

Missouri River Main Stem Reservoirs 1998 - 1999 Annual Operating Plan

January 1999

DEPARTMENT OF THE ARMY NORTHWESTERN DIVISION, CORPS OF ENGINEERS 12565 WEST CENTER ROAD OMAHA, NEBRASKA 68144-3869

This Annual Operating Plan (AOP) for the Missouri River system was prepared by the Corps of Engineers' Reservoir Control Center (RCC), Missouri River Region, Northwestern Division. The plan outlines the operating objectives of the Missouri River main stem reservoirs for the coming year (August 1998 through July 1999). In addition, two sets of 5-year extensions to the AOP, through March 2005, are presented to serve as guides for longer range planning.

This year we have shortened the AOP to include only the plan for future operation. Previous AOP's have included a System description and discussion of the typical operation to meet authorized purposes and a historic summary of the previous year's operation. Although not included in this AOP, they are available as separate reports upon request. To receive a copy of either the "System Description and Operation" or the "Summary of Actual 1997-98 Operations," contact the Reservoir Control Center at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports are also available at the "Reports and Publications" link on our web site at: www.nwd-mr.usace.army.mil/rcc.

The development of this year's Draft AOP was coordinated with the Missouri River Basin Association (MRBA), the Missouri River Natural Resources Committee (MRNRC), and the general public. This year the MRBA did not call together a technical committee or provide pre-draft AOP recommendations (see Exhibit 1). The MRNRC recommendations for the 1998-99 AOP were discussed at its September 8, 1998 meeting at St. Joseph, Missouri, and are shown as Exhibit 2.

The Draft AOP also received review at two fall public meetings held at Sioux City, Iowa, on October 26, 1998 and at Nebraska City, Nebraska, on October 27, 1998. The primary purpose of these meetings was to present the Draft AOP and receive comments from all concerned. Private citizens and representatives of public and industry interest groups and Missouri River basin states attended the meetings.

The final plan presented in this report is approved as the framework within which the Missouri River Region will schedule detailed daily, weekly, and monthly regulation of the individual main stem reservoirs for the period August 1998 through 1999. No significant changes were made to the draft plan as a result of comments received during the review period. A number of clarifications and word changes were made to the draft to improve readability. The press release announcing the adopted plan for next year is shown on Exhibit 3.

Michael S. Meuleners Colonel, Corps of Engineers Deputy Division Engineer

MISSOURI RIVER MAIN STEM RESERVOIRS

Annual Operating Plan 1998 - 1999

List of List of List of	Tables ii Plates ii Exhibits ii Abbreviations iii ion of Terms iv
I.	FOREWORD1
II.	PURPOSE AND SCOPE1
III.	FUTURE WATER SUPPLY – AUGUST 1998 – DECEMBER 1999 2
IV.	ANNUAL OPERATING PLAN FOR 1998-1999
	 A. General
V.	SUMMARY OF RESULTS EXPECTED IN 1998-1999 13
	A.Flood Control.13B.Water Supply and Water Quality Control13C.Irrigation13D.Navigation13E.Power14F.Recreation, Fish and Wildlife14G.System Storage14H.Summary of Water Use by Functions14
VI.	TENTATIVE PROJECTION OF OPERATIONS THROUGH MARCH 2005
	 A. Median Runoff
	 D. Lower Decile Runoff – Navigation Season Shortened at 40 MAF on July 1

TABLES

Ι	Natural and Gross Water Supply at Sioux City	3
II	Navigation Service Support for the 1999 Season	10
III	Peaking Capability and Sales	15
IV	Energy Generation and Sales	
V	Anticipated December 31, 1999 Storage in Main Stem System	16
VI	Missouri River Main Stem Water Use for Calendar Years 1997, 1998, and	
	1999 Above Sioux City, Iowa	17

PLATES

- 1 Missouri River Basin Map
- 2 Summary of Engineering Data Missouri River Main Stem Reservoirs
- 3 System Storage
- 4 Gavins Point Releases
- 5 Fort Peck Elevations and Releases
- 6 Garrison Elevations and Releases
- 7 Oahe Elevations and Releases
- 8 Fort Randall Elevations and Releases
- 9 Reservoir Release and Unregulated Flow
- 10 System Gross Capability and Average Monthly Generation
- 11 Tentative Five Year Extensions of 1998-1999 AOP System Storage, Gavins Point Regulated Flows, and Peaking Capability
- 12 Tentative Five Year Extensions of 1998-1999 AOP Reservoir Elevations

EXHIBITS

Exhibit 1 – MRBA letter, September 14, 1998

- Exhibit 2 MRNRC 1998-1999 AOP Recommendations, September 4, 1998
- Exhibit 3 News Release Announcing 1999 AOP, December 30, 1998

ABBREVIATIONS

AOP	- annual operating plan
ac.ft.	- acre-feet
AF	- acre-feet
B	- Billion
cfs	- cubic feet per second
COE	- Corps of Engineers
CY	- calendar year (January 1 to December 31)
elev	- elevation
ft	- feet
FY	- fiscal year (October 1 to September 30)
GIS	- Geographic Information System
GWh	- gigawatt hour
KAF	- 1,000 acre-feet
Kcfs	- 1,000 cubic feet per second
kW	- kilowatt
kWh	- kilowatt hour
Μ	- million
MAF	- million acre-feet
MRBA	- Missouri River Basin Association
MRD	- Missouri River Division
MRNRC	- Missouri River Natural Resources Committee
msl	- mean sea level
MW	- megawatt
MWh	- megawatt hour
plover	- piping plover
рр	- powerplant
RCC	- Reservoir Control Center
RM	- river mile
tern	- interior least tern
tw	- tailwater
USGS	- United States Geological Survey
yr	- year

DEFINITION OF TERMS

<u>Acre-foot (AF, ac-ft) is the quantity of water required to cover 1 acre to a depth of 1</u> foot and is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Cubic foot per second</u> (cfs) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute. The volume of water represented by a flow of 1 cubic foot per second for 24 hours is equivalent to 86,400 cubic feet, approximately 1.983 acre-feet, or 646,272 gallons.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded water.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Runoff in inches</u> shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

MISSOURI RIVER MAIN STEM RESERVOIRS

Annual Operating Plan 1998 - 1999

I. FOREWORD

This Annual Operating Plan (AOP) presents pertinent information and tentative plans for operating the Missouri River Main Stem Reservoir System (System) for the remainder of 1998 through December 1999 under widely varying water supply conditions. It provides a framework for the development of detailed monthly, weekly, and daily regulation schedules for the System's six individual dams during the upcoming year to serve the Congressionally authorized project purposes. Regulation is directed by the Reservoir Control Center, Missouri River Region, Northwestern Division, U.S. Army Corps of Engineers (Corps). A map of the Missouri River basin is shown on *Plate 1* and the summary of engineering data for the six main stem reservoirs is shown on *Plate 2*.

This plan may require adjustments when substantial departures from expected runoff occur. Results of a 5-year extension to the AOP studies (March 2000-March 2005) are presented to serve as a guide for Western Area Power Administration's power marketing activities and those other interests that require reservoir conditions for long term planning.

This year we have shortened the AOP to include only the plan for future operation. Previous AOP's have included a System description and discussion of the typical operation to meet authorized purposes and a historic summary of the previous year's operation. Although not included in this AOP, they are available as separate reports upon request. To receive a copy of either the "System Description and Operation" or the "Summary of Actual 1997-98 Operations," contact the Reservoir Control Center at 12565 West Center Road, Omaha, Nebraska 68144-3869, phone (402) 697-2676. Both reports are also available at the "Reports and Publications" link on our web site at: **www.nwd-mr.usace.army.mil/rcc**.

II. PURPOSE AND SCOPE

Beginning in 1953, projected System operation for the year ahead was developed annually as a basis for advance coordination with the various interested Federal, state, and local agencies and private citizens. Also beginning in 1953, a coordinating committee was organized to make recommendations on each upcoming year's System operation. The Coordinating Committee on Missouri River Main Stem Reservoir Operations held meetings semiannually until 1981 and provided recommendations to the Corps. In 1982 the committee was dissolved because it did not conform to the provisions of the Federal Advisory Committee Act. Since 1982, to continue providing a forum for public participation, one or more open public meetings are held semiannually in the spring and fall. The fall public meeting is conducted to take public input on a draft of the Annual Operating Plan, which is typically published in early October each year. The spring meetings are conducted to update the public on the runoff forecast and projected System operation for the remainder of the year.

The spring public meetings were held in Pierre, South Dakota, on April 15, 1998, and in Omaha, Nebraska, on April 16, 1998. The attendees were given an update regarding the outlook for 1998 runoff and projected operation for the remainder of 1998. Two fall public meetings on the Draft AOP were held, one at Sioux City, Iowa, on October 26, 1998, and another at Nebraska City, Nebraska, on October 27, 1998.

For the last 7 years we have conducted pre-draft AOP coordination with the Missouri River Natural Resources Committee (MRNRC) and the Missouri River Basin Association (MRBA). In several of those years, the MRBA formed a technical committee to review operational options. In recent years, the MRNRC has been represented on the MRBA technical committee. This year the MRBA did not call together a technical committee or provide pre-draft AOP recommendations (see Exhibit 1). The MRNRC recommendations for the 1999 AOP were discussed at its September 8, 1998, meeting at St. Joseph, Missouri, and are shown as Exhibit 2.

III. FUTURE WATER SUPPLY - AUGUST 1998 - DECEMBER 1999

To develop the forecast studies for the 1998-1999 AOP, it was necessary to estimate the appropriate water supplies to the reservoirs for the period August 1998 to December 1999. The period August through February is normally one of relatively low and stable inflows and can be forecast with reasonable reliability. Therefore, a Basic Forecast (most likely for current runoff conditions) of monthly inflows to the river reaches above the six reservoirs and the river reach from Gavins Point to Sioux City was prepared for the period August 1998-February 1999. Forecasts of the Lower Quartile and Lower Decile using 80 percent and Upper Quartile and Upper Decile using 120 percent of the Basic Forecast are also used to give a range of monthly inflows leading up to March 1, 1999, the beginning of next year's runoff season. Inflows to the System after March 1, 1999, are dependent upon many hydrological factors which are impossible to forecast at the time the AOP is prepared. Therefore, in lieu of utilizing forecasted inflows to the Missouri River above Sioux City for the period March 1999-December 1999, inflows were based on analyses of the past water supply records extending from 1898 through 1997. Runoff conditions selected for use in the AOP were the Upper Decile with a runoff of 34.5 MAF having 1 chance in 10 of being exceeded, the Upper Quartile with a runoff of 30.6 MAF having 1 chance in 4 of being exceeded, and the Median (most likely) with a runoff of 24.6 MAF having 1 chance in 2 of being exceeded. The lower range of System inflows used for the analyses in the AOP, the Lower Quartile with a runoff of 19.5 MAF having 1 chance in 4 of occurrence of less runoff and the Lower Decile with a runoff of 15.5 MAF having 1 chance in 10 of occurrence of less runoff, complete the range of inflows into the System.

The range between the AOP forecasts for Lower Decile (15.5 MAF with a 90 percent exceedence) and the Upper Decile (34.5 MAF with a 10 percent exceedence) simulates 80 percent of the historic runoffs. There is still a 20 percent chance that a runoff condition may occur that has not been simulated; i.e., 10 percent chance a runoff event could be lower than the 15.5 MAF

(Lower Decile) and a 10 percent chance a runoff event could be greater than the 34.5 MAF (Upper Decile).

The estimated natural flow $\underline{1}$ / at Sioux City, the corresponding post-1949 water use effects, and the net flow $\underline{2}$ / available above Sioux City are shown in *Table I*, where several water supply conditions are quantified for the periods August-December 1998, CY 1998, and CY 1999. The natural water supply for CY 1998 (actual January 1998-July 1998 runoff plus Basic Forecast for the August 1998-December 1998 period) is estimated to total about 25.4 MAF, utilizing the Basic Forecast flows for the forecasted August-December 1998 period.

TABLE I NATURAL AND GROSS WATER SUPPLY AT SIOUX CITY

	<u>Natural 1</u> /	Post-1949 Depletions	<u>Net 2</u> /
	(V	olumes in 1,000 Acre-Feet)	
August-December 1998 (Basic Forecast)			
Basic	5,500	+300	5,800
120% Basic	6,600	+300	6,900
80% Basic	4,400	+400	4,800
Calendar Year 1998 (January-July Actua	l; August-Decen	nber Basic Forecast)	
Basic	25,400	-1,800	23,600
120% Basic	26,500	-1,900	24,600
80% Basic	24,300	-1,700	22,600
Calendar Year 1999 (Extended Forecast -	Statistical Anal	ysis of Past Records)	
Upper Decile	34,500	-1,700	32,800
Upper Quartile	30,600	-1,700	28,900
Median	24,600	-1,800	22,800
Lower Quartile	19,500	-1,600	17,900
Lower Decile	15,500	-1,600	13,900

1/ The word "natural" is used to designate flows adjusted to the 1949 level of basin development, except that regulation and evaporation effects of the Fort Peck Reservoir have also been eliminated during its period of operation prior to 1949. 2/ The word "net" represents the total streamflow before deduction of the post-1949 irrigation, upstream storage, and other use effects.

IV. ANNUAL OPERATING PLAN FOR 1998-1999

A. <u>General</u>. The anticipated operation described in this AOP is designed to meet the operational objectives documented in the current Master Manual. Consideration has been given to all of the authorized project purposes including the needs of endangered species. It incorporates the lessons learned during the 6 consecutive years of drought of the mid-1980's through 1992 as well as the dramatic turnaround in runoff that caused the Great Flood of 1993,

the near-record flooding repeated in both 1995 and 1996, and the unprecedented record runoff of 1997 with the first occurrence of coincident heavy plains and mountain snowpacks since the System filled. During CY 1993, the basin above Sioux City experienced 36.2 MAF of runoff, the sixth highest in 100 years of record, bringing an abrupt end to the 6 consecutive years of the worst drought the basin had experienced since the main stem System of reservoirs first filled to normal operating levels in 1967. This was followed by a near normal year with 23.9 MAF during CY 1994, a near repeat of 1993 with 37.2 MAF for CY 1995 (the third highest runoff since 1898), CY 1996 runoff of 35.6 MAF (the seventh greatest since 1898), and the CY 1997 runoff of 49.0 MAF, which is the greatest since record-keeping began in 1898.

This 1998-1999 AOP, developed for all five runoff scenarios, follows the March 15, July 1, and September 1 water-in-storage (storage) checks contained in the current Missouri River Master Water Control Manual (Master Manual) used to determine navigation flow service level, navigation season length, and the winter multipurpose System releases. Adjusted regulations for fish spawning and endangered species nesting habitat have been adopted for the three scenarios of Median, Lower Quartile, and Lower Decile runoffs with no peaking cycle at Gavins Point Dam as was implemented to conserve water during the recent drought years. For Upper Quartile and Upper Decile, other avenues of conservation and regulation will be considered to try to avoid moving and collecting eggs and/or chicks, as had to be done in 1995, 1996, and 1997.

In summary, the Upper Quartile and Upper Decile runoff scenarios follow the Master Manual exclusively with much above normal runoff requiring release increases early in the year to evacuate floodwater from the reservoirs. The Median, Lower Quartile, and Lower Decile runoffs follow the System storage checks contained in the Master Manual. In addition, the Median runoff also includes releases that provide a steady to rising lake level in the upper two large reservoirs during the spring fish spawn period. Similar regulations have resulted in a higher fish reproduction success. Gavins Point releases will not be cycled to conserve water under any of the five studied runoff levels but may be necessary for flood control operations during the endangered species nesting period or should significant drought conditions return.

The lowest runoff scenario presented in this year's AOP is Lower Decile. Runoff less than Lower Decile is possible, as was experienced in 1988 (12.4 MAF). One of the operational objectives of the current Master Manual is to provide for water supply requirements in the open Missouri River reaches between the reservoirs and below the System. Recent experience has shown that these water supply requirements are greater than was anticipated during the development of the guidelines documented in the current Master Manual. Also, operation to limit impacts to threatened and endangered species has resulted in higher releases during low runoff periods. Therefore, in order to meet the operational objectives of the current Master Manual, we would need to adjust the water conservation guidelines published in the Master Manual. These water conservation guidelines apply during drought periods and present criteria for season length, service level, minimum navigation season length, and nonnavigation season minimum releases. Recent studies have indicated that to meet the operational objectives of the current Master Manual, adjustments to drought water conservation guidelines would need to occur when total System storage is at or below 52 MAF on July 1. It is important to note that there are many possible combinations of potential adjustments that would result in attainment of the current

Master Manual operational objectives. This year's Lower Decile studies do not show a decline of total System storage below the 52 MAF level by July 1, 1999. If future AOP studies indicate a return to significant drought conditions (i.e., 52 MAF - July 1 level or less) we would ask the MRBA, MRNRC, and other interested parties for adjustment recommendations that would best meet the operational objectives of the current Master Manual. We would facilitate discussion by providing studies to the aforementioned groups which outline the effects of the various adjustment options. If a general agreement on reasonable adjustments cannot be attained, we will determine which adjustments best meet the current Master Manual operational objectives.

Regulation studies developed for the AOP are based on guidelines specified in the current Master Manual. Navigation flow support and winter releases from Gavins Point are determined by the volume of water in storage in the System on specified dates of March 15 and July 1. Intrasystem releases are adjusted to best serve the multiple-purpose functions of the projects with special emphasis placed on regulation for fisheries starting in early April and for endangered species beginning in early May and continuing through August.

Background information available for preparation of the 1998-1999 AOP includes 13 years of operation at Fort Peck Reservoir (1940) by itself plus 45 years of System experience as Fort Randall (1953), Garrison (1955), Gavins Point (1955), Oahe (1962), and Big Bend (1964) have been brought progressively into operation. In addition to the long period of actual regulation experience, many background operational studies for the completed System are available for guidance.

Actual System operation from January 1 to August 1, 1998, and the operating plans for each project for the remainder of 1998 with the Basic Forecast and for CY 1999 using the five alternate levels of estimated runoff described on page 2 are presented on *Plates 3 through 8*, inclusive. An exception is the omission of Big Bend, since storage at that project is relatively constant and average monthly releases are essentially the same as those at Oahe. These plates also show, on a condensed scale, actual operations during the period 1953 through 1997.

Plate 9 illustrates for Fort Peck, Garrison, Oahe, and Gavins Point Dams the actual reservoir releases (Regulated Flow) as well as the Missouri River flows (Unregulated Flow) that would have resulted if the reservoirs were not in place during the period January 1997 through July 1998. *Plate 10* presents past and forecasted gross monthly, average power generation, and gross peaking capability for the main stem System.

B. Operating Plans for the Balance of the 1998 Navigation Season. Plans for the remainder of the 1998 navigation season include Gavins Point releases in the 31,000 to 32,000 cubic feet per second (cfs) range to evacuate a small amount of accumulated flood control storage and a 10-day extension of the navigation season, closing on December 11, 1998, at the mouth as a further storage evacuation measure. The other main stem project flows will be near average since the amount of flood control storage that needs to be evacuated is relatively small. This will be the fourth consecutive season that a 10-day extension has been provided as a flood storage evacuation measure. The scheduling of a full 8-month season with a 10-day extension resulted from the July 1, 1998, System storage being at 61.0 MAF, slightly greater than the 59.0 MAF

required to provide full service flows for the remainder of the season. The extra storage accumulation occurred because of higher than expected downstream flows during the summer months and greater than forecast runoff during July 1998.

This past year's near normal reservoir storage accumulation began with runoff from a below normal mountain snowpack and a small amount of plains snow accumulation. The record CY 1997 runoff left much of the upper basin in a moist condition but there were also areas where moisture was much below normal. The total runoff for this year is expected to be very near normal but there has been a great deal of variability by reach and month in the way the runoff occurred. February was 191 percent of normal while March was only 75 percent of normal without a plains snowpack accumulation. Then May and June were well below normal with 83 and 94 percent of normal, respectively. The month of July was 147 percent of normal and August was also much above normal. So, even though the year will look very much like a normal year, the individual months exhibited a great deal of variance from normal. All this follows 1997 which was a record runoff year, much greater than even the previous record runoff and the highest in 100 years of record keeping. Gavins Point releases have been in the normal range to meet downstream navigation targets early in the year and are expected to continue in the normal range through the remainder of the season in order to vacate accumulated flood control storage prior to the start of the next runoff season on March 1, 1999. The closing dates for ending the 1998 navigation season are December 2 at Sioux City, December 4 at Omaha, December 5 at Nebraska City, December 7 at Kansas City, and December 11 at the mouth of the Missouri River near St. Louis.

Forecasts for the August 1 to December 1 period indicate that 3.3 billion kilowatt hours (kWh) of energy will be generated by the main stem powerplants, 0.5 billion kWh less than normal and 2.5 billion kWh less than in 1997.

<u>Fort Peck</u> releases are expected to range from 6,200 to 12,000 cfs, for the most likely (Basic Forecast), throughout the remainder of the 1998 navigation season. The Basic Forecast indicates the level of Fort Peck Lake is expected to decline steadily by 3.0 feet from elevation 2240.2 feet above mean sea level (msl) to 2237.2 feet msl by the end of the navigation season, 2.4 feet higher than the 1967-1997 long term average.

<u>Garrison</u> releases are expected to range from 14,000 to 24,000 cfs throughout the remainder of the 1998 navigation season. The level of Lake Sakakawea is expected to decline steadily by 2.1 feet from elevation 1843.1 feet msl to 1841.0 feet msl by the end of the navigation season, 2.6 feet above the long term average.

<u>Oahe</u> releases during August through November will be just slightly in excess of navigation requirements in order to provide the required backup to System release requirements for some minor flood storage evacuation. Releases will be adjusted to serve the variable power loads. The releases will achieve the scheduled Fort Randall drawdown to elevation 1337.5 feet msl by the end of the navigation season. The Lake Oahe level will fall steadily by 5.8 feet throughout the period from elevation 1612.4 to elevation 1606.6 feet msl by the close of the navigation season, 5.0 feet higher than the long term average.

<u>Big Bend</u> releases will generally parallel those from Oahe. Lake Sharpe will fluctuate between 1420.0 and 1421.0 feet msl for weekly cycling during high power load periods. Reservoir fluctuations of a foot are expected during the course of most weeks in order to follow peaking power demands. This year will represent a more normal runoff year operation of Big Bend and, as such, generation will normally be less on weekends due to lower power demands, which permits the refilling of Lake Sharpe over the weekend.

<u>Fort Randall</u> releases will generally parallel those from Gavins Point. Lake Francis Case is expected to fall steadily during the August-through-November period from the 1355.1 feet msl end-of-July elevation to 1337.5 feet msl. This drawdown elevation will provide sufficient capacity to store a reasonably high level of power releases from Oahe and Big Bend during the coming winter season.

<u>Gavins Point</u> releases will be in the range of 31,000 to 32,000 cfs to near 20,000 cfs by the end of the extended navigation season. Lewis and Clark Lake will rise about 1 foot from elevation 1206.0 to near elevation 1207.0 feet msl throughout the remainder of the 1998 navigation season that ends on December 11. The lake level in previous years was increased to 1208.0 feet msl at the end of August after the endangered species nesting season but this year, as during the last 6 years, is being maintained 1 foot lower at 1207.0 feet msl to help reduce shoreline erosion.

C. Operating Plan for the Winter of 1998-1999. In accordance with guidelines presented in the Master Manual, winter releases from the System are based on the amount of water in storage on September 1. A storage level of 58.0 MAF on this date indicates a release rate will be made to meet full service requirements the following winter and a System storage of 43.0 MAF indicates minimum service releases. Full and minimum service releases call for an average winter Fort Randall release of 15,000 and 5,000 cfs, respectively. The storage on September 1, 1998, based upon the Basic Forecast, would be 61.2 MAF, slightly in excess of the 58.0 MAF required to provide a full service release of 15,000 cfs from Fort Randall Dam. Therefore, the Fort Randall winter release will be near or slightly above full service in the range of 15,000 to 20,000 cfs to back up the required Gavins Point release. The Gavins Point release will be maintained in a range from 16,000 to 20,000 cfs, near the 20,000 cfs release rate that is normally the maximum allowable during a winter ice jam flood potential period. In recent years release rates near 24,000 cfs have been attempted to evacuate accumulated flood control storage; however, this year the excess storage accumulation is anticipated to be very small and the increased risk associated with the higher flows appears unwarranted. The higher release rates will be dependent upon downstream ice conditions and will require increased vigilance to minimize downstream flooding during cold periods. This will be the fourth consecutive winter that the System storage has required an above normal winter release to continue the evacuation of stored floodwaters. It is anticipated that this year's winter release will be adequate to serve all downstream water intakes except for very short periods that may be impacted below rapidly forming ice jams.

