLOW 14910 RELEASE 13518 STOR CHANCE 1393 STORAGE 14437 1 ELEV FTMSL 1591.7 1 DISCH KCFS 15.4			190 14 462 258 203 15176 .594.6 14.5	364 47 -9 1379 977 402 15577 1596.2 16.4	236 67 -7 1361 1196 165 15743 1596.8 19.5	689 132 -9 1827 1341 487 16229 1598.6 22.5	162 156 2 27 1273 1620 -347 15883 1597.3 26.3	33 103 2 82 1110 1632 -521 15361 1595.4 26.5	118 25 14 101 1046 1442 -396 14965 1593.8 24.2	14 -9 18 88 789 923 -134 14832 1593.3 15.0	5 2 369 434 -66 14766 1593.1 14.6	2 1 -11 18 194 144 50 14816 1593.2 10.4	3 1 -9 21 257 159 98 14914 1593.6 10.0	-20 12 -9 46 1143 1088 55 14969 1593.9 17.7	17 -7 1298 879 419 15389 1595.5 14.3	40 26 1251 810 441 15829 1597.1 14.1
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1981.2	208 635 74.9	82 640 13.8	174 644 37.7	199 652 143.3	237 655 176.2	276 663 198.7	323 657 240.0	322 647 239.7	292 640 210.0	180 637 134.0	175 636 63.0	124 637 20.9	121 639 23.1	212 640 158.0	173 648 128.4	172 656 119.5
BIG BEND EVAPORATION 103 REG INFLOW 13414 RELEASE 13414 STORAGE 1682 ELEV FTMSL 1420.0 1- DISCH KCFS 15.4 POWER	520 520 1682 420.0 1 17.5	95 95 1682 420.0 1 6.8	14.5	16.4	19.5	1341 1341 1682 1420.0 22.5	26.2	26.2	23.8	22 901 901 1682 1420.0 14.7 72	10 425 425 1682 1420.0 14.3 72	5 139 139 1682 1420.0 10.0 51	5 154 154 1682 1420.0 9.7 49	11 1076 1076 1682 1420.0 17.5 87	879 879 1682 1420.0 14.3 70	810 810 1682 1420.0 14.1 68
AVE POWER MW PEAK POW MW ENERGY GWH 773.4	82 510 29.5	32 509 5.4	68 509 14.6	77 509 55.4	91 509 67.8	105 509 75.9	123 509 91.4	123 509 91.3	113 517 81.3	538 53.6	538 25.9	538 8.5	538 9.4	538 64.4	538 52.0	529 47.0
FORT RANDALL NAT INFLOW 900 DEPLETION 80 EVAPORATION 118 REG INFLOW 14117 RELEASE 14116 STOR CHANGE 1 STOR CHANGE 3124 ELEV FTMSL 1350.0 1 DISCH KCFS 9.5 POWER AVE POWER MW	122 1 641 232 408 3532 355.0 1 7.8 65	57 1 151 134 17 3549 355.2 9.7 82	18.5 157	18.3 155	182	25.4 214	27.0	26.5 223	26.3 220	24.6 198	2 1 416 720 - 304 2464 1340.4 24.2 183 296	1 0 4 136 295 -159 2305 1337.6 21.2 156 284	1 4 150 158 -8 2297 1337.5 9.9 73 284	10 3 10 1073 707 366 2663 1343.5 11.5 86 311	3 876 689 187 2850 1346.3 11.2 87 324	19 3 826 552 274 3124 1350.0 9.6 77 338
PEAK POW MW ENERGY GWH 1401.8	354 23.4	355 13.8	355 33.9	355 111.4	355 135.6	355 154.3	355 169.2	355 165.9	349 158.3	318 147.0	66.0	26.2	14.0	64.2	65.0	53.7
- CAVINS POINT NAT INFLOW 1450 DEPLETION 114 CHAN STOR -1 EVAPORATION 38 REG INFLOW 15413 RELEASE 15413 STOR CHANGE 358 ELEV FIMSL 1206.0 1 DISCH KCFS 12.5	92 0 3 328 328 328 .206.0 1 11.0	43 0 -4 174 174 358 1206.0	55 0 -17 370 370 358 1206.0 20.7	148 5 0 1232 1232 358 1206.0 20.7	174 19 -6 1476 1476 1476 1476 1206.0 24.0	166 24 -7 1648 1648 358 1206.0 27.7	86 39 -3 2 1703 1703 358 1206.0 27.7	103 10 1 7 1716 1703 13 371 1206.5 27.7	77 -5 0 9 1639 1613 26 397 1207.5 27.1	122 2 3 8 1629 1629 1629 1207.5 26.5	50 5 1 4 762 762 762 397 1207.5 25.6	23 2 5 2 319 319 319 1207.5 23.0	27 3 21 201 201 397 1207.5 12.7	77 10 -3 4 767 767 397 1207.5 12.5	79 1 1 767 767 1207.5 12.5	127 3 682 721 -39 358 1206.0 12.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 646.1	39 114 13.9	44 114 7.4	71 114 15.4	71 114 51.4	82 114 61.2	94 114 67.9	94 114 70.2	95 115 70.5	94 117 67.8	93 117 69.1	90 117 32.3	81 117 13.6	45 117 8.6	44 78 33.0	44 78 33.0	44 76 30.8
GAVINS POINT - SIOUX NAT INFLOW 1550 DEPLETION 254 REGULATED FLOW AT SIOU KAF 16709 KCFS	169 6	79 3 250 18.0	102 4 467 26.2	199 21 1410 23.7	310 35 1751 28.5	30 1842	129 37 1795 29.2		60 23 1650 27.7	42 10 1661 27.0	16 6 772 26.0	7 3 324 23.4	9 3 206 13.0	21 12 776 12.6	759 12.3	82 14 789 13.7
- TOTAL NAT INFLOW 24601 DEPLETION 2442 CHAN STOR -11 EVAPORATION 1539 STORAGE 44862 SYSTEM POWER AVE POWER MW	1435 28 51 45828 650	669 13 7 46240 485	860 17 -17 46599 715	2307 134 -19 47344 783	918	1529 -32 51066 1065	3346 1033 4 95 51493 1137	136 8 298 50497 1121	1113 -243 34 373 49865 1014	35 322 49039 773	48703 750	-15 67 48568 683	241 -68 2 76 48596 595 2222	-27 166 48477 778	-194 -11 48483 744	943 -122 3 48761 728 2226
AVE FOMER MW PEAK FOW MW ENERGY GWH 7608.0 DAILY GWH INI-SUM	2217 233.9 15.6	2223 81.4 11.6 22MAR	2228 154.5 17.2	2239 563.6 18.8	2253	2285 766.8 25.6	27.3	834.3	730.4 24.3	575.5 18.6	270.0	114.7 16.4	14.3	579.1 18.7	553.8 17.9	506.7 17.5

DATE OF STUDY 11/15/	04			20	04-2005	AOP EX	TENSION	IS, MEDI	AN RUNC	FF SIMU	LATION	99001	9901	4 PA	GE	1
TIME OF STUDY 10:56:						TN 100	0 NE EV	CEDT 30	TNDTCO	משידי				STUDY 1	NO 2	1
29FEB08 INI-SUM	15MAR	2008 22MAR	31MAR	30APR				CEPT AS 31AUG			15NOV	22NOV	200 30NOV	9 31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 7400 DEPLETION 411 EVAPORATION 431 MOD INFLOW 6558 RELEASE 5029 STOR CHANGE 1530 STORAGE 12569 ELEV FMSL 221.7 DISCH KCFS 9.0	-4 269 179 90 12679 2222.2	123 -2 125 69 56 12735 2222.5 5.0	158 -3 161 89 72 12807 2222.9 5.0	628 43 585 357 228 13035 2224.1 6.0	1210 349 861 430 431 13466 2226.4 7.0	1851 565 1286 506 780 14246 2230.4 8.5	829 223 26 580 492 88 14334 2230.8 8.0	324 -72 82 314 461 -147 14187 2230.1 7.5	319 -155 103 371 368 3 14190 2230.1 6.2	398 -75 90 383 296 14277 2230.5 4.8	188 -39 41 185 143 42 14319 2230.7 4.8	88 -18 19 86 83 14322 2230.7 6.0	100 -21 22 99 127 -28 14293 2230.6 8.0	8.0	8.0	349 -108 457 444 13 14119 2229.7 8.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 813.7	78 198 28.2	65 199 11.0	66 199 14.2	79 200 56.8	93 203 68.9	114 206 81.7	108 206 80.1	101 205 75.1	83 205 59.9	65 206 48.3	65 206 23.3	81 206 13.6	108 206 20.7	108 205 80.0	107 205 79.9	107 205 72.1
GARRISON NAT INFLOW 11001 DEPLETION 940 CHAN STOR 10 EVAPORATION 473 REG INFLOW 14627 RELEASE 14602 STOR CHANGE 25 STORAGE 15179 ELEV FTMSL 1627.3 DISCH KCFS 21.5	1 31 678 476 202 15381 1828.1	219 1 10 298 222 76 15457 1828.3 16.0	282 1 370 286 84 15541 1828.6 16.0	853 12 -10 1188 1131 57 15598 1828.9 19.0	1423 187 -10 1656 1322 334 15932 1830.1 21.5	2958 799 -15 2649 1398 1251 17183 1834.4 23.5	2066 574 29 1960 1414 546 17729 1836.2 23.0	581 52 92 903 1383 -480 17249 1834.6 22.5	497 -139 13 114 903 1054 -151 17098 1834.1 17.7	454 -23 14 99 688 981 -293 16805 1833.1 15.9	192 -115 0 44 405 474 -70 16735 1832.9 15.9	89 -53 -12 21 193 221 -28 16707 1832.8 15.9	102 -61 -20 24 246 317 -71 16636 1832.5 20.0	253 -125 51 819 1230 -411 16225 1831.1 20.0	237 -103 832 1414 -582 15643 1829.0 23.0	23.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2110.1	187 432 67.2	187 433 31.5	188 434 40.5	223 435 160.4	253 439 188.1	281 455 202.4	281 462 208.8	275 456 204.5	216 454 155.3	193 450 143.9	193 449 69.3	192 449 32.3	240 448 46.1	239 443 177.8	271 435 201.8	268 429 180.1
DISCH KCFS 14.1	23 24 794 567 227 16056 1598.0	148 11 359 112 247 16304 1598.9 8.0	190 14 462 272 190 16493 1599.5 15.2	364 48 -13 1434 1025 409 16902 16902 1601.0 17.2	236 68 -11 1479 1296 183 17086 1601.6 21.1	689 135 -8 1944 1534 410 17495 1603.1 25.8	162 160 2 8 1390 1816 -426 17069 1601.6 29.5	33 106 2 87 1225 1829 -604 16466 1599.4 29.7	118 26 21 107 1060 1633 -573 15893 1597.4 27.4	14 -9 8 92 1120 -200 15693 1596.6 18.2	5 2 41 437 530 -93 15600 1596.3 17.8	2 1 0 204 244 -40 15560 1596.1 17.6	3 1 -18 22 279 212 67 15627 1596.4 13.4	-20 12 0 48 1150 1082 68 15696 1596.6 17.6	17 -13 1384 909 475 16171 1598.4 14.8	40 27 1290 756 535 16706 1600.3 13.6
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2236.1	233 660 84.0	99 665 16.7	188 668 40.7	214 676 154.4	264 679 196.1	324 687 233.1	370 679 275.5	369 668 274.6	337 657 242.5	222 654 165.5	217 652 78.0	214 651 35.9	163 652 31.2	214 654 159.5	181 662 134.9	169 672 113.4
BIG BEND EVAPORATION 103 REG INFLOW 14830 RELEASE 14830 STORAGE 14830 ELEV FIMSL 1420.0 DISCH KCFS 14.1 POWER) 567 567 1682 1420.0	112 112 1682 1420.0 8.0	272 272 1682 1420.0 15.2	1025 1025 1682 1420.0 17.2	1296 1296 1682 1420.0 21.1	1534 1534 1682 1420.0 25.8	6 1810 1810 1682 1420.0 29.4	20 1809 1809 1682 1420.0 29.4	25 1608 1608 1682 1420.0 27.0	22 1098 1098 1682 1420.0 17.9	10 520 1682 1420.0 17.5	5 239 239 1682 1420.0 17.2	5 207 207 1682 1420.0 13.0	17.4	909 909 1682 1420.0 14.8	756 756 1682 1420.0 13.6
AVE POWER MW PEAK POW MW ENERGY GWH 854.9	89 510 32.1	38 509 6.3	71 509 15.4	81 509 58.1	99 509 73.4	121 509 86.9	138 509 102.5	138 509 102.4	128 517 92.2	88 538 65.2	88 538 31.6	87 538 14.6	66 538 12.6	86 538 64.0	72 538 53.7	65 529 43.9
DISCH KCFS 9.6) 1 3 4 688 5 280 408 4 3532 1355.0		73 1 344 344 1355.2 19.3	115 4 1136 1136 3549 1355.2 19.1	140 9 1427 1427 3549 1355.2 23.2	185 12 1707 1707 3549 1355.2 28.7	74 18 8 1858 1858 0 3549 1355.2 30.2	57 15 25 1826 1826 0 3549 1355.2 29.7	42 7 31 1612 1756 -144 3405 1353.5 29.5	2 1 25 1074 1711 -637 2768 1345.1 27.8	2 10 511 815 -304 2464 1340.4 27.4	1 0 4 236 381 -145 2319 1337.9 27.4	1 4 203 225 -22 2297 1337.5 14.2	10 3 100 1067 701 366 2663 1343.5 11.4	3 906 689 217 2880 1346.7 11.2	19 3 772 528 244 3124 1350.0 9.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1540.0	78 354 28.2	93 355 15.5	163 355 35.2	161 355 116.3	196 355 145.7	241 355 173.6	254 355 188.8	249 355 185.6	246 349 177.2	223 318 165.7	207 296 74.5	201 285 33.7	103 284 19.8	85 311 63.6	88 326 65.1	76 338 51.4
GAVINS POINT NAT INFLOW 1450 DEPLETION 111 CHAN STOR - EVAPORATION 33 REG INFLOW 1683 RELEASE 1683 STOP CHANCE	4 0 L 0 3 L 373	43 0 -3 192 192	55 0 -16 384 384	148 5 0 1279 1279	174 19 -8 1574 1574	166 24 -11 1839 1839	86 39 -3 2 1900 1900	103 10 1 1913 1900 13	77 -5 0 1829 1803 26	122 2 3 1826 1826	50 5 1 857 857	23 2 0 2 400 400	27 3 25 271 271	77 10 5 4 769 769	79 1 0 767 767	127 3 658 697 -39
STOR CHANGE 350 STORAGE 351 ELEV FTMSL 1206.0 DISCH KCFS 12.9 POWER	1206.0		358 1206.0 21.5	358 1206.0 21.5	358 1206.0 25.6	358 1206.0 30.9	358 1206.0 30.9	371 1206.5	397 1207.5 30.3	397 1207.5 29.7	28.8	28.8	17.1	12.5	397 1207.5 12.5	358 1206.0 12.5
AVE POWER MW PEAK POW MW ENERGY GWH 697.0		48 114 8.1	74 114 16.0	74 114 53.3	88 114 65.1	103 114 74.2	103 114 76.6	103 115 77.0	103 117 74.5	103 117 76.6	101 117 36.2	101 117 16.9	60 117 11.6	44 78 33.1	44 78 33.0	44 76 29.7
GAVINS POINT - SIC NAT INFLOW 155 DEPLETION 25 REGULATED FLOW AT S KAF 1812 KCFS	0 169 5 6 10UX CIT	79 3 Y	102 4 482 27.0	199 21 1457 24.5	310 35 1849 30.1	224 30 2033 34.2	129 38 1991 32.4		60 23 1840 30.9	10 1858	16 6 867 29.2	7 3 405 29.2		21 12 778 12.7	5 13 759 12.3	82 14 765 13.8
TOTAL NAT INFLOW 2460 DEPLETION 244 CHAN STOR EVAPORATION 160 STORAGE 4876 SYSTEM POWER	1 1435 1 28 3 56 7	669 13 7	860 17 -16 50430	2307 133 -23 51124	3493 667 -29 52072	6073 1565 -34 54513	3346 1052 4 99 54721	146 8 313	1113 -243 34 389 52664	25 336	452 -140 1 150 51196	211 -65 -12 69 50986	-13 79	651 -218 5 172 50857	582 -212 -13 50879 764	943 -132 3 51192 730

