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Dredged-Material Disposal Management Model 
 

David T. Ford1, M. ASCE 
 

Abstract 
 

To identify efficient dredged-material disposal management strategies for the 
Delaware River navigation system near Philadelphia, the system operation problem is 
formulated and solved as a generalized minimum cost network flow programming 
problem.  This formulation represents material sources and available disposal sites as 
nodes of the network and transportation links and carry-over storages as arcs.  The 
dewatering, consolidation, and densification of dredged material is modeled with an 
arc gain factor, thereby allowing reduction of the total volume of material within the 
network but requiring use of a network-with-gains algorithm for solution of the 
operation problem.  Application of the model defines cost-efficient dynamic schemes 
for allocation of material to available disposal sites.  A generalized compute program 
was developed to define automatically the nodes, arcs, and parameters of the arcs of 
the network, given a description of the dredged-material disposal system.  Structured 
analysis and structured programming techniques were used, thus providing a clear 
definition of the computations required, the order in which they must be accomplished, 
and the flow of data.  This software development technique reduces the effort required 
for subsequent modification of the program to analyze the system capacity-expansion 
problem. 

 
 
 
Delaware River Disposal Management Problem 
 
 Background. - The Corps of Engineers has been responsible for maintenance of the navigable 
waterways of the United States singe 1824.  The maintenance includes excavation and disposal of the 
sediment deposited in the waterways.  Current common practice is to excavate the material with a 
mechanical or hydraulic dredge (10) and to transport it to a disposal site either by pumping through a 
pipeline or by carrying the material to the site in barges or in hoppers on the dredge.  The disposal site 
may be an offshore site selected to minimize interference with navigation or the disposal site may be a 
contained upland site.  Contained disposal sites are natural or manmade ponding areas into which the 
dredged material is pumped or lifted.  In the disposal site, water gradually drains and evaporates from the 
dredged material, and the solids densify and consolidate.  The rate of dewatering, densifying, and 
consolidating can be increased by surface trenching, wicking, surcharging, and pumping with well pants.  
Detailed descriptions of these techniques and other technical aspects of dredged-material management are 
presented in Reference 3 and in associated reports of the Corps' Dredged Material Research Program. 
 
 Management of the long-term operation of a dredged-material disposal system requires selection of 
the equipment to be used for excavating and transporting the material from the channel to the disposal 
sites, allocation of the capacity of the available disposal sites to satisfy the demand for storage imposed 
by the dredging operation, selection of appropriate disposal-site management practices, and identification 
of capacity expansion schemes if the system capacity is exhausted at some time.  Due to the complexity  

                                                           
1 Hydraulic Engineer, Hydrologic Engineering Center, U.S., Army Corps of Engineers, Davis, California  95616. 
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of the long-term problem, equipment selection and capacity allocation generally is addressed only for the 
short-term, with equipment and sites selected for minimum cost at the time the dredging is performed.  
Physical and environmental limitations may constrain this selection and allocation.  Likewise, problems 
of disposal-site operation and of capacity expansion generally are addressed with heuristic rules as 
problems arise. 
 
 Delaware River System. - The Delaware 
River, Delaware Bay, and associated tributaries are 
maintained in a navigable condition by the 
Philadelphia District, Corps of Engineers.  Within 
this area, shown in Figure 1, twenty-three Federal 
navigation projects yield approximately 8,100,000 
cu yd (6,200,000 m3) of dredged material annually.  
Non-Federal maintenance dredging contributes an 
additional 3,400,000 cu yd (2,600,000 m3).  The 
material is disposed in twenty-one containment 
sites.  According to estimates published in a 1979 
study, by 1999 all these sites will be filled or 
unavailable due to lease expiration with continued 
maintenance dredging at current rates and with no 
change in management practices (4).  This in turn 
would mean reduction or cessation of dredging and 
consequent reduction or cessation of navigation.  
The 1979 study identifies a number of management 
alternatives that may be employed, including: 
 
 1. Capacity expansion alternatives:  (a) 

Acquisition of new upland sites; (b) 
open-water disposal of dredged 
material; and (c) extension of leases on 
sites. 