For the winter period from the close of the 1998 navigation season on December 11, 1998, until the opening of the 1999 navigation season on April 1, 1999, operations are expected to be as follows:

<u>Fort Peck</u> releases are expected to be decreased to 10,000 cfs before the beginning of the winter period to prevent ice-jam flooding during the winter freeze-in period on the reach of the Missouri River from the dam to the Williston, North Dakota, area. Releases will then be gradually increased to 12,000 cfs for the remainder of the winter period to meet critical winter hydropower demands. Fort Peck Lake with the Basic Forecast is expected to fall steadily by 3.2 feet to the base of the flood control zone at elevation 2234.0 by March 1, the beginning of next year's runoff season. The lake would then rise to near elevation 2235.4 feet msl by the end of the winter period on March 31, which would be 2.6 feet above normal.

<u>Garrison</u> releases will be adjusted to serve winter power loads and balance System storage. Releases will follow a typical pattern similar to those of previous winters with lower releases early in the winter and increased releases after the threat of flooding diminishes as the Missouri River ice conditions stabilize from the Washburn to Bismarck, North Dakota, area. Releases are scheduled at 20,000 cfs at the time of normal freeze-in in December and likely will have to be reduced for a short period to 18,000 cfs during the freeze-in in the Bismarck area in an attempt to not exceed the target 13-foot stage at the Bismarck gage. Flood stage is 16 feet. Garrison releases are expected to be decreased from 24,000 to 15,000 cfs at the beginning of the winter period and gradually increased to 25,000 cfs during the remainder of the winter. Lake Sakakawea is expected to lower from near elevation 1841.0 feet msl to the base of the flood control storage zone at elevation 1837.5 feet msl by March 1, then rise to elevation 1838.4 by March 31, which would be 2.9 feet above normal.

<u>Oahe</u> releases for the winter season will provide backup for the Fort Randall and Gavins Point releases plus fill the recapture space available at Fort Randall consistent with anticipated winter power loads. Monthly average releases may vary substantially with fluctuations in power loads occasioned by weather conditions but, in general, are expected to average between 23,000 and 16,000 cfs. Daily releases will vary widely to best meet power loads. Peak hourly releases as well as daily energy generation will be constrained to prevent urban flooding in the Pierre and Fort Pierre areas if severe ice problems develop downstream of Oahe Dam. This potential reduction has been coordinated with the Western Area Power Administration.

The Lake Oahe level is expected to rise gradually from elevation 1606.6 feet msl at the end of the 1998 navigation season to elevation 1607.5 by March 1, then rise to elevation 1608.8 feet msl by the end of March, 2.2 feet above normal.

Lake Sharpe will be maintained in the normal 1420.0 to 1421.0 feet msl range during the winter.

<u>Fort Randall</u> releases will vary from 16,000 to 17,000 cfs, consistent with both the forecasted September 1, 1998, System storage of 61.2 MAF and the need to evacuate a small amount of stored floodwaters from the System of reservoirs by the beginning of next year's runoff

season on March 1, 1999. Lake Francis Case is expected to rise from a low of about 1337.5 feet msl at the end of the 1998 navigation season to near elevation 1350.0, the seasonal base of flood control, by March 1. However, if the plains snowpack flood potential below Oahe is quite low at that time, measures will be taken to raise Lake Francis Case to near elevation 1353.0 by March 1. It is likely that a Lake Francis Case level above elevation 1353 feet msl, to as high as 1355.2, will be reached by the end of the winter period on March 31 if runoff conditions permit. It is anticipated that the level of Lake Francis Case above the White River delta near Chamberlain, South Dakota, will remain at a higher elevation than the lake below the delta from late October through December, due to the damming effect of this delta area.

<u>Gavins Point</u> releases will be reduced gradually beginning in early December to near a winter level ranging from 18,000 to 20,000 cfs, near the 20,000 cfs which is normally the maximum allowable during a winter ice jam flood potential period. It may be necessary to reduce these releases to the 15,000 to 16,000 cfs range if extremely cold temperatures result in significant ice jam problems. These releases should be adequate to maintain water levels necessary during freeze-in for downstream water intakes; releases may be reduced if localized ice bridging would result in a flood threat. Lewis and Clark Lake generally will be near elevation 1207 feet msl until late February when it will be lowered to elevation 1206 feet msl for controlling spring floods, primarily from the Niobrara River and Ponca Creek along the Fort Randall to Gavins Point reach.

System storage, for all runoff conditions, is expected to be near 57.1 MAF by March 1, 1999, the beginning of next year's runoff season. This is the base of the flood control zone and the top of the multipurpose carryover storage zone.

D. <u>Operations During the 1999 Navigation Season</u>. All of the five runoff scenarios studied for this year's AOP follow the guidelines presented in the Master Manual for navigation service flow support and season length. Steady System releases or repetitive daily project patterns will be held from early May at the beginning of the endangered species nesting season to the end of the nesting in late August. All runoff scenarios except Lower Decile would provide rising pool levels in the spring fish spawn period.

All five runoff scenarios studied for this year's AOP are based on gradually increasing System releases to provide navigation season flow rates at the mouth of the Missouri near St. Louis by April 1, 1999, the normal navigation season opening date. The corresponding dates at upstream locations are: Sioux City, Iowa, March 23; Omaha, Nebraska, March 25; Nebraska City, Nebraska, March 26; and Kansas City, Missouri, March 28. The studies illustrated on *Plates 3 through 8* and summarized in *Table II* are based on providing greater than full service flows and a full 8-month season extended by 10 days as a reservoir flood storage evacuation measure for both the Upper Quartile and Upper Decile runoff scenarios. The normal runoff scenario characterized by the Median study indicates full service flows with a full 8-month season. Lower Quartile and the Lower Decile would have flows of about 400 and 1,800 cfs below full service, respectively, beginning on July 1 for the full 8-month season.

TABLE II NAVIGATION SERVICE SUPPORT FOR THE 1999 SEASON

	Runoff	1999 Syster	n Storage	Length		
	Scenario	March 15	July 1	Below F	ull Service	of Season
	(MAF)	(MAF)	(MAF)	(ii	n cfs)	(Months)
				<u>Spring</u>	Fall	
U.D.	34.5	58.2	64.1	+8,200	+17,500	8 + 10 days
U.Q.	30.6	58.0	62.9	+6,200	+9,000	8 + 10 days
Med	24.6	57.9	61.7	0	0	8
L.Q.	19.5	56.4	58.5	0	-400	8
L.D.	15.5	56.3	56.4	0	-1,800	8

Navigation flow support for the 1999 season will be determined by actual reservoir System storage on March 15 and July 1 following the Master Manual guidelines. Gavins Point releases may be quite variable during the 1999 navigation season but, for Median, Lower Quartile, and Lower Decile, are expected to range from 28,800 to 34,500 cfs. For Upper Quartile, release increases result in a range from 35,000 to 42,500 cfs; for the Upper Decile, Gavins Point releases would range from a minimum 37,000 cfs to a maximum 51,000 cfs. Release reductions necessary to minimize downstream flooding are not reflected in these monthly averages but will be instituted as conditions warrant.

Planned storages and releases for the System and individual reservoirs within the System are shown on *Plates 3 through 8*. Ample regulatory storage space exists in the System to control flood inflows under all conditions studied. *Table II* summarizes the navigation service support projected for the 1999 navigation season.

Summary of Reservoir Regulation Activities for Endangered Species and Fish Propagation Enhancement

The 1998-1999 AOP forecast releases from the main stem reservoirs during the 1999 endangered bird nesting season are similar to those in last year's AOP. Releases from Gavins Point will be near 34,000 cfs mid-May through August under Median and Lower Quartile inflows. Lower Decile flows for this period will be near 32,500 cfs. Spilling will be required beginning in the spring through fall under Upper Quartile and Upper Decile inflow.

Assuming the System storage starts near 57.1 MAF on March 1, 1999, the 1998-1999 AOP Upper Quartile and Upper Decile inflows would provide System storage increases that would necessitate beginning evacuation of stored water in the spring even before the traditional bird nesting season. The AOP Upper Decile and Upper Quartile plans show that a further increase in System release, involving spills, may be possible beginning in May when birds start to nest. This action could be done to provide safe nesting habitat through August. If an Upper Decile year or

greater occurs, the Corps will work closely with the Service, as was done during 1995 through 1997, to ensure the best possible outcome for the birds without jeopardizing flood control.

<u>Fort Peck</u> releases, which will be in the 6,500 to 11,000 cfs range in April 1999, will be increased to a 9,500 to 15,000 cfs average in May. Areas of clean sand habitat should still be available from the high 1997 flows. Should greater than Upper Decile inflows appear likely, project releases may be increased above those flows shown in June or July as the need to evacuate floodwater will be imperative.

The Median, Lower Quartile, and Lower Decile AOP plans show daily releases will be in the 10,500 to 11,000 cfs range from June through August to enhance bird nesting. The Upper Quartile plan has the June through August release rate at 14,000 cfs. Hourly peaking restrictions of no more than 6 hours of 14,000 cfs will be in place during the nesting season unless inflows are Upper Quartile or greater.

If flood flows enter the Missouri River below the project during nesting, hourly releases will be lowered to no less than 3,000 cfs in order to keep traditional riverine fish rearing areas continuously inundated while helping to lower river stages at downstream nesting sites. April releases will aid trout spawning below the project. A rising pool in the April to May sport fish spawn season will be dependent upon the ever changing daily inflow pattern to the reservoir but appears possible with all AOP plans.

<u>Garrison</u> daily average releases will be increased in May 1999 to prevent birds from nesting on low sandbar areas below the project. The increase will be to 34,500 cfs with the Upper Quartile plan and 26,000 to 23,000 cfs with plans showing Median to Lower Decile. Should Upper Decile or greater inflows appear likely, project releases will be at high levels for birds in mid-May as evacuation of floodwater will be necessary. Hourly peaking will be limited to no more than 30,000 cfs for 6 hours if the daily average release is lower than 29,000 cfs. This will limit peak stages below the project for nesting birds.

A Lake Sakakawea elevation rise in the spring conducive to successful sport fish spawn will be dependent upon the pattern of inflow at the time. A significant establishment of vegetative cover is also a prerequisite. It appears from the current AOP forecast that a near constant or rising pool into critical spawning areas might be possible from April through June with Median or greater inflows. Only very large spring inflows and/or low releases will put water in the vegetative spawning zone during the upcoming year.

<u>Oahe</u> releases in the spring and summer will back up those from Gavins Point. Because Garrison's releases will be adjusted for endangered bird reproduction, this could be a determining factor in whether the Oahe pool rises or falls. If flows into the System are greater than Upper Quartile, Oahe's elevation in the spring will likely be steady or rising. The Upper Decile plan shows April-May elevations barely above the 1612.9 msl crest reached in 1998. Under all AOP plans, the Oahe pool will fall during the summer.

<u>Fort Randall</u> will be operated to provide for a pool elevation near 1355 during the fish spawn period and not draw the lake below elevation 1337.5 feet msl in the fall for water intakes. At Fort Randall, hourly releases during the 1999 nesting season will be limited to 37,000 cfs, except for Upper Quartile and Upper Decile runoff. Daily average flows may be increased every third day to preserve the capability of sustaining this third-day release later in the summer if conditions turn dry.

<u>Gavins Point</u> will be operated to enhance tern and plover productivity in the Fort Randall to Gavins Point reach as well as below the project. The Gavins Point pool will be operated near 1206 feet msl in the spring and early summer with variations day to day due to rainfall runoff. Greater fluctuations occur in the river, increasing the risk of nest inundation in the upper end of the Gavins Point pool. Several factors contribute to the increased risk: Gavins Point release restrictions, because there are greater numbers of endangered species nesting below the Gavins Point project which must be preserved; unexpected incremental rainfall runoff between Fort Randall and Gavins Point, which results in sudden pool rises because the Gavins Point project has a smaller storage capacity than the other System reservoirs; the operation of Gavins Point for flood control which necessitates sudden release reductions to prevent downstream bird losses; and very large release years. All these factors when combined make it difficult and sometimes impossible to prevent inundation of nests in the upper end of Lewis and Clark Lake. The pool will be increased to elevation 1207.0 feet msl following the nesting season. The System support for the 1999 navigation season is summarized in *Table II*.

Included in the 1999 operational plan for Median, Lower Quartile, and Lower Decile runoff is an adjusted release regulation at Gavins Point to increase the release by early May when the birds arrive to provide the System flexibility necessary to meet navigation target flows later in the nesting season when downstream tributary flows begin their normal decline in July and August. An increase followed by more constant flows out of Gavins Point should help minimize taking of nests, eggs, or chicks. Cycling up releases every third day is not planned during the 1999 nesting season, except during downstream flood control operations. The Lower Quartile plan shows slightly less than full service navigation flows in August. The U.S. Fish and Wildlife Service 1989 Biological Opinion on System operations calls for providing created habitat for the birds below Gavins Point in the summer of 1999 for monthly operating plan releases which average greater than 30,000 cfs but less than 39,000 cfs. The upper three projects will be operated to best meet authorized purposes while enhancing fish reproduction to the extent possible.

Summary of Habitat Activities

The Omaha District is developing an Interim Habitat Conservation Plan, scheduled to be available by November 1, 1998, which will discuss habitat conservation activities to be undertaken in 1999. Habitat conservation measures to be undertaken in future years will be discussed in Omaha District's Long Term Habitat Conservation Plan which will be available in September 1999.

V. SUMMARY OF RESULTS EXPECTED IN 1998-1999

With System operations in accordance with the 1998-1999 AOP outlined in the preceding pages, the following results can be expected.

A. <u>Flood Control</u>. All runoff scenarios studied will begin next year's runoff season on March 1, 1999, near the desired 57.1 MAF base of annual flood control and multiple use zone. Therefore, the entire System flood control zone will be available to store flood runoffs. The System will be available to significantly reduce peak discharges for all floods that may originate above the System.

In addition, the entire carryover multiple use conservation storage will be filled and available to provide support for all of the other multiple purposes of the System.

B. <u>Water Supply and Water Quality Control</u>. With above normal winter releases being provided for all five runoff scenarios, all water supply and water quality requirements on the Missouri River both below Gavins Point Dam and between System reservoirs should be met for all flow conditions studied. It is anticipated that during severe cold spells it will not be necessary to increase Gavins Point releases as was required during the recent drought years to help alleviate water supply problems created by ice jamming downstream. In fact, it may be necessary to reduce releases during periods of downstream ice formation to prevent flooding.

In addition, all minimum water quality and water supply requirements downstream of the System dams will be met under the above normal releases for all flow conditions.

C. <u>Irrigation</u>. Scheduled releases from the System reservoirs will be more than ample to meet the volumes of flow required for irrigation diversions from the Missouri River. Tributary irrigation water usage is fully accounted for in the estimates of water supply.

D. <u>Navigation</u>. Service to navigation in 1999 would be scheduled at full service or greater flow support for the three studies of Median, Upper Quartile, and Upper Decile. After July 1 the Lower Quartile and Lower Decile runoff conditions have slightly reduced flow support for the remainder of the 8-month season. Although these studies, as shown in *Table II*, provide a comparison of typical flow support under varying runoff conditions that cover 80 percent of the historic runoff conditions, the actual rate of flow support for the 1999 navigation season will be based on actual System storage on March 15 and July 1, 1999.

The 1999 navigation season would have full service flow targets for the Median runoff scenario and greater than full service flows for both the Upper Quartile and Upper Decile runoff conditions with a full 8-month season for Median and Lower Quartile runoff and an 8-month season with 10-day extensions for both Upper Quartile and Upper Decile runoffs. For Lower Quartile and Lower Decile runoff conditions, reduced flow support would be provided for the remainder of the 8-month navigation season after the July 1 storage check. The anticipated service level and season length for all runoff conditions studied are shown in *Table II*.

E. <u>Power</u>. *Tables III* and *IV* give the estimated monthly System load requirements and hydropower supply of the Eastern Division, P-S MBP, from August 1998 through December 1999. Estimates of monthly peak demands and energy include customer requirements for firm, short-term firm, summer firm, peaking, and various other types of power sales, System losses, and the effects of diversity. Also included in the estimated requirements are deliveries of power to the Western Division, P-S MBP, to help meet its firm power commitments.

F. <u>Recreation, Fish and Wildlife</u>. The basic operations of the System will continue to provide recreation and fish and wildlife opportunities in the project areas and along the Missouri River as well as other benefits of a controlled river. Special operational adjustments incorporating specific objectives for these purposes will be accomplished whenever possible. Conditions should be favorable for the many visitors who enjoy the camping, boating, fishing, hunting, swimming, picnicking, and other recreational activities associated with the System reservoirs and for increasing usage of the regulated reaches of the Missouri River downstream of the reservoirs. Boat ramps that were lowered during the recent drought should be adequate to provide lake access next year even under the Lower Decile runoff scenario.

G. <u>System Storage</u>. If presently anticipated runoff estimates based upon normal precipitation materialize, System storage will total about 57.3 MAF by the close of CY 1998. This year-end storage would be 1.6 MAF less than the 58.9 MAF experienced on December 31, 1997, but 1.7 MAF above the 1967 to 1997 average. Since the System first filled to normal operating levels in 1967, the lowest end-of-December storage was 40.9 MAF in 1990. The previous lowest storage prior to the recent 6 consecutive years of drought was 50.9 MAF in 1981. The end-of-year storages have ranged from a maximum of 60.9 MAF, which occurred in 1975, to the 1990 minimum of 40.9 MAF. Under the five runoff conditions of inflow analyzed for this AOP, the total System storage at the end of next year on December 31, 1999, would be approximately as shown on *Table V*.

H. <u>Summary of Water Use by Functions</u>. Anticipated water use in CY 1998, under the plan of operation with the Basic Forecast of water supply, is shown in *Table VI*. Actual water use data for CY 1997 are included for information and comparison.

Under the planned operations, estimated water use in CY 1999, which will be subject to reappraisal next year, also is shown in *Table VI* for the various levels of water supply.

VI. TENTATIVE PROJECTION OF OPERATIONS THROUGH MARCH 2005

The 5-year extension to the Annual Operating Plan (March 2000-March 2005) has been prepared to serve as a guide for Western Area Power Administration's power marketing activities. As discussed in Section IV, Chapter A, adjustments to the drought water conservation guidelines are necessary to continue to meet the operational objectives of the current Master Manual during drought periods. This is due to increased release requirements for water supply and endangered

TABLE III PEAKING CAPABILITY AND SALES (1,000 kW at plant)

	Estimated												_			
	Committed	_		o (= o					-	<u> </u>				ected To		
	Sales*	E		C of E C		ý		Expected			ty		,	em Capa	,	
1998	3		<u>120%</u>	Basic	<u>80%</u>			<u>120%</u>	Basic	<u>80%</u>			<u>120%</u>	Basic	<u>80%</u>	
Aug	2168		2403	2400	2396			202	202	202			2605	2602	2598	
Sep	1514		2390	2390	2382			203		202			2593	2592	2583	
Oct	1529		2366	2367	2352			203		201			2569	2569	2556	
Nov	1800		2323	2324	2311			202		202			2525	2526	2512	
Dec	1904		2323	2304	2292			199		199			2525	2505	2491	
Dec	1304		2302	2304	2232			150	201	133			2001	2000	2431	
1999)															
Jan	2209		2316	2317	2306			194	197	197			2510	2514	2503	
Feb	1975		2321	2321	2307			189	194	195			2510	2515	2502	
		<u>U.D.</u>	<u>U.Q.</u>	Med.	<u>L.Q.</u>	<u>L.D.</u>	<u>U.</u>	<u>D.</u> <u>U.Q</u>	Med.	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>
Mar	1675	2382	2376	2370	2348	2345	1	91 191	191	194	194	2573	2567	2561	2542	2539
Apr	1442	2394	2385	2372	2344	2339	1			191	191	2585	2576	2566	2535	2530
May	1375	2403	2390	2374	2342	2331		91 191	200	193	193	2594	2581	2574	2535	2524
Jun	1821	2420	2415	2399	2361	2337		03 203		195	195	2623	2618	2603	2556	2532
Jul	2264	2419	2419	2399	2355	2325		04 204	-	193	193	2623	2623	2603	2548	2518
Aug	2153	2410	2407	2387	2336	2304)2 202	-	192	192	2612	2609	2588	2528	2496
Sep	1566	2397	2393	2375	2320	2286		0 200		192	192	2597	2593	2574	2512	2478
Oct	1527	2337	2333	2353	2295	2259		0 200 00 200		192	189	2570	2535	2552	2488	2448
Nov	1753	2320	2370	2333	2255	2239		99 199		193	185	2519	2523	2513	2400	2440
Dec	1834	2299	2302	2296	2234	2198		96 196		188	182	2495	2498	2491	2440	2380
Dec	1004	2233	2002	2230	2204	2130		10 130	135	100	102	2433	2430	2431	2722	2000

* Estimated sales, including system reserves. Power in addition to hydro production needed for these load requirements wil be obtained from other power systems by interchange or purchase. ** Total output of Canyon Ferry and 1/2 of the output of Yellowtail powerplant.

Cotimotod

TABLE IV ENERGY GENERATION AND SALES (Million kWh at plant)

	Estimated													_			
C	Committed	-						_		~		4 4			ected To		
	Sales*	EX			Seneratio	n					eneratior	<u> </u>			m Gene		
1998			<u>120%</u>	Basic	<u>80%</u>			-	120%	Basic	<u>80%</u>			<u>120%</u>	Basic	<u>80%</u>	
A.u.a	024		957	972	988				97	90	72			1054	1062	1060	
Aug	834			-					-								
Sep	716		1085	886	854				86	78	68			1171	964	922	
Oct	709		995	724	709				86	74	64			1081	798	773	
Nov	774		955	749	668				82	75	72			1037	824	740	
Dec	902		787	735	690				85	77	73			872	812	763	
1999																	
Jan	903		795	776	688				91	84	70			886	860	758	
Feb	860		707	643	616				81	76	58			788	719	674	
100	000		101	040	010				01	10	50			700	715	0/4	
		<u>U.D.</u>	<u>U.Q.</u>	Med.	<u>L.Q.</u>	<u>L.D.</u>	<u>U</u>	.D.	<u>U.Q.</u>	Med.	<u>L.Q.</u>	<u>L.D.</u>	<u>U.D.</u>	<u>U.Q.</u>	Med	<u>L.Q.</u>	<u>L.D.</u>
Mar	782	838	867	700	702	598		89	89	84	64	64	927	956	784	766	662
Apr	735	995	967	787	799	781	1	01	101	69	56	56	1096	1068	856	855	837
May	681	1279	1211	954	957	936	1	34	134	76	61	61	1413	1345	1030	1018	997
Jun	740	1397	1216	982	972	920	1	38	138	105	62	62	1535	1354	1087	1034	982
Jul	799	1445	1313	1079	1060	1003	1	04	104	104	58	58	1549	1417	1183	1118	1061
Aug	834	1468	1326	1075	1054	995		88	87	84	57	57	1556	1413	1159	1111	1052
Sep	716	1381	1141	993	969	911		87	87	80	54	54	1468	1228	1073	1023	965
Oct	709	1248	1067	857	934	773		87	86	79	54	54	1335	1153	936	988	827
Nov	774	1177	1016	775	746	688		83	83	75	51	51	1260	1099	850	797	739
Dec	902	838	802	690	657	610		87	87	85	57	56	925	889	775	714	666
200	<u></u>	000	<u> 302</u>	<u></u>	<u></u>	010		<u> </u>	<u>01</u>	<u></u>	<u>01</u>	<u> 30</u>	020	<u></u>		<u></u>	200
CY TOT	9435	13568	12428	10311	10154	9519	11	70	1168	1001	702	701	14738	13596	11312	10856	10220

* Estimated sales including system reserves and losses. Power in addition to hydro production needed for these load requirements will be obtained from other systems by interchange or purchase. ** Total output Canyon Ferry and 1/2 output of Yellowtail powerplant.

		Above	Unfilled	Total
Water Supply	Total	Minimum	Carryover	Change
Condition	(12/31/99)	Pools <u>1</u> /	Storage <u>2</u> /	CY 1999
		(Volumes i	n 1,000 Acre-Feet)	
Upper Decile	57,100	39,000	0	-100
Upper Quartile	57,400	39,300	0	200
Median	56,900	38,800	200	- 400
Lower Quartile	51,800	33,700	5,300	- 4,500
Lower Decile	49,000	30,900	8,100	- 7,300

TABLE VANTICIPATED DECEMBER 31, 1999 STORAGE IN MAIN STEM SYSTEM

1/ Net usable storage above 18.1 million-acre-foot System minimum pool level established for power, recreation, irrigation diversions, and other purposes.

2/ System base of flood control zone containing 57.1 million acre-feet.

species during low runoff periods. The specific details of these adjustments are not certain, absent the completion of review of possible options by the MRBA, the MRNRC, and any other interested parties. However, for the 5-year extension studies, for planning purposes, we have included projections that utilize two different sets of drought water conservation guidelines.

The first set of projections presented uses drought water conservation guidelines that call for a 2-week shortening of the navigation season length if system storage falls to 52 MAF by July 1 of any year, and progressive shortening up to 4 weeks at 44 MAF on any July 1. These studies utilize the service level guidelines published in the current Master Manual which call for full service flows if system storage is 54.5 MAF or more on March 15 or 59 MAF or more on July 1 of any year. They also call for minimum service flows if system storage falls to 46 MAF by March 15 or 50.5 MAF by July 1 of any year.