--TOTAL--NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH 2250 490.6 17.5 2245 142.1 17.8 2246 147.0 21.0 2229 578.0 2244 568.4 2289 599.1 20.0 2299 737.3 23.8 2326 851.9 28.4 2325 932.3 30.1 2308 919.2 29.7 2300 801.6 26.7 2282 665.2 21.5 2259 313.0 20.9 2269 255.5 17.0 2280 162.0 18.0 2274 89.1 12.7 8252.4 18.6 18.3 30NOV 31DEC 31JAN 28FEB 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 22NOV 310CT 15NOV INI-SUM 15MAR 22MAR 31MAR

2004-2005 AOP EXTENSIONS, MEDIAN RUNOFF SIMULATION 99001 9901 1 PAGE 1

TIME	OF	STUDY	10:56:23

											STUDY	NO 2	2
TIME OF STUDY 10:56:23	2000	VALU	ES IN 100	0 AF EX						201			
28FEB09 INI-SUM 15MAR	2009 22MAR 31MAR	30APR 31MA	Y 30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30 NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 7400 264 DEPLETION 431 -5	123 158 -2 -3	628 121 42 35		829 236	324 -64	319 -156	398 -79	188 -41	88 -19 20	100 -22 23	310 -135 49	261 -147	349 -99
EVAPORATION 452 MOD INFLOW 6517 269	126 161	586 85		27 566	86 302	108 367	95 382	43 186	87	99 159	396 584	408 584	448 528
RELEASE 6138 179 STOR CHANGE 378 91	83 107 42 54	417 49 169 36		615 -49	584 -283	385 -19	341 41	208	111 -24	-60	-188 14753	-176 14577	-80 14497
STORAGE 14119 14209	14252 14306 2230.4 2230.7	14475 1484 2231.5 2233.		15308 2235.5							2232.8	2232.0	2231.6 9.5
DISCH KCFS 8.0 6.0	6.0 6.0	7.0 8.		10.0	9.5	6.5	5.5	7.0	8.0	10.0	9.5	9.5	
POWER AVE POWER MW 81	81 81	94 10 206 20		137 209	129 208	88 208	76 208	95 208	109 208	136 208	129 207	128 207	128 207
PEAK POW MW 205 ENERGY GWH 1007.5 29.0	206 206 13.6 17.5	68.0 80.		101.6	96.3	63.4	56.2	34.3	18.3	26.1	95.8	95.6	86.2
GARRISON					5.01	497	454	192	89	102	253	237	326
NAT INFLOW 11001 469 DEPLETION 1014 -7	219 282 -3 -4	853 142 -4 21	8 841	2066 620	581 57	-142	-27	-119	- 55 - 10	-63	- 126	-104	-68
CHAN STOR -16 21 EVAPORATION 479		-10 -1		28 29	5 93	30 116	9 100	-15	21	24 280	51 917	925	922
REG INFLOW 15630 675 RELEASE 15202 476	305 393 222 286	1263 168 1071 135		2060 1476	1020 1445	939 1264	732 1069	459 517	225 242	286	1230	1476 -551	1333 -411
STOR CHANGE 427 199 STORAGE 15204 15403	83 107 15487 15594	192 33 15786 1612		584 18075	-425 17650	-326 17324	-337 16987	-58 16929	-17 16912	-6 16906	-313 16593	16043	15631
ELEV FTMSL 1827.4 1828.1		1829.5 1830. 18.0 22.	7 1835.5	1837.4 24.0	1836.0 23.5	1834.9 21.2	1833.7 17.4	1833.5 17.4	1833.5 17.4	1833.5 18.0	1832.4 20.0	1830.4 24.0	24.0
POWER	187 188	212 26		295	289	260	212	211	211	218	241	285	282
PEAK POW MW 432	433 435	437 44 152.5 193.	2 459	466 219.3	461 215.1	457 187.0	453 157.4	452 75.8	452 35.4	452 41.8	448 179.1	440 212.4	435 189.7
ENERGY GWH 2210.1 67.2	31.5 40.6	152.5 195.	5 212.0	21710									
OAHE NAT INFLOW 2300 317	148 190	364 23		162 165	33 109	118 27	14 -10	5 1	2 0	3 1	-20 12	17	40 27
DEPLETION 652 23 CHAN STOR -4 30	11 14	48 6 -8 -1		105 2 29	2 89	10 109	17 94	42	0 20	- 3 22	-9 49	-18	
EVAPORATION 454 REG INFLOW 16392 799	359 462	1379 150		1446	1282	1255 1734	1016 1224	479 580	224 268	263 231	1140 1094	1441 871	1346 817
RELEASE 15940 449 STOR CHANGE 452 350	230 338 129 123		6 364	1921 -475	1933 -651	-479	-208	-101 16024	-44 15980	32 16012	46 16059	570 16629	529 17158
STORAGE 16706 17056 ELEV FTMSL 1600.3 1601.5	17185 17308 1602.0 1602.4	17508 1757 1603.1 1603.	3 1604.6		16812 1600.7		1598.2	1597.8	1597.7			1600.0 14.2	
DISCH KCFS 13.6 15.1 POWER	16.6 18.9	19.8 23.	4 27.5	31.2	31.4	29.1	19.9	19.5	19.3		219	175	184
AVE POWER MW 189 PEAK POW MW 679	208 238 681 683	250 29 687 68		395 686	393 674	360 665	245 661	240 660	236 659	179 659	660	671	681
ENERGY GWH 2408.6 67.9				293.5	292.3	259.5	182.5	86.2	39.7	34.3	162.6	130.4	123.6
BIG BEND				6	20	25	22	10	5	5	11		
EVAPORATION 103 REG INFLOW 15836 449	230 338			1915 1915	1914 1914	1709 1709	1202 1202	570 570	263 263	225 225	1083 1083	871 871	817 817
RELEASE 15836 449 STORAGE 1682 1682	230 338 1682 1682	1682 168	1682	1682 1420.0	1682	1682 1420.0	1682	1682	1682	1682 1420.0	1682 1420.0	1682 1420.0	1682 1420.0
ELEV FTMSL 1420.0 1420.0 DISCH KCFS 13.6 15.1	1420.0 1420.0 16.6 18.9	1420.0 1420 19.8 23		31.1	31.1	28.7	19.6	19.2	18.9	14.2	17.6	14.2	14.7
POWER AVE POWER MW 72	78 89			146	146	136 517	96 538	96 538	95 538	72 538	87 538	69 538	71 529
PEAK POW MW 517 ENERGY GWH 912.9 25.7	510 509 13.1 19.1			509 108.4	509 108.3	98.0	71.4	34.6	16.0	13.8	64.7	51.6	47.4
FORT RANDALL							2	2	1	1	10		19
NAT INFLOW 900 122 DEPLETION 80 1	57 73 1 1		0 185 9 12	74 18	57 15	42	2	1	ō	1 4	3 10	3	- 3
EVAPORATION 118 REG INFLOW 16539 570	287 411	1290 150	8 1807	8 1963	25 1930	31 1713	25 1179	10 561	4 259	222	1079	868	833 539
RELEASE 16539 280 STOR CHANGE 0 290	169 394		58 1807	1963 0	1930 0	1857 -144	1816 -637	865 -304	404 -145	244 -22	713 366	701 167	294
STORAGE 3124 3414	3532 3549	3549 354		3549 1355.2	3549 1355.2	3405 1353.5	2768 1345.1	2464 1340.4			2663 1343.5		
DISCH KCFS 9.5 9.4		1000.00		31.9	31.4	31.2	29.5	29.1	29.1	15.4	11.6	11.4	9.7
POWER AVE POWER MW 78			LS 255 55 355	268 355		260 349	236 318	220 297	213 285	112 284	87 311	89 322	78 338
PEAK POW MW 350 ENERGY GWH 1638.2 28.0						187.3	175.7	79.1	35.8	21.5	64.7	66.1	52.3
GAVINS POINT		140 1	74 166	86	103	77	122	50	23	27	77	79	127
NAT INFLOW 1450 92 DEPLETION 114 0	0 0) 5	19 24	39	10	-5	2	5 1	2	3 25	10 7	1 0	3
CHAN STOR -2 C EVAPORATION 38				2	7	9 1930	8	4 907	2 423	2 291	4 783	779	669
REG INFLOW 17836 373 RELEASE 17836 373					2005	1930 1904 26	1931	907	423	291	783	779	708 -39
STOR CHANGE STORAGE 358 358	358 358	3 358 3	58 358	358	13 371	207	397	397	397	397	397	397 1207.5	358
ELEV FTMSL 1206.0 1206.0 DISCH KCFS 12.5 12.5		358 3 1206.0 1206 24.1 27	.0 1206.0 .9 32.6	1206.0 32.6	1206.5 32.6	32.0	31.4	30.5	30.5	18.4	12.7	12.7	12.7
POWER AVE POWER MW 44		83	95 107	107		107		105	105	65	45		45 76
PEAK POW MW 114 ENERGY GWH 730.8 15.8	114 114	114 1	14 114			117 77.3		117 37.7	117 17.6	117 12.4	78 33.6		30.2
GAVINS POINT - SIOUX CITY	-								-	-	~-	-	82
NAT INFLOW 1550 16	9 79 10		10 224 35 31						7 3	9 3	21 13		82 14
REGULATED FLOW AT SIOUX CIT	ΓY				2065	1941	1963	917	428	297	791		
KAF 19124 535 KCFS 18.0							31.9	30.8	30.8	18.7	12.9	12.5	14.0
TOTAL		0 2307 34	93 6073	3346	1194	1113	1032	452		241			
NAT INFLOW 24601 143 DEPLETION 2553 1	9 9 1	2 117 7	01 1620	1116	163	-246	-103	-147	-68 -10	-78 3	3	-17	
CHAN STOR -22 5 EVAPORATION 1645				102	321	399	343	153	71	81			52450
STORAGE 51192 5212 SYSTEM POWER													
AVE POWER MW 64 PEAK POW MW 229	7 2299 230	2 2309 23	16 2342	2340	2323	2314	2295	2271	2259	2258	2243	2257	2265
ENERGY GWH 8908.2 233. DAILY GWH 15.				1001.5 32.3									
INI-SUM 15MA		R 30APR 31M	AY 30JUN	I 31JUI	J 31AUG	30SEF	9 310CT	15NOV	22NOV	3 ONOV	31DEC	31JAN	28FEB
INT-SOFT ISPA													

2004-2005 AOP EXTENSIONS, MEDIAN RUNOFF SIMULATION 99001 9901 1 PAGE

VALUES IN 1000 AF EXCEPT AS INDICATED

STUDY NO

TIME OF STUDY 10:56:23

28FEB10

TIME OF STUDY 1	.0:56:3	В		SHOP	TEN NAV	IGATION	I SEASON	N 51-DAY O AF EXC	S SEPT AS	INDICA	FED			200	STUDY 1	NO 2	•
28FEE IN	306 11-SUM	15MAR	2006 22MAR	31MAR				31JUL				15NOV	22NOV	30NOV	31DEC	31JAN	288
FORT PECK NAT INFLOW DEPLETION EVAPORATION MOD INFLOW	6556 621 406 5529	264 8 257	123 4 120	158 5 154	574 85 489	1011 332 679 430	1589 587 1002 506	692 215 25 452 492	287 -37 77 247 461	275 -122 97 300 335	354 -68 85 337 281	183 -33 39 177 136	85 -15 18 83 83	98 -18 21 95 111	322 -110 45 387 492	231 -125 356 553	3
RELEASE STOR CHANGE STORAGE ELEV FTMSL 2 DISCH KCFS POWER	5015 513 8348 2195.6 8.5	4.5	4.5	4.5	6.0	249 8982 2199.9 7.0	496 9478 2203.2 8.5	-40 9439 2202.9 8.0	-215 9224 2201.5 7.5	-35 9189	55 9244	41 9285 2201.9 4.6 54	-1 9285 2201.9 6.0 71	-16 9268 2201.8 7.0 83	-104 9164 2201.1 8.0 94	-197 8967 2199.8 9.0	-1 88 2199
AVE POWER MW PEAK POW MW ENERGY GWH	712.8	52 123 18.7	52 124 8.7	52 124 11.3	69 167 50.0	82 169 60.7	100 174 72.1	95 173 70.7	89 171 66.0	171 47.9	171 40.3	172 19.5	172 11.9	172 15.9	171 70.1	169 78.4	7(
GARRISON NAT INFLOW DEPLETION CHAN STOR EVAPORATION	10069 1124 -5 483	475 27 45	221 13	285 16	763 54 -17	1282 171 -11	2701 749 -17	1891 584 5 29	532 70 5 93	446 -115 20 116	428 6 12 101	175 -103 46	82 -48 -16 21	93 -55 -11 24 224	238 -106 -11 52 773	177 -84 -11 803	
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	13473 12848 624 10016	627 446 181 10197 1806.6 15.0	271 208 63 10260 1806.9 15.0	349 268 81 10341 1807.3 15.0	1049 952 97 10438 1807.8 16.0	1530 1138 393 10831 1809.6 18.5	2441 1190 1251 12082 1815.1 20.0	1775 1261 515 12596 1817.2 20.5	835 1168 -333 12263 1815.8 19.0	12.9	12.4	12.4	12.4	286 -62 11916 1814.4 18.0	1230 -457 11459 1812.4 20.0	1291 -488 10971	1 10
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1625.4	150 354 53.9	151 355 25.3	151 356 32.6	161 358 116.3	188 364 139.9	209 385 150.5	220 392 163.9	205 387 152.5	170 385 122.7	132 383 98.5	132 383 47.5	133 383 22.3	191 382 36.8	211 375 156.8	367 161.9	
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW	1761 613 -8 392 13596	187 23 24 635	87 11 285	112 14 0 366	278 47 -5 1178	158 66 -13 1216	701 129 -8 1754	124 151 -3 24 1207	29 100 8 74 1031 1501	79 25 17 93 923 577	11 -8 19 82 715 737	2 37 329 307	1 0 17 154 145	1 -31 20 234 165	-42 11 -11 43 1122 1103	-7 16 -5 1263 821	1
RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	12957 639 10536	411 224 10760 1575.4 13.8	250 35 10795 1575.5 18.0	352 15 10809 1575.6 19.7	1211 -33 10776 1575.4 20.4	1437 -221 10555 1574.3 23.4	1385 369 10924 1576.2 23.3	1682 -475 10448 1573.8 27.4	-470 9979	347 10325 1573.1 9.7	-22 10303 1573.0 12.0	22 10325 1573.1 10.3	9 10334 1573.2 10.4	69 10403 1573.5 10.4	19 10422 1573.6 17.9	13.3	11 157 1
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1677.0	149 544 53.5	194 545 32.6	212 546 45.8	219 545 157.8	250 539 186.3	250 549 179.9	293 536 217.7	258 523 191.6	103 533 73.9	128 532 94.9	110 533 39.5	111 533 18.7	111 535 21.3	191 535 142.1	143 547 106.7	
RELEASE	129 12828 12828 1681	411 411 1681 1420.0 13.8	250 250 1681 1420.0 18.0	352 352 1681 1420.0 19.7	1211 1211 1681 1420.0 20.4	1437 1437 1681 1420.0 23.4	1385 1385 1681 1420.0 23.3	8 1674 1674 1681 1420.0 27.2	24 1477 1477 1681 1420.0 24.0	31 546 546 1681 1420.0 9.2	27 710 1681 1420.0 11.6	12 295 295 1681 1420.0 9.9	6 139 139 1681 1420.0 10.0	7 159 1681 1420.0 10.0	1089 1681 1420.0 17.7	1420.0 13.3	1 142 1
POWER AVE POWER MW PEAK POW MW ENERGY GWH	743.3	65 517 23.6	84 510 14.2	92 509 19.9	95 509 68.6	109 509 81.4	109 509 78.5	127 509 94.8	114 518 84.6	46 538 33.5	58 538 43.5	50 538 18.0	51 538 8.5	51 538 9.7	88 538 65.1		
FORT RANDALI NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STOR CHANGE ELEV FTMSL DISCH KCFS	643 80 129 13254 13253 1	497 223 274 3397 1353.4	41 1 290 155 135 3532 1355.0 11.1	53 1 403 386 17 3549 1355.2 21.6	82 4 1289 1289 3549 1355.2 21.7	66 9 1494 1494 3549 1355.2 24.3	167 12 1540 1540 0 3549 1355.2 25.9	33 18 10 1679 1679 0 3549 1355.2 27.3	63 15 31 1494 1668 -174 3375 1353.1 27.1	32 528 1606 -1078 2297 1337.5	1337.5	1 10 284 284 0 2296 1337.5 9.5	0 5 134 134 2296 1337.5 9.7	5 153 153 0 2296	13 1079 713 366 2662	812 695 117 2779 1345.3	2 7 9 3 135
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1302.2	62 349 22.4	94 354 15.8	183 355 39.4	183 355 131.7	205 355 152.4	355		226 348 168.4	282		70 283 25.1	283	283	311	. 319	9
GAVINS POIN' NAT INFLOW DEPLETION CHAN STOR EVAPORATION DEC INFLOW	T 1335 114 -1 47 14426	0 5	46 0 - 7 193	59 0 -20 425	132 5 0 1416	147 19 -5 1617	24 - 3	39 -3 3 1722	85 10 0 1735	-5 0 11 1662	2 29 10 818		2 0 2 153	175	10 -4 5 769)]]]] 767	1 1 7
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	14426 358	326 358 1206.0	193 358 1206.0	425 358 1206.0	1416 358	1617 358 1206.0	1666 358 1206.0	358 1206.0		26 397 1207.5	397 1207.5	397 1207.5	397 1207.5	397 1207.5	7 397 5 1207.5	397 31207.5	7 5 12
POWER AVE POWER MW PEAK POW MW ENERGY GWH		38 114	49 114 8.2	82 114	82 114 58.7	114	114	114		117	117	117	117	117	7 78	3 78	8
GAVINS POIN NAT INFLOW	1135	5 145	68												9 16 8 12		
DEPLETION REGULATED FLO KAF KCFS	251 W AT SI 1531(OUX CIT	Y 258	508	1508	1801	. 1794	1780									
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE	21499 2803 -23 1589 34063	65 65 74	30 - 7	39 -20	216 -22	632 -30	2 1531) -28	L 1044 3 0 99	192 14 309	2 -188 1 29 9 38	3 - 57 9 60 L 328	-12 14	-5' -10 -10	7 -6 5 -4 9 7	5 ~180 2 -21 9 173	0 -17 5 -1 2 6 3565	6 6 9 3
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH	2	516 2002	623 2003	772	810 2048	2051	L 2085	5 2080) 206	3 202	5 2025	2026	5 202 B 79.	6 202 8 104.	7 200 8 531.	8 201 9 494.	.8 1 4

