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1. Introduction 

This project was motivated by time our team spent embedded in an infantry unit in 
a forest in Columbus, Georgia. The Soldiers requested an unmanned aerial vehicle 
(UAV) that they could pull out of a pack, turn on, and then fly through the trees, 
find a clearing, exit the canopy, surveil the area while transmitting video data back 
to the ground station, reenter the canopy, and return to the operator. We have chosen 
to address the forest environment in which such a UAV would operate. Forests are 
highly complex environments – in addition to natural variations in illumination due 
to passing clouds, the trees create irregularly placed, occasionally mobile, beams of 
light. Furthermore, we are constrained to a theoretical, small-scale, easily man-
packable UAV with an extremely limited payload that must move at operational 
tempo, currently defined by the Defense Advanced Research Projects Agency 
(DARPA) as 20 m/s.1 We anticipate this platform will have the bare minimum 
number of sensors – possibly only a single monocular, grayscale camera – and we 
have designed this system to be robust to such a possibility.  

To enable stable flight on pocket-sized, highly dynamic unmanned aerial systems 
(UASs), the control loop requires extremely high update rates, but such platforms 
have only a minimal payload to handle the computational burdens. As system size 
decreases, high fidelity sensors, such as LiDAR, become too large to carry, 
requiring a shift to smaller sensors for state estimation. Optical systems, which 
easily scale down, typically use either stereo vision or optical flow to generate state 
estimates. Both methods rely on the objects in the scene maintaining a static 
representation for correlation, which causes them to be susceptible to dynamic 
lighting-induced errors. Even large systems that can carry LiDAR and substantial 
computation often couple high fidelity systems with optical systems to increase 
their effective range.2 While there are many optical navigation techniques available, 
we have chosen to limit the scope of this problem to optic flow due to its low 
computational burden and proven real-time usability. 

Traditionally, optic flow, including variants of Lukas Kanade,3 Elementary Motion 
Detectors (EMDs),4 and Horn and Schunck,5 has been tied to a static representation 
of the world. All of these algorithms assume that color representations remain 
consistent from one frame to the next, allowing perceived motion to be tracked by 
observing pixel-wise changes between the 2 images.5 This assumption becomes a 
problem when lighting conditions change unpredictably, a fairly common 
occurrence outdoors, as it becomes nearly impossible to track the motion of 
individual pixels that have now lost their primary signature. As lighting regularly 
ranges from 80 lux indoors to 1000 lux outdoors on an overcast day to over 130,000 
lux in direct sunlight,6 this is a substantial problem.  
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2. Related Work 

Before we address similar research, we would like to mention auto-exposure and 
similar in-system camera settings, which deal with varying lighting conditions. 
While such adjustments, including histogram shifts and other sorts of calibrations, 
may produce an image that is similar and comprehensible to the human eye, the 
actual pixel values (as represented from 0 to 255 in a grayscale image) often differ 
beyond what is recognizable for an algorithm making a correlation from frame to 
frame.  

At present, while there have been numerous explorations into illumination 
invariance, there remains no standard method to improve the performance of optic 
flow systems in dynamically lit, complex, novel environments. Illumination 
mitigation techniques run the gamut from computationally expensive 
postprocessing using a variety of filters and masks on the imagery to preprocessing 

to alter the imagery before it goes into the optic flow algorithms.7–21 Some, such as 
work in highly constrained environments like highways, assume that the light will 
shift evenly over the entire image.7,8 As our system is intended for a forested 
environment, such constraints were felt to be unrealistic. For similar reasons, we 
move past methods that perform object identification and compare the colors found 
to those of a template to estimate the lighting changes and correct the image as a 
whole.9–11 We do not wish to correct the image – simply to use it to compare against 
another. Understanding what it represents is not within the current scope of our 
investigation.  