The second set of results presented uses drought water conservation guidelines identical to those published in the current Master Manual. These guidelines call for a 1-week shortening of the navigation season if system storage falls to 40 MAF by any July 1 and would result in a progressive shortening up to 10 weeks at 25 MAF or less on any July 1. This set of guidelines calls for full service flows if system storage is 54.5 MAF or more on March 15 or 59 MAF or more on July 1 of any year. It also calls for minimum service flows if system storage falls to 46 MAF by March 15 or 50.5 MAF by July 1 of any year.

Only one set of Median and Lower Quartile runs is presented since system storage would not fall below the drought water conservation trigger points under either set of guidelines during the study period assuming those two runoff scenarios. For all scenarios, from mid-May through

TABLE VI MISSOURI RIVER MAIN STEM WATER USE FOR CALENDAR YEARS 1997, 1998, AND 1999 ABOVE SIOUX CITY, IOWA in Million Acre-Feet (MAF)

					Fore	cast for		
		CY 1997	CY 1998		Calenda	r Year 1999	9	
		Actual	Basic	Upper	Upper		Lower	
Lower			Forecast	Decile	Ouartile	Median	Ouartile	
Decile			Torecast	Deene	Quartite	Wiedian	Quartine	
Upstream Depletions Irrigation, Tributary Reservoir Evaporation & Other Uses Tributary Reservoir Storage Char Total Upstream Depletions	(1) nges	$\frac{1.6}{0.2}$	1.6 <u>- 0.1</u> 1.5	1.7	1.7	1.8	1.5	1.6
		110	110	117	117	110	110	110
Main Stem Reservoir Evaporation	(2)	2.6	2.4	1.2	1.4	1.8	2.1	2.0
Sioux City Flows Navigation Season Unregulated Flood Inflows Ber Coving Baint & Siour City		0.8	0.0					
Gavins Point & Sioux City		0.8 15.0	15.2	18.6	18.1	16.6	16.0	15.5
Navigation Service Requireme	m	13.0	13.2	18.0	16.1	10.0	10.0	15.5
Supplementary Releases Endangered Species	(4)	0.0	0.4	0.0	0.0	0.4	0.4	0.3
Flood Evacuation	(4) (5)	20.2	0.4 0.6	0.0 7.9	0.0 4.6	0.4	0.4	0.5
Nonnavigation Season	(3)	20.2	0.0	7.9	4.0	0.0	0.0	0.0
Flows		4.3	4.0	4.3	3.9	4.4	4.0	3.5
Flood Evacuation Releases	(6)	3.2	4.0	4.5	0.7	4.4 0.0	4.0 0.0	0.0
Piood Evacuation Releases	(0)	5.2	1.0	0.8	0.7	0.0	0.0	0.0
Main Stem System Storage Chang	e	<u>1.1</u>	-1.6	0.0	0.2	- 0.4	- 4.5	- 7.4
Total		49.0	24.3	34.5	30.6	24.6	19.5	15.5
Project Releases								
Fort Peck		9.6	6.4	9.4	8.6	7.0	6.8	6.7
Garrison		25.2	15.2	22.1	20.1	16.7	16.1	14.9
Oahe		31.1	16.7	25.5	22.6	18.5	18.6	18.2
Big Bend		31.6	16.8	25.4	22.5	18.4	18.5	18.1
Fort Randall		34.5	17.6	26.8	23.6	19.1	18.8	18.2
Gavins Point		37.9	20.3	28.8	25.4	20.4	19.9	19.2
Gavins i onit		51.7	20.5	20.0	23.7	20.7	1).)	17.2

(1) Tributary uses, above the 1949 level of development including agricultural depletions and tributary storage effects.

(2) Net Evaporation is shown for 1999.

(3) Incremental inflows to reach which exceed those usable in support of navigation at the target level, even if Gavins Point releases were held to as low as 6,000 cfs.

(4) Increased releases required to maintain navigation release flexibility during the endangered species nesting season.

(5) Includes flood control releases for flood control storage evacuation and releases used to extend the navigation season beyond the

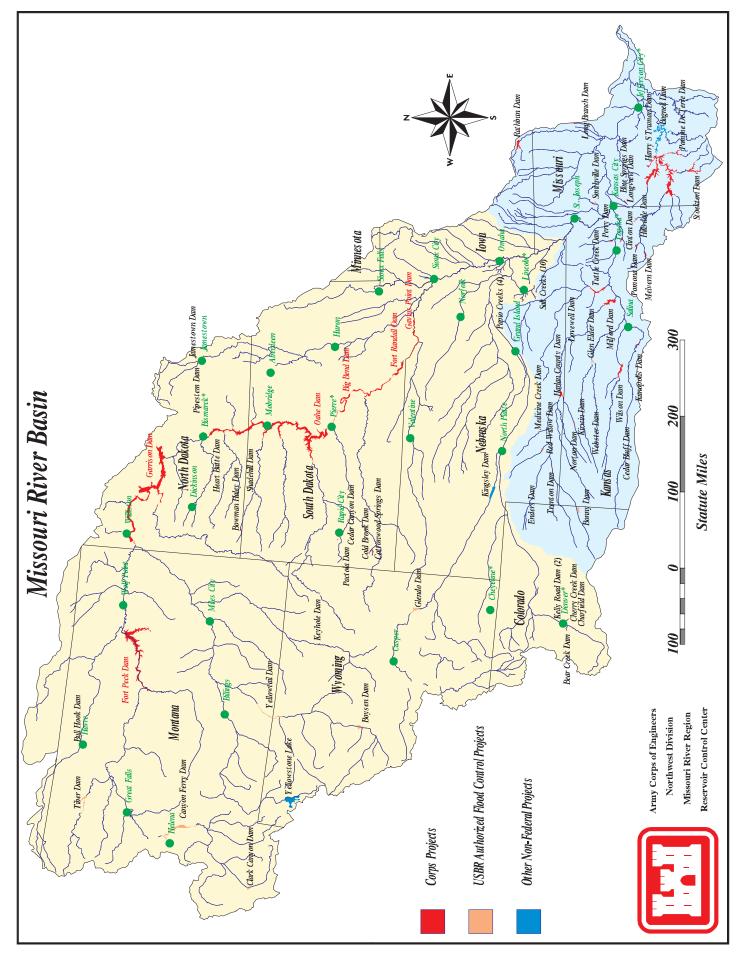
normal December 1 closing date at the mouth of the Missouri River.

(6) Releases for flood control storage evacuation in excess of a 15,000 cfs Fort Randall release.

July, Gavins Point releases are set to the anticipated August release required to meet downstream flow targets, to minimize inundation of interior least tern and piping plover nests.

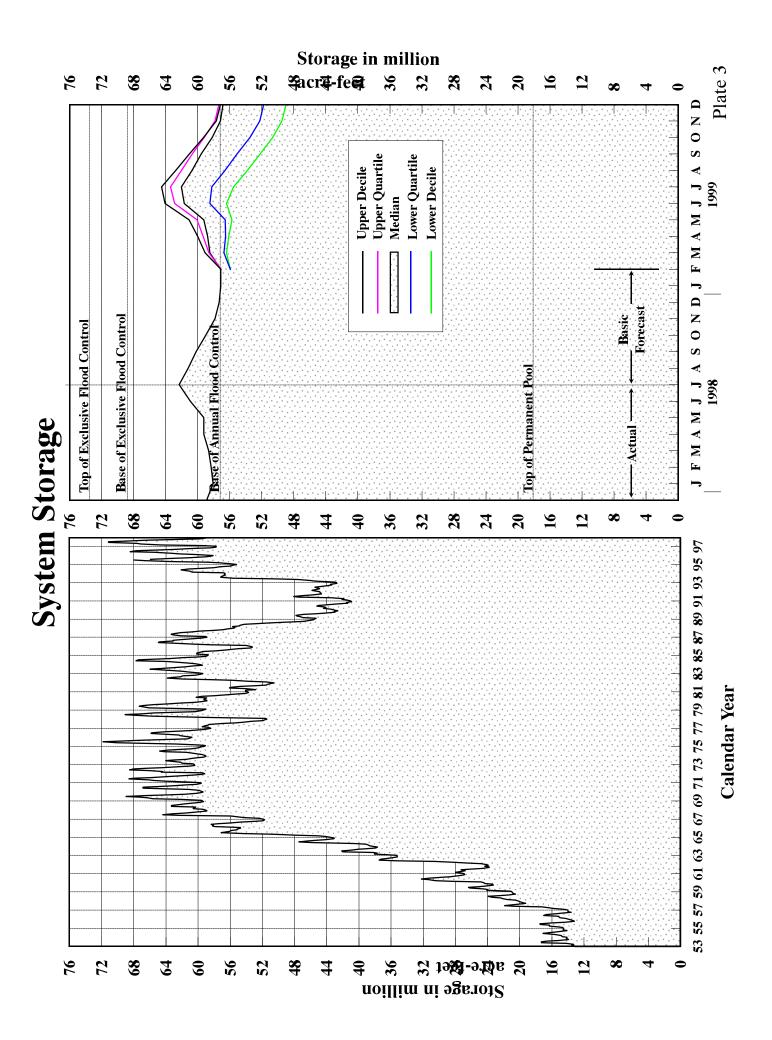
A. <u>Median Runoff</u>. System storage would begin in March 2000 at 56.7 MAF and would decline to 52.9 MAF by March 2005. An 8-month navigation season would be provided through the entire study period. Full service flows and winter power releases would be maintained through 2002 with only modest reductions in 2003 and 2004.

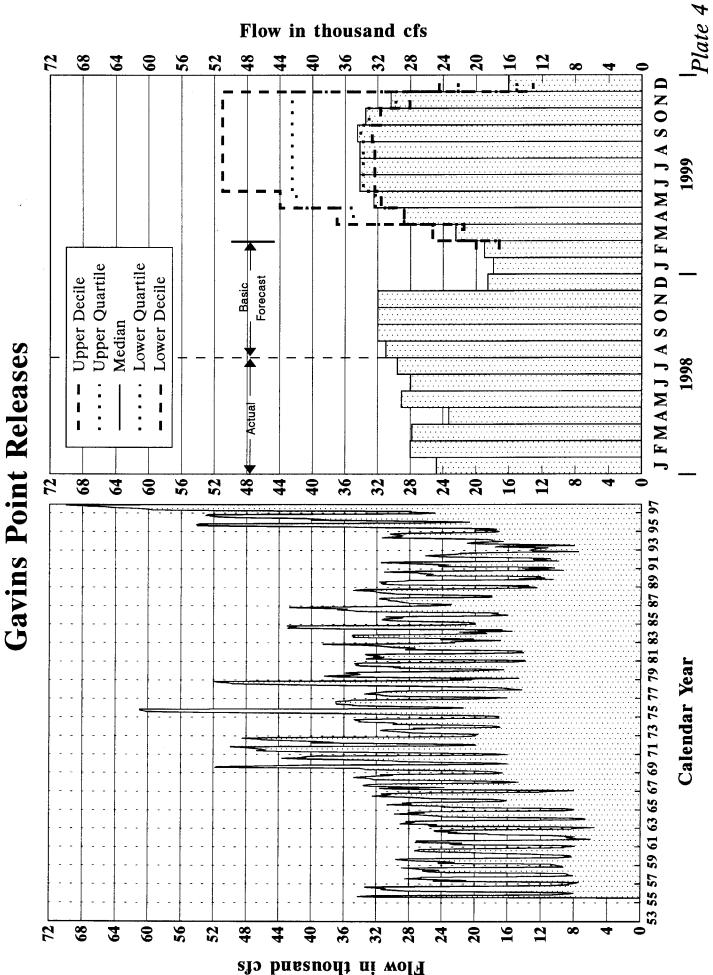
B. <u>Lower Quartile Runoff</u>. System storage would begin the period at 51.2 MAF and fall to 48.8 MAF by March 2005. An 8-month navigation season would be provided through 2004. Service level would vary from 1,900 cfs and 3,200 cfs below full service in the spring and summer of 2000 to 3,600 and 4,200 cfs below full service in the spring and summer of 2004.

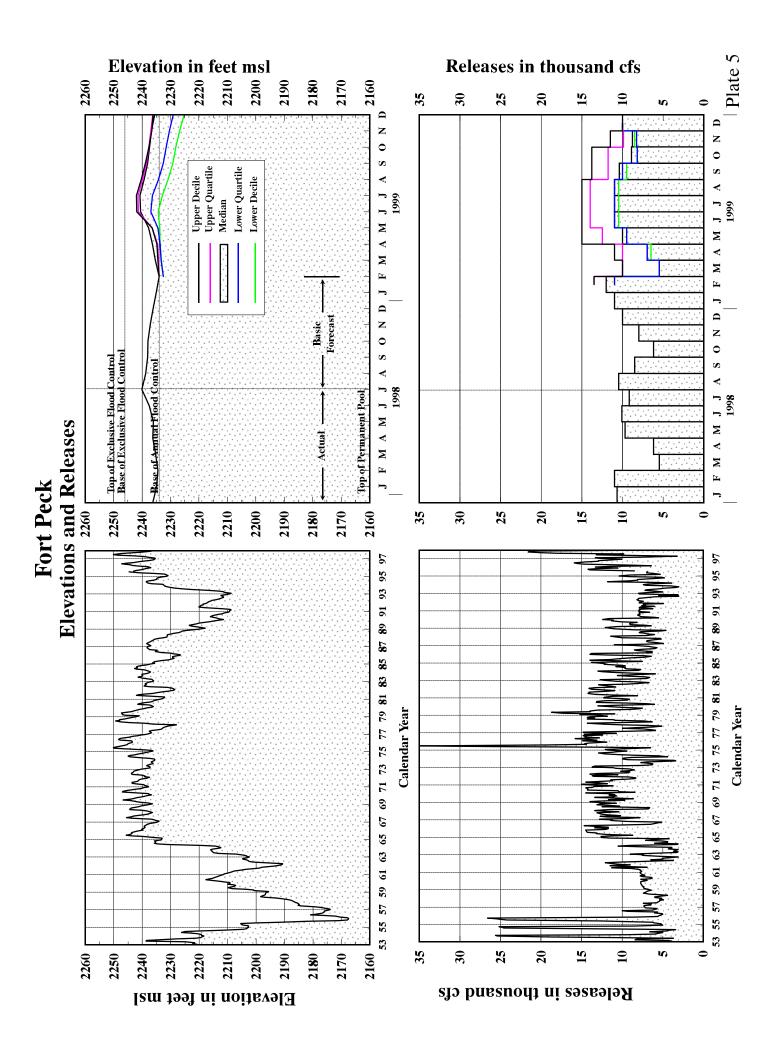

C. <u>Lower Decile Runoff - Navigation Season Shortened at 52 MAF on July 1</u>. System storage would begin the period at 48.5 MAF and fall to 39.8 MAF by March 2005. The navigation season would be shortened by 2 weeks in 2000, by 3 weeks in 2001 - 2003, and by 4 weeks in 2004. Service level would vary from 3,900 cfs below full service and minimum service (6,000 cfs below full service) in the spring and summer of 2000, to minimum service for the remainder of the study period (2001 - 2004).

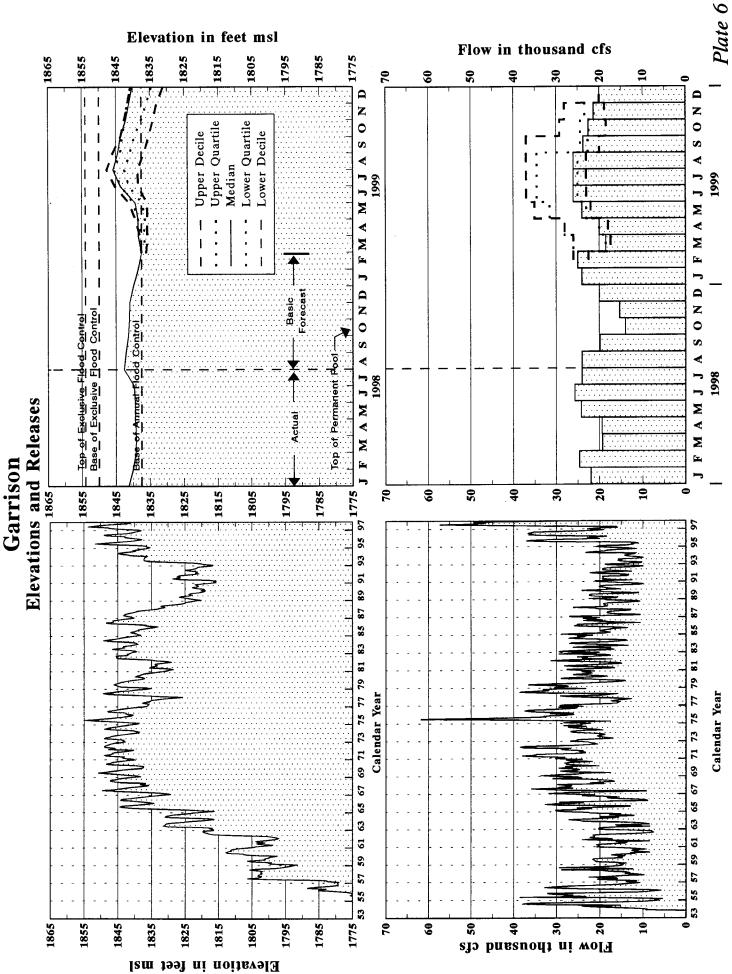
D. <u>Lower Decile Runoff - Navigation Season Shortened at 40 MAF on July 1</u>. System storage would begin the period at 48.5 MAF and fall to 35.9 MAF by March 2005. An 8-month navigation season would be provided through 2004. Service level would vary from 3,300 cfs below full service and minimum service in the spring and summer of 2000 to minimum service for the remainder of the period (2001-2004).

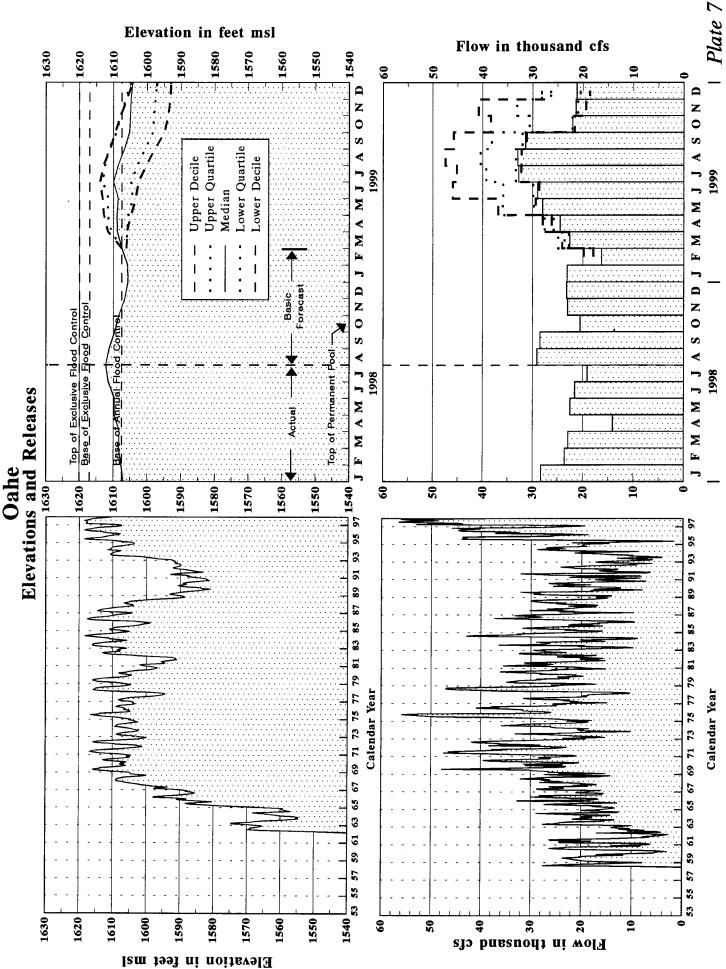
Plate 11 presents system storage, Gavins Point regulated flow, and system peaking capability for Median, Lower Quartile, and Lower Decile for both sets of guidelines, for the period 2000 - March 2005. Peak power, or peaking capability, is the amount of power available when all powerplants are operating at maximum.

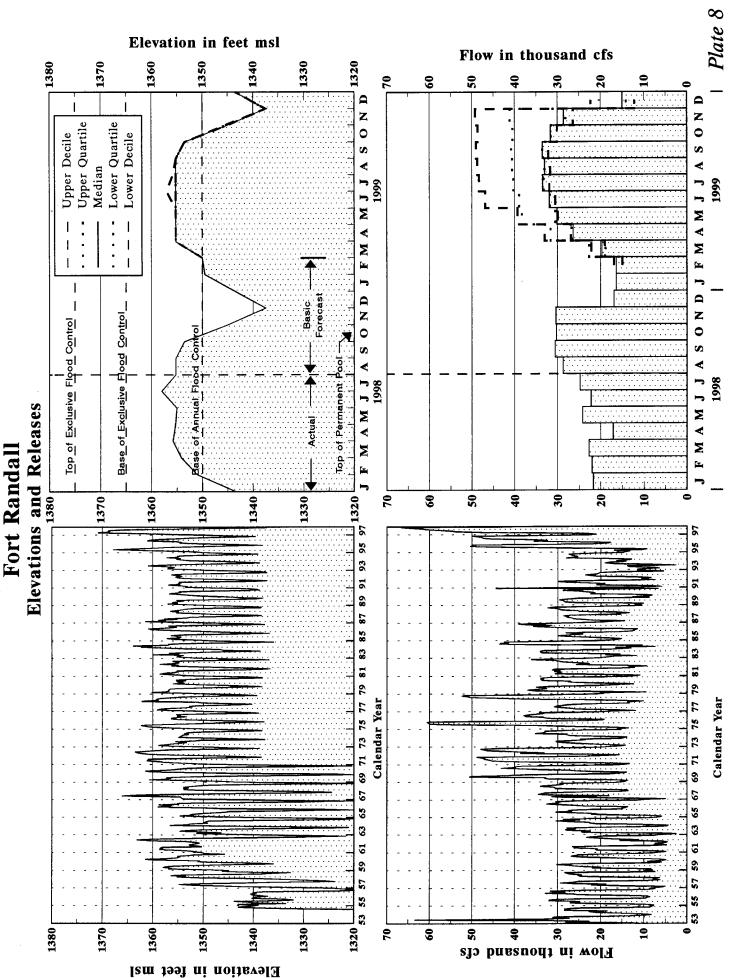

Plate 12 presents reservoir elevations for Fort Peck, Garrison, Oahe, and Fort Randall for Median, Lower Quartile, and Lower Decile for both sets of guidelines, for the period 2000 - March 2005.

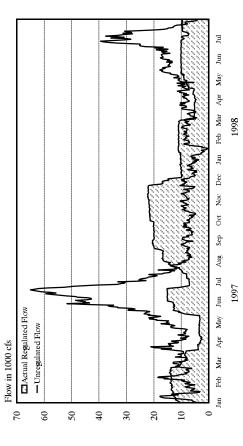

A summary of Engineering Data for the main stem reservoir system is shown on Plate 2.