DATE OF STUDY 11/15/04	2004-20	05 AOP EXTE	NSIONS, LOWEF	QUARTILE	E RUNOFF	7 SIMULA	TION 990	001 99			-	1
TIME OF STUDY 10:56:38	SHORTEN	NAVIGATION VALUES	SEASON 36-DA IN 1000 AF EX	YS CEPT AS 1	INDICATE	ED			2008	TUDY N	0 25	
28FEB07 INI-SUM 15MAR	2007 22MAR 31MAR 30A	PR 31MAY	30JUN 31JUL	31AUG 3	30SEP 3	310CT 1	5NOV 22	2NOV 3	ONOV 3	1DEC	31JAN	29FEB
FORT PECK NAT INFLOW 6613 267 DEPLETION 410 -16		79 1019 35 315	1603 698 544 203	289 - 52	278 -141	357 -70	185 -32 40	86 -15 19	98 -17 21	325 -109 46	233 -123	312 -95
EVAPORATION 420 MOD INFLOW 5783 283	132 170 5	44 704 17 492	26 1059 469 536 523	80 261 492	100 319 357	88 339 271	177 131	82 62	94 127	388 523 -135	356 553 -197	407 518 -111
STOR CHANGE 505 149 STORAGE 8862 9011	69 89 1	27 212 97 9509	523 -53 10032 9979 206.7 2206.4	-231 9748 2204.9 2	-38 9710 204.7 22		205.4 22		-33 9810 205.3 22	9675 204.5 2	9478 203.2 2	9367 202.5 9.0
DISCH KCFS 9.0 4.5 POWER	4.5 4.5	83 95	9.0 8.5 108 103	8.0 96	6.0 72	4.4 53	4.4 53	4.5 54	8.0 96	8.5 102	9.0 107	107
AVE POWER MW 53 PEAK POW MW 169 ENERGY GWH 763.3 19.0		0.5 70.6	178 178 77.7 76.5	176 71.7	175 51.9	176 39.5	176 19.2	177 9.1	176 18.5	175 75.8	173 79.8	173 74.3
GARRISON NAT INFLOW 10134 478 DEPLETION 982 -1	0 -1	768 1290 3 206	2718 1903 731 549	535 76	449 -106	431 -10 17	176 -106	82 -49 -1	94 -56 -38	240 -107 -5	178 -85 -5	282 -62
CHAN STOR 0 50 EVAPORATION 499 REG INFLOW 13931 663		-28 -11 154 1565	-11 5 30 2512 1852	5 96 860	21 120 813	104 625	47 366 385	22 171 208	25 214 286	54 811 1230	811 1322	862 1208
RELEASE 13317 476 STOR CHANGE 614 187	194 250 1 92 118	012 1168 142 397 180 11576	1279 1291 1232 560 12808 13369				-19 12640 1	-37 2603 :	-71 12532	-419 12112	-511 11601 .813.0	-346 11255
ELEV FIMSL 1808.7 1809.6 1 DISCH KCFS 21.0 16.0 POWER	1810.0 1810.5 181	1.2 1812.9 1 7.0 19.0	.818.1 1820.4 21.5 21.0	20.5	818.2 1 16.0	12.9	12.9	15.0	18.0	20.0	21.5	21.0
AVE POWER MW 164 PEAK POW MW 364 ENERGY GWH 1722.3 58.9	366 368	176 198 370 377 6.8 147.6	230 231 396 404 165.4 171.5	226 398 167.9	175 396 126.2	141 393 105.2	141 393 50.8	163 392 27.4	195 391 37.5	385 159.8	377 169.3	371 152.6
OAHE NAT INFLOW 1794 190 DEPLETION 626 23	89 114 11 14	283 161 47 67	714 127 132 156		80 25	11 -9 16	2	1 -11	1 -16	-43 12 -11	-7 17 -8	45 26 3
CHAN STOR 0 26 EVAPORATION 415 REG INFLOW 14069 670	10 283 350 1	-16 -10 232 1252	-13 3 26 1848 1239	1111	24 100 931	87 744	39 344 290	18 178 146	21 248 165	45 1119 1102	1290 977	1230 741
RELEASE 13439 409 STOR CHANGE 630 261	248 350 1 35 0	208 1435 24 -183 496 11312	1380 1681 468 -442 11780 11338	-388 10951			55 10873 1	32 10906	83 10989	16 11005	313 11318 1578.1	488 11806 1580 4
ELEV FTMSL 1577.4 1578.7 DISCH KCFS 15.7 13.7	1578.8 1578.8 157	9.0 1578.1 0.3 23.3	1580.3 1578.2 23.2 27.3	24.4	11.4	18.4	575.9 15 9.7	10.5	10.4	17.9	15.9	12.9
POWER AVE POWER MW 151 PEAK POW MW 562 ENERGY GWH 1778.6 54.2	563 563	223 256 563 559 0.7 190.3	255 300 571 559 183.8 223.5	549	124 556 89.5	199 546 148.3	105 547 38.0	114 548 19.1	113 550 21.7	551 144.7	559 128.9	571 99.2
BIG BEND EVAPORATION 129 REG INFLOW 13310 409	248 350 1	208 1435	8 1380 1673	1474	31 648	27 1102	12 277 277	6 140 140	7 159 159	14 1088 1088	977 977	741 741
RELEASE 13310 409 STORAGE 1681 1681	248 350 1 1681 1681 1	208 1435 681 1681 0.0 1420.0	1380 1673 1681 1681 1420.0 1420.0	. 1681) 1420.0 :			1681 420.0 14	1681 420.0 1	1681	1681	1681	1681 1420.0 12.9
DISCH KCFS 15.7 13.7 POWER		0.3 23.3 95 109	23.2 27.2 109 12 ⁻		10.9 55	17.9 90	9.3	10.1 51	51	87 538	77 538	62 529
AVE POWER MW 65 PEAK POW MW 517 ENERGY GWH 772.0 23.4	510 509	509 509 8.4 81.3	509 509 78.2 94.7		538 39.6	538 67.1	538 17.0	538 8.6	538 9.7	65.1	57.5	43.1
FORT RANDALL NAT INFLOW 659 90 DEPLETION 80 1	42 54 1 1	84 67 4 9	171 3- 12 1-	3 15	31 7 33	2 1 23	1 10	0	1	7 3 13	-7 3	20 3
EVAPORATION 130 REG INFLOW 13752 497 RELEASE 13752 223		288 1493 288 1493	1 1539 167 1539 167	9 1493 9 1667	631 1606	1080 1183 -103	267 267 0	135 135 0	153 153 0	1079 713 366	967 695 272	758 569 189
CTOD CHANCE 0 274	135 17 3532 3549 1355.0 1355.2 13	3549 3549 55.2 1355.2	3549 354 1355.2 1355.	2 1353.1	-975 2400 1339.3	0007	2200	2296 337.5 1	2296 1337.5	2662	2934 1347.4 11.3	3123 1350.0 9.9
DISCH KCFS 9.8 7.5 POWER AVE POWER MW 62	11.1 21.6 2 94 182	21.6 24.3 183 205	218 23	0 226	211	141	66 283	71 283	70 283	87 311	89 329	80 338
PEAK POW MW 349 ENERGY GWH 1349.0 22.4	354 355	355 355 31.6 152.3	355 35 156.8 170.		291 151.6	283 104.7	283	11.9	13.5	64.7	65.9	55.6
GAVINS POINT NAT INFLOW 1342 98 DEPLETION 114 0	46 59 0 0	133 148 5 19	154 8 24 3 -3 -	9 10	62 -5 0	112 2 14	51 5 19	24 2 -1	27 3 0	75 10 -4	73 1 1	108 3
CHAN STOR -1 4 EVAPORATION 47 REG INFLOW 14932 326		0 -5 1416 1617	1666 172	3 9 2 1735	11 1662 1636	10 1297 1297	5 327 327	2 153 153	2 175 175	5 769 769	767 767	680 719
RELEASE 14932 326		1416 1617 358 358	1666 172 358 35	13	26	207	207	705	397 1207.5	397 1207.5	397 1207.5	-39 358 1206.0
DISCH KCFS 12.5 11.0	358 358 1206.0 1206.0 12 13.9 23.8	23.0 20.3	20.0 20.	• • • • •		1207.5 21.1 74	1207.5 1 11.0 39	11.0 39	11.0 39	12.5	12.5 44	44
POWER AVE POWER MW 38 PEAK POW MW 114 ENERGY GWH 624.9 13.8	49821141148.217.6	82 90 114 114 58.7 66.8	95 9 114 11 68.6 70.		95 117 68.7	117 55.3	117 14.1	117 6.6	117 7.5	78 33.1	78 33.0	76 30.7
GAVINS POINT - SIOUX CITY NAT INFLOW 1160 149 DEPLETION 254 6	 69 89 3 4	116 224 21 35		7 72 7 35	45 23	31 10	16 6	7 3	9 3	17 12	-3 13	61 14
REGULATED FLOW AT SIOUX CIT KAF 15838 469 KCFS 15.7	Y 260 510	1511 1806 25.4 29.4	1797 178 30.2 29.		1658 27.9	$\frac{1318}{21.4}$	338 11.4	158 11.4	180 11.4	774 12.6	751 12.2	766 13.3
TOTAL NAT INFLOW 21702 1271 DEPLETION 2466 13		1963 2909 115 651	5521 294 1473 100	2 187	945 -197	944 -76	427 -125	199 -58 -13	228 -66 -54	621 -179 -20	467 -174 -13	828 -114 5
CHAN STOR -8 81 EVAPORATION 1640	4 -20	-44 -27 7560 37986	-27		38 395 38221	47 340 37630	20 153 37711	-13 71 37726	82 37705	178 37533	37410	
STORAGE 35841 36712 SYSTEM POWER AVE POWER MW 533	620 769	841 953 2084 2087	1015 10	6 1022	2073	699 2054	452 2055	493 2056	564 2057	730 2038 543.2		2058
PEAK POW MW 2076 ENERGY GWH 7010.2 191.7 DAILY GWH 12.8	104.2 166.2 6 14.9 18.5	05.8 708.8 20.2 22.9	730.6 808 24.4 26	.1 760.5 .1 24.5	527.6 17.6	520.0 16.8	162.6 10.8	82.8 11.8	108.3 13.5	17.5	17.2	15.7
INI-SUM 15MAR	22MAR 31MAR 3	OAPR 31MAY	30JUN 31J	JL 31AUG	30SEP	310CT	15NOV	22NOV	JUNOV	2 TUBC	JIUMI	

