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USE OF NON-SEQUENTIAL TECHNIQUES
IN THE ANALYSIS OF POWER POTENTIAL
AT STORAGE PROJECTS

Gary M. Francl

INTRODUCTION

The analysis of hydropower storage projects has traditionally
been performed by use of sequential reservoir routing techniques,
whereas the use of non-sequential techniques has been traditionally
limited to the study of run-of-river type projects.

While individual power storage projects should be analyzed by
detailed sequential routings when sufficient funds and detail are
available, the non-sequential or flow-duration technique (as modified
herein) can be made to somewhat approximate the results of a sequen-
tial routing by modifying the flow duration curve to represent
outflow conditions,

The intent of this paper is to briefly outline the technique
developed to enable the analysis of power storage projects using
a non-sequential approach and, more importantly, to illustrate the
improvement in estimates of energy and capacity from employing the
technique.

FLOW-DURATION CURVE ADJUSTMENT

A storage project, in general, accumulates excessive inflows
for future use during low flow periods, thereby transforming the
inflow-duration curve, based on inflows into the project, into a
flatter outflow-duration curve, reflecting the operation and effect
of the project's storage as depicted below:

lHydraulic Engineer, Hydrologic Engineering Center, U. S. Army
Corps of Engineers, Davis, CA 95616
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The area (AQ) under the original flow-duration curve is preserved
and the modified flow-duration curve passes through points Cy and
Co. '

2

Where: ;
C; represents a discharge corresponding to 1007 exceedence;

C, represents a point of intersection between the two curves.

An analytical technique was developed to transform the shape
of the inflow-duration curve to the form of the outflow-duration
curve. This mathematical algorithm will generate an outflow-duration
curve and meet the following conditions:

1) the value of the function (flow-duration ordinate) at
100 percent exceedence must be Cj;

2) the value of the function (flow-duration ordinate) at some
percent exceedence p must be Cp, where 0<p<1.0;

3) the area under the modified outflow-duration curve must equal
the area under the original inflow-duration curve (AO).

PARAMETER DETERMINATION-

Attention is now focused on making estimates for parameters
C1s Co and p.

The selected discharge value of Cp, corresponding to the
percent exceedence point of intersection between the two duration
curves, is critical in the mathematical algorithm for allowing
feasible development of the outflow-duration curve. Comparison of
inflow and outflow-duration curves for various storage projects
tested revealed that the point of intersection between the two
duration curves deviated unappreciably from the percent exceedence
value corresponding to the average annual inflow A,- Therefore,

Cy is assumed to be equal to Ay, which generally corresponds to
percent exceedences ranging in value from 15 to 35 percent. The
value of A, is a constant and represents the area underneath the
original inflow-duration curve, which is easily determined by
integration. The selection for €2 will automatically determine the
value of p because Cp and p are functionally related through use of
the flow-duration relationship.

The value of C; is dependent on the storage capability of the
site being analyzed. Accordingly, it seems reasonable to assume
that Cy can be estimated by considering the base flow component



of the flow regime and the minimum flow contribution due to reservoir
regulation during adverse flow conditions as follows:

]

Cl = QMC + QMSCuuvvvuvnnerneronennenneenneannannaana Bq. 1

&

where:

Cy = the minimum flow value on the outflow-duration curve
corresponding to 100 percent exceedence;

QMC = the minimum flow value on the original inflow-duration
curve without regard to storage effects (1007 exceedence
value);

QMSC = the minimum flow contribution attributed to reservoir

operation under critical low inflow conditions.

Critical low flow conditions occur whenever, over a sustained
period of time, a reservoir is regulated to release additional
flow in excess of upstream inflows as a means of satisfying designed
project purposes. With regard to hydropower, this operational policy,
if continued, can actually exaggerate the situation since depletion
of power storage reduces the effective headwater and correspondingly
the operating power head; requiring a continually increasing amount
of flow to sustain energy requirements. The period of maximum draw-
down can be defined as the period of time which begins with full
powver storage and ends when the power storage remaining is at a
minimum. By definition, the period of maximum drawdoewn will then
contain the most adverse streamflow conditions and will require
the maximum withdrawal of water from the power storage. An estimate
of QMSC can now be approximated by determining the depletion rate
occurring throughout this period,

As an initial step, the power storage can be converted from units
of volume, typically in acre-feet, to units of flow rate (cfs). To
perform this conversion, a time period, say one year, must be selected.
The resulting value expresses the power storage potential as the
average amount of flow that can be extracted from an initially full
power pool throughout a period of one year.

However, as defined above, the period of maximum drawdown is
unconstrained with regard to the length of time required to
complete the process, and actual reservoir operations have demonstrated
this period of time varies from a few weeks to several years in length.
Accordingly, the initial depletion rate (assuming a one-year length
in the period of maximum drawdown) must be adjusted by a factor to



reflect the project's actual length in time to minimum pool level
as shown below:

QMSC = PS # ACF *# ADJF........ Ceeerea ceeseseeasareeaBEQ. 2
where
PS = power storage expressed as a volume (acre-feet);
ACF = a conversion factor (0.00138) which when multiplied by
(PS) expresses the amount of power storages in terms of
an average annual flow rate (cfs-yr);
ADJF = adjustment factor applied to the power storage to correct

for variation in the length of the period of maximum drawdown.

From Equation 2, one can conclude that a length of the period of
maximum drawdown exceeding one year requires the adjustment factor
(ADJF) to be less than one. Conversely, a length in the period of
maximum drawdown less than one year requires ADJF to exceed unity.