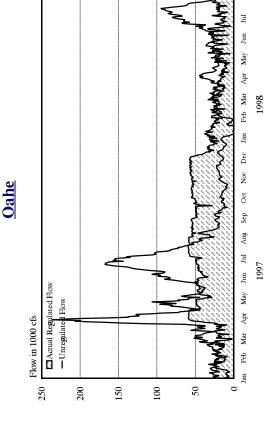



T /		ry of Engineering Data M		
Item No.	Subject	Fort Peck Lake	Garrison Dam - Lake Sakakawea	Oahe Dam - Lake Oahe
1	Location of Dam	Near Glasgow, Montana	Near Garrison, ND	Near Pierre, SD
2	River Mile - 1960 Mileage	Mile 1771.5	Mile 1389.9	Mile 1072.3
3	Total & incremental drainage	57,500		243,490 (1) 62,090
_	areas in square miles		- , , - ,	-,
4	Approximate length of full	134, ending near Zortman, MT	178, ending near Trenton, ND	231, ending near Bismarck, ND
	reservoir (in valley miles)			
5	Shoreline in miles (3)	1520 (elevation 2234)	1340 (elevation 1837.5)	2250 (elevation 1607.5)
6	Average total & incremental	10,200		28,900 3,300
Ŭ	inflow in cfs	10,200	25,000	20,700 5,500
7	Max. discharge of record	137,000 (June 1953)	348,000 (April 1952)	440,000 (April 1952)
'	near damsite in cfs	137,000 (Julie 1955)	548,000 (April 1952)	440,000 (April 1952)
8	Construction started - calendar yr.	1933	1946	1948
8	In operation (4) calendar yr.	1933	1946	1948
,	Dam and Embankment	1940	1955	1902
10	Top of dam, elevation in feet msl	2280.5	1875	1660
10				
11	Length of dam in feet	21,026 (excluding spillway)	11,300 (including spillway)	9,300 (excluding spillway)
12	Damming height in feet (5)	220	180	200
13	Maximum height in feet (5)	250.5	210	245
14	Max. base width, total & w/o	3500, 2700	3400, 2050	3500, 1500
	berms in feet			
15	Abutment formations (under dam &	Bearpaw shale and glacial fill	Fort Union clay shale	Pierre shale
	embankment)			
16	Type of fill	Hydraulic & rolled earth fill	Rolled earth filled	Rolled earth fill & shale berms
17	Fill quantity, cubic yards	125,628,000	66,500,000	55,000,000 & 37,000,000
18	Volume of concrete, cubic yards	1,200,000	1,500,000	1,045,000
19	Date of closure	24 June 1937	15 April 1953	3 August 1958
	Spillway Data			
20	Location	Right bank - remote	Left bank - adjacent	Right bank - remote
21	Crest elevation in feet msl	2225	1825	1596.5
22	Width (including piers) in feet	820 gated	1336 gated	456 gated
		5		
23	No., size and type of gates	16 - 40' x 25' vertical lift gates	28 - 40' x 29' Tainter	8 - 50' x 23.5' Tainter
24	Design discharge capacity, cfs	275,000 at elev 2253.3	827,000 at elev 1858.5	304,000 at elev 1644.4
25	Discharge capacity at maximum	230,000	660,000	80,000
	operating pool in cfs			
	Reservoir Data (6)			
26	Max. operating pool elev. & area	2250 msl 246,000 acres		
27	Max. normal op. pool elev. & area	2246 msl 240,000 acres		
28	Base flood control elev & area	2234 msl 212,000 acres	1837.5 msl 307,000 acres	1607.5 msl 312,000 acres
29	Min. operating pool elev. & area	2160 msl 90,000 acres	1775 msl 128,000 acres	1540 msl 117,000 acres
	Storage allocation & capacity			
30	Exclusive flood control	2250-2246 975,000 a.f.	1854-1850 1,489,000 a.f.	1620-1617 1,102,000 a.f.
31	Flood control & multiple use		1850-1837.5 4,222,000 a.f.	
32	Carryover multiple use	2234-2160 22,717,000 a.f.		
33	Permanent	2160-2030 10,785,000 a.f.		
33 34	Gross	2100-2030 4,211,000 a.f. 2250-2030 18,688,000 a.f.		
35	Reservoir filling initiated	November 1937	December 1953	August 1958
36	Initially reached min. operating pool	27 May 1942	7 August 1955	3 April 1962
37	Estimated annual sediment inflow	18,100 a.f. 1030 yrs.	25,900 a.f. 920 yrs.	19,800 a.f. 1170 yrs.
	Outlet Works Data			
38	Location	Right bank	Right Bank	Right Bank
39	Number and size of conduits	2 - 24' 8" diameter (nos. 3 & 4)	1 - 26' dia. and 2 - 22' dia.	6 - 19.75' dia. upstream, 18.25'
				dia. downstream
40	Length of conduits in feet (8)	No. 3 - 6,615, No. 4 - 7,240	1529	3496 to 3659
41	No., size, and type of service gates	1 - 28' dia. cylindrical gate	1 - 18' x 24.5' Tainter gate per	1 - 13' x 22' per conduit, vertical
		6 ports, 7.6' x 8.5' high (net	conduit for fine regulation	lift, 4 cable suspension and
		opening) in each control shaft		2 hydraulic suspension (fine
				regulation)
42	Entrance invert elevation (msl)	2095	1672	1425
43	Avg. discharge capacity per conduit	Elev. 2250	Elev. 1854	Elev. 1620
	& total	22,500 cfs - 45,000 cfs		18,500 cfs - 111,000 cfs
44	Present tailwater elevation (ft msl)	2032-2036 5,000 - 35,000 cfs		
-	Power Facilities and Data			
45	Avg. gross head available in feet (15)	194	161	174
46	Number and size of conduits	No. 1-24'8" dia., No. 2-22'4" dia.	5 - 29' dia., 25' penstocks	7 - 24' dia., imbedded penstocks
40 47			1829	1
	Length of conduits in feet (8)	No. 1 - 5,653, No. 2 - 6,355		From 3,280 to 4,005
48	Surge tanks	PH#1: 3-40' dia., PH#2: 2-65' dia.	65' dia 2 per penstock	70' dia., 2 per penstock
49	No., type and speed of turbines	5 Francis, PH#1-2: 128.5 rpm,	5 Francis, 90 rpm	7 Francis, 100 rpm
		1-164 rpm , PH#2-2: 128.6 rpm		
50	Discharge cap. at rated head in cfs	PH#1, units 1&3 170', 2-140'	150' 38,000 cfs	185' 54,000 cfs
		8,800 cfs, PH#2-4&5 170'-7,200 cfs		
51	Generator nameplate rating in kW	1&3: 43,500; 2: 18,250; 4&5: 40,000	3 - 109,250, 2 - 95,000	112,290
52	Plant capacity in kW	185,250	517,750	786,030
52 53	Dependable capacity in kW (9)	181,000	388,000	534,000
54 55	Avg. annual energy, million kWh (13)	1,170 July 1043 June 1061	2,472	2,898
	Initial generation, first and last unit	July 1943 - June 1961	January 1956 - October 1960	April 1962 - June 1963
56	Estimated cost September 1996			
50	completed project (14)	\$158,428,000	\$299,938,000	\$346,521,000


Sum	mary of Engineering Dat	ta Missouri River Main	Stem Reservo	oirs	
Big Bend Dam - Lake Sharpe	Fort Randall Dam - Lake Francis Case	Gavins Point Dam - Lewis & Clark Lake	Total	Item No.	Remarks
21 miles upstream Chamberlain, SD Mile 987.4	Near Lake Andes, SD Mile 880.0	Near Yankton, SD Mile 811.1 279,480 (1) 16,000		1 2 3	 Includes 4,280 square miles of non-contributing areas.
80, ending near Pierre, SD	107, ending at Big Bend Dam	25, ending near Niobrara, NE	755 miles	4	(2) Includes 1,350 square miles of non-contributing
200 (elevation 1420) 28,900	540 (elevation 1350) 30,000 1,100	90 (elevation 1204.5) 32,000 2,000	5,940 miles	5 6	areas.(3) With pool at base of flood control.(4) Storage first available for
440,000 (April 1952)	447,000 (April 1952)	480,000 (April 1952)		7	(4) Storage first available for regulation of flows.(5) Damming height is height
 1959 1964	1946 1953	1952 1955		8 9	from low water to maximum operating pool. Maximum
1440 10,570 (including spillway) 78 95 1200, 700	1395 10,700 (including spillway) 140 165 4300, 1250	1234 8,700 (including spillway) 45 74 850, 450	71,596 863 feet	10 11 12 13 14	 height is from average streambed to top of dam. (6) Based on latest available storage data. (7) River regulation is attained by flows over low-crested spillway and through
Pierre shale & Niobrara chalk	Niobrara chalk	Niobrara chalk & Carlile shale		15	turbines. (8) Length from upstream face
 Rolled earth, shale, chalk fill 17,000,000 540,000 24 July 1963	Rolled earth fill & chalk berms 28,000,000 & 22,000,000 961,000 20 July 1952	Rolled earth & chalk fill 7,000,000 308,000 31 July 1955	358,128,000 cu. yds 5,554,000 cu. yds.	16 17 18 19	of outlet or to spiral case. (9) Based on 8th year (1961) of drought drawdown (From study 8-83-1985).
Left bank - adjacent 1385 376 gated 8 - 40' x 38' Tainter 390,000 at elev 1433.6 270,000	Left bank - adjacent 1346 1000 gated 21 - 40' x 29' Tainter 620,000 at elev 1379.3 508,000	Right bank - adjacent 1180 664 gated 14 - 40' x 30' Tainter 584,000 at elev 1221.4 345,000		20 21 22 23 24 25	 (10) Storage volumes are exclusive of Snake Creek arm. (11) Affected by level of Lake Francis case. Applicable to pool at elevation 1350. (12) Spillway crest. (13) 1967-1997 Average
1423 msl 61,000 acres 1422 msl 60,000 acres 1420 msl 57,000 acres 1415 msl 51,000 acres	1365 msl 95,000 acres 1350 msl 77,000 acres	1208 msl 28,000 acres 1204.5 msl 24,000 acres		26 27 28 29	 (14) Source: Annual Report on Civil Works Activities of the Corps of Engineers. Extract Report Fiscal Year 1996. (15) Based on Study 8-83-1985
1423-1422 60,000 a.f. 1422-1420 117,000 a.f. 1420-1345 1,682,000 a.f. 1423-1345 1,859,000 a.f. November 1963 25 25 March 1964 430 yrs.	1365-1350 1,309,000 a.f. 1350-1320 1,607,000 a.f. 1320-1240 1,517,000 a.f. 1375-1240 5,418,000 a.f. January 1953 24 November 1953	1208-1204.5 90,000 a.f. 1204.5-1160 321,000 a.f.	4,670,000 a.f. 11,656,000 a.f. 38,983,000 a.f. 18,084,000 a.f. 73,393,000 a.f. 92,500 a.f.	30 31 32 33 34 35 36 37	
None (7)	Left Bank 4 - 22' diameter	None (7)		38 39	
	1013 2 - 11' x 23' per conduit, vertical lift, cable suspension			40 41	
1385 (12)	1229 Elev 1375	1180 (12)		42 43	
 1351-1355(11) 25,000-100,000 cfs		1155-1163 15,000-60,000 cfs		44	
70 None: direct intake	117 8 - 28' dia., 22' penstocks 1,074	48 None: direct intake	764 feet 55,083	45 46 47	
None 8 Fixed blade, 81.8 rpm	59' dia, 2 per alternate penstock 8 Francis, 85.7 rpm	None 3 Kaplan, 75 rpm	36 units	48 49	
67' 103,000 cfs	112' 44,500 cfs	48' 36,000 cfs		50	
3 - 67,276, 5 - 58,500 494,320 497,000 1,052 October 1964 - July 1966	40,000 320,000 293,000 1,846 March 1954 - January 1956	44,100 132,300 74,000 749 September 1956 - January 1957	2,435,650 kw 1,967,000 kw 10,187 million kWh July 1943 - July 1966	51 52 53 54 55	Corps of Engineers, U.S. Army Compiled by
\$107,498,000	\$199,066,000	\$49,617,000	\$1,161,068,000	56	Missouri River Division May 1998
1351-1355(11) 25,000-100,000 cfs 70 None: direct intake None 8 Fixed blade, 81.8 rpm 67' 103,000 cfs 3 - 67,276, 5 - 58,500 494,320 497,000 1,052 October 1964 - July 1966	2 - 11' x 23' per conduit, vertical lift, cable suspension 1229 Elev 1375 32,000 cfs - 128,000 cfs 1228-1239 5,000-60,000 cfs 117 8 - 28' dia., 22' penstocks 1,074 59' dia, 2 per alternate penstock 8 Francis, 85.7 rpm 112' 44,500 cfs 40,000 320,000 293,000 1,846 March 1954 - January 1956	1155-1163 15,000-60,000 cfs 48 None: direct intake None 3 Kaplan, 75 rpm 48' 36,000 cfs 44,100 132,300 74,000 749 September 1956 - January 1957	55,083 36 units 2,435,650 kw 1,967,000 kw 10,187 million kWh July 1943 - July 1966	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Compiled by Missouri River Division








Reservoir Release and Unregulated Flow

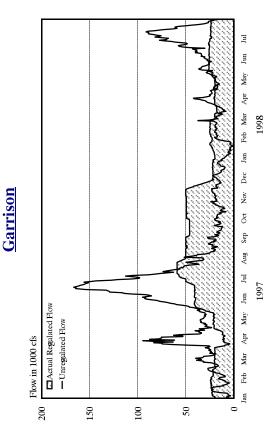
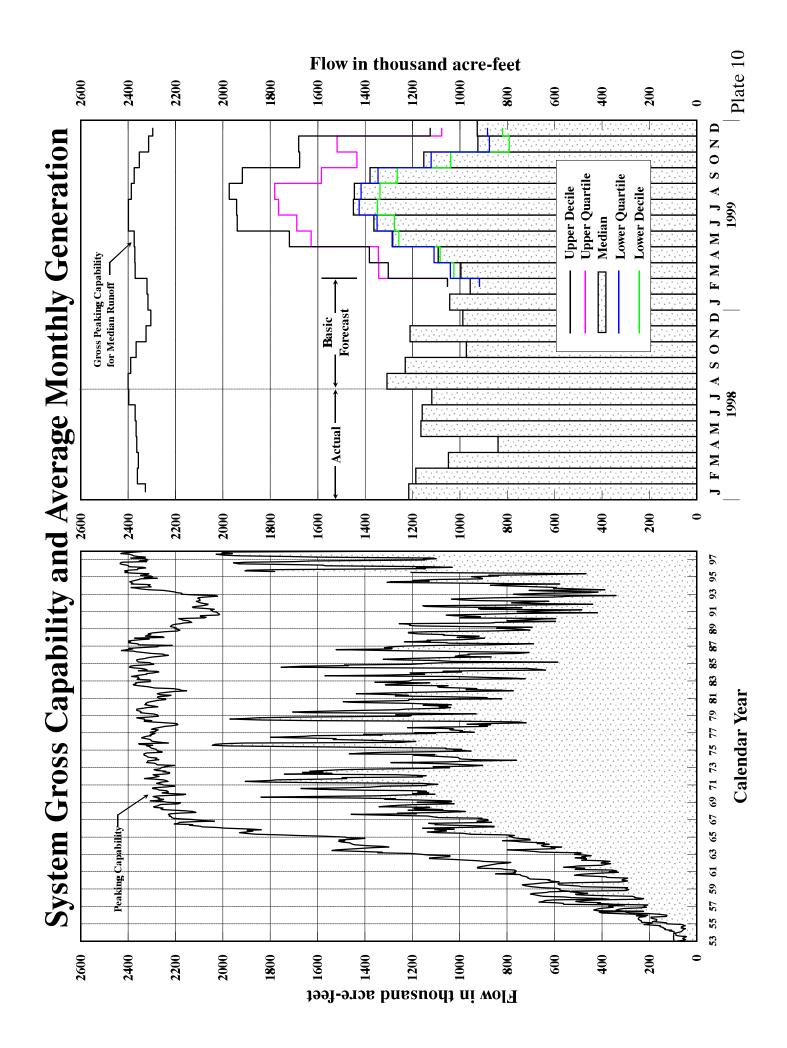
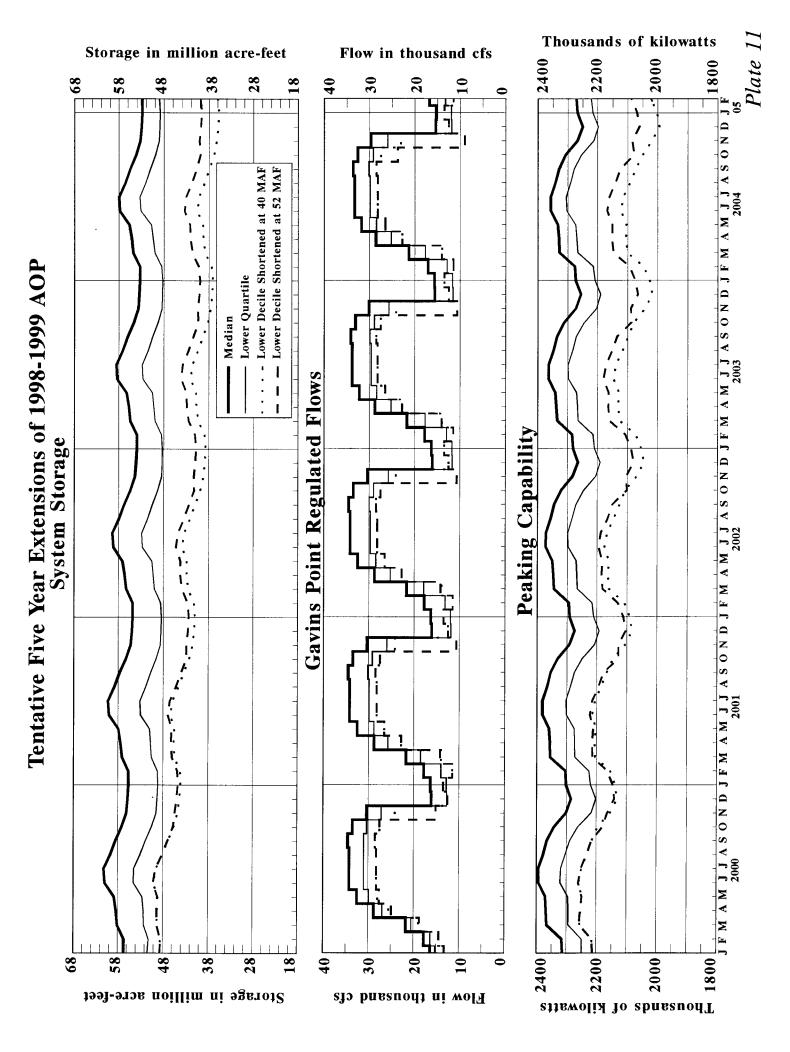
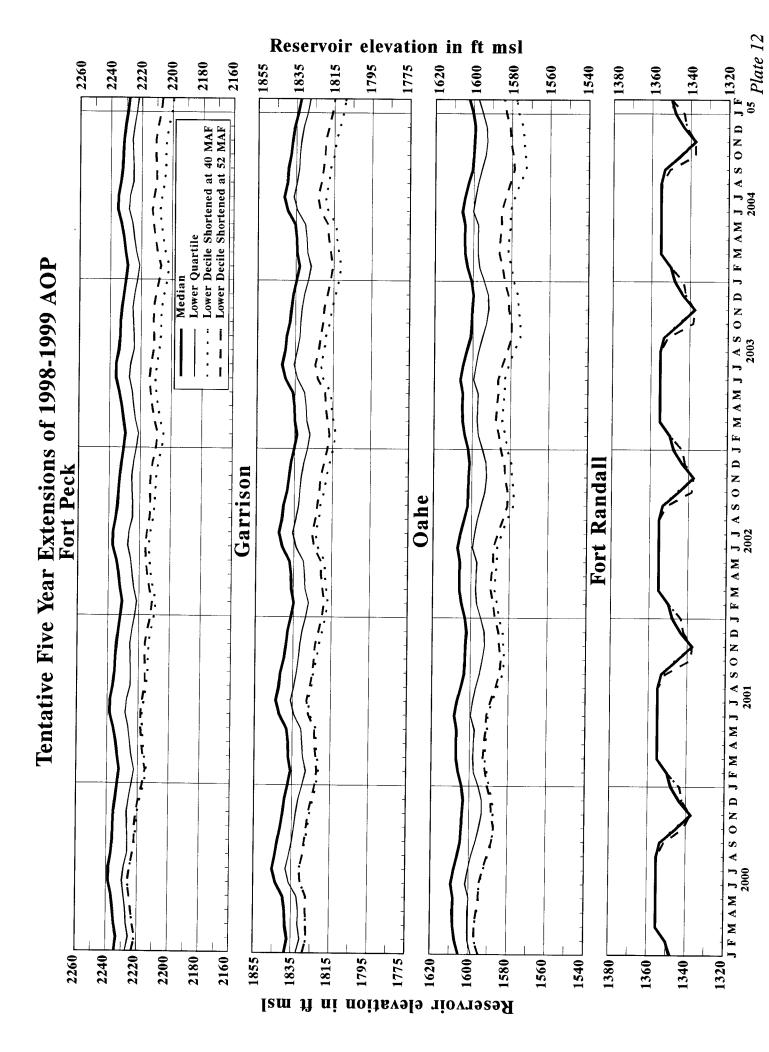





Plate 9

Missouri River Basin Association

September 14, 1998

Mr. Larry Cieslik, Chief Reservoir Control Center U.S. Army Corps of Engineers, MRR Office 12565 West Center Rd. Omaha, NE 68144

Dear Mr. Cieslik:

Thank you for the opportunity to comment on the upcoming plan for the Missouri River's Annual Operating Plan (AOP).

As you know, we recently developed a set of planning recommendations designed to improve the overall economic and environmental conditions of the Missouri River basin. Your agency was very helpful to this effort. We are now turning our attention to the Master Manual Review process. We hope to work with people throughout the basin to develop a consensus position on a new operating plan for the river.

Our focus on the Master Manual Review has prevented us from devoting our attention to the 1999 Annual Operating plan. Therefore, we have no recommendation for you to consider prior to your publication of next year's draft AOP. We look forward to seeing your draft, and we may have comments for you after we review it.

Thank you for your consideration.

Sincerely,

Ind Glil

Bud Clinch, President Missouri River Basin Association

September 4, 1998

Colonel Michael Mueleners Northwestern Division, Corps of Engineers 12565 W. Center Road Omaha, NE 68144-3869

Dear Colonel Mueleners:

I am pleased to submit the following recommendations of the Missouri River Natural Resources Committee (MRNRC) for operation of the Missouri River system during 1998/1999. These recommendations were developed by our Fish Technical Section and Tern & Plover Subcommittee and adopted by our official MRNRC state delegates. I also want to thank your Reservoir Control Center staff for their close coordination and efforts this year to maintain minimum flows below Fort Randall Dam and Gavins Point Dam during the fish spawning season.

AQUATIC HABITAT AND FISHERY RECOMMENDATIONS

Inter-reservoir and Open River Reaches

- The Corps should implement spawning releases with relatively high spring flows peaking in early June and steady to slowly declining levels for the remainder of the year. These releases would provide spawning triggers and habitats for native riverine species. These releases should be attempted at Fort Peck, Fort Randall, and Gavins Point Dams.
- The Corps should maintain minimum instantaneous flow releases from each dam (even during downstream flood events) to maintain a wetted perimeter, necessary to sustain fish populations. Gavins Point should have a minimum discharge of 9 thousand cubic-feet-per-second (kcfs) which would provide for downstream water quality and National Scenic Rivers support; Fort Randall should have a minimum release of 9 kcfs. Fort Peck Dam should have an absolute minimum instantaneous discharge of 4.5 kcfs from April 1 through September 30 to ensure basic recruitment of rainbow trout. The recommended absolute minimum instantaneous discharge from Fort Peck Dam from October 1-March 31 is 3.0 kcfs. All other dams should have a hourly minimum of 7.5 kcfs. Minimum flows need to be maintained out of Big Bend Dam on the weekends to facilitate recreation. During the spawning season (May 15-June15), a minimum instantaneous discharge of 15 kcfs should be maintained from Fort Randall Dam. These minimums will be examined by the MRNRC on a case by case basis and refined as new data become available.
- The Corps should release warm water (surface or near surface) from either Fort Randall or Fort Peck Dams each year during the fish spawning season, under near normal water conditions.
 - The Corps should release up to 30,000 cfs from Fort Peck Dam beginning in early June at least once every

four years when conditions allow. This discharge would produce a pulse of water that sturgeon, paddlefish, sauger, and other native species key on for pre-spawn staging. In addition, this flow may improve nesting habitat for terns and plovers by pushing up unvegetated sandbars to elevations that would not then become inundated during the nesting period.

- The Corps should release at least 25 % of the total discharge from Fort Peck Dam through the spillway from mid-June to mid-July to provide a more normal temperature profile. Suitable water temperature is critical to the development and survival of native riverine fish eggs, fry, and juveniles.
- Spiking of water releases from the dams for terns and plovers should be eliminated. We appreciate the efforts of the Corps in recent years to reduce spiking releases. We also ask that spiking or flood sag measures not be referenced as Corps management actions for interior least terns and piping plovers. These measures are primarily taken to either conserve water for navigation (spiking) or to lower downstream stages during high flow events.

Main Stem Reservoirs

The Corps should implement offset storage in Fort Peck Lake and Lakes Sakakawea and Oahe if March 1 runoff projections are upper quartile or greater. Lake Oahe is the priority for the coming water year if offset storage is implemented. Offset storage would expose shorelines and stimulate the growth of shoreline vegetation and increase riverine habitat in the headwaters area of the affected reservoir. Subsequent submergence of this shoreline vegetation would increase natural reproduction of fish in the reservoir and provide cover for fry. In addition, offset storage would aid in the implementation of the Fort Peck discharge and temperature requests.

Fort Peck Lake

A maximum reservoir elevation of 2240.5 ft. msl was reached on July 25, 1998. A rise in pool of at least three feet above that level is recommended by May 1, 1999, to ensure shoreline vegetation is inundated. Flooded vegetation will provide spawning and rearing habitat for forage fish species such as yellow perch and game fish species like northern pike. A rising, or at least a static pool, is recommended through June to accommodate late spring and early summer spawners and provide rearing cover for young-of-the-year forage and game fish species.

Lake Sakakawea

A. An absolute open-water minimum lake elevation of 1822 ft. msl for drought periods and 1832 ft. msl for all other years is recommended. Below these specified elevations, the following negative circumstances affect the fishery resource or its use: a substantial loss of walleye spawning substrate (gravel/cobble) and coldwater habitat (for chinook salmon and rainbow smelt); critically needed water becomes less available to the Garrison Dam National Fish Hatchery for production; and boat access/recreation use becomes limited.

B. Other than years in which severe drought conditions prevail, a maximum lake elevation window of 1838 to 1846 ft. msl is requested in order to maintain flexibility in annual recommendations and to reduce impacts from wave erosion.