 2. Operation alternatives:  (a) Dewatering 
of disposal sites; (b) increase in 
containment dike height; (c) reuse of dredged material; (d) reduction of maintenance dredging; 
(e) use of deposition basins to reduce shoaling; (f) reduction of sediment erosion; and (g) 
improvements in site management. 

 
 
Management Model Description 
 
 Model Objective. - The dredged-material disposal management model was developed for systematic 
evaluation of and comparison of alternative management schemes.  With the mode, capacity expansion 
alternatives can be analyzed, and the minimum-cost combination and schedule can be determined for new 
site acquisition and lease extension.  Also, the minimum-net-cost operation policy for any specified 
system can be determined.  This policy is required both for long-term system operation planning and for 
solution of the expansion problem; the total cost of any alternative capacity expansion scheme is a 
function of site acquisition, lease extension, and operation costs.  The minimum operation cost and the 
associated operation policy are determined by formulating a mathematical programming model that 
represents the problem of allocating efficiently the available capacity.  Disposal-site dewatering rates, 
containment dike heights, and other characteristics of the disposal system are specified by the model user, 
so management schemes that involve changes in these parameters are evaluated by systematic variation 
and re-execution of the model. 

Figure 1  Delaware River System 
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 Initial development of the disposal management model is limited to formulation of the mathematical 
programming model presented herein for analysis of operation of a defined system.  Ultimately the model 
will be expanded to address the capacity expansion problem, using a branch-and-bound algorithm which 
iteratively enumerates a limited number of alternative site acquisitions and lease renegotiation schemes, 
evaluates the efficiency and feasibility with the operation model, and identifies efficient schemes for 
expanding the system.  The branch-and-bound procedure provides rules for eliminating from 
consideration many costly or infeasible schemes without actual evaluation with the operation model. 
 
 Mathematical Programming Formulation. - The mathematical programming formulation of the 
dredged-material disposal system operation problem includes continuity constraints for material sources 
and for disposal sites, transportation link and disposal-site capacity constraints, and carry-over storage 
constraints.  The continuity and capacity constraints define the operation problem for each period.  The 
carry-over storage constraints relate conditions within each period, yielding a multi-period operation 
problem.  Unit costs are associated with transportation and disposal of dredged material.  The objective is 
to minimize the total discounted cost of system operation.  This formulation is similar to the solid-waste 
disposal model formulated by Marks and Liebman (13) and to the wastewater disposal model formulated 
by Brill and Nakamura (2). 
 
 A continuity constraint is included for each material source and for each disposal site for each period 
of analysis.  The form of the equation for each material source, I, for each period T is: 
 

 ∑
=

=
NDISP

J
TIVTJIF

1
),(),,(  (1) 

in which: 
 
 J = index of disposal sites 
 NDISP = total number of disposal sites 
 F(I,J,T) = volume of material transported from source I to site J in period T 
 V(I,T) = total volume of material dredged at source I during period T 
 
The forms of the equation for each disposal site J for each period T is: 
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in which: 
 
 NDRG = total number of dredged-material sources 
 S(J,T-1) = volume of material stored at site J at beginning of period T an at the end of period  
   T-1 
 S(J,T) = volume of material stored at site J at end of period T 
 RT(J,J',T) = volume of material transferred to site J from site J' 
 RT(J',J,T) = volume of material transferred from site J to site J' in period T 
 RU(J,T) = volume of material from site J removed and sold for reuse 
 VF(J) = an average volume-reduction factor. 
 
The volume reduction factor reflects:  (1) the wet-to-dry volume ratio of the dredged material; and (2) the 
efficiency of the disposal site management practices.  The wet-to-dry volume ratio defines the average  
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volume of dry material per time period that must be stored at the disposal site as a fraction of the total 
volume of material in situ. E.g., a wet-to-dry ratio of 2.0 indicates that the dredged material, when wet, 
will occupy twice the volume occupied by the dried material.  In this formulation the volume reduction is 
assumed to occur within one period.  The efficiency of the disposal site in terms of achievement of the 
reduction depends on the site management techniques.  If the techniques employed are one-hundred 
percent efficient, VF(J) will equal the reciprocal of the wet-to-dry ratio; otherwise, VF(J) will equal the 
product of this reciprocal and the estimated efficiency of the dewatering techniques used at the site.  
Typical values of VF(J) range from 0.50 to 1.00. 
 