Much closer to our problem space are methods that look to buttress optic flow 
estimation through the use of additional sensing modalities, such as LiDAR,12 
intensity modulated (IM),13 or temperature scans.14 While we acknowledge the 
utility of these methods, they do not address our chosen problem of unaided optic 
flow. A small-scale UAV is highly constrained by its payload capacity and 
processor, and such methods are often infeasible. Zimmer et al.15 investigate an 
implementation of optic flow in the hue-saturation-value (HSV) color space, where 
they found the hue channel is invariant under a variety of illumination changes and 
does not show marked reaction to shadows or specularities. We feel this is a very 
interesting avenue of investigation, but it was not used, as our target platform uses 
grayscale cameras since we are attempting to reduce the computational burden, and 
tripling the number of pixels involved would not further that goal. We would also 
like to differentiate this technique from gradient-based optic flow16,17 – our method 
preprocesses the input to any optic flow algorithm, but is not one itself.  

The techniques most similar to our approach look at preprocessing the input prior 
to putting it through an optic flow algorithm. Christmas18 shows the use of a spatial 
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filter to reduce the effects of temporal aliasing on image pairs with a large 
discontinuity. This work found that in an experiment with constant illumination and 
even motion pattern it was possible to reduce temporal effects using a low pass 
filter. However, due to the sizes of the filters investigated, they predicted difficulty 
in real-time applications. Lempitsky et al.19 removed the effects of shadows by 
subtracting from the first image; the result of that image was convolved with a 
Gaussian kernel. Beyond the fact that their work continues in the red-green-blue 
(RGB) color space and is finally computed with bicubic interpolation, which is far 
more computationally complex an approach than we will be able to use for our 
application, the issue is this technique ignores higher-order variations. Sellent et 
al.2 come at the problem from a completely different angle, choosing to deal with 
natural variation in lighting by extending exposure time and using the camera itself 
to prefilter sharp variations out of the imagery. While this approach is not practical 
during flight, it is a clever approach for static platforms. In Sharman and Brad,21 
images are filtered prior to use in an optic flow algorithm, and like the work 
presented by Sellent et al.,20 they have used a Gaussian smoothing filter. Although 
that paper presents a filter tuned specifically for a Lucas-Kanade implementation 
at each pyramidal level, it too suffers from computational complexity limiting its 
real-time applicability. 

Our investigations have found, that unlike standard electro-optic (EO) imagery, the 
double derivatives of those same images remain fairly stable in dynamic lighting 
conditions. Image derivatives provide the rate of the change of local intensity – in 
other words, highlighting the edges and corners. Whether the scene is brightly or 
dimly lit will not change the textures of the objects in the scene, and barring 
extremes, such as near darkness or image saturation, things like tree bark look more 
or less the same no matter how they are lit. However, with image derivatives, there 
is an overall reduction in the amount of information available. Fine details 
disappear, color is removed, and boundaries that lack a sharp textural difference 
can merge. While our approach has been discounted in prior work due to this loss 
of information,12 we find that there is sufficient complexity in realistic outdoor 
environments to maintain a high enough information content to allow navigation 
and control using only the double derivative image. Even in relatively sparse 
environments such as images with large tracks of sky, where the estimation 
uncertainty grows, there is a sufficient quantity of information that our method does 
not experience the catastrophic failures associated with other optical methods. 

3. Methodology 

The method presented here is intentionally very simple. Small-scale aerial 
platforms don’t have the capacity for complex, real-time calculations while flying 
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at Army-desired operational tempos.1 There are 3 steps to our method: 1) solve for 
the double derivative, 2) apply the optic flow algorithm of choice, and 3) isolate the 
true flow using a mask, as shown in Fig. 1. 

 

Fig. 1 Flowchart of our proposed method, showing the 3 steps employed  

Standard derivative calculations were used, incorporating both the x and y 
components. While several different filter operators were tried during the course of 
the project, we chose [1,–1] (or its transposed pair, for y). Numerous other standard 
filters (Gaussian, Laplacian, etc.) were tried and produced no significant increase 
in performance. Due to the continued focus on reducing the total number of 
computations required, a smaller filter operator was preferred: 

 ∇𝑓𝑓 = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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+  𝜕𝜕𝜕𝜕
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�
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 (1) 

where 𝑓𝑓 = is the value of the pixel at the (x,y) position, and the second spatial 
derivative of f is the gradient of the image (∇f). 