C. The spring water level rise must inundate good spawning substrate (i.e. cobble and/or terrestrial vegetation) by April 15 and continue to rise during spawning-incubation (April-May). A target increase of two-three feet between April 15 and May 15 should be established during a filling cycle. Even during a drawdown cycle or during drought conditions stabilizing the lake elevation should be attempted during this critical time period.

D. Utilization of inundated terrestrial vegetation should be optimized during a filling cycle. When

possible, an effort to flood a minimum of three vertical feet of two-year-old terrestrial vegetation should be attempted between April (ice-out) and mid-June. Also following a short-term drawdown, the inundation of four feet (minimum) of one-year-old vegetation (primarily matted smartweed) should be attempted between April and July. Flooding of vegetation from August through February serves no fishery purpose and is not recommended. Short-term peaking of the reservoir is discouraged.

Lake Oahe

A. An absolute open-water minimum lake elevation of 1590 ft. msl for drought periods and 1600 ft. msl for all other years is recommended. Elevations below these minimal levels eliminate a tremendous amount of fish habitat. The upper stretch of Lake Oahe (North Dakota) is characterized by a shallow floodplain and during low water years much of this reach recedes into the original channel.

B. Other than during years of severe drought, a maximum lake elevation window of 1606 to 1616 ft. msl should be established to provide a degree of latitude for making annual recommendations and to a lesser extent reduce the impacts of bank erosion.

C. During a filling cycle, the spring water level rise must inundate favorable spawning substrate (i.e. cobble and/or terrestrial vegetation) by April 15 and continue to rise into June. If a rising pool is not possible during a drawdown cycle or drought conditions, then at least a stable pool must be achieved during this critical time period.

D. Whenever terrestrial vegetation is flooded, it is strongly recommended a target of inundating a minimum of three vertical feet of two-year-old terrestrial vegetation between April (ice-out) and mid-June be established. Flooding of vegetation from August through February serves no fishery purpose and is not recommended. Also following a short-term drawdown, the inundation of four feet (minimum) of one-year-old vegetation (primarily matted smartweed) should be attempted between April and July. Short-term peaking of the reservoir is discouraged.

Lake Francis Case

A. Reach a water level elevation of 1355 ft. msl by mid-April that remains stable or increases to no more than elevation 1360 ft. msl through June. Any declines in lake elevation from mid-April through June need to be avoided. Elevations greater than 1360 ft. msl restrict recreational boating access and cause shoreline erosion problems.

B. The scheduled fall drawdown needs to continue the normal pattern of not beginning before October 1, again to facilitate recreational boating access.

Lewis & Clark Lake

A. The water elevation should be held at 1206-1207 msl with limited fluctuations during May and July for fish spawning and nursery areas. Water levels during the rest of the year should be held stable as much as possible for recreational purposes and to avoid shoreline damage.

OPERATIONS FOR INTERIOR LEAST TERNS AND PIPING PLOVERS

- The Corps should schedule reservoir releases periodically to recreate interior least tern and piping plover sandbar habitat below Gavins Point Dam, Garrison Dam, Fort Randall Dam, and Fort Peck Dam when water supply conditions are favorable. Such releases should coincide with spring releases for fish spawning as much as possible and be followed by stable to declining flows during the nesting season.
 - Preliminary indications from the 1998 nesting season are that interior least tern and piping plover fledge ratios may meet 1990 Biological Opinion targets for the first time. This is a result of the higher than

normal reservoir releases of the past several years that pushed up and scoured sandbars resulting in a dramatic increase in high-elevation, unvegetated bars. The availability of desired quantity and quality sandbar nesting habitat throughout tern and plover nesting reaches dispersed the birds, thereby reducing predation, recreational, and weather-related impacts, and greatly reduced the risk of nest loss through operational and natural flooding events. The higher-elevation habitat should also increase Corps flexibility in managing for other authorized purposes.

The Corps should identify what characteristics of the previous years' high flows, e.g., magnitude, timing, duration, created the extensive sandbar habitat of the past several years. Furthermore, causative factors and relationships (flow magnitude, timing, duration, sediment supply) affecting sandbar erosion, vegetative encroachment, and elevation under normal and below normal water supply conditions should also be determined. Experience from previous years indicates that sandbar habitat will decline under the Current Water Control Plan with normal or below normal runoff. Provision of this information will be essential to future management recommendations.

The Corps should schedule daily operations that maximize tern and plover production during next year's nesting season. We recommend that operations maximize the availability of sandbar habitat, especially in the reaches below Garrison and Gavins Point Dams. We have advocated for some time now that the availability and condition of sandbar habitat during the nesting season is the key to tern and plover productivity and ultimately, their survival and recovery on the Missouri River. Populations of both terns and plovers have declined and system-wide productivity has been critically low to non-existent. Between 1988 and 1997 fledge ratio goals for terns were only met once (1989) and from 1994-1997 numbers of least terns declined by 37 percent. The fledge ratio has never been met for piping plovers (1988-1997) and from 1994-1997 plover numbers declined by 67 percent. It is paramount that productivity be maximized during this period of better habitat conditions made possible by the higher than normal reservoir releases in 1998.

The 1998 nesting season has verified that Missouri River flows can be managed to effectively restore sandbar nesting habitat and increase the productivity of terns and plovers. As recommended above, the Corps should identify those operations (flow magnitude, timing, duration, and frequency) that create favorable sandbar habitat conditions for terns and plovers. Those operations should be incorporated into the Annual Operating Plan and scheduled when necessary to recover interior least tern and piping plover populations on the Missouri River.

The Corps should complete the Missouri River Least Tern and Piping Plover Management Plan within the coming year. We support the Corp's commitment to develop this plan and our Tern and Plover Subcommittee has offered their assistance in its development. We believe such a plan is critical to recovering tern and plover populations on the Missouri River and should be a high priority within the Corps. We have yet to be contacted for any involvement in plan development, but remain available to assist with the plan and expedite its completion.

The Corps should develop annual sandbar habitat/flow relationships within tern and plover nesting reaches. The importance of annually monitoring sandbar habitat/flow relationships cannot be understated. The availability of such data on an annual basis will be invaluable in the future if we are to recover tern and plover populations with changing biological and hydrological conditions. We support the Corp's work on identifying sandbar habitat and sandbar habitat trends through Geographic Information System (GIS) and Global Positioning System (GPS) techniques. We recognize that development of the GIS database is expensive and time-intensive and in the interim we recommend that aerial photos be taken at several flows within each nesting reach this fall or next spring that would allow habitat/flow relationships to be developed. If GIS data for the Gavins Point and Garrison Dam reaches is sufficiently developed, please provide to us and the U.S. Fish & Wildlife Service so that we can formulate the best annual operating recommendations possible.

In 1996 and 1997 we requested a written response from the Corps outlining which of our AOP

recommendations were implemented, which were not, and why. These requests were made so that we could obtain constructive feedback and adjust our recommendations if necessary for future AOPs. It is not always clear to us which of our recommendations are implemented on an annual basis. Formulation of our AOP recommendations would be greatly assisted by a letter from the Corps sometime from mid-July to mid-August which identifies which recommendations were implemented and evaluates how implementation affected operations. Provision of the letter at that time would allow us to use that information to formulate our recommendations in time for inclusion in next year's draft AOP.

I trust these recommendations will be helpful to your staff in developing the Annual Operating Plan for next year. If you have any questions concerning these recommendations, please contact Jim Riis, incoming MRNRC Chair at 605-773-6770 or our Coordinator, Mike LeValley, at the address or telephone number listed above.

Sincerely,

miliand & Levalley for

Gordon Farabee MRNRC Chair Missouri Department of Conservation

cc: MRNRC Delegates MRNRC Ex-Officio Members and Cooperating Agencies MRBA Executive Director

News Release

US Army Corps of Engineers Missouri River Region Public Affairs Office 12565 West Center Road Omaha, Nebraska 68144-3869

Contact: Paul Johnston (402) 697-2552

Phone: (402) 697-2552 Fax: (402) 697-2554 Date: Dec. 30, 1998

FOR IMMEDIATE RELEASE

OMAHA -- The U.S. Army Corps of Engineers announced today its Annual Operating Plan for the Missouri River main stem dams and reservoirs for next year.

"The plan continues to provide good service to all users, both river and lake," said Col. Michael Meuleners, Missouri River Region Deputy Division Engineer. "We are on schedule to evacuate the excess water from the reservoirs. We should start the 1999 runoff season with sufficient capacity to capture next year's runoff and help prevent flooding of farmland along the river and still have plenty of water in storage to meet the needs of water-users throughout the basin," he said.

Releases to support navigation in 1999 will be in accordance with the operational objectives described in the current Master Water Control Manual. No major changes were made to the draft plan as a result of comments received during the review period. Two public meetings were conducted Oct. 26-27 in Sioux City, Iowa, and Nebraska City, Neb.

"Releases this winter should be high enough to provide adequate service to downstream municipal intakes," said Colonel Meuleners. "Higher than normal flows will continue all winter as we evacuate water in preparation for next year's runoff."

A number of clarifications and word changes were made to the draft to improve readability. Army Corps officials will distribute the final report next month. Public meetings will be conducted in April 1999 to update the spring runoff outlook and review the operational plans for the remainder of the year. Specific dates and locations will be announced prior to the meetings.

--30---

Daily reservoir and river information is available from the Reservoir Control Center by calling the recorded voice/fax message at (402) 697-2678. It is also available on the water management section of the Northwestern Division homepage at www.nwd.usace.army.mil.

1

STUDY NO 1

TIME OF STUDY	06:59:	48				VALUES	5 IN 100	DO AF E	XCEPT AS	INDICAT	E
	INI-SUM			310CT		22NOV	30NOV	31DEC	31JAN	28FEB	
FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	2480 -582 443 2619 3966 -1348 16353 2240.2 9.2	350 -52 91 646 -335 16018 2238.7 10.5	340 -117 113 344 506 -162 15856 2238.0 8.5	395 -56 99 352 379 -27 15829 2237.9 6.2	195 -17 45 167 208 -41 15788 2237.7 7.0	91 -8 21 78 111 -33 15754 2237.5 8.0	104 -9 24 89 159 -70 15685 2237.2 10.0	330 -103 51 382 615 -233 15452 2236.1 10.0	315 -124 439 676 -237 15215 2235.0 11.0	360 -97 457 666 -209 15005 2234.0 12.0	
AVE POWER MW PEAK POW MW ENERGY GWH	658.1	145 212 107.9	117 211 84.3	211	211	211	13/	210	209	208	
GARRISON- NAT INFLOW DEPLETION CHAN STOR EVAPORATION RELEASE STOR CHANGE STOR CHANGE ELEV FTMSL DISCH KCFS POWFD	2895 -385 -27 500 6718 8522 -1804 19921 1843.1 24.0	19582 1842.1 24.0	480 -90 19 128 967 1184 -217 19364 1841.4 19.9	525 61 23 111 755 859 -104 19260 1841.1 14.0	205 -60 -8 50 414 416 -1 19259 1841.1 14.0	96 -28 -10 23 201 208 -7 19252 1841.1 15.0	253 286 -32	874 1230 -355	1476 -437	1079 1388 -310	
AVE POWER MW PEAK POW MW ENERGY GWH	1291.2	303 490 225.7	251 487 181.0	177 486 131.3	177 486 63.5	189 486 31.8	227 486 43.5	250 481 186.3	298 476	307 473	
OAHE NAT INFLOW DEPLETION CHAN STOR EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FIMSL DISCH KCFS	1612.4	29.1	28.5	70 -4 23 109 846 1262 -416 19074 1608.3 20.5	33 3 49 397 615 -218 18857 1607.6 20.7	15 1 23 196 283 -88 18769 1607.3 20.4	17 -12 264 468 -204 18565 1606.6 29.5	-8 55 1149 1427 -278	1453 1418 34	519	
AVE POWER MW PEAK POW MW ENERGY GWH	1543.4	382 725 284.2	371 717 267.4	267 710 198.3	267 706 96.0	263 705 44.1	378 701 72.6	297 696 220.7	294 697 218.9	210 706 141.1	
BIG BEND- EVAPORATION RELEASE STORAGE ELEV FTMSL DISCH KCFS POWER AVE POWER MW PFAK POW MW	- 9765 9765 1683 1420.0 19.6	20 1768 1768 1683 1420.0 28.8	25 1669 1669 1683 1420.0 28.0	22 1241 1241 1683 1420.0 20.2	10 605 1683 1420.0 20.3	5 279 279 1683 1420.0 20.1	5 463 463 1683 1420.0 29.2	11 1415 1415 1683 1420.0 23.0	1418 1418 1683 1420.0 23.1	908 908 1683 1420.0 16.3	
ENERGY GWH	570.6	100.1	95.7	73.6	36.7	16.9	27.9	84.4	82.4	52.7	
FORT RANDAL NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE STOR CHANGE STOR CHANGE ELEV FIMSL DISCH KCFS POWER	L 175 34 110 9796 10216 -420 3544 1355.1 24.8	45 15 25 1773 1768 5 3549 1355.2 28.7	45 7 31 1676 1820 -144 3405 1353.5 30.6 253	10 25 1225 1862 -637 2768 1345.1 30.3 240	5 10 599 903 -304 2464 1340.4 30.4 227	2 0 4 276 421 -145 2319 1337.9 30.4 220	3 460 482 -22 2297 1337.5 30.4 217	5 3 10 1407 2663 1343.5 16.9 125	20 3 1435 1008 427 3090 1349.5 16.4 128	40 3 945 911 34 3124 1350.0 16.4	
AVE POWER MW PEAK POW MW ENERGY GWH GAVINS POIN	976.2	239 350 178.2	253 343 182.0	307 178.5	287 81.8	276 36.9	274 41.6	302 93.2	328 95.3	330 88.5	
NAT INFLOW DEPLETION CHAN STOR EVAPORATION RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	810 28 16 35 10978 10984 -6 364	170 10 -8 7 1913 1906 7 371 1206.5 31.0	105 -5 -3 9 1917 1904 13 384 1207.0 32.0	115 2 1 8 1968 1968 384 1207.0 32.0	58 5 0 4 952 952 384 1207.0 32.0	27 2 0 2 444 444 1207.0 32.0	31 3 0 2 508 508 384 1207.0 32.0	90 10 25 4 1142 1142 384 1207.0 18.6	95 1 1 1103 1103 384 1207.0 17.9	120 1031 1057 -26 358 1206.0 19.0	
POWER AVE POWER MW PEAK POW MW ENERGY GWH	445.7	102 114 76.2	105 114 75.9	106 114 78.8	106 114 38.1	106 114 17.8	106 114 20.3	65 76 48.1	63 76 46.5	66 75 44.0	
GAVINS POIN NAT INFLOW DEPLETION REGULATED FLO KAF KCFS	475 101	120 31 DUX CITI	85 20	65 8 2025 32.9	30 5 978 32.9	14 2 456 32.9	16 2 521 32.9	40 10 1172 19.1	25 11 1117 18.2	80 12 1125 20.3	
TOTAL NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE SYSTEM POWER		1360 84 -20 349 61219	1170 -166 32 435 60183	1180 12 46 374 58998	525 -63 -8 167 58434	245 -29 -14 77 58161	280 -34 -32 88 57834	710 -134 17 189 57334	730 -199 -25 57120	1020 -126 -14 57127	
AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH		1307 2400 972.4 31.4	1231 2390 886.3 29.5	973 2367 723.8 23.3	975 2342 350.8 23.4	989 2329 166.1 23.7	1210 2324 232.3 29.0	987 2304 734.6 23.7	1043 2317 776.3 25.0	956 2321 642.6 23.0	
	INI-SUM	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB	

STUDY NO

VALUES IN 1000 AF EXCEPT AS INDICATED

RFFR

							VALUES	S IN 10	00 AF E)	CEPT AS	S INDICAT	FED
	31JUI 1	L98 INI-SUM	31AUG	1998 30SEP	в заост	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB	
1	FORT PECK NAT INFLOW	2976			474		109		396	378		
(DEPLETION	-524			-65 74		07	0	-85 38	-121	-78	
	EVAPORATION MOD INFLOW	299 3201	69 399	86 448	465				443	499	510	
1	RELEASE	4564	646	599	619	300	139	159	615	738	750	
	STOR CHANGE	-1362	-246	-151	-155	-81	-37 15684	-42 15642	-172 15469	-239 15231	-240	
	STORAGE ELEV FTMSL	16353	16107	15956	15801	2237.4	2237.2	2237.0	2236.2	2235.1	2234.0	
i	DISCH KCFS	9.2	10.5	10.1	10.1	10.1	10.0	10.0	10.0	12.0	13.5	
	POWER			120	139	138	137	137	137	164	182	
	AVE POWER MW PEAK POW MW		145 212	139 212	211	211	211	211	210	209	208	
	ENERGY GWH	756.1	107.9	99.9	103.1	49.8	23.1	26.3	101.9	121.8	122.3	
	GARRISON	-										
	NAT INFLOW	3474	738		630	246	115	131		318	420	
	DEPLETION	-356 -42	15 -13	-75 4	56	-59	-28	-31	-74	-100 -20	-60 -15	
	CHAN STOR EVAPORATION	337	78	97	84		8	0	43	-20	-15	
i	REG INFLOW	8014	1278	1157	1109				946	1136	1215	
	RELEASE STOR CHANGE	9828 -1813	1476 -197	1428 -271	1435 -326	644 -57	301 -27	333 -21	1230 -284	1537 -401	1444 -229	
	STORAGE	19921	19724	19453	19127	19070	19043	19022	18738	18337	18108	
1	ELEV FTMSL	1843.1	1842.5	1841.7	1840.7	1840.5	1840.5	1840.4	1839.5	1838.2	1837.5	
l l	DISCH KCFS POWER	24.0	24.0	24.0	23.3	21.6	21.6	21.0	20.0	25.0	26.0	
1	AVE POWER MW		304	303	293	271	271	263	250	309	319	
1	PEAK POW MW ENERGY GWH	1485.7	491 225.8	488 218.2	484 218.0	484 97.6	484 45.5	483 50.4	480 185.7	475 229.9	473 214.5	
		1405.7	223.0	210.2	210.0	57.0	40.0	50.4	100.7	22313		
,	OAHE NAT INFLOW	462	72	138	84	39	18	21	-6	12	84	
	DEPLETION	149	71	19	-4	3	1		13	17		
(CHAN STOR	-9			3	7	-	3		-20	- 4	
	EVAPORATION REG INFLOW	334 9798	78 1398	97 1450	83 1443					1512	1496	
	RELEASE	11400	1730	2140	1712	825	385	581	1580	1349	1098	
	STOR CHANGE	-1602	-332	-689	-269	-155	-76	-235	-407	163 18442	398	
	STORAGE ELEV FTMSL	20443	20111	19422	19153	18997	18922	18687	18279 1605.7	1606.2	18841 1607.5	
i	DISCH KCFS	19.1	28.1	36.0	27.8	27.7	27.8	36.6	25.7	21.9	19.8	
	POWER		370	468	361	358	358	469	329	280	254	
	AVE POWER MW PEAK POW MW		727	716	711	709	707	703	696	699	706	
l	ENERGY GWH	1783.6	275.4	337.2	268.4	128.8	60.1	90.1	244.5	208.5	170.6	
	BIG BEND	-										
(EVAPORATION		15	19	16	3	2	2	9	1740	1000	
	REG INFLOW RELEASE	11335 11335	1716 1716	2121 2121	1696 1696	821 821	384 384	579 579	1572 1572	1349 1349	1098 1098	
5	STORAGE	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	
		1420.0			1420.0 27.6	1420.0 27.6	1420.0 27.6	1420.0 36.5	1420.0 25.6	1420.0	1420.0 19.8	
ı	DISCH KCFS POWER	19.6	27.9	35.6		27.0	27.0					
	AVE POWER MW		131	169	135	138	138	181	126	107 538	95 529	
1	PEAK POW MW ENERGY GWH	663.2	509 97.2	517 121.5	538 100.3	538 49.6	538 23.2	538 34.8	538 93.6	79.3	63.7	
	-FORT RANDALL NAT INFLOW	210	54	54	12	6	3	3	6	24	48	
[DEPLETION	34 75		7	1	-	Ō	1	3	3		
L	EVAPORATION	75	15 19	24	18	3 823		2 579	8 1567	1370	1143	
1	REG INFLOW RELEASE	11435 11855	1736 1731	2144 2288	1689 2328	1127	526	601	1201	1113	939	
Ś	STOR CHANGE	-420	5	-144	-640	-305	-141	-22	366	257	204	
	STORAGE	3544	3549	3405	2765	2460	2319	2297	2663 1343.5	2920	3124	
1	ELEV FTMSL DISCH KCFS	24.8	28.1	38.5	37.9	37.9	37.9	37.9	19.5	18.1	16.9	
	POWER				296	275	264	259	144	140	134	
	AVE POWER MW PEAK POW MW		235 350	314 344	296 307	275	264 276	259	302	318	134 330	
	ENERGY GWH	1116.4		226.4	220.6	99.2	44.3	49.8	107.4	104.0	90.3	
	-GAVINS POINT	r										
	NAT INFLOW	972	204	126	138	69	32	37	108	114	144	
[DEPLETION	28	10	-5	2	5	2	3	10 34	1	2	
(CHAN STOR	14	-6	-20	6	1	1		34	3	2	

CHAN STOR EVAPORATION REG INFLOW RELEASE STOR CHANGE STOR AGE ELEV FTMSL DISCH KCFS POWER AVE POWER MW ENERGY GWH 14 -624 512790 191312796 1906-6 7364 3711206.2 1206.529.6 31.0-20 7 2393 2380 13 384 1207.0 40.0 2460 2460 555 555 1331 1331 1190 1190 635 635 1111 -26 358 1206.0 20.0 1229 384 384 1207.0 1207.0 40.0 40.0 1207.0 40.0 384 384 1207.0 1207.0 40.0 21.6 1207.0 20.0 114 81.7 114 41.0 114 21.9 76 54.0 76 51.1 75 45.8 114 84.7 114 19.1 114 76.2 475.3 --GAVINS POINT - SIOUX CITY-NAT INFLOW 570 144 DEPLETION 101 31 REGULATED FLOW AT SIOUX CITY KAF 13265 2019 KCFS 32.8 . 2 2 11 12 20 8 5 41.4 41.1 41.1 41.1 41.1 22.3 20.3 21.5 --TOTAL--NAT INFLOW DEPLETION CHAN STOR EVAPORATION STORAGE -47 7 59 58315 -22 1 27 58034 -25 2 31 57714 -123 38 142 57217 94 -19 264 61544 -2 4 282 58913 -189 -37 -95 -17 -568 -37 1134 62308 -160 -15 328 STORAGE SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH DAILY GWH 2329 215.3 30.8 2323 273.3 34.2 2302 787.1 25.4 2316 794.7 25.6 2321 707.1 25.3 2403 6280.3 957.1 30.9 2366 995.1 32.1 2341 465.9 31.1 1084.8 36.2 INI-SUM 31AUG 30SEP 310CT 15NOV 22NOV 30NOV 31DEC 31JAN 28FEB