 The total volume of material to be transported to or from a disposal site is constrained by the 
characteristics of the pipeline, hopper, or other device used for transportation.  Likewise, the volume of 
material deposited at a site each period T is constrained by the size of the site.  These limitations are 
expressed mathematically as: 
 
 ),(),,( JIFMAXTJIF ≤  (3) 
 )',(),',( JJRTMAXTJJRT ≤  (4) 
 )(),( JRUMAXTJRU ≤  (5) 
 )(),( JSMAXTJS ≤  (6) 
 
in which: 
 
 FMAX(I,J) = capacity of the transportation link between dredged-material source I and 

disposal site J 
 RTMAX(J,J') = capacity of the facilities for removing material from disposal site J and 

transferring it site J' 
 RUMAX(J) = capacity of the facilities for removing material from disposal site J for reuse 
 SMAX(J) = storage capacity of disposal site J 
 
 In addition to the restrictions on transportation, disposal-site management practices may pose a 
limitation on the rate of addition of "wet" material to the site.  This limitation is imposed each period by 
the following constraint: 
 

 ∑
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in which: 
 
 ADDMAX(J) = maximum allowable volume addition per period 
 
 The operation problem is to determine the "best" scheme for allocating the material dredged each 
period to the available sites over the planning horizon.  The efficiency of operation is defined as the 
algebraic sum of present value of costs of disposal and transportation and the benefits of reuse.  
Mathematically, this is expressed as 
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In which: 
 
 Z = the present value of system net benefits for the period of analysis 
 R = discount rate 
 NPERS = number of time intervals 
 CF(I,J) = unit cost of transporting material from dredge site I to disposal site J 
 CS(J) = unit cost of adding material to disposal site J 
 CRT(J,J') = unit cost of removing material from site J, transporting to and disposing in site J' 
 CRU(J) = unit benefit of reuse of material from site J. 
 
These costs and benefits are assumed to be constant over time.  The objective is minimization of the net 
cost, Z. 
 
 Mathematical Programming Problem Solution. - The dredged-material system operation model as 
presented includes linear constraints and a linear objective function, so a linear programming (LP) 
algorithm can be used to determine the optimal allocation of dredged material to the available sites.  
However, the constraints define only conservation requirements and transportation limitations, and the 
costs and benefits are functions of the volume of material transported or stored, so the operation problem 
can be formulated as a network-flow programming problem.  In a network-flow problem, the decisions 
required are visualized as flows in the arcs connecting the nodes of a network, and the objective is to 
choose the flow in each arc to optimize some efficiency measure, such as total cost.  The arcs of the 
network are characterized by the allowable direction of flow, the maximum and minimum amounts of 
flow that can pass through each arc, the unit cost of use of the arc, and a gain that represents the fraction 
of flow that is lost (or gained) in each arc.  The constraints are limited to conservation of flow at the 
nodes of the network and to upper and lower bounds on flows in the arcs.  Algorithms for solution of the 
network-flow problems are more efficient than those for solution of the general LP problems.  Ford and 
Fulkerson (8) and Jensen and Barnes (12) provide detailed descriptions of the characteristics of network-
flow problems. 
 
 The network-flow model of the disposal 
operation problem represents material sources 
and available disposal sites as nodes and 
transportation links and carry-over storage as 
arcs.  The network representation of a small 
disposal system is shown as Figure 2.  Nodes 
1 and 2 represent the Pedricktown North 
disposal site, nodes 3 and 4 represent the 
Pedricktown South site, and nodes 5 and 6 
represent Overflow Site 1.  Nodes 7, 8, and 9 
represent the Marcus Hook, Bellevue, and 
Cherry Island dredge sites, respectively.  The 
arcs connecting nodes 7, 8, and 9 with nodes 
1, 3, and 5 represent the transportation links 
between the material sources and disposal  Figure 2  Single-Period Example of Network Representation 
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sites.  The "flows" in these arcs represent the volumes of material allocated to the disposal sites.  For a 
more complex system, arcs are included to connect each source with each site available for disposal of the 
material from that source.  An upper bound is imposed on flow in these arcs, as dictated by the 
transportation method represented. 
 