DATE OF STUDY 11/15/04	2004	-2005 AOP EXT	ENSIONS,	LOWER C	UARTILE	E RUNOFF	SIMUL#	ATION 99	9001 9		01 PAGI		1
TIME OF STUDY 10:56:38		TEN NAVIGATIO VALUES	N SEASON IN 1000	31-DAYS AF EXCE	S EPT AS 1	INDICATE	ED			2009			
29FEB08 INI-SUM 15MAR	2008 22MAR 31MAR	30APR 31MAY	30JUN 3	1JUL 3	BIAUG 3	BOSEP 3	310CT :	L5NOV 2	22NOV	30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 6720 271 DEPLETION 421 -16 EVAPORATION 435 MOD INFLOW 5864 287 RELEASE 5327 134	126 163 -7 -10 134 172 62 80	588 1036 35 316 553 720 357 492	1629 548 1081 536	709 210 26 473 523	294 -48 83 259 492 -233	282 -142 104 320 363 -43	363 -72 91 344 305 39	188 -34 41 180 148 33	88 -16 19 84 71 13	100 -18 22 96 127 -31	330 -112 48 394 553 -159	237 -126 363 584 -221	317 -87 404 500 -96
STOR CHANGE 537 153 STORAGE 9367 9520	4.5 4.5	6.0 8.0	2210.5 22 9.0	8.5	10370 3	10327	10365	10398			10221 207.9 2 9.0 110	10000 206.5 2 9.5 115	9.0 109
AVE POWER MW 54 PEAK POW MW 174 ENERGY GWH 785.0 19.3	54 54 174 175 9.0 11.7	72 97 177 179 52.0 72.0	110 183 79.3	105 183 78.0	98 181 73.1	181 53.9	181 45.3	181 21.9	181 10.6	181 18.8	180 81.7	178 85.7 180	177 73.0 286
GARRISON NAT INFLOW 10262 484 DEPLETION 999 0 CHAN STOR 0 50 EVAPORATION 512	226 290 0 0	777 1306 4 206 -16 -22	2752 741 -11	1927 565 51	542 81 5 99 860	455 -108 20 123 823	437 -16 12 107 663	179 -110 - 48 388	83 -51 -2 23 181	95 -59 -31 26 224	243 -110 -11 55 840	-86 -5 845	-57 5 848
REG INFLOW 14078 668 RELEASE 13422 446 STOR CHANGE 656 222 STORAGE 11255 11477	288 371 194 250 94 121 11571 11692 1812.9 1813.4	1114 1570 1012 1168 102 402 11794 12196 1813.9 1815.6 17.0 19.0			1291 -432 13527	1022 -198	760 -97 13232			301 -77 13182 1819.6 1 19.0		815.9 1 22.0	1222 -374 11911 .814.4 22.0
POWER MW 157 AVE POWER MW 157 PEAK POW MW 375 ENERGY GWH 1768.5 56.5	147 148 376 378 24.8 32.0	180 202 380 386 129.5 150.5	239 405 172.4	240 412 178.5	235 406 174.6	191 403 137.4	137 402 102.1	137 402 49.4	139 402 23.4	210 401 40.2	219 395 163.0	238 387 176.7	234 382 157.6
OAHE NAT INFLOW 1860 197 DEPLETION 641 23 CHAN STOR -5 31 EVAPORATION 437	92 118 11 14 5	294 167 48 68 -15 -10	740 135 -15	131 160 3 27	31 106 3 84	83 26 20 105	12 -9 25 91	2 0 41	1 -1 19	1 -34 22	-45 12 -5 48 1120	-7 17 -10 1318	46 27 0 1241
REG INFLOW 14199 651 RELEASE 13527 404 STOR CHANGE 672 247 STORAGE 11806 12053	281 354 246 347 35 8 12088 12096 1581.7 1581.8	1242 1257 1202 1430 40 -173 12136 11963 1582.0 1581.2			1580.0 1			579.0 1		245 165 80 11594 1579.4	1102 18 11611	977 342 11953	715 526 12478
DISCH KCPS 12.9 13.6 POWER AVE POWER MW 152 PEAK POW MW 577	17.7 19.4 198 217 578 578 33.3 47.0	20.2 23.3 226 260 579 575 162.9 193.2	259 588	27.3 306 578 227.7	24.3 270 569 200.9	16.3 181 570 130.4	16.2 179 563 132.9	9.6 106 564 38.0	10.5 116 564 19.5	115 566 22.0	198 566 147.3	177 575 131.3	145 587 97.4
ENERGY GWH 1824.7 54.6	33.3 47.0	20202		8	24	31	27	12	6	7 158	14 1088	977	715
EVAPORATION 129 REG INFLOW 13398 404 RELEASE 13398 404 STORAGE 1681 1681 ELEV FTMSL 1420.0 1420.0 DISCH KCFS 12.9 13.6	246 347 246 347 1681 1681 1420.0 1420.0 17.7 19.4	1202 1430 1202 1430 1681 1681 1420.0 1420.0 20.2 23.3	1371 1681 1420.0 1	1670 1670 1681 420.0 27.2	1470 1470 1681 1420.0 2 23.9	940 940 1681 1420.0 15.8	967 967 1681 1420.0 15.7	9.1	10.1	158 1681 1420.0 10.0	1088 1681 1420.0 17.7	977 1681 1420.0 15.9	715 1681 1420.0 12.9
POWER AVE POWER MW 64 PEAK POW MW 517 ENERGY GWH 776.4 23.2	83 91 510 509 14.0 19.6	95 109 509 509 68.1 81.0	509	127 509 94.6	113 518 84.2	78 538 56.1	79 538 58.9	46 538 16.7	51 538 8.6	50 538 9.7	87 538 65.1	77 538 57.5	62 529 41.5
FORT RANDALL NAT INFLOW 690 94 DEPLETION 80 1 EVAPORATION 134	44 56 1 1	88 70 4 9) 12	36 18 10 1678	68 15 31 1492	32 7 35 930	2 1 25 943	1 10 262	0 5 135	1 5 152	7 3 13 1079	-7 3 967	21 3 733
REG INFLOW 13875 497 RELEASE 13875 223 STOR CHANGE 0 274 STORAGE 3123 3397 ELEV FTMSL 1350.0 1353.4	289 402 154 385 135 17 3532 3549 1355.0 1355.2 11.1 21.6	1286 1493 1286 1493 3549 3549 1355.2 1355.2 21.6 24.3	1538 3549 1355.2 1	1678 0	1666 -174	1605 -675	1346 -403	262 0	135 0 2297 1337.5 9.7	152 0 2297 1337.5 9.6	713 366 2663 1343.5 11.6	695 272 2935 1347.4 11.3	544 189 3124 1350.0 9.8
DISCH KCFS 9.9 7.5 POWER AVE POWER MW 62 PEAK POW MW 349 ENERGY GWH 1365.1 22.4	94 182 354 355	183 204 355 355	1 218 5 355	230 355 170.8	226 348 168.2	215 313 154.7	163 283 121.5	64 283 23.1	71 283 11.9	70 283 13.5	87 311 64.7	89 329 65.9	79 338 53.1
GAVINS POINT NAT INFLOW 1359 100 DEPLETION 114 00 CHAN STOR -1 5	0 0	5 1	9 24	88 39 -3 3	87 10 0 9	63 -5 0 11	114 2 9 10	51 5 24 5	24 2 -2 2	27 3 0 2	76 10 -4 5	74 1 1	109 3
EVAPORATION 47 REG INFLOW 15072 328 RELEASE 15072 328 STOR CHANGE	194 425	1416 161	7 1666	1722 1722	1735 1722 13	1662 1636 26	1457 1457	327 327 397	153 153 397	175 175 397	770 770 397 1207.5	768 768 397	656 695 -39 358 1206.0
DISCH KCFS 12.5 11.0 POWER	1206.0 1206.0 14.0 23.8	1206.0 1206. 23.8 26.	0 1206.0 3 28.0 0 95	1206.0 28.0 95	1206.5 28.0 96	27.5	1207.5 23.7 83 117	1207.5 11.0 39 117	1207.5 11.0 39 117	1207.5 11.0 39 117	1207.5 12.5 45 78	12.5 12.5 44 78	12.5 12.5 44 76
PEAK POW MW 114 ENERGY GWH 630.8 13.9	114 114 8.2 17.6	114 11		114 70.9	115 71.3	117 68.7	62.0	14.1	6.6	7.5	33.1	33.0	29.7
GAVINS POINT - SIOUX CIT NAT INFLOW 1211 155 DEPLETION 255 (REGULATED FLOW AT SIOUX CIT	5 72 93 5 3 4			101 38	75 35	47 23	33 10	17 6	8 3 158		17 12 775	-3 13 752	64 14 745
KAF 16028 47 KCFS 16.0	7 263 514			1785 29.0	1762 28.7	1660 27.9	1480 24.1	339 11.4	11.4	11.4	12.6	12.2	13.4 843
TOTAL NAT INFLOW 22102 130 DEPLETION 2510 1- CHAN STOR -5 8 EVAPORATION 1693	4 7 8 5 -2 -20	3 117 65) -32 -3	3 1490 7 -29	2992 1030 5 105 42231	8 330	962 -199 40 409 40178	47 351	434 -131 25 157 39531	203 -61 -4 74 39559	-70 -64 84		474 -178 -15 39251	-100 8
STORAGE 37591 3848 SYSTEM POWER AVE POWER MW 52 PEAK POW MW 210	8 625 774 7 2108 2110	4 837 96 0 2114 211	2 1029 8 2154	1103 2151	1038 2137	835 2122	703 2083	453 2085 163.2		2086 111.8	2069 554.9	2085 550.2	2089 452.3
ENERGY GWH 7150.5 189. DAILY GWH 12.	9 105.0 167.2	5 20.1 23	1 24.7	820.5 26.5 31JUL	24.9	20.0	16.9	10.9	11.5	5 14.0			
INI-SUM 15MA	A COMMAN STRAT			-									

DATE OF STUDY 11/15/04			5 AOP EXT				E RUNOF	F SIMUL	ATION 9	9001 9	9901 99	01 PAG		1
TIME OF STUDY 10:56:38 28FEB09	2009			IN 1000	AF EXC	CEPT AS			15NOV	22NOV	2010 30NOV			28FEB
INI-SUM 1 FORT PECK NAT INFLOW 6751 DEPLETION 431	5MAR 22MAR 272 127 -16 -7	163 59	• • • • • • • • • • • • • • • • • • • •	30JUN 1636 552	31JUL 712 217 27	295 -44 85	284 -142 107	365 -74 93	188 -35 42	88 -16 20	100 -19 23	332 -113 49	238 -127	318 -87 405
EVAPORATION 445 MOD INFLOW 5875 RELEASE 5337 STOR CHANGE 538 STORAGE 9904 1 ELEV FTMSL 2205.9 22		173 55 80 35 93 19 10224 1042 2207.9 2209	7 492 9 232 3 10655 1 2210.5	2213.8 2	468 523 -55 11148 213.5	254 492 -238 10911 2212.1				84 74 10 10913 212.1 5.3	96 127 -31 10883 2211.9 8.0		365 553 -188 10537 209.8 9.0	500 -95 10442
DISCH KCFS 9.0 POWER AVE POWER MW PEAK POW MW	4.5 4.5 55 55 178 179 19.6 9.2	4.5 6 55 7 180 18 11.9 52	3 98 1 183	9.0 112 188 80.6	8.5 106 187 79.2	8.0 100 185 74.3	79 185 56.9	64 185 47.8	66 185 23.9	66 185 11.1	99 185 19.1	111 184 83.0	111 182 82.5	110 182 74.2
GARRISON NAT INFLOW 10290 DEPLETION 1015	485 226 0 0	291 7' 0	9 1310 4 207	2760 752	1932 581	543 87	456 -111	438 -20	179 -114	84 - 53	95 -61 -28	243 -112 -11	181 -87	287 -58
CHAN STOR 0 EVAPORATION 525 REG INFLOW 14087 RELEASE 13438 STOR CHANGE 650 STORAGE 11911 1 ELEV FTMSL 1814.4 18	49 669 289 446 194 223 95 2134 12229	-: 372 11 250 10 122 1 12351 124 1816.2 1816 14.0 17	1168 4 405 5 12860 6 1818.3	-11 2533 1339 1194 14054 1823.1 1 22.5	5 32 1847 1353 494 14548 1825.0 22.0	5 101 852 1322 -470 14078 1823.2 21.5	17 126 836 952 -116 13962 1822.7 16.0	13 110 678 747 -69 13893 1822.4 12.2		23 187 170 17 13947 1822.6 12.2	26 228 286 -57 13889	57 841 1230 -389 13500 1820.9	821 1383 -562 12938 1818.6 22.5	845 1222 -377 12561 1817.1 22.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1803.0	160 150 385 387 57.7 25.3		33 206 90 396 .1 153.5	249 414 179.5	249 421 185.6	244 414 181.5	181 412 130.2	137 411 102.2	138 412 49.7	138 412 23.2	203 411 38.9	223 406 166.2	248 397 184.3	239 392 160.6
OAHE NAT INFLOW 1877 DEPLETION 652 CHAN STOR 0 EVAPORATION 459	199 93 23 11 35 5	14	97 168 48 69 15 -10	747 138 -17	132 165 2 29	31 109 2 88	84 27 28 110	12 -10 19 96	1 0 43	0 0 20	1 -29 23	-45 12 -10 50 1113	-7 17 -13 1347	47 27 2 1244
REG INFLOW 14204 RELEASE 13525 STOR CHANGE 678 STORAGE 12478 1 ELEV FTMSL 1583.5 1	657 281 403 245 254 36 12732 12768 584.6 1584.8 13.6 17.7	12777 128	01 1429 45 -172 22 12650 .0 1584.3	1930 1368 562 13212 1586.7 23.0	1294 1678 -384 12828 1585.0 27.3	1158 1494 -336 12492 1583.6 24.3	926 971 -45 12447 1583.4 16.3	693 994 -301 12147 1582.0 16.2	319 290 29 12176 1582.1 9.8	149 146 4 12179 1582.2 10.5	233 165 68 12247 1582.5 10.4	1102 10 12258	977 370 12628	715 529 13157 1586.5 12.9
DISCH KCFS 12.9 POWER AVE POWER MW PEAK POW MW ENERGY GWH 1859.3	154 201 593 594 55.5 33.8	221 2	30 264 95 591	263 604 189.2	312 595 232.2	276 588 205.1	185 587 133.0	182 579 135.5	110 580 39.5	118 580 19.8	117 582 22.5	202 582 150.0	180 591 133.7	148 603 99.2
BIG BEND EVAPORATION 129 REG INFLOW 13396 RELEASE 13396 STORAGE 1681 ELEV FTMSL 1420.0 1 DISCH KCFS 12.9	403 245 403 245 1681 1681 420.0 1420.0 13.6 17.7		01 1429 81 1681	1368 1368 1681 1420.0 23.0	8 1670 1670 1681 1420.0 27.2	24 1470 1470 1681 1420.0 23.9	31 940 940 1681 1420.0 15.8	27 967 967 1681 1420.0 15.7	12 278 278 1681 1420.0 9.3	6 140 1681 1420.0 10.1	7 158 158 1681 1420.0 10.0	14 1088 1088 1681 1420.0 17.7	977 977 1681 1420.0 15.9	715 715 1681 1420.0 12.9
POWER AVE POWER MW PEAK POW MW ENERGY GWH 776.3	64 83 517 510 23.1 13.9	509 5	94 109 09 509 .0 80.9	108 509 77.5	127 509 94.6	113 518 84.2	78 538 56.1	79 538 58.9	47 538 17.0	51 538 8.6	50 538 9.7	87 538 65.1	77 538 57.5	62 529 41.5
FORT RANDALL NAT INFLOW 696 DEPLETION 80 EVAPORATION 134 REG INFLOW 13879 RELEASE 13879 STOR CHANGE 0 STORAGE 3124 ELEV FTMSL 1350.0 1 DISCH KCFS 9.8	95 44 1 1 497 289 223 154 274 135 3397 3532 353.4 1355.0 7.5 11.1	1 402 12 385 12 17 3549 35 1355.2 1355	89 71 4 9 86 1491 86 1491 49 3549 .2 1355.2 .6 24.3	1355.2	36 18 10 1678 1678 0 3549 1355.2 27.3	68 15 31 1492 1666 -174 3375 1353.1 27.1	32 7 35 930 1605 -675 2700 1344.1 27.0	2 943 1346 -403 2297 1337.5 21.9	1 268 268 0 2296 1337.5 9.0	0 135 135 2296 1337.5 9.7	1 52 152 0 2296 1337.5 9.6	7 3 1079 713 366 2662 1343.5 11.6	-7 3 967 695 272 2934 1347.4 11.3	1350.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1365.5	62 94 349 354 22.4 15.7	355	.83 204 55 355 4 152.1		230 355 170.8	226 348 168.2	215 313 154.7	163 283 121.5	66 283 23.7	71 283 11.9		87 311 64.7	89 329 65.9	338
GAVINS POINT NAT INFLOW 1362 DEPLETION 114 CHAN STOR -1 EVAPORATION 47 REG INFLOW 15079 RELEASE 15079	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-20 425 1	.35 150 5 19 0 -5 16 1617 16 1617	24 -3 1666	88 39 -3 3 1722 1722			114 2 9 10 1457 1457	51 5 24 5 333 333	24 2 -1 153 153	3 0 2 175	76 10 -4 5 770 770	75 1 769 769	3 657 696 -39
STOR CHANGE STORAGE 358 ELEV FTMSL 1206.0 J DISCH KCFS 12.5	358 358 1206.0 1206.0 11.0 14.0	1206.0 120	358 358 5.0 1206.0 3.8 26.3	1206.0	358 1206.0 28.0	371 1206.5	397 1207.5 27.5	23.7	11.2	11.0	1207.5 11.0	12.5	397 1207.5 12.5 44	1206.0 12.5
POWER AVE POWER MW PEAK POW MW ENERGY GWH 631.1	39 49 114 114 13.9 8.2	4 114	82 90 114 114 3.7 66.8	114	95 114 70.9	115	117	83 117 62.0	40 117 14.3	39 117 6.6	117			76
GAVINS POINT - SIOU NAT INFLOW 1223 DEPLETION 262 REGULATED FLOW AT SIOU KAF 16040	157 7 7 7	3 4	122 236 22 39 516 1818	5 31 8 1805	102 38 1786	36 1761	23 1660			8 3 158 11.4	; 3 ; 180	13 775	14 752	14 2. 747
KCFS TOTAL	16.1 19.	0 28.9 2	5.5 29.6 013 2976	30.3		1099	966	964	435	203	3 232	631	47	7 848
NAT INFLOW 22199 DEPLETION 2554 CHAN STOR 0 EVAPORATION 1739 STORAGE 39457		7 9 2 - 20	118 650 -31 -3' 288 4175	5 1509 7 -31	1058	213 5 8 338	45 420	41 361	23 162	-63 -1 76 41414	L -57 5 86	-24 188	-1:	2 5
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 7234.6 DAILY GWH	534 63 2137 213 192.2 106. 12.8 15.	2 781 9 2141 2 2 168.8 60 2 18.8 2	846 97 145 214 8.9 723. 0.3 23.	9 2184 2 752.0 3 25.1	2181 833.3 26.9	2168 3 784.4 9 25.3	3 2152 4 599.7 3 20.0	2114 527.9 17.0	2116 168.1 11.2	81.2 11.6	5 2117 2 111.1 5 13.9	2099 562.1 18.1	211 557. 18.	6 2119 0 458.4 0 16.4
INI-SUM	15MAR 22MA	R 31MAR 30	APR 31MA	Y 30JUN	31JUI	L 31AUG	3 30SEP	31001	15NOV	2200	V 30NOV	/ 31DEC	31JA	N 28FEB