STUDY NO 3

1999

TIME OF STUDY 06:56:	32				VALUES	TN 100	0 AF F	KCEPT AS		
31JUL98 INI-SUM	31AUG	1998 305EP	310СТ	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB	(TED
FORT PECK NAT INFLOW 1984 DEPLETION -486 EVAPORATION 551	280 -53 114	272 -90 141	316 -23 123	156 -33 55	73 -15 26	83 -17 29	264 -111 63	252 -106	288 - 38	
MOD INFLOW 1919 RELEASE 3598	219 646	221 355	216 321	133 164	62 83	71 127	312 615	358 676	326 611	
STOR CHANGE -1679 STORAGE 16353	-426 15927	-134 15792	-105 15688	-30 15657	-21 15636	-56 15580	-303 15277	-318 14959	-285 14674	
ELEV FTMSL 2240.2 DISCH KCFS 9.2	2238.3 10.5	2237.7 6.0	2237.2 5.2	2237.1 5.5	2237.0 6.0	2236.7 8.0	2235.3 10.0	2233.8 11.0	2232.5 11.0	
POWER AVE POWER MW PEAK POW MW ENERGY GWH 595.9	145 211 107.8	82 211 59.2	72 211 53.5	76 211 27.2	82 211 13.9	110 210 21.1	137 209 101.7	150 208 111.3	149 207 100.1	
GARRISON NAT INFLOW 2316	492	384	420	164	77	87	200	212	280	
DEPLETION -479 CHAN STOR -18	12 -13	-113 44	27 7	-78 -3	-36 -5	-41 -20	-99 -20	-88 -10	-63 0	
EVAPORATION 622 REG INFLOW 5753	129 984	160 736	138 583	62 340	29 162	33 203	71 824	966	954	
RELEASE 7985 STOR CHANGE -2231	1476 -492	1071 -335	770 -187	373 -32	208 -46	286 -83	1230 -406	1322 -356	1250 -296	
STORAGE 19921 ELEV FTMSL 1843.1	19429 1841.6	19095	18908	18876 1839.9	18830	18747	18341	17985 1837.1	17690	
DISCH KCFS 24.0 POWER	24.0	18.0	12.5	12.5	15.0	18.0	20.0	21.5	22.5	
AVE POWER MW PEAK POW MW	303 488	227 484	158 482	157 482	188 481	225 480	248 475	264 471	275 467	
ENERGY GWH 1203.2	225.7	163.3	117.2	56.6	31.6	43.1	184.5	196.7	184.5	
OAHE NAT INFLOW 308	48	92	56	26	12	14	- 4	8	56	
DEPLETION 149 CHAN STOR 4	71	19 23	-4 21	3	1 -10	1 -12	13 -8	17 -6	28 -4	
EVAPORATION 611 REG INFLOW 7536	130 1323	160 1007	135 716	60 336	28 182	31 255	68 1137	1307	1274	
RELEASE 9579 STOR CHANGE -2043	1844 -522	1740 -732	1301 -585	633 -296	292 -110	282 -28	1313 -176	1181 126	993 280	
STORAGE 20443 ELEV FTMSL 1612.4	19921	19189	18604	18308 1605.8	18198	18170 1605.3	17994	18120	18400	
DISCH KCFS 19.1 POWER	30.0	29.2	21.2	21.3	21.0	17.8	21.4	19.2	17.9	
AVE POWER MW PEAK POW MW	394 724	380 712	273 702	272 697	268 695	227 694	271 691	244 694	228 699	
ENERGY GWH 1493.5	293.0	273.8	203.0	98.0	45.0	43.5	202.0	181.7	153.4	
BIG BEND EVAPORATION 121	24	31	27	12	6	7	14			
REG INFLOW 9458 RELEASE 9458	1820 1820	1709 1709	1274 1274	621 621	286 286	276 276	1299 1299	1181 1181	993 993	
STORAGE 1683 ELEV FTMSL 1420.0	1683	1683	1683	1683 1420.0	1683	1683 1420.0	1683	1683	1683 1420.0	
DISCH KCFS 19.6 POWER	29.6	28.7	20.7	20.9	20.6	17.4	21.1	19.2	17.9	
AVE POWER MW PEAK POW MW	139 509	136 517	102 538	105 538	103 538	87 538	104 538	93 538	86 529	
ENERGY GWH 553.1	103.1	98.0	75.6	37.6	17.4	16.8	77.5	69.5	57.6	
FORT RANDALL NAT INFLOW 140	36	36	8	4	2	2	4	16	32	
DEPLETION 34 EVAPORATION 137	15 32	7 39	1 31	1 12	0 5	1 5	3 13	3	3	
REG INFLOW 9427 RELEASE 9847	1809 1804	1698 1842	1250 1887	612 916	282 427	272 294	1287 921	1194 922	1022 833	
STOR CHANGE -420 STORAGE 3544	5 3549	-144 3405	-637 2768	-304 2464	-145 2319	-22 2297	366 2663	272 2935	189 3124	
ELEV FTMSL 1355.1 DISCH KCFS 24.8	1355.2	1353.5 31.0	1345.1 30.7	1340.4 30.8	1337.9	1337.5 18.5	1343.5 15.0	1347.5 15.0	1350.0 15.0	
POWER AVE POWER MW	244	256	243	230	223	133	111	116	120	
PEAK POW MW ENERGY GWH 942.5	350 181.8	343 184.3	307 180.9	287 82.9	276 37.4	274 25.6	302 82.7	319 86.5	330 80.4	
GAVINS POINT				• ~					~~	
NAT INFLOW 648 DEPLETION 28	136 10	84 -5	92 2	46	21 2	25 3	72 10	76 1	96	
CHAN STOR 18 EVAPORATION 44	-9 9	-3 11	1 10	05	0 2	23 2	75	0		
REG INFLOW 10442 RELEASE 10448	1913 1906	1917 1904	1968 1968	952 952	444 444	336 336	984 984	997 997	929 955	
STOR CHANGE -6 STORAGE 364	7 371	13 384	384	384	384	384	384	384	-26 358	
ELEV FTMSL 1206.2 DISCH KCFS 29.6	1206.5 31.0	1207.0 32.0	1207.0 32.0	1207.0 32.0	1207.0 32.0	1207.0 21.2	1207.0 16.0	1207.0 16.2	1206.0 17.2	
POWER AVE POWER MW	102	105	106	106	106	73	56	57	59	
PEAK POW MW ENERGY GWH 424.6	114 76.2	114 75.9	114 78.8	114 38.1	114 17.8	114 14.1	76 41.6	76 42.2	75 39.9	
	UX CITY-		52	24	11	13	32	20	64	
NAT INFLOW 380 DEPLETION 101	96 31	68 20	52 8	24 5	11 2	2	10	11	12	
KAF 10727	DUX CITY 1971	1952	2012	972 32 7	453 32.7	347 21.9	1006 16.4	1006 16.4	1007 18.1	
	32.1	32.8	32.7	32.7	36.1	21.9	10.4	10.4	10.1	
TOTAL NAT INFLOW 5776	1088	936 -162	944 11	420 -97	196 -45	224 -52	568 -174	584 -162	816 -58	
DEPLETION -653 CHAN STOR 4 EVADODATION 2006	86 -21 437	-162 64 542	29 464	-3 206	-45 -15 95	-9 -9 108	-21 234	-16	-4	
EVAPORATION 2086 STORAGE 62308	437 60880	542 59548	464 58035	57371	57049	56862	56342	56066	55928	
SYSTEM POWER AVE POWER MW	1327	1187	953	946	970	855	927 2292	925 2306	917 2307	
PEAK POW MW ENERGY GWH 5212.7	2396 987.6	2382 854.4	2354	2328 340.4	2314	2311 164.3	690.0	688.0	616.0	
DAILY GWH	31.9	28.5	22.9	22.7	23.3	20.5	22.3	22.2	22.0	
INI-SUM	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	28FEB	

.

DATE OF STU	08/20/9	98				PRELIN	INARY	1998-19	99 AOP L	JPPER DI	ECILE RU	UNOFF	99001	9901	9901 P/	AGE	1
TIME OF STUE		44				VALUES	5 IN 100	00 AF E	XCEPT AS	INDIC	ATED				STUDY	NO	4
28f	EB99 INI-SUM	15MAR	1999 22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	20 30NOV	00 31DEC	31JAN	29FEB
FORT PECK NAT INFLOW DEPLETION	9600 -135	319 -22	149 -10	192 -13	797 47	1604 320	2491 394	1219 245	456 -145	379 -198	531 -111	210 -47	98 -22	112 -25	-179	297 -206	400 -163
EVAPORATION MOD INFLOW RELEASE	323 9412 9415	341 298	159 139	205 179	750 655	1284 922	2097 893	22 952 922	70 531 922	87 490 821	75 567 848	16 241 360	7 113 168	8 129 159	487	503 738	563 777
STOR CHANGE STORAGE ELEV FTMSL	-3 14991	44 15034 2234.2	20 15055 2234.3	26 15081 2234.4	95 15176 2234.8	362 15538 2236.5	1204 16742 2241.9	29 16772 2242.0	-391 16381 2240.3	-331 16050 2238.8	-281 15769 2237.6	-119 15650 2237.0	-56 15595 2236.8	-30 15565 2236.6	15437	-235 15202 2235.0	-214 14988 2234.0
DISCH KCFS POWER	13.5	10.0	10.0	10.0	11.0	15.0	15.0	15.0	15.0	13.8	13.8	12.1	12.1	10.0	10.0	12.0	13.5
AVE POWER N PEAK POW MW ENERGY GWH		136 208 48.9	136 209 22.8	136 209 29.4	150 209 107.8	200 210 148.7	203 214 146.0	205 214 152.7	205 213 152.2	189 212 135.8	188 211 139.7	166 211 59.8	166 210 27.9	137 210 26.3		164 209 121.8	182 208 126.6
GARRISON NAT INFLOW DEPLETION	14199 723	515 -9	240 -4	309 -6	1376 -67	1934 87	3530 821	2647 400	841 44	574 -113	652 6	260 -79	121 -37	139 -42	-109	348 - 100	434 -70
CHAN STOR EVAPORATION REG INFLOW	0 374 22516	35 857	384	493	-10 2088	-39 2730	3602	26 3144	82 1638	12 101 1419	86 1408	16 18 697	8 318	21 10 350	44	-20 1166	-15 1266
RELEASE STOR CHANGE STORAGE	22519 -3 18108	774 83 18191	361 23 18214	464 29 18243	1666 422 18664	2152 578 19242	2202 1400 20642	2275 869 21511	2275 -637 20873	2202 -783 20090	1798 -390 19700	870 -173 19527	406 -88 19439	397 - 47 19392	1230 -272 19120	1722 -555 18565	1726 -460 18105
ELEV FTMSL DISCH KCFS POWER	1837.5 26.0	1837.8 26.0		1837.9 26.0	1839.3 28.0		1845.2 37.0	1847.7 37.0	1845.9 37.0	1843.6 37.0		1841.9 29.2	1841.7 29.2	1841.5 25.0	1840.7	1839.0 28.0	1837.5 30.0
AVE POWER M PEAK POW MM ENERGY GWH		319 474 114.7	319 474 53.6	319 474 69.0	345 479 248.3	428 486 318.7	456 502 328.6	465 502 345.9	466 502 346.6	460 495 331.4	370 491 275.0	368 489 132.5	367 488 61.7	314 488 60.4	484	348 478 258.6	368 473 256.3
OAHE NAT INFLOW DEPLETION	3850 513	559 21	261 10	335 12	474 43	347 58	881 107	297 121	123 77	163 20	102 -6	109 2	51 1	58	10	10 14	59 23
CHAN STOR EVAPORATION REG INFLOW	25483	1311	612	787	-8 2090	-26 2415	-7 2968	25 2426	78 2243	96 2248	30 82 1854	0 17 960	8 448	17 9 462		-33 1685	-8 1754
RELEASE STOR CHANGE STORAGE	25486 -3 18841	590 721 19562	343 269 19831	468 319 20150	1668 422 20571	2268 147 20718	2735 233 20951	2782 -356 20595	2921 -678 19917	2728 -480 19438	2359 -505 18933	1139 -178 18754	530 -82 18672	761 -299 18373		1369 316 18175	1090 664 18838
ELEV FTMSL DISCH KCFS POWER	1607.5 19.8	1609.8 19.8	1610.6 24.7	1611.6 26.2	1612.8 28.0	1613.2 36.9	1613.9 46.0	1612.9 45.2	1610.9 47.5	1609.4 45.8	1607.8 38.4	1607.2 38.3	1607.0 38.2	1606.0 47.9		1605.3 22.3	1607.5 18.9
AVE POWER M PEAK POW MW ENERGY GWH		257 718 92.6	322 722 54.2	343 727 74.2	369 734 265.8	487 736 362.0	607 740 436.7	597 734 443.9	619 724 460.6	595 716 428.1	495 708 368.0	491 705 176.6	489 703 82.1	605 698 116.2	358 689 266.6	283 695 210.3	243 706 169.0
BIG BEND EVAPORATION REG INFLOW		590	343	468	1668	2268	2735	5 2777	15 2906	19 2710	16 2343	3 1135	2 529	2 759		1369	1090
RELEASE STORAGE	25416 1683	590 1683	343 1683	468 1683	1668 1683	2268 1683	2735 1683	2777 1683	2906 1683	2710 1683	2343 1683	1135 1683	529 1683	759 1683	1727 1683	1369 1683	1090 1683
ELEV FTMSL DISCH KCFS POWER	19.8	19.8	24.7	26.2	1420.0 28.0	1420.0 36.9	46.0	1420.0 45.2	1420.0 47.3	1420.0 45.5	38.1	1420.0 38.2	1420.0 38.1	1420.0 47.8	28.1	1420.0 22.3	1420.0 18.9
AVE POWER M PEAK POW MW ENERGY GWH	1459.7	94 517 33.9	116 509 19.4	123 509 26.5	131 509 94.5	173 509 128.4	211 496 152.3	210 505 156.4	221 509 164.4	215 518 155.1	185 538 137.6	189 538 68.0	189 538 31.7	236 538 45.3	538	108 538 80.5	91 529 63.3
FORT RANDA NAT INFLOW DEPLETION	LL 1501 80	190 1	89 1	114 1	298 4	159 9	224 12	111 18	72 15	92 7	60 1	5 1	2 0	3 1	23 3	10 3	49 3
EVAPORATION REG INFLOW RELEASE		779 488	431 297	581 581	1962 1962	2418 2418	2947 2792	6 2864 2968	19 2944 2995	24 2771 2915	19 2383 2986	3 1136 1465	1 529 683	2 759 781	8 1739 1373	1376 1119	1136 932
STOR CHANGE STORAGE	0 3124	291 3415	134 3549	3549	3549	3549	155 3704	-104 3600	-51 3549	-144 3405	-603 2802	-329 2473	-154 2319	-22 2297		257 2920	204 3124
ELEV FTMSL DISCH KCFS POWER	16.9	16.4	21.4	32.5	33.0	39.3	46.9	48.3	48.7	49.0	48.6	49.2	49.2	49.2	22.3	18.2	16.2
AVE POWER M PEAK POW MW ENERGY GWH		134 344 48.2	178 350 29.9	271 350 58.5	274 350 197.4	321 350 238.7	352 358 253.6	355 353 264.1	351 350 261.4	347 343 249.6	327 309 243.6	298 286 107.3	280 275 47.1	274 273 52.6		141 318 104.6	129 330 89.7
GAVINS POI NAT INFLOW DEPLETION	NT 2252 114	107 0	50 0	64 0	246 5	319 19	281 24	211 39	170 10	135 -5	157 2	60 5	28 2	32 3	95 10	106 1	191
CHAN STOR EVAPORATION REG INFLOW	0	1 596	-10 338	-21 624	-1 2202	-12 2705	-15 3035	-3 2 3136	-1 5 3149	-1 7 3048	1 6 3136	-1 1 1517	0 1 708	0 1 809	50 3 1506	8 1232	4 1127
RELEASE STOR CHANGE	28868	596	338	624	2202	2705	3035	3136	3136 13	3035 13	3136	1517	708	809	1506	1232 384	1153 -26
STORAGE ELEV FTMSL DISCH KCFS	358 1206.0 20.0	358 1206.0 20.0	358 1206.0 24.3	358 1206.0 35.0	358 1206.0 37.0	358 1206.0 44.0	358 1206.0 51.0	358 1206.0 51.0	371 1206.5 51.0	384 1207.0 51.0	384 1207.0 51.0	384 1207.0 51.0	384 1207.0 51.0	384 1207.0 51.0	1207.0		358 1206.0 20.0
POWER AVE POWER M PEAK POW MW ENERGY GWH		68 113 24.5	82 113 13.8	110 113 23.8	112 112 81.0	111 111 82.9	110 110 79.6	110 110 82.2	111 112 82.7	113 113 81.0	113 113 84.1	113 113 40.7	113 113 19.0	113 113 21.7	77 76 57.3	69 76 51.2	68 75 47.5
GAVINS POI NAT INFLOW	3100	195	91	117	1006	553	318	246 35	184 32	127 20	66 8	26 5	12 2	14 3		12 12	105 12
DEPLETION REGULATED FL KAF	233 OW AT SIC 31735	785	426	3 737	19 3189	33 3225	29 3324	3347	3288	3142	3194	1538	718	820	1525	1232	1246
KCFS TOTAL		26.4	30.7	41.3	53.6	52.5	55.9	54.4	53.5	52.8	51.9	51.7	51.7	51.7	24.8	20.0	21.7
NAT INFLOW DEPLETION CHAN STOR	34502 1528 -16	1885 -3 36	879 -2 -10	1131 -2 -21	4197 51 -18	4916 526 -78	7725 1387 -22	4731 858 -3	1846 33 -1	1470 -269 11	1568 -100 31	670 -113 15	312 -53 0	357 -60 37	794 -254 70	783 -276 -45	1238 -195 -19
EVAPORATION STORAGE	1231 57104	58243	58689	59063	60002	61088	64081	86 64519	269 62774	332 61050	284 59271	59 58471	27 58092	31 57694	142	56928	57097
SYSTEM POWE AVE POWER M PEAK POW MM	W	1008 2374	1153 2377	1302 2382	1382 2394	1720 2403	1940 2420	1942 2419	1973 2410	1918 2397	1677 2370	1625 2341	1604 2327 269 5	1680 2320	2299	1111 2314 826.9	1081 2321 752.4
ENERGY GWH DAILY GWH		362.9 24.2	193.7 27.7	281.3 31.3	33.2	41.3	46.6	46.6	1467.9 47.4	46.0	40.3	584.9 39.0	269.5 38.5	322.5 40.3	27.0	26.7	25.9
	INI-SUM	1 SMAR	22MAR	JIMAR	JUAPR	3 TWA L	JUJUN	31JUL	31AUG	JUSEP	21001	VUNCI	22NOV	30NOV	31DEC	31JAN	29FËB