 Removal of material from the disposal sites for reuse is represented by an arc originating at the 
disposal site node and terminating at a node that represents the point of sale of the reused material.  
Material removed from the Pedricktown South site and transferred to the Pedricktown North site is 
represented by flow in the arc originating at node 4 and terminating in node 2. 
 
 The arc originating at node 1 and terminating at node 2, the arc originating at node 3 and terminating 
at node 4, and the arc originating at node 5 and terminating at node 6 are included as a computational 
mechanism to represent the drying of material added to a disposal site and to limit the rate of addition of 
material to the site.  The gains for these arcs are the volume reduction factors [VF(J) of Equation 2], and 
the upper bounds are the maximum allowable rates of disposal [ADDMAX(J) of Equation 7]. 
 
 Material is introduced to the network at the nodes that represent the dredged-material sites.  In the 
terminology of Jensen and Barnes (12), these volumes are node external flows; the quantity of flow 
entering the network is fixed. 
 
 The dashed arcs of Figure 2 represent the storage of material in the system disposal sites.  The flow 
in the storage arc that terminates at node 2 represents the net volume of dried material deposited in the 
Pedricktown North site in all periods prior to the current period [S(J,T-1) of Equation 2].  The storage arc 
originating at node 2 represents the cumulative volume of dried dredged-material deposited in the site 
after the addition and removal of material in the period shown [S(J,T-1) of Equation 2].  When the 
network is expanded for analysis of multiple-period operation, these storage arcs link the networks that 
represent single-period problems.  This is shown in Figure 3. 
 
 A unit cost is associated with the 
flow in each arc; the objective of the 
solution algorithm is to determine the 
allocation of flow to the various 
network arcs to minimize the sum of 
the product of flow in each arc and the 
corresponding cost.  The unit costs 
assigned to the network arcs are the 
discounted units costs of storing, 
transporting, or re-handling material 
[CS(J), CF(I,J), and CRT(J,J') of 
Equation 8] and the negative of the 
unit benefit of reuse [CRU(J) of Equation 8]. 
 
 The traditional network flow programming solution algorithms, such as the out-of-kilter algorithm 
(5,7,9) were developed for problems in which all gain factors are unity and, thus, are not applicable.  
Consequently, for solution of the management problem as formulated, a specialized network-with-gains 
algorithm is employed.  This algorithm solves the generalized minimum-cost network flow problem with 
any nonnegative gain factors using a flow-augmentation algorithm.  In this application, the algorithm 
begins with flow in all arcs set equal to zero.  The minimum cost per unit of additional flow to each node 
of the network and the path over which that flow may be obtained is determined.  The total flow through 
the network is increased along the minimum-cost path until the flow in one or more arcs in the path 
exceeds the bounds.  This process continues iteratively until the required system input flows are satisfied 
or a maximum possible flow through the network is obtained.  This algorithm guarantees achievement of 

Figure 3  Multiple-Period Network Representation 
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a feasible, global optimal solution if such a solution exists.  Additional details of the algorithm are 
presented by Jensen and Bhaumik (11) and by Jensen and Barnes (12); a previous application of the 
algorithm is described in Reference 14. 
 
 
Software Development 
 
 A generalized computer program was developed to implement the proposed disposal-system 
management model to evaluate alternative system capacity expansion plans.  The program development 
employed state-of-the-art software engineering techniques, including structured analysis and structured 
programming (1). 
 
 Structure Analysis. - Structured analysis is a logical process for transforming information about 
program requirements into specifications for the program that is to be developed.  This approach is 
contrary to usual engineering program development activities in which everyone eagerly gets on the 
"real" work - writing code.  As described by Demarco (6), the structured analysis approach has the 
following characteristics:  (1) it yields a paper model of the program-to-be; (2) the program is designed in 
a top-down, hierarchical fashion with a smooth progression from abstract definition of program 
components to a detailed definition; (3) it yields a set of connected "mini-specifications" of the identified 
program components; and (4) it uses diagrams for communication of ideas, especially between the 
program user, program designer, and computer system analyst. 
 