DATE OF STUDY 11/15/04		2004-2005 F SHORTEN NAV					E RUNOF	F SIMUL	ATION 9	9001	9901 99	01 PAC		1 B
TIME OF STUDY 10:56:38 28FEB10 INI-SUM 15M2	2010		VALUES	IN 1000	AF EXC	CEPT AS	INDICAT 30SEP		15NOV	22NOV	2013 30NOV		31JAN	28FEB
FORT PECK NAT INFLOW 7022 21 DEPLETION 442 EVAPORATION 463 MOD INFLOW 6117 31 RELEASE 5398 11 STOR CHANGE 719 11 STORAGE 10442 106 ELEV FTMSL 2209.2 2210	3 132 1 6 -8 - 90 140 1 94 62 96 77 98 10685 107 93 2210.7 2211	70 615 10 35 80 580 80 357 99 223 85 11008 .3 2212.6 2	1083 318 765 492 273 11281 2214.3 2	1702 557 1145 565 580 11860	741 224 28 489 553 -65 11796	307 -40 88 259 492 -233 11563	295 -142 111 326 356 -30 11533	379 -76 97 358 299 59 11592	196 -36 44 187 145 42 11634 2216.3 2 4.9	91 -17 21 87 70 17 11651 216.4 5.1	104 -19 24 100 127 -27 11624 2216.2 8.0	345 -114 51 408 553 -145 11479 2215.4 9.0	248 -127 375 584 -209 11270 2214.2 9.5	331 -88 419 528 -109 11161 2213.6 9.5
POWER AVE POWER MW	56 56 33 184 1	56 75 84 186 1 53.8	8.0 100 188 74.5	120 193 86.6	115 192 85.4	102 190 75.6	76 190 54.6	62 191 45.9	62 191 22.3	64 191 10.8	102 191 19.5	114 190 84.7	120 188 89.0	119 187 80.0
DEPLETION 1178 CHAN STOR -5 EVAPORATION 550 REG INFLOW 14263 REG INFLOW 14263 STOR CHANGE 879 STORAGE 12561 STORAGE 1257	0 0 49 83 296 3 46 194 2 37 102 3 98 12899 130 .1 1818.5 1819	00 803 0 5 -16 880 1139 250 1012 331 127 330 13157 9.0 1819.5 4.0 17.0	1349 207 -21 1612 1138 475 13632 1821.4 18.5	2842 762 -16 2629 1309 1320 14952 1826.5 J 22.0	1990 597 5 1918 1322 596 15549 828.7 21.5	559 82 10 106 873 1291 -418 15130 1827.1 21.0	470 -130 21 132 845 952 -108 15023 1826.7	451 12 115 645 806 -161 14862 1826.1 13.1	185 -99 52 376 390 -14 14848 1826.1	86 -46 -2 24 176 184 -8 14840 1826.1 13.2	98 -53 -31 28 220 286 -66 14774 1825.8 18.0	251 -75 -10 59 810 1230 -420 14354 1824.2 20.0	186 -49 -5 814 1353 -539 13815 1822.1 22.0	295 -24 847 1222 -375 13440 1820.7 22.0
POWER AVE POWER MW 1	63 153 95 397	154 187 399 401 3.2 134.8	205 408 152.6	249 426 179.5	250 434 185.8	245 428 181.9	186 427 133.7	152 425 113.1	152 425 54.6	153 424 25.7	207 424 39.8	229 418 170.0	248 410 184.5	245 405 164.6
DELETION 666 CHAN STOR 0 EVAPORATION 482 REG INFLOW 14285 REG INFLOW 14285 STOR CHANGE 889 STORAGE 13157 ELEV FTMSL 1586.5 DISCH KCFS 12.9	24 11 34 5 74 290 24 122 50 168 07 13474 13 .1 1587.8 158	130 324 14 49 -14 366 1272 323 1192 43 80 518 13598 8.0 1588.3 8.1 20.0	183 70 -7 1243 1410 -166 13432 1587.6 22.9	815 142 -17 1965 1342 623 14054 1590.2 22.6	144 169 2 30 1269 1670 -400 13654 1588.6 27.2	34 112 2 93 1123 1484 -361 13293 1587.0 24.1	16.2	16.1	1 344 283 61 13067 1586.1 9.5	10.5	1 -23 24 237 164 74 13157 1586.5 10.3 119	-49 12 -10 53 1106 1095 11 13168 1586.5 17.8 205	-8 17 -10 1318 978 340 13508 1588.0 15.9 184	51 27 0 1246 708 538 14046 1590.2 12.7 149
PEAK POW MW	06 610	210 233 611 613 5.3 167.6	266 609 197.8	263 622 189.4	317 614 235.9	280 606 208.0	187 605 135.0	186 599 138.1	109 601 39.4	121 601 20.3	603 22.9	603 152.7	611 137.0	622 100.3
RELEASE 13267 5 STORAGE 1681 16 ELEV FIMSL 1420.0 1422 DISCH KCFS 12.9 1	24 122 81 1681 1 .0 1420.0 142	323 1192 323 1192 681 1681 0.0 1420.0 8.1 20.0	1410 1410 1681 1420.0 22.9	1342 1342 1681 1420.0 22.6	27.0	23.7	15.7	15.7	9.1	6 140 140 1681 1420.0 10.1	7 157 1681 1420.0 9.9 50	14 1081 1081 1681 1420.0 17.6 87	978 978 1681 1420.0 15.9 77	708 708 1681 1420.0 12.7 61
		85 94 509 509 8.3 67.5	107 509 79.8	106 509 76.0	127 509 94.1	112 518 83.6	77 538 55.8	79 538 58.8	46 538 16.6	51 538 8.5	538 9.6	538 64.6	538 57.6	529 41.1
DEPLETION 80 EVAPORATION 134 REG INFLOW 13832 RELEASE 13832 STOR CHANGE 0 STOR CHANGE 3123 3 ELEV FTMSL 1350.0 135	.06 49 1 1 29 171 20 154 109 17 532 3549 3 5.0 1355.2 135 7.4 11.1 2	64 100 1 4 385 1288 385 1288 549 3549 5.2 1355.2 1.6 21.6	79 9 1480 1480 3549 1355.2 24.1	203 12 1533 1533 3549 1355.2 25.8	41 18 10 1675 1675 0 3549 1355.2 27.2	76 15 31 1490 1664 -174 3375 1353.1 27.1	36 7 928 1603 -675 2700 1344.1 26.9	2 940 1343 -403 2297 1337.5 21.8	1 10 260 260 0 2296 1337.5 8.7	0 5 134 134 2296 1337.5 9.7	5 151 151 0 2296	8 3 1073 707 366 2662 1343.5 11.5	-8 3 967 695 272 2934 1347.4 11.3	23 3 728 539 189 3123 1350.0 9.7
POWER AVE POWER MW PEAK POW MW	354 355	182 183 355 355 9.4 131.6	203 355 150.9	217 355 156.3	229 355 170.5	226 348 168.0	215 313 154.5	163 283 121.2	64 283 23.0	71 283 11.9	283	86 311 64.1	89 329 65.9	338
DEPLETION 114 CHAN STOR -1 EVAPORATION 47 REG INFLOW 15071. RELEASE 15071 STOR CUNCE	$\begin{array}{ccccccc} 103 & 48 \\ 0 & 0 \\ 5 & -7 \\ 328 & 195 \\ 328 & 195 \\ 358 & 358 \\ 6.0 & 1206.0 & 126 \\ \end{array}$	62 139 0 5 -20 0 427 1422 427 1422 358 358 36.0 1206.0	155 19 -5 1611 1611 358 1206.0	160 24 -3 1666 1666 358 1206.0	91 39 -3 1722 1722 358 1206.0	1722 13 371 1206.5	1636 26 397 1207.5	117 2 9 10 1457 1457 1457 1207.5	53 5 24 5 327 327 327 1207.5	25 2 -2 153 153 153 1207.5	3 0 175 175 175	766	771 771 397	3 655 694 - 39 358
DISCH KCFS 12.5 1 POWER AVE POWER MW PEAK POW MW	1.0 14.0 3 39 49 114 114	82 82 114 114	28.2 89 114	28.0 95 114	28.0 95 114 70.9	96 115	95 117	23.7 83 117 62.0	11.0 39 117 14.1	39 117 6.6	39 117	44 78	45 78	44 76
ENERGY GWH 630.7 1 GAVINS POINT - SIOUX C NAT INFLOW 1356	ITY 174 81	17.7 59.0 104 135 4 22		68.6 188 31	113 38	84	52	37	19	3	9 10			
	495 273	4 22 527 1535 29.5 25.8	1838	1823 30.6	1797 29.2	1770	1664	1484		159 11.4				
DEPLETION 2743 CHAN STOR -5 EVAPORATION 1805	383 645 15 7 88 -2 284 42648 4	829 2116 9 120 -20 -31 2921 43351	658 -33	-36	3120 1085 112 46587	219 13 2 351	-219 45 436	-72 35 375	-121 25 168	212 - 50 - 4394	5 -65 4 -54 8 90 9 43929	-151 -24 195 43743	-14: -19 43600	L -68 5 3 5 43810
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 7303.6 2 DAILY CWH	7.9 83.2 1 4.5 11.9	768 853 2172 2178 66.0 614.3 18.4 20.5	2183 722.3 23.3	2219 756.4 25.2	842.6 27.2	2206 788.4 2 25.4	5 2190 602.3 20.1	2153 539.0 17.4	2155 170.0 11.3	215 83. 12.	5 2150 8 112. 0 14.3	5 2138 7 569.2 18.4	215- 2567. 18.	4 2156 1 468.3 3 16.7
INI-SUM 1	MAR 22MAR 3	1MAR 30API	31MAY	30JUN	31JUI	L 31AU	3 30SEF	31001	15NOV	22NO	V 30NO	7 31DE0	C 31JA	N 28FEB