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV

22NOV

30NOV

31DEC 31JAN 29FEB

TIME	OF	STUDY	06:42:5
LIME	ur	SIVUI	UD:42:5

DATE OF STUDY 08/20/98 PRELIMINARY 1998-1999 ACP UPPER QUARTILE RUNOFF 9001 901 901 PAGE 1 TIME OF STUDY 06:42:52 STUDY 10:42:52 STUDY 0.4 STUDY 0.5 STUDY 0.5 28FEB99 1999 STUDY 0.5 STUDY 0.5 2000 2000 FORT PECK NAT INFLOW 8901 296 138 178 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 200 21 2000 FORT PECK NAT INFLOW 8001 296 138 178 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 20 68 67 33 16 18 VALUES IN 1000 AF 2309 1130 423 351 492 195 91 104 321 276 371 2000 2000 2000 NAT INFLOW 8051 318 148 191 692 1167 1915 873 433 422 534 221 534 211 99 113 465 484 536 RELIMINARY 1998-199 101 20 106 20 20 20 30 1061 8136 136 136 136 136 136 136 136 136 136																		
VALUES IN 1000 AF EXCEPT AS INDICATED 2000 2BFEB99 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB FORT PECK NAT INFLOW 8901 296 138 178 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -168 -208 -165 WDD INFLOW 8659 318 148 191 692 1167 1915 873 493 422 534 211 99 134 465 464 536 RELEASE 8646 298 139 179 595 769 833 861 861 701 724 292 </td <td>DATE OF STUD</td> <td>Y 08/20/</td> <td>98</td> <td></td> <td></td> <td></td> <td>PRELI</td> <td>MINARY</td> <td>1998-19</td> <td>99 AOP 1</td> <td>JPPER Q</td> <td>UARTILE</td> <td>RUNOFF</td> <td>99001</td> <td>9901</td> <td>9901 P/</td> <td>AGE</td> <td>1</td>	DATE OF STUD	Y 08/20/	98				PRELI	MINARY	1998-19	99 AOP 1	JPPER Q	UARTILE	RUNOFF	99001	9901	9901 P/	AGE	1
28FEB99 1999 1999 2000 2000 3000V 31DE 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DE 31JAN 29FEB FORT PECK NAT INFLOW 8901 296 138 178 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -182 -208 -165 EVAPORATION 357 -22 -10 -13 47 320 91 423 534 211 99 113 465 484 536 MOD INFLOW 8659 318 148 191 652 16610 1622 1574 15764 15764 15666 15620 15470 15216 15004 2216.2	TIME OF STUD	Y 06:42:	52													STUDY	NO	5
INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV 22NOV 30NOV 31DEC 31JAN 29FEB FORT PECK NAT INFLOW 8901 296 138 178 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -182 -208 -165 EVAPORATION 357							VALUES	5 IN 10	00 AF E.	XCEPT A	S INDIC	ATED						
FORT PECK NAT INFLOW 8901 296 138 178 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -182 -208 -165 EVAPORATION 357 MOD INFLOW 8659 318 148 191 692 1167 1915 873 493 422 534 211 99 113 465 484 536 STOR CHANGE 13 20 9 12 97 398 1082 12 -368 -279 -191 -81 -38 -46 -150 -254 -212 STORAGE 14991 15011 15021 15033 15130 15528 16610 16622 16254 15975 15784 15704 15666 15620 15470 15216 15004 ELEV FTMSL 2234.0 2234.1 2234.2 2234.6 2236.5 2241.3 2241.4 2239.8 2238.6 2237.6 2237.3 2237.1 2236.9 2236.0 2234.0 DISCH KCFS 13.5 10.0 10.0 10.0 10.0 12.5 14.0 14.0 14.0 11.8 11.8 9.8 9.8 10.0 10.0 12.0 13.0 POWER AVE POWER MW 136 136 136 136 136 170 191 192 192 162 162 162 135 137 137 164 176 PAEK POW MW 208 208 208 209 210 214 221 211 2211 2211 2211 211 210 210 209 208 ENERGY GWH 1430.1 48.9 22.8 29.4 97.9 126.8 137.3 143.1 142.7 116.9 120.4 48.5 22.6 26.3 101.9 121.8 122.6 GARRISON NAT INFLOW 12901 482 225 289 1250 1723 3207 2405 764 522 593 236 110 126 260 316 394 PCEK POWER 409 NAT INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 2121 121 224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 2121 124 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 2121 124 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 2121 124 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 1211 212 122 10 520 -526 -465	28FI	EB99		1999	9										20	00		
NAT INFLOW 8901 296 138 176 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -182 -208 -165 EVAPORATION 357 - - 148 191 692 1167 1915 873 493 422 534 211 99 113 465 484 536 RELEASE 8646 298 139 179 595 769 833 861 861 701 724 292 136 158 615 738 748 STOR CHANGE 13 20 9 12 97 398 1082 12 -366 -279 -191 -81 -38 -46 -150 -254 -226 125 1261 1500 1520 1578 1578 1570 1520 1520		INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	31001	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB
NAT INFLOW 8901 296 138 176 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -182 -208 -165 EVAPORATION 357 - - 148 191 692 1167 1915 873 493 422 534 211 99 113 465 484 536 RELEASE 8646 298 139 179 595 769 833 861 861 701 724 292 136 158 615 738 748 STOR CHANGE 13 20 9 12 97 398 1082 12 -366 -279 -191 -81 -38 -46 -150 -254 -226 125 1261 1500 1520 1578 1578 1570 1520 1520																		
NAT INFLOW 8901 296 138 176 739 1487 2309 1130 423 351 492 195 91 104 321 276 371 DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -182 -208 -165 EVAPORATION 357 - - 148 191 692 1167 1915 873 493 422 534 211 99 113 465 484 536 RELEASE 8646 298 139 179 595 769 833 861 861 701 724 292 136 158 615 738 748 STOR CHANGE 13 20 9 12 97 398 1082 12 -366 -279 -191 -81 -38 -46 -150 -254 -226 125 1261 1500 1520 1578 1578 1570 1520 1520	FORT PECK																	
DEPLETION -115 -22 -10 -13 47 320 394 235 -139 -157 -116 -50 -23 -26 -182 -208 -165 EVAPORATION 357 357 22 69 86 74 33 16 18 38 MOD INFLOW 8659 318 148 191 692 1167 1915 873 493 422 534 211 9 113 465 484 536 RELEASE 8646 298 139 179 595 769 833 861 861 701 724 292 136 159 615 738 748 STOR CHANGE 14991 15011 15021 15033 15130 1528 16610 16622 16254 15975 15784 15704 15666 15620 15470 15216 15004 ELV FTMSL 2234.0 2234.1 2234.1 2234.2 2234.0 12.0 13.0 14.0 14.0 11.8 11.8 9.8 10.			296	138	178	739	1487	2309	1130	423	351	492	195	91	104	321	276	371
EVAPORATION 357 22 69 86 74 33 16 18 38 MOD INFLOW 8659 318 148 191 692 1167 1915 873 493 422 534 211 99 113 465 484 536 MOD INFLOW 8659 318 148 191 595 769 833 661 661 701 724 292 136 159 615 738 748 STOR CHANGE 13 20 9 12 97 398 1082 12 -368 -279 -191 -81 -38 -46 -150 -254 -212 STORAGE 14991 1501 15021 15031 15131 15504 15620 15276 15784 15704 1237.1 122																		
MOD INFLOW 8659 318 148 191 692 1167 1915 873 493 422 534 211 99 113 465 484 536 RELEASE 8646 298 139 179 595 769 833 861 861 701 724 292 136 159 615 788 789 STOR CHANGE 13 20 9 12 97 398 1082 12 -368 -279 -191 -81 -38 -46 -150 -254 -212 STOR CHANGE 14991 15011 15021 15030 15528 16610 16622 16254 15975 15784 15704 15666 15620 15470 15216 15004 ELEV FMSL 233.5 10.0 10.0 10.0 12.5 14.0 14.0 11.8 11.8 9.8 9.8 10.0 10.0 12.0 13.0 <t< td=""><td></td><td></td><td></td><td>-10</td><td>-10</td><td></td><td>520</td><td>004</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-200</td><td>-100</td></t<>				-10	-10		520	004									-200	-100
RELEASE 8646 296 139 179 595 769 833 861 861 701 724 292 136 159 615 738 748 STOR CHANGE 13 20 9 12 97 398 1082 12 -368 -279 -191 -81 -38 -46 -150 -254 -212 STORAGE 14991 15011 15021 15033 15130 15528 16610 16622 16254 15975 15784 15704 15666 15620 15470 15216 15004 ELEV FTMSL 2234.0 2234.1 2234.2 2234.6 2236.5 2231.3 2237.6 2237.3 2237.1 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.0 2236.2 2236.0 2236.0 2236.2 2236.0 2236.1 2236.1 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 <			210	140	101	602	1167	1016									494	E 76
STOR CHANGE 13 20 9 12 97 398 1082 12 -368 -279 -191 -81 -38 -46 -150 -254 -212 STORAGE 14991 15011 15021 15033 15130 15528 16610 16622 16224 15975 15784 15704 15660 15620 15575 2237.3 2237.1 2236.9 2236.2 2235.0 2237.1 2236.9 2236.2 2235.0 2237.1 2236.9 2236.2 2235.0 2237.1 2236.9 2236.2 2235.0 2237.1 2236.9 2236.2 2235.0 2237.1 2236.9 2236.2 2235.0 2237.1 2236.9 2236.2 2235.0 2234.0 13.0 10.0 12.0 13.0 POWER 136 136 136 136 170 191 192 192 162 161 1315 135 137 137 164 176 POWER 1430.1 48.9 22.8 29.4 97.9 126.8 137.3 143.1 142																		
STÖRAGE 14991 15011 15021 15033 15130 15528 16610 16622 16224 15975 15784 15704 15666 15620 15470 15216 15004 ELEV FTMSL 2234.0 2234.1 2234.2 2234.2 2234.6 2236.5 2237.6 2237.6 2237.3 2237.1 2236.9 2236.2 2235.0 2236.2 2235.0 2236.0 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.0 2236.2 2236.0 2207.0 208 <td></td>																		
ELEV FTMSL 2234.0 2234.1 2234.2 2234.2 2234.2 2234.6 2236.2 2236.0 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.2 2236.0 2236.1 13.0 12.0 13.0 12.0 13.0 <t< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				-														
DISCH KCFS 13.5 10.0 10.0 10.0 12.5 14.0 14.0 11.8 11.8 9.8 9.8 10.0 10.0 12.0 13.0 POWER MW 136 136 136 136 170 191 192 192 162 162 135 135 137 137 164 176 PEAK POW MW 208 208 208 208 209 210 214 214 213 212 211 211 210 210 209 208 ENRGY GWH 1430.1 48.9 22.8 29.4 97.9 126.8 137.3 143.1 142.7 116.9 120.4 48.5 22.6 26.3 101.9 121.8 122.6 GARRISON NAT INFLOW 12901 482 225 289 1250 1723 3207 2405 764 522 593 236 110 126 260 316 394 DEPLETION 726 -9 -4 -6 -67 87 821																		
POWER AVE POWER MW 136 137 141 142 213 212 211 211 210 210 209 208 ENERGY GWH 1430.1 48.9 22.8 29.4 97.9 126.8 137.3 143.1 142.7 116.9 120.4 48.5 22.6 26.3 101.9 121.8 122.6 GARRISON																		
AVE Power 136 136 136 136 136 191 192 192 162 162 135 135 137 137 137 164 176 PEAK POW MW 208 208 208 209 210 214 214 213 212 211 211 211 211 210 210 209 208 209 208 209 214 214 213 212 211 211 211 210 210 210 209 208 209 208 209 126.8 137.3 143.1 142.7 116.9 120.4 48.5 22.6 26.3 101.9 121.8 122.6 GARRISON NAT INFLOW 12901 482 22.5 289 1250 1723 3207 2405 764 522 593 236 110 126 260 316 394 DEPLETION 726 -9 -4 -		13.5	10.0	10.0	10.0	10.0	12.5	14.0	14.0	14.0	11.8	11.8	9.8	9.8	10.0	10.0	12.0	13.0
PEAK POW 208 208 208 208 209 210 214 214 213 212 211 211 210 210 209 208 ENERGY GWH 1430.1 48.9 22.8 29.4 97.9 126.8 137.3 143.1 142.7 116.9 120.4 48.5 22.6 26.3 101.9 121.8 122.6 GARRISON													_					
ENERGY GWH 1430.1 48.9 22.8 29.4 97.9 126.8 137.3 143.1 142.7 116.9 120.4 48.5 22.6 26.3 101.9 121.8 122.6 GARRISON NAT INFLOW 12901 482 225 289 1250 1723 3207 2405 764 522 593 236 110 126 260 316 394 DEPLETION 726 -9 -4 -6 -67 87 821 400 44 -112 8 -78 -36 -42 -109 -100 -71 CHAN STOR 5 35 -25 -15 21 19 -2 0 -20 -10 EVAPORATION 409 -2 -57 9 98 68 18 120 44 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE<		4																
GARRISON NAT INFLOW 12901 482 225 289 1250 1723 3207 2405 764 522 593 236 110 126 260 316 394 DEPLETION 726 -9 -4 -6 -67 87 821 400 44 -112 8 -78 -36 -42 -109 -100 -71 CHAN STOR 5 35 -25 -15 21 19 -2 0 -20 -10 EVAPORATION 409 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 1455 1503 700 327 365 1230 1660 1668 STOR CHANGE 10 49 7 9 246 443 1151 719 -620 -137 -280 -114 -62 -61 -290 -526 -465	PEAK POW MW		208															
NAT INFLOW 12901 482 225 289 1250 1723 3207 2405 764 522 593 236 110 126 260 316 394 DEPLETION 726 -9 -4 -6 -67 87 821 400 44 -112 8 -78 -36 -42 -109 -100 -71 CHAN STOR 5 35 -25 -15 21 19 -2 0 -20 -100 EVAPORATION 409 25 79 99 86 38 18 20 44 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 1455 1503 700 327 365 <t< td=""><td>ENERGY GWH</td><td>1430.1</td><td>48.9</td><td>22.8</td><td>29.4</td><td>97.9</td><td>126.8</td><td>137.3</td><td>143.1</td><td>142.7</td><td>116.9</td><td>120.4</td><td>48.5</td><td>22.6</td><td>26.3</td><td>101.9</td><td>121.8</td><td>122.6</td></t<>	ENERGY GWH	1430.1	48.9	22.8	29.4	97.9	126.8	137.3	143.1	142.7	116.9	120.4	48.5	22.6	26.3	101.9	121.8	122.6
NAT INFLOW 12901 482 225 289 1250 1723 3207 2405 764 522 593 236 110 126 260 316 394 DEPLETION 726 -9 -4 -6 -67 87 821 400 44 -112 8 -78 -36 -42 -109 -100 -71 CHAN STOR 5 35 -25 -15 21 19 -2 0 -20 -100 EVAPORATION 409 25 79 99 86 38 18 20 44 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 1455 1503 700 327 365 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
DEPLETION 726 -9 -4 -6 -67 87 821 400 44 -112 8 -78 -36 -42 -109 -100 -71 CHAN STOR 5 35 -25 -15 21 19 -2 0 -20 -10 EVAPORATION 409 25 79 99 86 38 18 20 44 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 1455 1503 700 327 365 1230 1660 1668 STOR CHANGE 10 49 7 9 246 443 151 719 -280 -114 -62 -61 -290 -526 -485	GARRISON																	
DEPLETION 726 -9 -4 -6 -67 87 821 400 44 -112 8 -78 -36 -42 -109 -100 -71 CHAN STOR 5 35 -25 -15 21 19 -2 0 -20 -10 EVAPORATION 409 25 79 99 86 38 18 20 44 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 1455 1503 700 327 365 1230 1660 1668 STOR CHANGE 10 49 7 9 246 443 151 719 -280 -114 -62 -61 -290 -526 -485	NAT INFLOW	12901	482	225	289	1250	1723	3207	2405	764	522	593	236	110	126	260	316	394
CHAN STOR 5 35 -25 -15 21 19 -2 0 -20 -10 EVAPORATION 409 25 79 99 86 38 18 20 44 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 1455 1503 700 327 365 1230 1660 1668 STOR CHANGE 10 49 7 9 246 443 151 719 -620 -137 -230 -512 -246 -465	DEPLETION	726	-9		-6	-67	87	821	400	44	-112	8	-78	- 36	-42	-109	-100	-71
EVAPORATION 409 25 79 99 86 38 18 20 44 REG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 1455 1503 700 327 365 1230 1660 1668 STOR CHANGE 10 49 7 9 246 443 1151 719 -280 -114 -61 -290 -526 -465				-	-							_	19		-2	0		-10
RÉG INFLOW 20416 823 368 473 1912 2380 3204 2841 1501 1257 1224 587 265 304 940 1134 1203 RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 1455 1503 700 327 365 1230 1660 1668 STOR CHANGE 10 49 7 9 246 443 1151 719 -620 -197 -280 -114 -62 -61 -290 -526 -465		409							25	79		86		18		4Å		
RELEASE 20406 774 361 464 1666 1937 2053 2121 2121 1455 1503 700 327 365 1230 1660 1668 STOR CHANGE 10 49 7 9 246 443 1151 719 -620 -197 -280 -114 -62 -61 -290 -526 -465			823	368	473	1912	2380	3204									1134	1203
STOR CHANGE 10 49 7 9 246 443 1151 719 -620 -197 -280 -114 -62 -61 -290 -526 -465																		
				501	707													
				10164	10172													
ELEV FTMSL 1837.5 1837.7 1837.7 1837.7 1838.5 1839.9 1843.4 1845.5 1843.7 1843.1 1842.3 1841.9 1841.7 1841.6 1840.7 1839.0 1837.5 DISCH VERS 26.0 26.0 28.0 21.5 14.5 14.5 14.5 24.5 24.5 24.5 24.5 23.5 23.5 23.0 27.0 27.0 29.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27																		

STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS
 443
 1151
 /19
 -620
 -137
 -280
 -114
 -62
 -61

 18862
 20013
 20732
 20113
 19915
 19636
 19522
 19460
 19399

 1839.9
 1843.4
 1845.5
 1843.7
 1843.1
 1842.3
 1841.9
 1841.7
 1841.6

 31.5
 34.5
 34.5
 24.4
 24.4
 23.5
 23.5
 23.0
 1838.5 28.0 1837.5 29.0 1839.0 27.0 26.0 26.0 26.0 26.0 20.0 POWER AVE POWER MW PEAK POW MW 473 53.6 482 289.2 495 307.8 495 323.1 493 222.9 489 107.0 488 55.6 484 187.1 473 68.9 488 3077.4 114.7 247.5 249.5 248.0 ENERGY GWH 230.0 49.9 322.8 --OAHE-107 -11 1 DEPLETION CHAN STOR EVAPORATION -13 395 38 96 -8 -13 -29 -8 -6 õ 41 2221 2418 1512 1880 395 637 -242 18466 1606.3 1621 -412 18055 1373 REG INFLOW RELEASE STOR CHANGE 768 445 19286 506 221 19819 2271 910 422 312 19597 367 20185 -66 20120 549 20669 537 18842 -197 20472 612.5 -154 18779 1607.3 -413 20059 -367 18933 18305 18841 STORAGE ELEV FTMSL DISCH KCFS 1607.5 1608.9 09.9 510.6 611.7 611.5 613.1 611.3 1609.0 1607.8 1607.1 30.4 605.0 1605.8 607.5 19.8 25.8 18.3 28.4 27.6 36.0 35.9 39.3 40.4 38.2 30.6 30.6 40.1 26.4 22.3 20.0 POWER AVE POWER MW PEAK POW MW ENERGY GWH 735 339.5 714 357.2 728 722 79.9 727 719 120.0 700 98.3 249.7 3565.7 40.1 260.4 351.4 385.4 393.6 141.6 211.4 178.3

-BIG BEND-EVAPORATION REG INFLOW RELEASE 1863 1863 1683 2413 1683 2467 1683 2253 1683 903 1683 419 1683 633 1683 1612 1683 768 1683 254 1683 506 1683 1643 1683 2134 1683 1373 1683 1149 1683 1683 STORAGE ELEV FTMSL DISCH KCFS 1420.0 1420.0 20.0 420.0 420.0 1420.0 1420.0 35.9 420.0 420.0 1420.0 37.9 1420.0 420.0 30.4 420.0 30.2 20.0 420.0 1420.0 1420.0 30.3 39.9 22.3 20.0 POWER AVE POWER MW PEAK POW MW ENERGY GWH 43.6 14.4 28.7 120.8 136.6 139.7 37.9 66.7 93.0 125.5 129.1 109.8 54.4 25.3 96.0 80.8 1302.2 -FORT RANDAL NAT INFLOW DEPLETION EVAPORATION 15 19 7 24 1 1 4 9 12 18 3 3 3 88 19 416 1619 REG INFLOW **8** 2478 3549 -144 3405 -607 2798 -325 2473 340.5 -154 2319 -22 2297 366 2663 237 2900 224 3124 408 STOR CHANGE 3549 3549 55.2 1353.5 45.5 37.5

12501.8

26.8

DAILY GWH

ELEV FTMSL DISCH KCFS 1350.0 1 16.9 355.0 355.2 33.1 355.2 31.6 35.2 38.3 1355.2 40.3 355.2 40.6 337.9 41.1 43.5 347.0 350.0 21.8 40.8 40.5 41.1 POWER AVE POWER MW PEAK POW MW ENERGY GWH 330 350 274 350 317 49.7 235.4 111.9 30.6 189.0 229.8 241.9 242.9 233.7 Ō 103.6 46.1 . 6 92.3 2253.2 59.4 -- GAVINS POINT 39 -3 2 3 0 NAT INFLOW DEPLETION CHAN STOR 0 -22 19 -13 2 1 5 -1 2 0 10 39 24 -1 -5 10 0-10 3 - 1 -1 5 EVAPORATION REG INFLOW RELEASE З 2613 13 594 337 625 2082 2583 2529 2613 2529 2613 674 1151 STOR CHANGE 384 -26 358 STOR CHANG STORAGE ELEV FTMSL DISCH KCFS 1207.0 42.5 358 358 1206.0 1206.0 20.0 20.0 1206.0 24.3 06.0 35.0 206.0 1206.0 42.0 206.0 206.0 1206.5 1207.0 1207.0 207.0 42.5 1207.0 207.0 1207.0 206.0 1: POWER AVE POWER MW PEAK POW MW ENERGY GWH 113 24.4 112 83.1 112 80.4 114 81.6 114 84.5 114 40.9 76 55.0 76 51.1 75 47.4 83.1 19.1 21.8 23.8 79.4 83.6 873.1 13.8 --GAVINS POINT NAT INFLOW DEPLETION SIOUX CITY --GAVINS POINT - SIOUX CITY--NAT INFLOW 2500 181 DEPLETION 233 6 REGULATED FLOW AT SIOUX CITY KAF 27660 770 KCFS 25.9 3 19 33 29 35 32 20 8 5 2 3 11 12 12 40.9 48.3 48.1 46.2 44.4 43.8 43.2 43.0 43.0 22.4 20.0 21.3 2777 45.2 43.0 30.2 --TOTAL-NAT INFLOW DEPLETION CHAN STOR 1551 -10 526 -51 39 -227 59 330 -115 21 126 -54 -257 51 143 -103 -61 -278 -45 -198 -5 -3 35 -2 -22 -27 -3 - 1 -1 66 EVAPORATION STORAGE SYSTEM POWER 57104 2370 1067.4 34.4 2330 2324 AVE POWER MW PEAK POW MW ENERGY GWH 175.2 25.0 290.0 32.2 967.4 32.2 1215.7 40.5 755.3 26.0 401.3 211.4 325.5 42.8 141.4 38.0 496.0 228.4 291.6 801.6 820.8 312.8 42.3

INI-SUM 15MAR 22MAR 31MAR 30APR 31MAY 30JUN 31JUL 31AUG 30SEP 31OCT 15NOV

DATE OF STUDY 08/2						PRELIM	1INARY I	998-199	99 AOP M	EDIAN F	RUNOFF		99001	9901	4 PA	GE	1
TIME OF STUDY 06:	59:49					VALUES	5 IN 100	O AF E	CEPT AS		TED				STUDY	NO	6
28FEB99 INI-S	SUM 15	MAR 2	1999 22MAR	31MAR	30APR	31MAY			31AUG			15NOV	22NOV	200 30NOV	31DEC	31JAN	29FEB
DEPLETION EVAPORATION MOD INFLOW 69	15 473 912	264 -38 302 179	123 -18 141 69	158 -23 181 89	628 11 617 417	1210 292 918 615	1851 560 1291 655	829 93 29 707 676	324 -139 92 371 676	319 -134 114 339 617	398 -100 99 399 547	188 -37 44 180 238	88 -17 21 84 125	100 -19 24 96 159	310 -128 51 387	261 -164 425	349 -125 474
STOR CHANGE -2 STORAGE 150 ELEV FTMSL 2234	131 005 15 4.0 223	124 129 1	71 15200	92 15292	200 15492	303 15796	636 16432 2240.5 11.0	30 16462	-305 16157 2239.3 11.0	-278 15879	-147 15731	-58 15673	-41 15632 2237.0 9.0	-63 15569	615 -228 15342 2235.6 10.0	676 -251 15090 2234.4 11.0	690 -216 14874 2233.4 12.0
AVE POWER MW PEAK POW MW ENERGY GWH 1169 GARRISON		82 209 9.4	68 209 11.5	68 209 14.8	96 210 69.0	137 211 102.0	152 213 109.2	152 213 113.4	152 212 113.2	143 211 102.9	122 211 91.0	110 211 39.6	123 210 20.7	137 210 26.3	137 209 101.8	150 209 111.5	163 208 113.3
NAT INFLOW 110 DEPLETION 7 CHAN STOR EVAPORATION 5	735 0 544	469 -14 59	219 -6 10	282 -8	853 36 -20	1423 263 -30	2958 661 -10	2066 359 33	581 18 106	497 -128 6 132	454 16 14 114	192 -72 9 51	89 -33 -10 24	102 -38 -10 27	253 -127 0 58	237 -113 -10	326 -79 -10
RELEASE 169 STOR CHANGE -1 STORAGE 181 ELEV FTMSL 1837	925 160 117 18 7.5 183		305 236 69 18312 538.2 17.0	379 303 75 18387 1838.4 17.0	1214 1190 24 18411 1838.5 20.0	1745 1476 270 18680 1839.3 24.0	2942 1547 1395 20075 1843.6 26.0	2350 1599 751 20826 1845.8 26.0	1133 1599 -465 20361 1844.4 26.0	1116 1412 -295 20065 1843.6 23.7	885 1384 -499 19567 1842.1 22.5	459 670 -211 19356 1841.4 22.5	214 278 -63 19293 1841.2 20.0	262 317 -55 19238 1841.1 20.0	937 1230 -293 18945 1840.2 20.0	1017 1537 -521 18425 1838.5 25.0	1085 1553 -468 17957 1837.0 27.0
AVE POWER MW PEAK POW MW ENERGY GWH 2565		246 474 8.6	210 475 35.3	210 476 45.5	247 476 178.1	297 479 220.9	326 495 235.0	331 502 246.4	332 500 247.0	301 495 217.1	285 489 211.8	284 487 102.1	252 486 42.3	252 486 48.3	251 482 186.5	310 476 230.6	331 471 230.4
DEPLETION STOR	300 513 -8 197	317 21 20	148 10 12	190 12	364 43 -12	236 58 -16	689 107 -8	162 121 31	33 77 97	118 20 9 119	14 -6 5 103	5 2 46	2 1 10 22	3 1 0 25	-20 10 0 53	14 -21	40 23 -8
STORAGE 188 ELEV FTMSL 1607 DISCH KCFS 16	871 163 840 19 7.5 160		386 328 58 19151 508.5 23.6	481 402 78 19229 1608.8 22.5	1499 1459 40 19269 1608.9 24.5	1638 1719 -81 19188 1608.6 28.0	2121 1723 398 19586 1609.9 29.0	1608 2019 -411 19175 1608.6 32.8	1458 2032 -574 18601 1606.7 33.0	1399 1871 -472 18129 1605.2 31.4	1306 1353 -47 18082 1605.0 22.0	627 671 -44 18038 1604.9 22.6	268 309 -41 17997 1604.8 22.3	295 290 5 18001 1604.8 18.3	1146 1302 -156 17846 1604.3 21.2	1503 1236 266 18112 1605.1 20.1	1562 997 565 18677 1607.0 17.3
POWER AVE POWER MW PEAK POW MW ENERGY GWH 2854		286 710 2.8	305 711 51.3	292 713 63.1	318 713 228.8	362 712 269.3	376 718 270.5	426 712 316.6	425 702 315.9	401 694 288.4	280 693 208.1	287 692 103.1	283 691 47.5	232 692 44.5	268 689 199.7	255 694 189.9	222 703 154.4
REG INFLOW 182 RELEASE 182 STORAGE 162 ELEV FTMSL 1420 DISCH KCFS 16	267 583 1 0.0 142	658 658 683 0.0 14 2.1	328 328 1683 420.0 23.6	402 402 1683 1420.0 22.5	1459 1459 1683 1420.0 24.5	1719 1719 1683 1420.0 28.0	1723 1723 1683 1420.0 29.0	6 2013 2013 1683 1420.0 32.7	20 2012 2012 1683 1420.0 32.7	25 1846 1846 1683 1420.0 31.0	22 1331 1331 1683 1420.0 21.6	10 661 1683 1420.0 22.2	5 305 305 1683 1420.0 21.9	5 285 285 1683 1420.0 17.9	11 1291 1291 1683 1420.0 21.0	1236 1236 1683 1420.0 20.1	997 997 1683 1420.0 17.3
POWER AVE POWER MW PEAK POW MW ENERGY GWH 1052	:	105 517 7.7	111 509 18.6	106 509 22.8	115 509 82.7	131 509 97.4	136 509 97.6	153 509 114.0	153 509 113.9	147 517 105.9	106 538 78.9	111 538 40.1	110 538 18.5	90 538 17.3	104 538 77.0	98 537 72.6	83 529 57.9
DEPLETION EVAPORATION 1	80 18	122	57 1 384	73 1 475	115 4 1570	140 9 1850	185 12 1896	74 18 8 2061	57 15 25 2029	42 7 31 1850	2 1 25	2 1 10	1 0 4 301	1 1 4	10 3 10	3 1233	19 3 1013
ELEV FTMSL 1350	70 0 24 3	779 488 291 415 3.6 13 6.4	250 134 3549	475 3549	1570 3549	1850 3549	1896 3549	2061 0 3549	2029 2029 3549 1355.2 33.0	1994 -144 3405	1307 1944 -637 2768 1345.1 31.6	652 956 -304 2464 1340.4 32.1	446 -145 2319	281 303 -22 2297 1337.5 19.1	1288 922 366 2663 1343.5 15.0	922 311 2974	863 150 3124 1350.0 15.0
AVE POWER MW PEAK POW MW ENERGY GWH 1858		134 344 8.2	150 350 25.2	222 350 48.0	220 350 158.6	251 350 186.4	265 350 190.9	279 350 207.3	274 350 204.1	277 343 199.1	250 308 186.3	240 287 86.5	232 276 39.0	137 274 26.4	111 302 82.7	117 321 86.7	120 330 83.4
	150 14 2 37	92 0	43 0 -3	55 0 -16	148 5 0	174 19 -7	166 24 -3	86 39 - 3 2	103 10 1 7	77 -5 -1 9	122 2 4 8	50 5 -1 4	23 2 0 2	27 3 24 2	77 10 8 4	79 1 0	127
REG INFLOW 202 RELEASE 202 STOR CHANGE STORAGE 3 ELEV FTMSL 1206	:71 ! :58 :	581 581 358 6 0 12	291 291 358	514 514 358	1714 1714 358	1998 1998 358	2035 2035 358	2103 2103 358	2116 2103 13 371 1206.5	2066 2053 13 384	2060 2060 384	997 997 384	465 465 384	349 349 384	992 992 384	1000 1000 384	990 1016 -26 358 1206.0
DISCH KCFS 19 POWER AVE POWER MW PEAK POW MW	0.0 1	9.5 66 113	20.9 71 113	28.8 96 113	28.8 96 113	32.5 105 113	34.2 109 113	34.2 109 113	34.2 109 113	34.5 111 114	33.5 109 114	33.5 109 114	33.5 109 114	22.0 76 114	16.1 56 76	16.3 57 76	17.7 61 75
	IOUX C		11.9 79 3	20.8 102 3	69.4 199 19	78.2 310 33	78.3 224 29	80.9 129 35	81.2 96 32	79.8 60 20	81.2 42 8	39.3 16 5	18.3 7 2	14.6 9 3	42.0 21 11	42.3 5 12	42.4 82 12
REGULATED FLOW AT KAF 215 KCFS	SIOUX (CITY 744	367 26.4	612 34.3	1894 31.8	2275 37.0	2230 37.5	2197 35.7	2167 35.2	2093 35.2	2094 34.1	1008 33.9	470 33.9	355 22.4	1002 16.3	993 16.2	1086 18.9
CHAN STOR EVAPORATION 17	90 · -6 72	435 -24 79	669 -11 19	860 -14 -16	2307 118 -31	3493 674 -52	6073 1393 -21	3346 665 -3 110	1194 13 1 347	1113 -220 14 431	1032 -79 23 370	452 -96 8 164	211 -45 1 76	241 -51 15 87	651 -221 8 188	582 -247 -30	943 -166 -18
STORAGE 571 SYSTEM POWER AVE POWER MW PEAK POW MW ENERGY GWH 10305	2	919 367 D.8 1	916 2368 53.9	58498 995 2370 214.9	58763 1092 2372 786.6	59254 1283 2374 954.2	61683 1363 2399 981.5	62053 1450 2399 1078.6	60722 1445 2387 1075.3	59545 1379 2375 993.1	58215 1152 2353 857.3	57598 1141 2329 410.7	57307 1109 2316 186.4	57173 924 2314 177.5	56863 927 2296 689.7	56668 986 2313 733.6	56673 980 2316 681.9
DAILY GWH INI-S	23	2.1	22.0 22MAR	23.9 31MAR	26.2 30APR	30.8 31MAY	32.7 30JUN	34.8 31JUL	34.7 31AUG	33.1 305EP	27.7 310CT	27.4 15NOV	26.6 22NOV	22.2 30NOV	22.2 31DEC	23.7 31JAN	23.5 29FEB