 Top-down program design begins with the establishment of firm requirements for the tasks to be 
accomplished by the program and with the definition of data required to accomplish the tasks.  The 
overall program structure (top-level) is then defined, with progressive refinement of lower-level 
components of the program.  Figure 4 shows the organization of the top level of the dredged-material 
disposal management program.  The program consists of an "executive" routine controlling an "input", a 
"process", and an "output" routine.  Figures 5 and 6 show further refinement of the process component; 
specification of the other components is refined in a similar manner.  Development of the system 
management model was planned (and funded) for completion in two separate stages:  Stage 1 includes 
only the operation model development, while Stage 2 addresses the capacity expansion problem in more 
detail.  In Stage 1, several of the components shown were defined only in conceptual terms.  For example, 
detailed specification of computational techniques was delayed initially in the case of component 3.1.  
Nevertheless, the data transfers and the required results of execution of each module were defined. 
 
 The network-flow programming model formulated to determine the optimal allocation of dredged 
material is identified as component 3.3.4 in Figures 6 and 7.  As one of the goals of program development 
is to produce a management model usable by engineers and planners who are not familiar with 
mathematical programming techniques, component 3.3.4.1 is included here to translate disposal-system 
descriptive data into the node-arc representation.  The resulting generalized minimum-cost network-flow 
problem is solved with code included in component 3.3.4.2.  Definition of this component is further 
refined to include components of the network-with-gains algorithm. 
 
 Structured Programming. - The actual computer code to implement the disposal management 
model was developed from the structured analysis using structured programming techniques.  Each of the 
components was translated into one or more subprograms that perform independently single tasks 
required for solution of the operation problem.  The benefits of this approach are:  (1) the actual 
development time is reduced because a number of programmers may simultaneously develop the 
modules, or existing code may be used easily; (2) complex programs may be tested in parts, with each 
module verified independently; (3) the code is easier to understand and to maintain; (4) the resulting code 
is flexible and may be modified by changing single modules independently; and (5) documentation of the 
code is easier.  Items 3, 4, and 5 are significant given the environment within which the computer code 
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described here will be used.  Although a single application motivated development, application to other 
disposal operation problems is likely and despite careful program design, past experience indicates a 
frequent need for special-case modification.  Often these modifications must be performed by someone 
other than the original program writer, thus the need for understandable code. 
 
 
Application 
 
 Operation Evaluation. - The operation model has been used to evaluate the operation of various 
existing and proposed configurations of the Delaware River dredged-material disposal system, including 
the subsystem between Philadelphia and the sea.  As modeled, this subsystem includes nineteen dredge 
sites and eight disposal sites (of which two are imaginary sites for overflow if the system capacity is 
insufficient).  Pertinent data describing the disposal sites are presented in Table 1.  Material is dredged at 
average annual rates shown in Table 2 and is transported by barge, hopper, or pipeline to the disposal 
sites.  The dredging and transporting costs depend on the machinery used and the distance which the 
material is transported; costs vary from $1.62 to $25.00/cu yd and are shown in Table 3.  The unit costs of 
placing the material in the system disposal sites vary from $0.00 to $0.50/cu yd, as indicated in  
Table 1. 
 

 
Disposal Site 

(1) 

Capacity Remaining, 
in cubic yards 

(2) 

 
Wet-to-dry Ratio 

(3) 

Disposal Cost, 
in dollars per cubic yard 

(4) 
Artificial Island 
Overflow Site 1 
Overflow Site 2 
National Park 
Killcohook 
Penns Neck 
Pedricktown North 
Pedricktown South 

16,500,000 
99,000,000 
99,000,000 
  7,100,000 
36,900,000 
16,000,000 
21,700,000 
21,700,000 

1.50 
1.00 
1.00 
1.50 
1.50 
1.50 
1.50 
1.50 

0.32 
0.00 
0.00 
0.50 
0.11 
0.25 
0.16 
0.17 

Note:  1 cubic yard = 0.765 m3; 1 acre = 0.405 ha 
 
 
 The operation of the Philadelphia-to-sea subsystem was analyzed for fifty years using twenty-five 
consecutive two-year intervals.  The resulting network consisted of 877 nodes and 3,709 arcs.  Time 
required for definition of the network parameters and for solution of the minimum-cost optimization 
program on a commercial CYBER 175 computer system used by the Corps was approximately 59 CP 
seconds.  The minimum present-value net cost for system operation with an annual discount rate of  
7 5/8% is $273 x 106. 
 