DATE OF STUDY 11/15/04		2004-2	005 AOP EX	TENSION	IS, LOWE	R DECIL	e runof	F SIMUL	ATION 9	9001 9				1
TIME OF STUDY 10:57:00		SHORTE	N NAVIGAT	ION SEAS	ON 61-I	DAYS CEPT AS	INDICAT	ED				STUDY N	0 29)
28FEB06 INI-SUM	2006 15MAR 22MAR	31MAR 30AP							15NOV	22NOV	2007 30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 5435 DEPLETION 377 EVAPORATION 354 MOD INFLOW 4704	250 116 2 1 247 115	150 54 1 5 148 49	1 207	1061 358 703	468 178 22 268	270 -28 68 230	258 -115 85 288	341 -59 74 326	169 -12 34 147	79 -6 16 69	90 -6 18 79 79	289 -65 39 315 523	218 -82 300 553	293 -49 342 500
RELEASE 5204 STOR CHANGE -500 STORAGE 7405 ELEV FTMSL 2188.7 2	149 69 99 46 7503 7549 189.5 2189.8	89 38 59 11 7608 771 2190.2 2191. 5.0 6.	7 492 1 135 9 7854 1 2192.1	536 167 8022 2193.3 9.0	523 -255 7767 2191.4 8.5	492 -262 7505 2189.5 2 8.0	342 -53 7452 :189.1 5.7	270 56 7507 2189.5 2 4.4	131 17 7524 189.6 4.4	69 -1 7523 2189.6 5.0	-1 7523	-207 7315	-253 7062	-158 6904 2184.8 9.0
DISCH KCFS 8.5 POWER AVE POWER MW PEAK POW MW ENERGY GWH 685.8	5.0 5.0 55 55 113 113 19.7 9.2	5.0 0. 55 7 114 15 11.9 51.	1 88 6 158	100 159 72.0	94 157 70.1	88 154 65.1	62 153 45.0	48 154 35.7	48 154 17.3	55 154 9.2	55 154 10.5	92 152 68.3	96 149 71.3	95 147 63.7
GARRISON NAT INFLOW 8026 DEPLETION 1260 CHAN STOR -6	297 138 32 15 41	178 77 19 6 -1	0 132	2221 727 -11	1404 568 6 26	397 89 6 82	305 -110 25 101	429 14 15 87	177 -83 39	83 -39 -7 18	94 -44 0 21	119 -63 -40 44	176 -40 -6	245 -18
EVAPORATION 417 REG INFLOW 11547 RELEASE 12156 STOR CHANGE -609 STORAGE 8867 ELEV FTMSL 1799.9 DISCH KCFS 18.5	454 193 417 180 37 12 8905 8917 800.1 1800.2 14.0 13.0	248 107 232 89 16 18 8933 912 1800.3 1801 13.0 15	3 1045 7 290 0 9410 3 1802.7	2018 1131 888 10298 1807.1 19.0	1338 1138 201 10499	724 1107 -383 10115 1806.2 18.0	681 944 -262 9853	614 842 -228 9625	352 408 -56 9569	13.7	17.0	621 1138 -516 8955 1800.4 18.5	19.0	19.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1427.1	133 124 330 330 47.8 20.8	124 14 331 33 26.7 103	4 340	187 355 134.7	186 359 138.6	181 352 134.5	157 348 113.4	135 343 100.4	134 342 48.3	134 342 22.5	165 341 31.8	177 331 132.0	$178 \\ 323 \\ 132.7$	175 317 117.9
OAHE NAT INFLOW 1184 DEPLETION 613 CHAN STOR -3 EVAPORATION 319	223 104 23 11 26 6	-	7 66 1 -11	242 129 -12 1232	92 151 3 20 1062	24 100 3 59 974	72 25 13 75 929	6 -8 13 67 802	-6 2 0 31 370	-3 1 14 172	-3 1 -20 17 230	-54 11 -9 36 1027	-13 16 -3 1136	47 26 1076
	642 279 432 277 210 3 9568 9571 569.0 1569.1 14.5 19.9	369 12 -17 -2 9554 93 1569.0 1567	50 1474 L0 -393 44 8950 .8 1565.5	1418 -186 8764	1708 -646 8118	1351 -377 7741 1558.0 22.0	611 317 8059 1560.0 10.3	673 129 8187 1560.9 10.9	318 51 8239 1561.2 10.7	148 25 8263 1561.3 10.7	169 60 8324 1561.7 10.7	1022 5 8329 1561.8 16.6	801 335 8664 1563.8 13.0	1002 74 8739 1564.3 18.0
DISCH KCFS 16.6 POWER AVE POWER MW PEAK POW MW ENERGY GWH 1568.0	14.5 19.9 150 206 511 511 53.9 34.6	214 2 511 5	16 243 05 493	239 488 172.0	273 468 202.9	211 455 157.1	99 466 71.4	107 470 79.4	105 472 37.7	105 473 17.6	105 474 20.1	163 475 121.5	129 485 96.1	180 487 121.0
BIG BEND EVAPORATION 129 REG INFLOW 12895 RELEASE 12895 STORAGE 1681 ELEV FTMSL 1420.0 1 DISCH KCFS 16.6	432 277 432 277 1681 1681 1420.0 1420.0 14.5 19.9	369 12 1681 16 1420.0 1420	50 1474 81 1681 .0 1420.0	1418 1418 1681 1420.0 23.8	8 1700 1700 1681 1420.0 27.6	24 1327 1327 1681 1420.0 21.6	31 580 580 1681 1420.0 9.8	27 646 646 1681 1420.0 10.5	12 306 306 1681 1420.0 10.3	6 142 142 1681 1420.0 10.2	10.3	16.4	801 801 1681 1420.0 13.0	18.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH 748.2	69 93 518 510 24.7 15.7	509 5	98 112 09 509 .8 83.5	112 509 80.3	129 509 96.3	103 525 76.5	49 538 35.6	53 538 39.6	52 538 18.7	52 538 8.7	52 538 10.0	82 538 60.8	65 538 48.0	87 529 58.1
FORT RANDALL NAT INFLOW 366 DEPLETION 80 EVAPORATION 127 REG INFLOW 13049 RELEASE 13048 STOR CHANGE 1 STORAGE 3122 ELEV FITNSL 1350.0 DISCH KCFS 10.0	67 33 1 2 235 155 262 144 3384 353 1353.2 1355.0 7.9 11.1	1 7 408 12 9 391 12 3 17 2 3549 35 0 1355.2 1355	98 1507	146 12 1552 1552 3549 1355.2 26.1	16 18 10 1688 1688 0 3549 1355.2 27.5	44 15 30 1326 1675 -349 3200 1351.0 27.2	-12 7 31 525 1428 -903 2296 1337.5 24.0	-62 1 22 561 561 0 2296 1337.5 9.1	-3 1 292 292 0 2296 1337.5 9.8	-1 0 5 136 136 2296 1337.5 9.8	-2 1 55 155 2296 1337.5 9.8	3 13 992 719 273 2569 1342.1 11.7	-7 3 791 701 90 2659 1343.5 11.4	15 3 1014 550 464 3123 1350.0 9.9
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1279.9	65 9 349 35 23.6 16.3	7 185 1 4 355 3	84 207 55 355 .6 153.7	220 355 158.1	231 355 171.8		184 283 132.7	67 283 49.6	72 283 25.8	71 283 12.0	71 283 13.7	87 305 64.8	87 311 64.9	79 338 52.8
GAVINS POINT NAT INFLOW 1229 DEPLETION 114 CHAN STOR -1 EVAPORATION 47 REG INFLOW 14115 RELEASE 14115 STOR CHANGE	4 - 329 19 329 19	$\begin{array}{cccc} 0 & 0 \\ 7 & -20 \\ 4 & 425 & 14 \\ 4 & 425 & 14 \\ \end{array}$	23 134 5 19 0 -5 16 1617 16 1617	24 -3 1666 1666	1722	10 9 1735 1722 13	56 -5 6 11 1484 1458 26	2 28 10 683 683	46 5 -1 327 327 327	21 2 0 2 153 153 397	25 3 0 175 175 397	69 10 -4 5 770 770 770 397	67 1 768 768 397	653 692 -39 358
STORAGE 358 ELEV FTMSL 1206.0 DISCH KCFS 12.5 POWER	11.0 14.		858 358 5.0 1206.0 5.8 26.3 82 90	1206.0 28.0	1206.0 28.0	1206.5 28.0	397 1207.5 24.5 85	1207.5 11.1	1207.5 11.0 39	1207.5 11.0 39	1207.5 11.0 39	1207.5 12.5 44	1207.5 12.5 44	1206.0 12.5 44
AVE POWER MW PEAK POW MW ENERGY GWH 590.8 GAVINS POINT - SIOU	39 4 114 11 13.9 8.	4 114	14 114 3.7 66.8	114 68.6	114 70.9	115 71.3	117 61.5	117 29.4	117 14.1	117 6.6 5	117 7.5 6	78 33.1 12	78 33.0 -6	29.5
GAVINS POINT - SIOC NAT INFLOW 664 DEPLETION 251 REGULATED FLOW AT SIC KAF 14528 KCFS	44 2 6	3 4 2 448 1	93 173 21 35 488 1755 5.0 28.5	30 1764	37 1742	34 1714	18 22 1454 24.4	10 690	12 6 333 11.2	3 156	3 178	12 770	13 749 12.2	13 711
TOTAL NAT INFLOW 16904 DEFLETION 2695 CHAN STOR -15 EVAPORATION 1393		0 39 1 -20	793 2289 188 468 -28 -34	1280 -26	991 6 88	220 5 9 3 273	39 334	-40 56 288	395 -82 -1 130 29706	-38 -7 61	-43 -20 69	-53 150	435 - 89 - 8	-25
STORAGE 30791 SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 6299.9	31400 3160 510 62 1935 193 183.6 104.	3 756 4 1934 1 7 163.3 57	772 31804 795 904 973 1969 2.1 672.9 9.1 21.0	4 953 9 1981 5 685.8	1009 1962 750.6	903 2 1942 5 672.0	638 1904 459.5	449 1906 334.1	450 1907	455 1907 76.5	487 1908 93.5	646 1878 480.5	446.1	1894 443.0
DAILY GWH INI-SUM	12.2 15. 15MAR 22MA		APR 31MA					9 310CT	15NOV	22NOV	30NOV	31DEC	31JAN	1 28FEB

DATE OF	STUDY 11/	15/04	ł					TENSION	IS, LOWE	R DECII	LE RUNO	FF SIMUL	ATION 9	9001 9		01 PAG STUDY N		1 0
TIME OF	STUDY 10: 28FEB07	57:00)	2007			VALUES		AF EXC			TED 310CT	1 5NOV	22NOV	2008 30NOV		31JAN	29FEB
	INI- PECK	SUM 615	15MAR 258	22MAR 120	31MAR 155	30APR 567	31MAY 862	30JUN 1097	31JUL 483	279	266	352	175	81 -15	93 - 17	298 -107	226 -124	303 - 99
NAT IN DEPLET EVAPOR	ION ATION	582 353	257	120	1 154	82 485	349 513	580 517	178 21 284	-31 67 243	-122 84 304	-61 74 339	-33 34 173	16 81	18 92 79	39 366 307	350 307	402 288
MOD IN RELEAS STOR C	E 3 CHANGE	680 834 846	119 138	56 64	71 83	298 187	338 175 7552	387 130 7682	400 -116 7566	369 -126 7440	327 -23 7416	282 57 7473	136 37 7511	69 12 7522	13 7535	58 7594	43 7636	114 7751
STORAG ELEV F DISCH	TMSL 218 KCFS	904 4.8 9.0	7042 2185.9 2 4.0	7107 2186.4 2 4.0	7189 187.1 2 4.0	7377 2188.5 2 5.0						2189.2 2 4.6	4.6	5.0	2189.7 2 5.0	5.0	5.0	2191.3 5.0
POWER AVE PC PEAK E ENERGY	OWER MW OW MW)5.3	42 148 15.2	43 149 7.2	43 150 9.2	54 152 38.8	60 154 44.5	71 156 51.2	71 154 53.0	65 153 48.6	60 153 43.0	50 153 37.1	50 154 18.0	55 154 9.2	55 154 10.5	55 155 40.7	55 155 40.8	55 156 38.3
NAT IN DEPLET	TION 1	3444 1027 46	312 24 59	146 11	187 15	810 28 -12	1045 211 -6	2337 732 -12	1477 522	418 82 6	320 -125 6	451 - 3 10	187 -101	87 -47 -5	99 -54 0 22	125 -112 0 47	185 -88	258 -68
CHAN S EVAPOR REG IN	RATION NFLOW 10	430 0867	466	190	244 214	1068 774	1166 830	1980 863	26 1329 892	83 628 892	103 675 708	90 656 704	41 383 341	19 180 159	211 222	498 861	580 922	614 863 -249
RELEAS STOR (STORA(CHANGE 1 GE 8	9827 1041 3258	417 49 8307	167 23 8330	30 8360	294 8655	336 8991	1117 10108	437 10545	-264 10282 1807.0	-33 10249 1806.9	-48 10201 1806.6	42 10243 806.8	21 10264 1806.9	-11 10253 1806.9	-363 9890 1805.1	-342 9548 1803.4	9299 1802.2
ELEV H DISCH	FTMSL 179 KCFS J	96.6 19.0	1796.9 14.0	1797.0 : 12.0	12.0	1798.8 13.0	1800.6 13.5	1806.2 14.5	14.5	14.5	11.9	11.5	11.5	11.5 115	14.0 141	14.0 140	15.0 147	15.(14(
	OWER MW POW MW	66.6	129 318 46.5	111 319 18.7	111 319 24.0	121 325 87.4	128 332 95.1	142 352 101.9	146 360 108.7	147 355 109.1	120 354 86.3	115 354 85.8	115 354 41.5	355 19.4	355 27.0	348 104.0	342 109.7	33 101.
NAT II DEPLE		1263 626	238 23	111 11	143 14	220 47	120 67	259 132	99 156	25 103	77 25 15	6 -9 2	-6 2 0	-3 1 0	-3 1 -14	-58 12 0	-14 17 -6	5
CHAN :	STOR RATION	24 381 0107	29 661	12 278	343	-6 941	-3 880	-6 984	23 812	71 743	91 684	81 640	37 296 319	17 138 148	20 184 170	42 749 1023	886 802	88 102
RELEA STOR	SE CHANGE	9020 1086	428 233	215 63 9035	116 227 9263	484 457 9720	744 137 9856	810 175 10031	1090 -278 9753	907 -165 9589	207 477 10066	533 107 10173	-23 10150	-10 10140	15 10155	-274 9881	84 9965 1571.2	-13 982 1570.
STORA ELEV DISCH	FTMSL 15 KCFS	8739 64.3 18.0	8972 1565.6 14.4				1570.6 12.1		17.7	14.8	1571.8	8.7	10.7	10.7	1572.2 10.7 113	1570.8 16.6 175	13.0	17.
	OWER MW POW MW	40.0	145 494 52.1	157 496 26.4	66 503 14.3	84 516 60.6	126 520 94.0	143 525 102.8	185 517 137.9	153 512 114.1	36 526 26.3	92 529 68.3	114 528 40.9	113 528 19.0	528 21.7	520 130.1	523 101.8	51 129.
EVAPO	G BEND RATION	129 8891	428	215	116	484	744	810	8 1082	24 883	31 176	27 506	12 307	6 [.] 143	7 163 163	14 1009 1009	802 802	102 102
REG I RELEA STORA	SE GE	8891 1681	428 1681	215 1681	116 1681	484 1681	744 1681 1420.0	810 1681 1420.0	1082 1681 1420.0	883 1681 1420.0	176 1681 1420.0	506 1681 1420.0	307 1681 1420.0		1681 1420.0	1681 1420.0	1681 1420.0	168 1420.
ELEV DISCH POWE	KCFS	20.0 18.0	1420.0 14.4	15.5	1420.0 6.5	8.1	12.1	13.6	17.6	14.4	3.0 15	8.2 42	10.3 52	10.3 52	10.3 52	16.4 82	13.0 65	17. 8
AVE P PEAK	OWER MW POW MW	18.2	68 517 24.5	73 510 12.2	30 509 6.6	38 509 27.4	57 509 42.1	64 509 45.9	82 509 61.3	518 50.5	538 10.8	538 31.1	538 18.8	538 8.7	538 10.0	538 60.8	538 48.1	52 59
	RANDALL NFLOW	404 80	74 1	35 1	44 1	58 4	47 9	161 12	18 18	48 15	-13 7	-69 1 23	-4 1 10	-2 0 5	-2 1 5	3 13	- 8 3	
EVAPC REG I	NATION NFLOW	131 9085	500 232	249 108	159 142	538 538	782 782	959 959	10 1072 1072	31 885 1059	33 122 1047	413 565	292 291	136 135	155 155	993 719 274	791 701 90	5
STOR	CHANGE	9081 4 3123	268 3391	141 3532	17 3549	3549			0	-174 3375 1353.1	-925 2450 1340,2	-152 2298 1337.5	0 2298 1337.5	0 2299 1337.5	1337.5	2573 1342.1	2663 1343.5	31 1350
ELEV	FTMSL 13 KCFS	9.9	1353.3	1355.0 7.8	8.0	9.0	12.7	16.1	17.4	17.2	17.6	9.2	9.8	9.8	9.8 71	11.7 87	11.4 87	10
AVE E PEAK	POWER MW POW MW	387.5	65 349 23.3	354	68 355 14.7	77 355 55.5	108 355 80.4	137 355 98.3			295 99.8	283	284 25.8	284 12.0	284 13.7	305 64.9	64.9	55
NAT 1	INS POINT INFLOW ETION	1242 114	0	0	54 0	124	136 19	143 24 -7	39	10		2	47 5 -1	22 2 0	3 0	69 10 -4	67 1 1	
CHAN EVAP	STOR DRATION	-1 47 10161			0 196	~2 655	-7 892	1071	3 1107	9 1120	11 1097	10 676	5 327 327	2 153 153	175	5 770 770		37
RELEA	ASE 1	10161	327	151	196	655 358	892 358			13	26		207	207	397	397	397	- 3
ELEV DISCI	H KCFS	206.0 12.5	1206.0 11.0	1206.0 10.8	1206.0	1206.0 11.0	14.5	10.0	1010				1207.5 11.0 39	1207.5		12.5		
PEAK	POWER MW POW MW	431.5	38 114 13.9	114	39 114 8.3	114	51 114 37.6	114	114	115	117	7 117	117 14.1	117 6.6	117	78	- 78	3
NAT DEPL	INS POINT INFLOW ETION	730 254) 48 1 6	3 23 5 3									13 6				1	3
REGUL K	ATED FLOW	AT SI 10637	LOUX CIT	r¥ 9 170	222								334 11.2					
NAT	TOTAL INFLOW ETION	17698	3 59	5 26	33	187	690) 1510) 950) 214	4 -19	7 -60		-56	5 -64 5 -14	-182	- 17	8 - 1
CHAN	STOR ORATION	70 147 2906	0 92 1) -19 . 31339			90	285	5 35	4 306	138	65	5 74		5 3189	
SYST AVE PEAK	EM POWER POWER MW POW MW		48 194:	7 488 2 1943	35 1950	7 413) 1972	529 1984	201	1 2009 1 517.1	9 200 1 476.	1 198 5 311.	3 1974 8 301.9	1975 159.0	1975 74.8	5 1975 B 90.4	1944 433.5	1 194 5 398.	7 19 4 419
	V CHALL	649.	11.1	7 11.7	8.6	5 9.9) 12.7	7 14.	8 16.3			4 9.7 P 310CI						
	IN	រ - ទហ	M 15MA	R 22MAF	AML د ک	SUAPP	C DIMA											