STUDY NO

TIME OF STUDY 06:56:33	VALUES IN 1000 AF EXCEPT AS INDICATED

						VALUE	2 IN 100	JU AF E.	XCEPI A:	2 INDIC	AILU							
28F	EB99		199	9										20	00			
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB	
FORT PECK																		
NAT INFLOW	6000	242	113	145	525	925	1454	633	263	252	324	167	78	89	295	212	283	
DEPLETION	-72	-5	-2	-3	45	167	254	60	-73	-117	-78	-21	-10	-11	-107	-109	-61	
EVAPORATION	555							35	108	134	116	52	24	27	58			
MOD INFLOW	5517	247	115	148	480	758	1200	538	228	235	286	136	64	73	344	321	344	
RELEASE	6918	179	69	89	417	584	655	676	676	597	501	223	111	159	615	676	690	
STOR CHANGE	-1400	69	46	59	63	174	545	-138	-449	-362	-215	-87	-47	-86	-271	-355	-346	
STORAGE	14674	14743	14789	14848	14911	15085	15630	15492	15043	14681	14466	14380	14332	14246	13975	13620	13273	
ELEV FTMSL	2232.5	2232.8	2233.0	2233.3	2233.6	2234.4	2236.9	2236.3	2234.2	2232.5	2231.5	2231.0	2230.8	2230.4	2229.0	2227.2	2225.4	
DISCH KCFS	11.0	6.0	5.0	5.0	7.0	9.5	11.0	11.0	11.0	10.0	8.2	7.5	8.0	10.0	10.0	11.0	12.0	
POWER																		
AVE POWER M	N	81	68	68	95	129	150	151	150	136	110	101	108	134	134	147	159	
PEAK POW MW		207	208	208	208	209	210	210	208	207	206	206	206	206	205	203	202	
ENERGY GWH	1131.3	29.3	11.4	14.7	68.5	96.1	108.1	112.0	111.6	97.9	82.0	36.4	18.1	25.8	99.7	109.1	110.6	
GARRISON																		
NAT INFLOW	9400	443	207	266	712	1197	2521	1765	496	417	400	164	76	87	222	165	262	
DEPLETION	785	-12	-6	-7	-2	102	485	391	47	-84	54	-51	-24	-27	-44	-26	-11	
CHAN STOR	-11	50	10		-20	-25	-15			9	18	6	-5	-20	0	-10	-10	
EVAPORATION	644							40	128	158	134	59	27	31	67			
REG INFLOW	14878	684	292	362	1111	1654	2676	2010	998	950	731	385	179	222	814	857	953	
RELEASE	16545	595	236	303	1190	1414	1488	1537	1537	1346	1375	665	278	317	1230	1537	1496	

CHAN STOR	-11 644	50	10		-20	-25	-15	40	128	9 158	18	6 59	-5 27	-20	, o	-10	-10	
EVAPORATION REG INFLOW	14878	684	292	362	1111	1654	2676	2010	998	950	134 731	385	179	31 222	67 814	857	953	
RELEASE STOR CHANGE	16545 -1667	595 89	236 56	303 59	1190 -79	1414 240	1488 1188	1537 473	1537 -539	1346 -397	1375 -644	665 -280	278 -99	317 -95	1230 -416	1537 -680	1496 -542	
STORAGE	17690	17779	17834	17893	17814	18054	19242	19715	19175	18779	18135	17855	17756	17660	17245	16565	16022	
ELEV FTMSL DISCH KCFS	1836.1	1836.4 20.0	1836.6	1836.8 17.0	1836.5 20.0	1837.3 23.0	1841.1 25.0	1842.5 25.0	1840.9 25.0	1839.6 22.6	1837.6 22.4	1836.7 22.4	1836.3 20.0	1836.0 20.0	1834.6 20.0	1832.3	1830.4 26.0	
POWER	22.5																	
AVE POWER MW PEAK POW MW		244 469	208 469	208 470	245 469	281 472	310 486	315 491	315 485	282 480	276 473	274 469	244 468	244 467	243 462	299 453	306 446	
ENERGY GWH	2455.3	87.8	35.0	45.0	176.1	209.2	223.0	234.1	234.0	203.4	205.7	98.6	41.0	46.8	180.4	222.1	213.0	
04115																		
OAHE NAT INFLOW	1449	154	72	92	229	130	577	102	24	65	9				-35	-6	36	
DEPLETION	513	21	10	12	43	58	107	121	77	20	-6 1	2	1	1	10	14	23 -4	
CHAN STOR EVAPORATION	-15 569	10	12		-12	-12	-0	36	112	10 137	117	53	10 25	28	61	-22	-4	
REG INFLOW	16897	738	310	383	1364	1474	1949	1482	1372	1265	1274	611	263	288	1124	1495	1504	
RELEASE STOR CHANGE	18603 -1706	650 88	347 - 37	454 -71	1535 -171	1832 -358	1777 173	2051 -569	2052 -679	1901 -637	1360 -86	669 -58	308 -45	274 15	1258 -134	1147 348	988 516	
STORAGE	18400	18489	18451	18381	18210	17852	18024	17455	16776	16139	16053	15995	15949	15964	15830	16178	16694	
ELEV FTMSL DISCH KCFS	1606.1	1606.4 21.8	25.0	1606.0 25.4	1605.5 25.8	1604.3 29.8	29.9	1602.9 33.4	1600.6 33.4	1598.3 32.0	1598.0 22.1	1597.7 22.5	22.2	1597.6 17.2	1597.1 20.5	1598.4 18.7	1600.3 17.2	
POWER								400										
AVE POWER MW PEAK POW MW		279 700	320 699	325 698	329 695	377 689	378 692	420 682	415 669	393 658	270 656	275 655	271 654	211 655	249 652	228 659	212 668	
ENERGY GWH	2806.4	100.6	53.8	70.2	236.7	280.8	271.9	312.4	308.8	282.6	201.2	98.9	45.5	40.4	185.5	169.6	147.5	
BIG BEND	-																	
EVAPORATION	129							8	24	31	27	12	6	. 7	14			
REG INFLOW RELEASE	18474 18474	650 650	347 347	454 454	1535 1535	1832 1832	1777	2044 2044	2027 2027	1870 1870	1333 1333	657 657	303 303	267 267	1244 1244	1147 1147	988 988	
STORAGE	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	1683	
ELEV FTMSL DISCH KCFS	1420.0 17.9	1420.0 21.8	1420.0 25.0	1420.0 25.4	1420.0 25.8	1420.0 29.8	1420.0 29.9	1420.0 33.2	1420.0 33.0	1420.0 31.4	1420.0 21.7	1420.0	1420.0	1420.0	1420.0	1420.0	1420.0 17.2	
POWER	17.9	21.0	25.0	25.4								22.1						
AVE POWER MW		103	117 511	119 509	121 509	139 509	140 509	156 509	154 509	149 517	106 538	111 538	109 538	85 538	100 538	91 538	82 529	
PEAK POW MW ENERGY GWH	1064.4	518 37.2	19.7	25.7	86.9	103.8	100.6	115.7	114.8	107.2	79.0	39.8	18.4	16.3	74.3	67.5	57.4	
FORT BANDAL																		
FORT RANDALI NAT INFLOW	500	68	32	41	64	51	130	26	49	23	1				5	-5	15	
DEPLETION EVAPORATION	80 147	1	1	1	4	9	12	18 10	15 32	7 39	1	1 12	05	1	3 13	3	3	
REG INFLOW	18747	717	379	494	1595	1874	1895	2042	2029	1847	1302	644	297	262	1233	1139	1000	
RELEASE STOR CHANGE	18748 -1	446 270	241 138	477 17	1595	1874	1895 0	2042	2029 0	1991 -144	1939 -637	948 -304	442 -145	284 -23	867 366	867 272	811 189	
STORAGE	3124	3394	3532	3549	3549	3549	3549	3549	3549	3405	2768	2464	2319	2296	2662	2934	3123	
ELEV FTMSL DISCH KCFS	1350.0 15.0	1353.4 15.0	1355.0	1355.2	1355.2	1355.2 30.5	1355.2 31.8	1355.2 33.2	1355.2 33.0	1353.5 33.5	1345.1 31.5	1340.4 31.9	1337.9 31.8	1337.5 17.9	1343.5	1347.4	1350.0 14.1	
POWER	15.0																	
AVE POWER MW		123 343	144	223 350	224 350	254 350	265 350	276 350	274 350	276 343	250 308	238 287	230 276	129 274	105 301	109 319	112 330	
PEAK POW MW ENERGY GWH	1838.0	44.1	350 24.3	48.1	161.0	188.8	190.7	205.4	204.2	198.9	185.8	85.7	38.7	24.8	77.9	81.4	78.3	
	-																	
GAVINS POIN NAT INFLOW	1251	91	43	55	124	138	143	81	80	58	105	47	22	25	70	68	101	
DEPLETION	114	0	0	0 - 18	5	19 -7	24 - 3	39 - 3	10 0	-5 -1	2	5 -1	2	3 26	10	1		
CHAN STOR EVAPORATION	1 47		-4	-10	0	-/	-3	-3	9	11	10	-1-5	ž	20	5			
REG INFLOW	19839	538	279	514	1714	1986 1986	2011 2011	2078 2078	2091 2078	2042 2029	2035 2035	985 985	460 460	330 330	929 929	934 934	912 938	
RELEASE STOR CHANGE	19839	538	279	514	1714	1900	2011	2078	13	13	2035	900	400	330	323	334	-26	
STORAGE	358	358	358	358	358	358	358	358	371	384	384 1207.0	384 1207.0	384 1207.0	384	384	384 1207.0	358 1206.0	
ELEV FTMSL DISCH KCFS	1206.0	1206.0 18.1	1206.0	1206.0 28.8	1206.0 28.8	1206.0 32.3	1206.0	1206.0 33.8	1206.5 33.8	1207.0 34.1	33.1	33.1	33.1	1207.0 20.8	1207.0	1207.0	1208.0	
POWER	17.12											100						
AVE POWER MW		62 113	68 113	96 113	96 113	105 113	108 113	108 113	108 113	110 114	108 114	108 114	108 114	72 114	53 76	53 76	56 75	
ENERGY GWH	789.3	22.3	11.5	20.8	69.4	77.8	77.7	80.2	80.6	79.2	80.6	39.0	18.2	13.9	39.4	39.6	39.3	
GAVINS POIN	T - SIO	их стту-	-															
NAT INFLOW	900	115	54	69	90	174	125	75	56	35	24	13	6	7	13	-3	48	
DEPLETION REGULATED FLOW	233 AT 510	6 UX CITY	, З	3	19	33	29	35	32	20	8	5	2	3	11	12	12	
KAF	20506	648	330	580	1785	2127	2107	2118	2102	2044	2051	992	463	334	931	919	974	
		21 0																

REGULATED FLO	WAT SIC	OX CITA															
KAF	20506	648	330	580	1785	2127	2107	2118	2102	2044	2051	992	463	334	931	919	974
KCFS		21.8	23.8	32.5	30.0	34.6	35.4	34.5	34.2	34.4	33.4	33.4	33.4	21.1	15.1	14.9	16.9
TOTAL																	
NAT INFLOW	19500	1114	520	668	1744	2615	4950	2682	968	850	863	390	182	208	570	431	745
DEPLETION	1653	10	5	6	114	388	911	664	108	-159	-19	-60	-28	-32	-117	-105	-34
CHAN STOR	-24	60	18	-18	- 32	-44	-26	-3	0	19	23	6	5	7	7	- 32	-15
EVAPORATION	2090							132	413	510	435	192	89	101	218		
STORAGE	55928	56445	56647	56711	56525	56580	58486	58252	56597	55070	53489	52760	52423	52234	51779	51364	51155
SYSTEM POWER																	
AVE POWER M		893	926	1040	1109	1286	1350	1425	1417	1346	1121	1107	1071	875	883	926	928
PEAK POW MW	•	2350	2349	2348	2344	2342	2361	2355	2336	2320	2295	2270	2257	2254	2234	2248	2249
ENERGY GWH	10084.6	321.3	155.6	224.6	798.6	956.5	972.0			969.2	834.2	398.4	179.9	168.0	657.2	689.3	646.0
DAILY GWH	10004.0	21.4	22.2	25.0	26.6	30.9	32.4	34.2	34.0	32.3	26.9	26.6	25.7	21.0	21.2	22.2	22.3
UNILI UNI		21.4		20.0	2010			•=	• · · · •								
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB

DATE OF STUDY	08/20/9	98				PRELIM	INARY	1998-19	99 AOP 1	LOWER DI	ECILE RU	JNOFF	99001	9901	9901 P/	AGE	1
TIME OF STUDY	06:56:4	42				VALUES	TN 10	00 AF F	XCEPT AS		ATED				STUDY	NO	8
28FE	B99 INI-SUM	15MAR	1999 22MAR		30APR	31MAY	30JUN		31AUG	30SEP	31007	15NOV	22NOV	20 30NOV		31JAN	29FEB
FORT PECK- NAT INFLOW DEPLETION EVAPORATION MOD INFLOW	- 5100 -54 529 4625	234 -5 240	109 -2 112	140 -3 144	515 45 470	783 167 616	996 254 742	439 63 34 342	253 -70 104 219	242 -120 128 234	320 -81 110 291	159 -20 49 130	74 -9 23 61	85 -11 26 69	271 -103 56 318	205 -103 308	275 -55 330
RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	6787 -2161 14674 2232.5 11.0	179 61 14735	69 42 14777 2233.0 5.0	89 54 14832 2233.2 5.0	387 83 14915 2233.6 6.5	584 32 14947	625 117 15064 2234.3 10.5	646 -303 14761 2232.9 10.5	646 -427 14334 2230.8 10.5	566 -332 14001 2229.1 9.5	507 -216 13786	238 -108 13677 2227.5 8.0	111 -51 13627 2227.2 8.0	159 -89 13538	615 -296 13241	676 -368 12873	530 690 -360 12512 2221.2 12.0
AVE POWER MW PEAK POW MW ENERGY GWH	1099.4	81 207 29.3	68 208 11.4	68 208 14.7	88 208 63.6	129 208 96.0	143 209 102.7	142 207 106.0	142 206 105.4	128 205 91.9	110 204 82.0	107 203 38.4	107 203 17.9	133 203 25.5	132 201 98.5	144 199 107.5	156 197 108.7
GARRISON- NAT INFLOW DEPLETION CHAN STOR EVAPORATION	7299 796 -11 609	270 -12 50	126 -6 10	162 -7	700 -2 -15	903 102 -30	2020 485 -10	1277 391 38	361 47 120	277 -84 10 147	390 54 13 126	161 -51 2 57	75 -24 26	86 -27 -20 30	108 -38 0 64	160 -22 -10	223 -10 -10
REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	12670 15274 -2603 17690 1836.1 22.5	511 595 -84 17605 1835.8 20.0	211 208 3 17608 1835.8 15.0	258 268 -9 17599 1835.8 15.0	1074 1071 3 17601 1835.8 18.0	1355 1353 2 17604 1835.8 22.0	2150 1369 781 18385 1838.4 23.0	1493 1414 79 18464 1838.6 23.0	840 1414 -574 17890 1836.8 23.0	790 1191 -401 17489 1835.4 20.0	729 1131 -401 17088 1834.1 18.4	396 536 -140 16948 1833.6 18.0	184 264 -80 16868 1833.3 19.0	222 317 -96 16772 1833.0 20.0	697 1230 -533 16239 1831.1 20.0	848 1476 -628 15611 1828.9 24.0	913 1438 -525 15086 1827.0 25.0
POWER AVE POWER MW PEAK POW MW ENERGY GWH		244 466 87.7	183 466 30.8	183 466 39.6	219 466 157.9	267 466 198.9	282 476 202.7	284 477 211.3	283 470 210.3	244 465 175.6	222 460 165.5	217 458 77.9	228 457 38.3	239 456 45.9	237 449 176.7	280 441 208.6	288 434 200.4
OAHE NAT INFLOW DEPLETION CHAN STOR	1049 513 -12 541	197 21 10	92 10 20	118 12 0	183 43 -12	100 58 -16	215 107 -4	82 121 35	21 77 108	64 20 13 131	5 -6 7 111	-5 2 2 50	-2 1 -5 23	-3 1 -5 26	-48 10 0 57	-12 14 -18	41 23 -5
EVAPORATION REG INFLOW RELEASE STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS	15256 17922 -2666 18400 1606.1 17.9	782 645 137 18537 1606.5 21.7	311 373 -62 18475 1606.3 26.8	374 465 -91 18384 1606.0 26.0	1199 1560 -361 18024 1604.8 26.2	1378 1811 -432 17591 1603.4 29.4	1472 1707 -235 17357 1602.6 28.7	1340 1983 -643 16713 1600.3 32.3	1251 1982 -732 15981 1597.7 32.2	131 1117 1854 -737 15245 1594.9 31.2	1038 1327 -290 14955	481 632 -151 14804 1593.2 21.2	233 291 -58 14746 1593.0 21.0	283 233 50 14796 1593.2 14.7	1114 1146 -32 14765 1593.0 18.6	1431 1031 400 15165 1594.6 16.8	1452 882 570 15734 1596.8 15.3
POWER AVE POWER MW PEAK POW MW ENERGY GWH	2670.8	277 701 99.8	343 700 57.7	333 698 71.8	333 692 240.1	372 684 276.5	360 680 259.1	401 668 298.1	395 655 294.0	376 641 271.0	259 636 192.5	253 633 91.2	249 632 41.9	175 633 33.6	222 632 165.2	201 640 149.3	185 651 129.1
BIG BEND- EVAPORATION REG INFLOW RELEASE STORAGE ELEV FTMSL DISCH KCFS	129 17793 17793 1683	645 645 1683 1420.0 21.7	373 373 1683 1420.0 26.8	465 465 1683 1420.0 26.0	1560 1560 1683 1420.0 26.2	1811 1811 1683 1420.0 29.4	1707 1707 1683 1420.0 28.7	8 1975 1975 1683 1420.0 32.1	24 1958 1958 1683 1420.0 31.8	31 1823 1823 1683 1420.0 30.6	27 1300 1300 1683 1420.0 21.1	12 620 620 1683 1420.0 20.8	6 285 285 1683 1420.0 20.5	7 226 226 1683 1420.0 14.3	14 1132 1132 1683 1420.0 18.4	1031 1031 1683 1420.0 16.8	882 882 1683 1420.0 15.3
POWER AVE POWER MW PEAK POW MW ENERGY GWH	1024.7	102 518 36.9	126 511 21.1	122 509 26.3	123 509 88.3	138 509 102.6	134 509 96.7	150 509 111.9	149 509 110.9	145 517 104.5	104 538 77.1	104 538 37.6	103 538 17.3	72 538 13.8	91 538 67.7	82 538 60.7	74 529 51.2
FORT RANDAL NAT INFLOW DEPLETION EVAPORATION REG INFLOW RELEASE	L 300 80 147 17866 17866	55 1 698 446	26 1 398 242	33 1 497 480	43 4 1599 1599	35 9 1837 1837	120 12 1815 1815	13 18 10 1961 1961	36 15 32 1947 1947	-10 7 39 1767 1911	-52 1 31 1216 1853	-3 1 12 604 908	-1 0 5 279 424	-1 1 5 219 241	3 13 1116 750	-6 3 1022 750	12 3 891 702
STOR CHANGE STORAGE ELEV FTMSL DISCH KCFS POWER	0 3124	252 3376	156 3532	17 3549	3549	3549 1355.2 29.9	3549 1355.2 30.5	0 3549 1355.2 31.9	0 3549 1355.2 31.7	-144 3405 1353.5 32.1	-637 2768 1345.1 30.1	-304 2464 1340.4 30.5	-145 2319 1337.9 30.5	-22 2297 1337.5 15.2	366 2663 1343.5 12.2	272 2935 1347.5 12.2	189 3124 1350.0 12.2
AVÉ POWER MW PEAK POW MW ENERGY GWH	1754.6	122 342 44.1	145 350 24.3	224 350 48.4	224 350 161.4	249 350 185.1	254 350 182.8	265 350 197.3	263 350 196.0	265 343 191.0	239 307 177.7	228 287 82.2	221 276 37.1	110 274 21.1	91 301 67.5	95 319 70.5	98 330 67.9
GAVINS POIN NAT INFLOW DEPLETION CHAN STOR EVAPORATION	T 1200 114 5 47	87 0	41 0 -5	52 0 -18	120 5 0	131 19 -6	138 24 -1	76 39 -3 3	76 10 0 9	55 -5 -1 11	104 2 4 10	45 5 -1 5	21 2 0 2	24 3 29 2	67 10 6 5	65 1	98
REG INFLOW RELEASE STOR CHANGE	18910 18910	534 534	278 278	514 514	1714 1714 358	1943 1943 358	1928 1928 358	1992 1992 358	2005 1992 13 371	1959 1946 13 384	1949 1949 384	943 943 384	440 440 384	289 289 384	808 808 384	814 814 384	800 826 -26 358
STORAGE ELEV FTMSL DISCH KCFS POWER	358 1206.0 17.2	17.9	20.0	28.8	1206.0 28.8	1206.0 31.6	1206.0 32.4	1206.0 32.4									1206.0 14.4 50
AVE POWER MW PEAK POW MW ENERGY GWH	758.9	61 113 22.1	68 113 11.4	96 113 20.8	96 113 69.4	103 113 76.7	105 113 75.5	105 113 78.0	105 113 78.4	114 77.0	105 114 78.3	105 114 37.9	105 114 17.7	114 12.2	46 76 34.3	4/ 76 34.6	50 75 34.7
GAVINS POIN NAT INFLOW DEPLETION REGULATED FLO	550 233 W AT SIC	36 6 DUX CITY	17 3	22 3	77 19	144 33	106 29	47 35	22 32	15 20	14 8	10 5	4 2	53	10 11	-5 12	26 12
KAF KCFS	19227	564 19.0	292 21.0	533 29.8	1772 29.8	2054 33.4	2005 33.7	2004 32.6	1982 32.2	1941 32.6	1955 31.8	948 31.9	442 31.9	291 18.4	807 13.1	797 13.0	840 14.6
TOTAL NAT INFLOW	15498	880	411	528	1638	2096	3595	1934	769	643 - 162	781	367	171	195	408	407	675

	550		± /										-				71	
DEPLETION	233	6	3	3	19	33	29	35	32	20	8	5	2	3	11	12	12	
REGULATED FLO	OW AT SIO		,												_			
KAF	19227	564	292	533	1772	2054	2005	2004	1982	1941	1955	948	442	291	807	797	840	
KCFS		19.0	21.0	29.8	29.8	33.4	33.7	32.6	32.2	32.6	31.8	31.9	31.9	18.4	13.1	13.0	14.6	
TOTAL																_		
NAT INFLOW	15498	880	411	528	1638	2096	3595	1934	769	643	781	367	171	195	408	407	675	
DEPLETION	1682	10	5	6	114	388	911	667	111	-162	-22	-59	-27	-31	-107	-95	-27	
CHAN STOR	-18	60	25	-18	-27	-52	-15	-3	0	22	- 24	4	-5	4	6	-29	-15	
EVAPORATION	2001							128	396	488	415	184	85	97	210			
STORAGE	55928	56294	56433	56405	56130	55732	56395	55528	53808	52207	50663	49960	49627	49470	48975	48651	48498	
SYSTEM POWE	R																	
AVE POWER M	Ŵ.	889	933	1026	1084	1258	1277	1348	1337	1265	1039	1015	1013	792	820	849	850	
PEAK POW MW		2348	2347	2345	2339	2331	2337	2325	2304	2286	2259	2233	2220	2218	2198	2213	2215	
ENERGY GWH	9536.4	319.9	156.8	221.6	780.7	935.6	919.5	1002.7	994.9	911.0	773.1	365.2	170.2	152.1	609.9	631.3	591.9	
DAILY GWH		21.3	22.4	24.6	26.0	30.2	30.7	32.3	32.1	30.4	24.9	24.3	24.3	19.0	19.7	20.4	20.4	
	INI-SUM	15MAR	22MAR	31MAR	30APR	31MAY	30JUN	31JUL	31AUG	30SEP	310CT	15NOV	22NOV	30NOV	31DEC	31JAN	29FEB	