 Figures 8-11 are reproductions of portions of the computer program output.  Figure 8 is a summary 
of the dimensions of the system to be analyzed.  Also, for each type of dredge, a function relating the unit 
excavating and transporting cost to distance transported is presented.  Figure 9 is one of eight disposal site 
reports.  In this report, the physical and economic characteristics of the disposal site are summarized.  Site 
acquisition and lease renegotiation data are included for future use when the program is expanded to 
address the capacity expansion problem.  Figure 10 is one of nineteen dredge site reports for this system.  
The alternative sites for disposal of material are shown, and the capacity and the unit cost of excavating 
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Dredge Site 

(1) 
Volume 

(2) 
Eddystone 
Chester 
Marcus Hook 
Bellevue 
Cherry Island 
Deepwater Point 
Bulkhead Bar 
Newcastle 
Reddy Island 
Baker 
Liston 
Miah Maull 
Brandywine 
W. Horseshoe 
Mifflin 
Billingsport 
Tinicum 
Upper Philadelphia Harbor 
Lower Philadelphia Harbor 

 12,300 
 890 
 1,850,300 
 49,900 
 180,900 
 1,402,900 
 28,700 
 1,269,400 
 28,000 
 10,800 
 220,800 
 41,000 
 1,500 
 25,800 
 67,400 
 5,600 
 43,200 
 6,500 
 181,500 

Note:  1 cubic yard = 0.765 m3 
 
 
 
 

 Disposal Site 
 

Dredge Site 
(1) 

Artificial 
Island 

(2) 

Overflow 
Site 1 

(3) 

Overflow 
Site 2 

(4) 

National 
Park 
(5) 

 
Killcohook 

(6) 

Penns 
Neck 
(7) 

Pedricktown 
North 

(8) 

Pedricktown 
South 

(9) 
Eddystone 
Chester 
Marcus Hook 
Bellevue 
Cherry Island 
Deepwater Point 
Bulkhead Bar 
Newcastle 
Reddy Island 
Baker 
Liston 
Miah Maull 
Brandywine 
W. Horseshoe 
Mifflin 
Billingsport 
Tinicum 
Upper Philadelphia Harbor 
Lower Philadelphia Harbor 

6.99 
6.57 
6.12 
4.91 
**** 
3.57 
3.16 
2.48 
1.62 
1.63 
2.22 
7.25 
8.70 
8.56 
8.09 
7.85 
7.23 
9.69 
9.24 

25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
19.25 
15.24 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 

25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 
19.25 
15.24 
25.00 
25.00 
25.00 
25.00 
25.00 
25.00 

17.89 
***** 
17.01 
***** 
15.40 
***** 
***** 
***** 
***** 
***** 
***** 
***** 
***** 
19.30 
19.02 
18.78 
18.14 
19.30 
19.30 

 

 **** 
 **** 
 **** 
 **** 
 **** 
 2.01 
 1.61 
 1.98 
 2.84 
 3.25 
 3.85 
 8.88 
 10.33 
 **** 
 **** 
 **** 
 **** 
 **** 
 **** 
 

 **** 
 **** 
 **** 
 2.47 
 2.08 
 1.95 
 2.35 
 3.02 
 3.90 
 4.29 
 4.86 
 9.94 
 11.36 
 **** 
 **** 
 **** 
 **** 
 **** 
 **** 
 

2.83 
2.42 
1.99 
2.09 
2.48 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
4.37 
3.93 
3.69 
3.07 
5.50 
5.29 

3.06 
2.65 
2.22 
1.86 
2.25 
3.23 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
4.60 
4.15 
3.93 
3.31 
5.75 
5.04 

Note:  * indicates sites not linked ( 1 cubic yard = 0.765 m3) 
 
 
 
and transporting material to each site are tabulated.  (The unit cost is determined from the appropriate unit 
cost versus distance function.)  The estimated volumes of material to be removed each period are shown.  
(Note that the value shown for each period in Figure 10 is twice the corresponding value from Table 2 
because each period in the analysis corresponds to two years.) 
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 The results of optimal operation of the dredged-material disposal system are presented as a 
tabulation of material added to each disposal site each period and of end-of-period storage and the 
corresponding elevation and surface area.  Figure 11 is an example of the tabulation for one site.  The 
results of the minimum-cost operation are summarized in Table 4.  All disposal sites except the overflow 
sites will be filled by the end of the fifty-year model.  Overflow Site 1 is used initially in the ninth two-
year interval, indicating that system capacity falls short of demand within eighteen years of the first year.  
This conclusion is significant but is difficult to draw with traditional mass analysis techniques because of 
the complex interconnections. 
 