DATE OF STUDY 11/15/04)5 AOP EX NAVIGATI	ON SEAS	ON 61-D	AYS			ATION 9	9001 9	901 990 S	01 PAG	_	1
TIME OF STUDY 10:57:00 29FEB08 INI-SUM 15M	2008 AR 22MAR 3	31MAR 30APR	VALUES	IN 1000 30JUN	AF EXC	EPT AS	INDICA1 30SEP		15NOV	22NOV	2009 30NOV	31DEC	31JAN	28FEB
FORT PECK NAT INFLOW 5748 2 DEFLETION 419 EVAPORATION 373 MOD INFLOW 4956 2 RELEASE 5068 1 STOR CHANGE -112 1 STORAGE 7751 75 ELEV FTMSL 2191.3 2192	64 123 10 -5 74 128 19 56 55 72 06 7978 .4 2193.0 2	158 580 -6 63 164 517 71 298 93 219 8071 8290 193.6 2195.2	882 315 567 400 167 8457 2196.3 2	1123 507 616 536 80 8538 2196.9 2 9.0	495 178 294 -229 8309 2195.3 8.5	285 -34 71 248 523 -275 8034 2193.4 2 8.5	273 -129 89 313 363 -50 7984 193.0 2 6.1	361 -63 78 346 268 78 8062 2193.6 2 4.4	179 -35 36 177 127 50 8113 193.9 2 4.3	83 -16 17 83 83 -1 8112 193.9 2 6.0	95 -18 19 95 127 -32 8080 193.7 2 8.0	305 -110 41 374 523 -148 7932 192.6 2 8.5	231 -127 358 553 -195 7736 191.2 9.0	310 -92 500 -98 7638 190.5 9.0
POWER AVE POWER MW PEAK POW MW	.0 4.0 44 45 58 159 .0 7.5	4.0 5.0 45 57 160 162 9.7 40.7	6.5 74 164 55.1	103 165 74.1	97 162 72.0	96 159 71.1	68 159 49.1	49 160 36.4	48 160 17.3	68 160 11.3	90 160 17.2	95 158 70.5	99 156 73.9	99 155 66.3
DELETION 984 CHAN STOR -46 EVAPORATION 439 REG INFLOW 12361 RELEASE 12482 STOR CHANGE -121 STORAGE 9299 92 ELEV FTMSL 1802.2 1800	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	194 840 -3 -6 -11 268 1132 214 893 54 240 9438 9677 802.9 1804.1 12.0 15.0	-17 1256 1107 149 9826 1804.8	2425 736 -28 2196 1190 1006 10832 1809.6	1533 538 6 27 1496 1199 297 11129 1810.9 19.5		332 -127 27 106 743 849 -106 10637 .808.7 14.3				103 -51 -22 237 254 -17 10331 .807.3 1 16.0	130 -107 -6 47 707 1168 -461 9870 805.0 19.0	192 -83 -6 823 1230 -407 9463 1803.0 20.0	20.0
POWER AVE POWER MW PEAK POW MW	135 117 338 339 3.8 19.6	$\begin{array}{rrrr} 117 & 147 \\ 340 & 344 \\ 25.2 & 105.5 \end{array}$	347	201 365 144.4	201 369 149.2	195 363 145.2	146 361 105.0	145 358 107.8	147 357 52.8	151 356 25.4	161 356 30.9	189 348 140.7	195 340 145.3	192 335 129.4
DEPLETION 641 CHAN STOR -27 EVAPORATION 346 REG INFLOW 12790 RELEASE 12936 STOR CHANGE -145 STORAGE 9825 10 ELEV FIMSL 1570.5 157		149 233 14 44 -17 350 1055 361 1236 -11 -177 10065 9886 1571.8 1570.4 20.2 20.4	68 -17 1148 1464 -316 5 9570 1569.1	271 135 -11 1315 1388 -73 9496 1568.7 23.3	103 160 3 21 1123 1704 -580 8916 1565.3 27.7	26 106 3 65 1027 1518 -492 8425 1562.4 24.7	81 26 28 851 443 407 8832 1564.8 7.5	7 -9 820 678 142 8973 1565.7 11.0	-7 2 -1 33 389 319 70 9043 1566.1	-3 1 -3 16 186 148 38 9081 1566.3 10.7	10.7	16.6	13.1	52 27 1136 1000 136 9680 1569.7 18.0
PEAK POW MW	146 203 525 526 2.5 34.0	212 21 526 52 45.9 156.5	L 511	240 509 173.0	281 492 209.4	245 478 182.6	75 490 53.7	111 494 83.0	109 496 39.1	108 497 18.2	109 499 20.9	169 499 125.8	134 511 100.0	186 515 125.3
RELEASE 12807 STORAGE 1681 1 ELEV FIMSL 1420.0 142 DISCH KCFS 17.8 1 POWER	3.9 19.3	361 123 361 123 1681 168 1420.0 1420. 20.2 20. 95 9	B 1464 1 1681 0 1420.0 B 23.8	1388 1388 1681 1420.0 23.3 109	8 1696 1696 1681 1420.0 27.6 129	24 1494 1494 1681 1420.0 24.3 115	31 413 413 1681 1420.0 6.9 35	27 651 1681 1420.0 10.6	10.3 52	10.2 52	10.2 52	16.4 82	13.1 65	1000 1000 1682 1420.0 18.0 86 529
AVE POWER MW PEAK POW MW ENERGY GWH 742.1 2	66 90 518 510 3.7 15.2	509 50 20.4 70.	9 509	509 78.6	509 96.0	518 85.5	538 25.3	538 39.9	538 18.8	538 8.7	538 10.0	538 60.7	538 48.2	58.0
FORT RANDALL NAT INFLOW 433 DEFLETION 80 EVAPORATION 128 REG INFLOW 13021 RELEASE 13025 STOR CHANGE -4 STORAGE 3127 13 ELEV FIMSL 1350.0 133 DISCH KCFS 10.0	80 37 1 1 492 304 232 158 260 146 386 3532 3.3 1355.0 7.8 11.4	408 129 391 129	4 9 6 1505 6 1505 0 9 3549 2 1355.2	174 12 1550 1550 3549 1355.2 26.1	19 18 10 1687 1687 0 3549 1355.2 27.4	52 15 31 1500 1674 -174 3375 1353.1 27.2	-15 7 32 348 1427 -1079 2296 1337.5 24.0	-75 1 22 553 553 0 2296 1337.5 9.0	-4 1 292 292 0 2296 1337.5 9.8	-2 0 135 135 0 2296 1337.5 9.8	-2 1 5 155 155 0 2296 1337.5 9.8	3 13 991 719 272 2568 1342.1 11.7	-9 3 792 701 91 2659 1343.5 11.4	
POWER AVE POWER MW PEAK POW MW	65 96 349 354 3.3 16.1	185 18 355 35 39.9 132.	5 355	219 355 157.9	231 355 171.7	227 348 169.0	186 282 133.9	66 283 48.9	72 283 25.8	71 283 12.0	71 283 13.7	87 305 64.8	87 311 64.9	79 338 52.8
GAVINS POINT NAT INFLOW 1246 DEPLETION 114 CHAN STOR -1 EVAPORATION 47 REG INFLOW 14109 RELEASE 14109 STOR CHANGE STORAGE 358 ELEV FTMSL 1206.0 12	$\begin{array}{cccccccc} 91 & 42 \\ 0 & 0 \\ 4 & -7 \\ 327 & 194 \\ 327 & 194 \\ 358 & 358 \\ 06.0 & 1206.0 \end{array}$	-20 425 141 425 141 358 35 1206.0 1206	5 19 0 -5 6 1617 6 1617 8 358 0 1206.0	143 24 -3 1666 1666 358 1206.0	79 39 -3 1722 1722 358 1206.0 28.0	1735 1722 13 371 1206.5	57 -5 6 11 1484 1458 26 397 1207.5 24.5	1207.5	47 5 -2 5 327 327 1207.5 11.0	22 2 153 153 397 1207.5 11.0	25 3 0 2 175 175 397 1207.5 11.0	70 10 -4 5 771 771 397 1207.5 12.5	68 1 1 769 769 397 1207.5 12.5	101 3 654 693 -39 358 1206.0 12.5
DISCH KCFS 12.5 POWER AVE POWER MW PEAK POW MW	11.0 14.0 39 49 114 114 13.9 8.2	23.8 23	8 20.3 22 90 4 114	20.0 95 114	2010 95 114	96 115	85 117 61.5	39 117	39 117 14.1	39 117 6.6	39 117 7.5	45 78 33.1	44 78 33.0	44 76
GAVINS POINT - SIOUX NAT INFLOW 785 DEPLETION 255 REGULATED FLOW AT SIOUX	CITY 52 24 6 3 CITY	31 1 4	LO 205 21 35	151 30	38	35	21 23 1456	10	14 6 335	6 3 156	7 3 179	14 12 773	-7 13 749	14 717
KAF 14639 KCFS	373 215 12.5 15.5	452 15 25.3 25		30.0	28.5	27.9	24.5	11.2	11.3	11.3	11.3	12.6 458	12.2 460	
DEPLETION 2493 CHAN STOR -84 EVAPORATION 1463	1060 494 16 8 21 4 2733 33009	-20 -	35 657 28 - 39	1444 -43	971 6 92	220 3 285	51 351	-67 47 303	422 -118 -2 137 31907	-55 -22 64	73	-180 -27 159	-176 -11	-105 3 31658
SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 6412.3 1 DAILY GWH	495 599 2002 2003 78.1 100.6 11.9 14.4	735 7 2004 20 158.7 564 17.6 18	84 905 05 2001 .4 673.7 .8 21.7	968 2017 696.7 23.2	1034 2002 769.3 24.8	2 1981 3 724.7 3 23.4	428.5 14.3	1950 345.1 11.1	466 1952 167.9 11.2	1952 82.2 11.7	100.2 12.5	16.0	1934 465.4 15.0	1948 461.2 16.5
INI-SUM 1	5MAR 22MAR	31MAR 30A	PR 31MAY	Y 30JUN	1 31JUI	31AUG	30SEI	9 310CT	15NOV	22NOV	30NOV	31DEC	31JAN	I 28FEB