Those areas of the image without any texture will result in no detected motion from 
the optic flow algorithms. To avoid biasing the state estimation and still allow for 
the possibility that there may not have been any ego motion, we created a mask to 
put over the resultant optic flow vector field. This mask is based on the information-
poor areas of the filtered image. Through experimentation, we found that masking 
all areas where the double derivative image pixel value was below 10 (on a scale 
of 0 to 255) removed the majority of the spurious data. 

A note on complexity. Let n = w x h be the number of pixels in each image frame. 
We assume the use of optic flow algorithms with input consisting of sequential 
pairs of frames in a time sequence. In the case of Lucas-Kanade, the time 
complexity of each iteration of optical flow is dominated by the computation of the 
Hessian, which is linear in n but quadratic in the number of warp parameters  

 

1 

2 
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m ( ≈ O(nm2)).22 In the case of iterative global methods such as Horn-Schunck, 
analysis of the computational cost has additional dependencies including whether 
the algorithm is allowed to converge. At its core, the Horn-Schunck algorithm is 
the Jacobi iterative method applied to the interior of the image23 and requires 
computation of first-order partial derivatives with a complexity at least linear in n.24 
A highly optimized implementation may precompute certain pixelwise quantities 
prior to entering the iterative phase; even so, it has been demonstrated practically 
that Horn-Schunck requires, on average, substantially more computations per pixel 
than Lucas-Kanade.25 Our technique is a preprocessing step requiring a single 
convolution over each image to be taken as input to the chosen optic flow algorithm. 
The results of the derivative computation may be stored for later use at a cost no 
greater than that of the input image. Let k be the size of the convolution kernel  
(k = 2 in the method suggested above). We assert that the complexity of our method 
is linear in n and the subsequent masking operation requires constant time per pixel, 
resulting in an overall complexity O(nk + cn). We posit that this complexity is 
generally dwarfed by that of the downstream optical flow algorithm. 

The implementation of Lucas-Kanade26 employed for these experiments used 3 
pyramids and 3 iterations. That of Horn-Schunck27 used an alpha of 1 and 
maximum iteration of 100. In both cases, the algorithms were received pre-tuned 
and were not altered. 

We are aware that this method is not robust to the “features” created by strong 
shadows. However, from our experience embedded with infantry units in realistic 
conditions and point of view (POV) video data gathered during those experiments, 
strong shadows remain relatively static. We are more concerned with dynamic 
changes such as the passage of clouds overhead, which will affect all shadows and 
lighting conditions equally. However, we have begun investigation into texture 
patterns, which may mitigate the shadow problem.  

4. Data 

The images used in the following experiments were collected in a field at Ft. 
Benning, Georgia, during a live exercise28 using a GoPro Hero3 and in an office 
using a Logitech C920 Webcam. Stage lighting was used to create controllable and 
repeatable dynamic lighting conditions for the indoor space. The outdoor data 
collection occurred on a cloudless and extremely sunny day and the lighting is 
considered to be static. 

For ease of comparison, both data sets were collected with a static camera. To create 
the companion “dynamic motion” sets, the “static motion” sets were subsampled 
and only a portion of each successive frame was used. The location of this region 
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within the base image was altered by a known number of pixels, which became the 
ground truth for the optic flow estimations. To ensure the data were comparable, 
the static sets used an identically sized subsampled area from the original images – 
although in this case, the location of the window did not alter between frames. Each 
dataset is comprised of 100 sequential images, selections of which are shown 
below. 

There have been several datasets created to test visual state estimation under a 
variety of circumstances, most notably Kitti29 and Sintel.30 Both sets include a 
variety of lighting conditions; however, we did not find known illuminance values 
associated with the imagery. As this is preliminary work in which we hoped to 
explicitly measure the relationship between changes in illumination and the amount 
of noise added to an optic flow estimate, we chose to create our own dataset. In 
future iterations of this work, we plan to use established datasets to allow for 
rigorous comparison between methods. 