 Systematic Evaluation of Operation Alternatives. - Evaluation of disposal site management 
alternatives is accomplished by systematic application of the operation model with variation of the 
appropriate input parameters.  For example, to evaluate the cost effectiveness of use of trenching devices 
that speed the drying of deposited material in the disposal sites, the volume-reduction factor, VF(J), and 
the maximum allowable volume addition per period, ADDMAX(J), are changed to reflect the 
improvement possible, and the disposal cost, CS(J), is altered as appropriate.  The operation problem is 
resolved to determine the least-costly operation scheme.  The cost of the trenching machinery is added to 
the operation cost to determine the total system cost.  This total cost is compared with the total cost 
without the trenching devices; if the cost is less, the trenching device is cost effective. 
 
 Any management alternative can be evaluated by systematic analysis with the operation model, if 
the improvements attributable to that alternative can be expressed in terms of the volume-reduction factor, 
maximum allowable addition per period, maximum storage, capacity of transfer facilities, capacity of 
reuse facilities, or the time at which facilities are available.  Techniques that alter the volume of time 
distribution of dredged material that must be disposed can be analyzed in the same systematic manner 
because the volumes are specified by the user for each period. 
 
 
Conclusions 
 
 To identify efficient dredged-material disposal management strategies, the system operation problem 
can be formulated and solved as a generalized minimum-cost network flow programming problem.  In 
this formulation, the material sources and disposal sites are represented as nodes, and the transportation 
links and carry-over storages are represented as arcs.  The network-with-gains algorithm is used for 
solution, thereby allowing modeling of the drying material in the disposal sites. 
 
 The proposed disposal system operation model can be used for the evaluation of alternative 
management schemes by systematically varying the appropriate model parameters, re-executing the 
model, and comparing the net operation cost to determine the effectiveness of the scheme.  In the future, 
this model will be linked with a branch-and-bound algorithm to identify efficient disposal system 
expansion schemes. 
 
 A generalized computer program to implement the proposed operations model was developed using 
software engineering methods.  Structured analysis techniques were used to define the program 
requirements, and structured programming was used to transform the requirements into executable 
computer code. 
 
 The dredge-material disposal management model has been used successfully to evaluate the 
operation of the Delaware River disposal system. 
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Notation 
 
 The following symbols are used in this paper: 
 

 ADDMAX(J) = maximum allowable volume addition per period, site J; 

 CF(I,J) = unit cost of transporting material from source I to disposal site J; 

 CRT(J,J') = unit cost of re-handling material from disposal site J to site J'; 

 CRU(J) = unit benefit of reuse of material from site J; 

 CS(J) = unit cost of adding material to site J; 

 F(I,J,T) = volume of material transported from source I to site J in period T; 

 FMAX(I,J) = capacity of transportation link between dredged-material source I and disposal 
site J; 

 NDISP = number of disposal sites; 

 NDRG = number of dredged-material sources; 

 NPERS = number of the periods; 

 RT(J,J',T) = volume of material transferred from site J to site J', period T; 

 RTMAX(J,J') = capacity of transfer facilities between site J and site J'; 

 RU(J,T) = volume of material removed from site J and sold for reuse, period T; 

 RUMAX(J) = capacity of ruse facilities, disposal site J; 

 S(J,T) = volume stored in disposal site J, period T; 

 SMAX(J) = capacity of disposal site J; 

 V(I,T) = total volume of material dredged at source I during period T; 

 VF(J) = volume reduction factor, disposal site J; and 

 Z = net system operating cost. 
 
 
Subscripts 
 

 I = dredged-material source; 

 J = disposal site, and 

 T = time period. 
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