ATE OF STUDY						1707 TOAT	ON SEAS	SON 61-1	AYS		F SIMUL	ATION 9	9001 9		01 PAG STUDY N		1 2
IME OF STUDY 28FE	B09	15MAR	2009 22MAR	31MAR		VALUES	IN 1000) AF EXC	EPT AS	INDICAT 30SEP		15NOV	22NOV	2010 30NOV		31JAN	28FEB
FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL	- 5919 432 372 5115 4997 118 7638	272 -10 282 119 163 7801 2191.7	127 -5 131 56 76 7877 2192.2 2	163 -6 169 71 98 7974 2192.9	598 63 535 298 237 8212 2194.6	909 316 593 461 132 8344 2195.6 2	1156 511 645 536 109 8453 2196.3	509 185 23 301 523 -222 8232	294 -29 71 252 492 -240 7992	281 -130 89 322 356 -34 7958	371 -65 78 358 270 88 8046	184 -35 35 184 130 53 8099 193.8 4.4	86 -16 17 86 69 16 8116 2193.9 5.0	98 -19 19 98 127 -29 8086 2193.7 2 8.0	314 -110 41 383 523 -139 7947 2192.7 8.5	238 -127 365 523 -158 7789 2191.6 8.5	319 -92 411 444 -33 7756 2191.3 8.0
DISCH KCFS POWER AVE POWER MU PEAK POW MW ENERGY GWH	9.0 677.9	4.0 44 157 15.9	4.0 44 158 7.5	4.0 45 159 9.7	5.0 56 161 40.5	7.5 85 163 63.2	9.0 102 164 73.7	96 161 71.7	90 159 66.8	67 159 48.1	49 160 36.6	49 160 17.7	56 160 9.5	90 160 17.2	95 159 70.6	94 157 70.0	80 150 59.2
GARRISON NAT INFLOW DEPLETION CHAN STOR	9185 1019 12	340 -1 58	158 0	204 -1	881 1 -11	1136 212 -28	2542 752 -17	1607 555 6 27	454 94 6 86	349 -130 22 107	491 -12 18 93	203 -100 0 42	95 -46 -7 20	108 -53 -34 22	136 ~110 -6 48	201 -84	28 - 5
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	444 12731 12618 113 9177 1801.6 20.0	517 417 101 9278 1802.1 14.0	214 167 48 9326 1802.3 12.0	276 214 62 9387 1802.6 12.0	1166 893 273 9661 1804.0 15.0	1357 1138 219 9880 1805.1 18.5	2309 1220 1089 10969 1810.2 20.5	1553 1230 323 11292 1811.7 20.0	771 1199 -428 10864 1809.7 19.5	16.0	1808.7 11.6	12.8	184 178 6 10661 1808.8 12.8 131	232 286 -53 10607 1808.5 18.0 183	715 1230 -514 10093 1806.1 20.0 201	808 1261 -453 9640 1803.9 20.5 202	78 113 -35 929 1802. 20.
AVE POWER M PEAK POW MW ENERGY GWH	W 1529.7	135 337 48.6	116 338 19.5	117 339 25.2	146 344 105.3	182 348 135.2	206 367 148.5	207 372 153.8	201 365 149.8	164 362 117.9	119 361 88.6	131 361 47.1	361 22.0	361 35.1	352 149.4	344 150.2	33 133.
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STOR CHANGE ELEV FTMSL DISCH KCFS	1408 653 -2 350 13021 12893 128 9680 1569.7 18.0	265 23 34 692 408 283 9963 1571.2 13.7	123 11 11 290 265 26 9989 1571.4 19.1	159 14 359 356 3 9992 1571.4 19.9	245 48 -17 1073 1232 -159 9833 1570.5 20.7	134 69 -20 1183 1458 -275 9558 1569.0 23.7	288 138 -11 1359 1370 -12 9546 1568.9 23.0	110 165 3 22 1156 1702 -546 9001 1565.8 27.7	28 109 3 65 1056 1513 -458 8543 1563.1 24.6	86 27 21 83 949 445 505 9048 1566.1 7.5	7 -10 25 74 684 684 0 9047 1566.1 11.1	-7 2 -7 33 333 319 14 9062 1566.2 10.7	-3 1 159 148 11 9072 1566.2 10.7	-3 1 -30 18 233 169 64 9136 1566.6 10.7	-64 12 -12 39 1103 1022 81 9217 1567.1 16.6	-16 17 -3 1225 804 421 9638 1569.4 13.1	116 99 17 980 1570 18
POWER AVE POWER M PEAK POW MW ENERGY GWH	W	143 523 51.6	200 523 33.6	209 524 45.1	216 519 155.8	246 511 182.8	237 511 170.9	282 495 209.7	246 481 182.8	75 496 54.2	113 496 84.2	109 497 39.2	108 497 18.2	109 499 20.9	169 501 126.1	135 514 100.2	11 5 125
BIG BEND EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS	129 12764 12764 1682	408 408 1682 1420.0 13.7	265 1682	356 356 1682 1420.0 19.9	1232 1232 1682 1420.0 20.7	1458 1458 1682 1420.0 23.7	1370 1370 1682 1420.0 23.0	8 1694 1694 1681 1420.0 27.5	24 1489 1489 1682 1420.0 24.2	31 414 414 1682 1420.0 7.0	27 657 657 1682 1420.0 10.7	12 306 306 1682 1420.0 10.3	6 142 142 1682 1420.0 10.2	10.3	16.4	804 804 1682 1420.0 13.1	91 9 16 1420 18
POWER AVE POWER M PEAK POW MW ENERGY GWH	W 739.7	65 518 23.4		93 509 20.1	97 509 69.8	111 509 82.6	108 509 77.6	129 509 95.9	115 518 85.2	35 538 25.4	54 538 40.2	52 538 18.8	52 538 8.7	52 538 10.0	82 538 60.8	65 538 48.2	5 57
-FORT RANDA NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	476 80 128 13021 13021 2 1	88 1 495 232 262 3385 1353.3 7.8	1 305 158 147 3532 1355.0	53 1 407 390 17 3549 1355.2 21.9	68 4 1296 1296 3549 1355.2 21.8	1355.2	191 12 1549 1549 3549 1355.2 26.0	21 18 10 1687 1687 0 3549 1355.2 27.4	57 15 31 1500 1674 -174 3375 1353.1 27.2	-16 7 32 349 1427 -1078 2297 1337.5 24.0	-82 1 22 552 552 0 2296 1337.5 9.0			9.7	3 13 992 719 273 2569 1342.1 11.7	11.4	5 4 31 1350 9
POWER AVE POWER M PEAK POW M ENERGY GWH	4	65 349 23.3	354	184 355 39.8			219 355 157.8		227 348 169.0	186 282 133.9	66 283 48.8	72 283 25.7	71 283 11.9	71 283 13.7	87 305 64.8	87 311 64.9	3
GAVINS PO NAT INFLOW DEPLETION CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANG	1252 114 -1 N 47 14111 14111		0 0 -7 3 194 3 194	55 0 -20 425 425	0 1416 1416	19 -5 1617 1617	144 24 -3 1666 1666 358	1722	1722 13	57 -5 6 11 1484 1458 26 397	28 10 676 676	47 5 -2 5 327 327 327	153	2 175 175	70 10 -4 5 770 770 397	68 1 769 769	6
STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER	12.5 MW	358 1206.0 11.0 39 114	9 49	23.8	23.8	20.3	20.0	1206.0 28.0 95 114	1206.5 28.0 96 115	1207.5 24.5 85 117	39 117	39 117	39 117	39 117	1207.5 12.5 45 78 33.1	44 78	1
PEAK POW M ENERGY GWH GAVINS PO	590.7 INT - SIO	13.9 UX CITY	9 8.2 Y	17.6	58.7	66.8	68.6	70.9	71.3			14.1	7	8	16	- 8	3
NAT INFLOW DEPLETION REGULATED F KAF KCFS	862 262	OUX CI	7 27 7 3 FY 8 217	4 455	22 1519	2 35 5 1807	31 1801	. 38 . 1758	36 1720	23 1458	10 688	6 336	3 157	179	13 773 12.6	74	, -
TOTAL- NAT INFLOW DEPLETION CHAN STOR EVAPORATIC STORAGE	19102 2560 -2	2 9	0 9 5 4	12 -20	143	3 660 3 -53	1468 -31	3 1000 6 92	235 286	-208 39 352	-74 70 304	438 -121 -8 138 32191	-56 -7 64	-65 -64 74	-21 160 31905	-176 -2	5 -: 2 5 32
SIGRAGE SYSTEM POW AVE POWER PEAK POW M ENERGY GWH DAILY GWH	ER MW W	49 199	1 595 8 1998 7 99.9 8 14.3	730 2000 157.6 17.5) 783 2003 5 562.0 5 18.0	3 2000 5 684.0 8 22.1	2020 697.2 23.2	2007 2773.8 225.0	1987 3 724.8 2 23.4	1954 441.1 14.7	1956 327.6 10.6	1957 162.7 10.8	1957 76.9 11.0	7 1958 9 104.4) 13.0	1932 504.7 16.3	194 466. 15.	$ 1 1 \\ 6 45 \\ 1 1 $
	INI-SUN	115MA	R 22MAF	8 31 MA I	R 30AP	R 31MAS	30JU	N 31JUI	31AU0	3 30SEI	9 310CT	15NO\	22NO	/ 30NOV	3 TDEC	2 31JA	~ 20

DATE OF STUDY 11	/15/04									E RUNOF	F SIMUL	ATION 9	9001 9	901 99	01 PAG		1
TIME OF STUDY 10			2010	SH	IORTEN N	AVIGATI VALUES	ON SEAS IN 1000	ON 61-1 AF EXC	CEPT AS					2011			28FEB
28FEB10 INI	-SUM	15MAR	2010 22 M AR	31 MA R	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	3 0 N O V		31JAN	
FORT PECK NAT INFLOW DEPLETION	5961 443	274 -10	128 -5	164 -6	602 63	915 317	1164 515	513 192	296 -25	283 -130	374 -67 79	185 -36 23	86 -17 11	99 -19 12	317 -111 42	240 -128	321 -92
EVAPORATION MOD INFLOW	351 5167	284	132	170 71	539 298	598 461	649 536	23 298 523	72 249 492	90 323 357	362 250	198 125	92 69	105 127	386 523	368	413 472 -59
STOR CHANGE	5031 136 7756	119 165 7921	56 77 7997	99 8096	241 8338	137 8474	113 8588	-225 8363	-243 8120 2194.0 2	-34 8086 2193.7 2	113 8199 2194.5 2	73 8272 195.0 2	23 8294 195.2	-21 8273 2195.1 2	-136 8137 2194.1 2		7892 2192.3
ELEV FTMSL 21 DISCH KCFS	91.3 2 8.0	192.5 2 4.0	193.1 2 4.0	2193.8 2 4.0	2195.5 2 5.0	196.5 2	9.0 9.0	195.7 : 8.5	8.0	6.0	4.1	4.2	5.0	8.0 91	8.5 96	9.0 101	8.5 94
POWER AVE POWER MW PEAK POW MW		44 158	45 159	45 160	57 163	85 164	103 165 74.2	97 163 72.2	90 160 67.2	67 160 48.6	46 161 34.1	48 162 17.2	57 162 9.5	162 17.4	161 71.3	159 74.8	158 63.4
ENERGY GWH 6	87.5	16.0	7.5	9.7	40.8	63.6					496	205	96	109	137	204	284
NAT INFLOW DEPLETION	9293 1143	344 -1	160 -1	206 -1	891 -11	1150 212 -28	2572 762 -17	1626 596 6	460 99 6	353 -133 22	-17 22	-103 -2	-48 -9	-55 -33	-81 -6	-55 -6	-31 6
CHAN STOR EVAPORATION REG INFLOW 1	-5 417 L2758	46 510	216	278	1177	1371	2329	28 1531	87 772 1230	108 758 952	93 691 734	27 405 351	12 192 164	14 244 286	48 687 1168	807 1291	793 1166
RELEASE 1 STOR CHANGE	L2588 170 9290	387 123 9414	167 50 9464	214 64 9528	893 285 9812	1076 295 10107	1250 1079 11186	1261 270 11456	-458 10998	-194 10803	-43 10760	54 10814	28 10842	-42 10800 1809.4	-481 10319	-484 9834 1804.9	-374 9461 1803.0
STORAGE ELEV FTMSL 18 DISCH KCFS	302.1 1 20.5		12.0		1804.8 15.0	1806.2 17.5	1811.2 1 21.0	L812.4 20.5	1810.3 20.0	1809.5 16.0	1809.3 11.9	1809.5	11.8	18.0	19.0	21.0	21.0
POWER AVE POWER MW PEAK POW MW		126 340	117 341	117 342	147 347	173 352	213 370	213 375	207 367	165 364	123 363 91.3	121 364 43.6	121 365 20.4	184 364 35.4	192 356 143.2	208 347 155.1	205 340 137.6
ENERGY GWH 15	537.0	45.4	19.6	25.3	106.0	129.0	153.4	158.7	154.4	118.5						-16	56
OAHE NAT INFLOW DEPLETION	1429 666	269 24	125 11	161 14	249 49	136 70 -14	293 142 -20	112 169 3	29 112 3	87 27 24	7 -10 23	-7 1 1	- 3 0	-4 1 -36	-65 12 -6	-16 17 -11	27
CHAN STOR EVAPORATION REG INFLOW	-2 329 13020	42 674	6 286	361	-17 1076	1128	1381	22 1185	66 1084	84 952	75 700	21 322	10 150 143	11 234 164	40 1046 1022	1247 804	1195 997
	12859 160	406 268	263 23	354 7	1230 -154 9952	1457 -329 9622	1366 15 9637	1702 -517 9120	1511 -428 8692	445 507 9200	687 13 9213	309 14 9226	7 9233	70 9303	24 9327	443 9770	198 9968
STORAGE ELEV FTMSL 1 DISCH KCFS	9808 570.4 1 18.0	10076 1571.8 1 13.6	10099 1571.9 19.0	10106 1572.0 19.8					1564.0 24.6	1567.0 7.5	1567.0 11.2	1567.1 10.4	1567.2 10.3	1567.6 10.3	1567.7 16.6	1570.2 13.1	1571.2 17.9
POWER AVE POWER MW		143 526	200 527	209 527	217 522	246 513	237 513	283 498	247 486	76 501	114 501	106 501	106 502	106 504	170 504 126.7	135 517 100.7	188 523 126.0
PEAK POW MW ENERGY GWH 1	604.1	51.5	33.5	45.1	156.2	183.3	170.9	210.5	183.6	54.6	85.0	38.2	17.8	20.3		100.7	120.0
BIG BEND EVAPORATION REG INFLOW	120 12740	406	263	354	1230	1457	1366	8 1694	24 1487	31 414 414	27 659 659	8 301 301	4 140 140	4 160 160	14 1008 1008	804 804	997 997
RELEASE STORAGE	12740 1682	406 1682	263 1682	354 1682 1420.0	1230 1682 1420.0	1457 1682 1420.0	1366 1682 1420.0	1694 1682 1420.0	1487 1682 1420.0	1682	1682	1682 1420.0	1682 1420.0	1682 1420.0	1682 1420.0		
ELEV FTMSL 1 DISCH KCFS POWER	420.0 18.0	1420.0 13.6	19.0	19.8	20.7	23.7	23.0	27.5	24.2	7.0 35	10.7 54	10.1 51	10.1 51	10.1 51	16.4 82	13.1 65	17.9 86
AVE POWER MW PEAK POW MW	738.2	65 518 23.2	89 510 14.9	93 509 20.1	97 509 69.7	111 509 82.5	107 509 77.4	129 509 95.9	114 518 85.1	538 25.4	538 40.4	538 18.4	538 8.6	538 9.8	538 60.8	538 48.2	529 57.9
FORT RANDALL- NAT INFLOW	- 489	90	42	54	70	56	195	21	59	-16	- 84	-4 1	- 2	-2	3	-10 3	20 3
DEPLETION EVAPORATION	80 121	1	1	1 407	4 1296	9 1504	12 1549	18 10 1687	15 31 1500	32 349	22 552	6 289	3 134	3 154	13 992	791	1014
REG INFLOW RELEASE STOR CHANGE	13017 13017 0	494 232 262	305 158 147	390 17	1296	1504	1549	1687 0	1674 -174	1427 -1078	552 0 2297	290 0 2296	134 0 2296	154 0 2296	719 273 2569	701 90 2659	464
STORAGE ELEV FTMSL 1	3123 350.0	3385 1353.3	2520	1355.2	3549 1355.2 21.8	3549 1355.2 24.5	3549 1355.2 26.0	3549 1355.2 27.4	3375 1353.1 27.2	2297 1337.5 24.0					1342.1 11.7	1343.5 11.4	1350.0
DISCH KCFS POWER AVE POWER MW	9.9	7.8 65	96	184	184	206	219	231	227 348	186 282	66 283	71 283	71 283	71 283	87 305	87 311	338
PEAK POW MW	L279.8	349 23.3	354 16.1	355 39.8	355 132.4	355 153.4	355 157.8	355 171.7			48.8	25.6	11.9	13.6	64.8	64.9	52.8
GAVINS POINT- NAT INFLOW	1252 114	91 0	42 0		125 5	137 19	144 24	79 39		57 - 5		47 5	22 2	25 3 0	70 10 -4	68 1 1	
DEPLETION CHAN STOR EVAPORATION	-1 44	4	-7	- 20	0	- 5	-3 1666	-3 3 1722	0 9	6 11 1484	10	-1 3 327	0 1 153	2 175	5 770	769	655
REG INFLOW RELEASE	$14111 \\ 14111$	328 328	194 194		1416 1416	1617 1617	1666	1722	1722 13	1458 26	676	327	153	175 397	770 397	769 397	-39
		358 1206.0	358 1206.0	1206.0	358 1206.0 23.8	358 1206.0 26.3	1206.0	358 1206.0 28.0	1206.5	1207.5	1207.5	397 1207.5 11.0	397 1207.5 11.0	1207.5	1207.5	1207.5	1206.0
DISCH KCFS POWER AVE POWER MW	12.5	11.0 39	14.0 49		82	90	95	95	96	85	39	39 117	39 117				3 76
PEAK POW MW ENERGY GWH	590.7	114 13.9	114 8.2	114	114 58.7	114 66.8	114 68.6	114 70.9				14.1	6.6				
GAVINS POINT NAT INFLOW	- SIO 879 263	UX CITY 58 7	 27 3			230 35		76 38									
DEPLETION REGULATED FLOW KAF	263 AT SI 14727	OUX CIT 379	Y 218	456	1517	1812	1804	1760 28.6									
KCFS TOTAL		12.7	15.7											5 235			
NAT INFLOW DEPLETION	19303 2709	20	9) 12	143	662	1486	6	2 247	-210) -81 2 72	-126 -2	- 59	-65	-154	-148	
CHAN STOR EVAPORATION STORAGE	19 - 1382 32017			-				93						32751	32430	32293	
SYSTEM POWER AVE POWER MW		481 2004	595				2027	2014	1 1995	5 1962	2 1964	1966	196	7 196	3 1941	195	0 1964
DAILY GWH	6437.2	173.3 11.6	100.0 14.3	0 157.7 3 17.5	7 563.8 5 18.8	678.7 21.9	702.3	25.3	2 23.6	5 14.7	7 10.6	10.5	10.	7 13.0		15.4	4 16.7
I	NI-SUM	1 15MAR	22 M A	R 31MAI	R 30APF	31MA3	30JUN	1 31JU	L 31AU0	3 30SE1	P 310C1	15NOV	/ 22NO	V 30NO'	* OTDEC	, JIUA	