5. Experimental Scenarios 

In the following scenarios, the phrase “algorithms” refers to both Horn-Schunck 
and Lucas-Kanade with both standard and prefiltered inputs. 

5.1 Scenario 1: Static Camera, Static Lighting 

To ensure that any error was due to the input, rather than the algorithms, we first 
tested the performance of the optic flow methods using the statically lit dataset and 
a static camera location. With no motion and no sensory noise, an ideal output 
would show a cluster of dots around the (0,0) point. 

5.2 Scenario 2: Static Camera, Dynamic Lighting 

In this case, we wished to measure how the algorithms responded to changes in 
illumination only. With a static camera and static scene, any resulting “motion” 
must be due to the illumination shift. 

5.3 Scenario 3: Dynamic Camera, Static Lighting 

To determine how accurately each algorithm responded to actual motion, we tested 
them using a dynamic camera position and static lighting condition. In this scenario, 
any deviation from ground truth must be due to errors in state estimation of the 
algorithms themselves. 
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5.4 Scenario 4: Dynamic Camera, Dynamic Lighting 

The final scenario investigates a mobile camera in dynamic lighting conditions. We 
feel this is the most similar to true field operation conditions and shows how 
accurate the algorithms’ state estimation is. In this case, deviation from ground truth 
is due to a combination of motion and lighting conditions. 

6. Results 

The following graphs represent the results of processing the aforementioned 
lighting conditions with and without the prefiltering step. In each figure, the same 
camera path is shown in both static and dynamic lighting conditions. By showing 
how the algorithms respond to their expected input (statically lit images), as well 
as how they respond to the dynamic lighting, one can see which errors are due to 
the implementations of the algorithms and which are due to the input data format. 
Furthermore, we include the same implementation with and without the prefiltering 
step to show directly the difference it makes. The left column of each figure 
displays the actual plotted position of each state estimate as well as the true position, 
while the right column shows the Euclidean disparity between the estimate point 
and ground truth at each position in the run. Deviation is measured in pixels. 

Figure 2 shows the results of static (a,b) and dynamic (c,d) lighting on optic flow 
using data collection with a stationary camera to demonstrate the error, which is 
added to state estimation through variation in lighting alone. The camera is static; 
any perceived “motion” must be due to estimation error. As may be seen in the top 
row, all algorithms perform as expected, showing subpixel motion when presented 
with no motion and static lighting. However, in the bottom row, one may see the 
results of varied lighting conditions and that the filtered implementations are far 
more robust to its effects. 
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Fig. 2 Measured responses for a static camera position and static picture with dynamic 
changes in lighting, where a) and b) show the position estimation and deviation from ground 
truth for scenario 1, and c) and d) show the results of scenario 2 

Figure 3 shows the results of optic flow in both static (a,b) and dynamic (c,d) 
lighting conditions as captured by a dynamic camera. In this case, motion may be 
due to either an actual change or lighting, although as may be seen by comparing 
the top (static lighting) and bottom (dynamic lighting) rows, all algorithms perform 
well in static lighting, while the prefiltered versions are far more robust in the 
dynamic conditions. 



 

Approved for public release; distribution is unlimited. 
9 

 

 

Fig. 3 Measured responses for a dynamic camera position and static picture with dynamic 
changes in lighting, where a) and b) show the position estimation and deviation from ground 
truth for scenario 3, and c) and d) show the results of scenario 4 

As anticipated, the standard-input optic flow algorithms produce nearly perfect 
results in static lighting conditions, with a mean error of 1.6 pixels for both 
algorithms and a standard deviation of 0.77 and 0.79 for Horn-Schunck and Lucas-
Kanade, respectively. The prefiltered version results overshot the mark slightly, 
with mean errors of 4.8 and 5.9 pixels and standard deviations of 2.8 and 3.5 pixels 
for Horn-Schunck and Lucas-Kanade, respectively.  

However, in dynamic lighting conditions, the prefiltered results remain very close 
to the ground truth and do not deviate significantly over time. In this case, they 
averaged 1.8 and 4.1 pixels of error with standard deviations of 0.7 and 2.2 pixels 
for Horn-Schunck and Lucas-Kanade, respectively. Conversely, the standard input 
algorithms are not reliable under such conditions, with mean errors of 10.9 and 
31.45 pixels, with standard deviations of 5.1 and 33.7 pixels for Horn-Schunck and 
Lucas-Kanade, respectively. The prefiltered optic flow does better in dynamic 
lighting than it does in static, and we are currently investigating how this can be 
generally applied. 
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To begin testing the boundaries of this method, we created the experiment presented 
in Fig. 4 by comparing a reference image at a known illumination to a series of 
other images of the same object, captured at a variety of known illumination levels. 
The algorithms used here are identical to those used earlier in the report. For 
context, a change of 100 lux is within the deviation allowed within a well-lit office. 
Realistically, changes in illumination are often far more radical. A cloud passing in 
front of the sun can easily case variations on the order of 5,000 lux. While the 
degree of variation in illuminance from frame to frame is dependent on the frame 
rate of the camera and the conditions the system is operating in, our method’s 
robustness to changes of over 600 lux per transition and our planned frame rate of 
30 fps gives us confidence that even and indoor/outdoor transition of 10,000 lux 
would be manageable. 

 

Fig. 4 Filtered and unfiltered optic flow’s responses to extreme variations in illuminance 

7. Conclusion 

The primary assumption of traditional optic flow is that illumination remains 
constant, and under such conditions, it performs admirably. However, the real 
world is a dynamic and irregular place and any system that intends to operate within 
it must be robust to constantly changing conditions. As shown in Figs. 2 through 4, 
simply by changing the input from a standard image to the double derivative of that 
image, we are able to produce a significant increase in position estimation accuracy 
under dynamic lighting conditions. The next big push in robotics is for small, 
autonomous systems to quickly navigate complex environments, specifically, 
below the canopy in forests.1  

We have found that prefiltering is a useful tool for real-world navigation and 
particularly for size, weight, and power (SWaP)-constrained systems that cannot 
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carry more than a single camera. It is computationally reasonable, as creating an 
image double derivate is substantially less expensive than the host optical flow 
algorithm and does not require any sort of a priori information. Our approach is 
robust to significant variations in lighting, while also being very easily 
implemented and added to existing system. Despite the information lost by taking 
the derivative of the image prior to optic flow calculations and the subsequent 
masking of the dead zones, we find that sufficient, relevant information persists for 
this method, producing useful results. 

8. Future Work 

There is still a great deal of work to be done in order to make optic flow robust to 
the vagaries of outdoor operation. We plan to investigate how best to identify and 
eliminate features due to strong shadows rather than actual environmental features. 
Despite the strong edges and image variations caused by shadows, the textures of 
the objects within the scene remain the same. We have considered a method that 
compares the patterns and significant deviations. 

Another typical source of error are dynamic backgrounds, such as windblown trees 
and grass. Such objects have fixed locations, but nonetheless add a great deal of 
noise to the vector field and disrupt the flow patterns usually used to determine ego 
motion and the presence of outside agents. Furthermore, when resident on a vehicle, 
there are likely to be ego-motion errors, such as vehicle drift and vibration, which 
will need to be accounted for. 

We look forward to combining all of these problems in future investigations into 
dynamic environments with highly constrained systems.  
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DARPA Defense Advanced Research Projects Agency  

EMD Elementary Motion Detector 

EO electro-optic 

HSV hue-saturation-value 

IM intensity modulated  

POV point of view  

RGB red-green-blue  

SWaP size, weight, and power 

UAS unmanned aerial system  

UAV unmanned aerial vehicle  
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