In effect, ADJF can be alternatively defined as the reciprocal of
the length in the period of maximum drawdown, when time is measured
in years. i

Several attempts-at establishing a relationship to determine
a value for ADJF were performed. The regression equation finally
selected is based upon 113 existing and proposed hydro sites
throughout the United States and is shown below:

ADJF = 0.65 + 1.113 #%# LOG(L/PSR) tvvrvnunrrneneeennns ..Eq. 3

where PSR represents a project's power storage to mean annual flow
ratio.

Statistically, the above equation resulted in a R-squared wvalue
of 0.49 and a standard error of 0.45. A plot of this relationship
can be seen in Figure 3.

The PSR is a dimensionless parameter which expresses the relative
size of power storage to average annual inflow and is determined by
converting power storage to an average one year flow rate, as
previously suggested, and then dividing the result by the project's
expected average annual inflow. In addition, this parameter is a
relative measure of the ability to control the length of the period
of maximum drawdown through regulation of project storage.
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A relatively large PSR, say greater than 1.0, indicates
sufficient storage capacity so that, on the average, there exists
the capability of extending the period of maximum drawdown during
sustained periods of low inflow. As the PSR falls below 1.0, this
capability to attenuate diversity between inflow awailability and
project demands decreases, causing the average length of the period
of maximum drawdown to decrease, accordingly. Another observation
from Figure 3, substantiating this conclusion, is that as the PSR
falls below 1.0, considerable increase in scatter of the data
occurs. This implies that the storage effect is becoming relatively
less important than the effect of diversity between inflow supply
and energy demand. A direct determination of parameter C; is now
possible by successive use of Equations 3, 2, and 1; allowing for a
plausible solution to systematically produce a synthetic outflow-
duration relationship for projects exhibiting power storage.

The substitution of the synthetic outflow-duration relationship
for the original inflow-duration curve should substantially improve
any estimate of average annual energy and should additionally enable
an approximation of dependable capacity to be performed when used
in a non-sequential power potential analysis.

AVERAGE ANNUAL ENERGY COMPARISON

Tables 1 and 2 illustrate the effect of using the flow-duration
adjustment technique in the estimate of average annual energy.

Table 1 is comprised of twenty-six existing storage projects,
each of which is currently installed and operating for energy production.
Each project, defined by a site identification number and a project
name, has been simulated on computer by using a computer program
called HYDUR(1). This program is design to perform power potential
analyses using a non-sequential methodology. HYDUR can be operated
in the traditional fashion or can be operated using the flow-duration
adjustment option based on user input. Column 1 displays average
annual energy estimates based on using standard non~sequential
techniques. Column 2 contains energy estimates based on using the
adjustment option. Column 3 represents the percent increase resulting
from estimating average annual energy using the adjustment optiom as
compared to standard non-sequential methods. In two cases where a
decrease in the estimate of average annual energy occurred, the
corresponding PSR's were 0.021 and 0.009; both relatively insignificant
amounts of power storage. In general however, the use of the adjust-
ment option resulted in an appreciable increase in the estimate of
average annual energy. On the average, the increase was 13 percent.
This trend is expected because the effect of the flow-duration
adjustment is to produce a flatter and less "peaky" outflow-duration
curve, thereby reducing the amount of average spill and increasing
the amount of average annual energy.



TABLE 1 AVERAGE ANNUAL ENERGY ESTIMATE (GWH)

Column 1 Column 2 Column .3
No

Site Name of Project | PSR Storage effect | Storage effect | % Increase
SWI0418 | Broken Bow 0.539 114.63 132.86 16
SWT0419 | Eufaula 0.388 200.51 261.56 30
SWT0457 | Keystone 0.069 203.66 232.55 14
SWF0015 | Whitney 0.251 61.99 88.68 43
SWFQ092 | Sam Rayburn 0.817 99.09 106.09 7
SWLOO0OO5 | Bull Shoals 0.482 633.14 636.77 1
SWLO013 | Greers Ferry 0.445 198.76 249.91 26
SWL0010 | Beaver 0.863 151.55 179.84 19
SWL0126 | Table Rock 0.667 454.84 502.48 10
SWT0513 | Fort Gibson *0.009 190.40 178.46 -6
LMKOOO3 | DeGrey Lake 0.740 83.20 89.56 8
LMKQO008 | Quachita Lake 1.075 147.57 169.73 15
IMKO026 |} Greeson 0.642 32.66 36.24 11
MRKO060 | Harry S. Truman [*0.021 184.25 18i.51 ~1
MRK0067 Stockton Lake 0.714 47.58 50.61 6
MRO0123 | Big Horn Lake 0.140 922.45 1000.64 8
MR0O0O158 { Canyon Ferry 0.171 352.93 375.64 6
MROO0215 | Lake McConaughy | 0.838 114.79 115.53 1
MR0O0274 | Lake Francis Case| 0.093 1976.93 2081.48 5
MR00326 | Boysen Reservoir | 0.406 80.03 86.16 8
MRO0366 | Glendo Reservoir | 0.344 95.15 122.03 28
SAWC100 | John H. Kerr 0.190 428.36 442,88 3
SAW0101 | Philpott 0.557 29.81 30.37 2
SWL0004 | Norfork 0.270 157.08 222,42 42
SWF0001 | Toledo Bend 0.376 242.68 256.11 6
SWT0302 | TanKiller 0.343 103.59 132.01 27

Average 13

Tables 2A and 2B compare average annual energy estimates derived by

sequential routing methods using computer program HEC-5\¢

the non-sequential

adjustment technique, and traditional non-sequential techniques; both latter

estimates using computer program HYDUR.

For each of the twenty-six existing

power projects, three separate simulations were performed to evaluate the
effect of reallocating additional storage volume to the production of energy,
The first simulation estimates the average annual energy potential of the

existing power project.

Simulations two and three estimate the average

annual energy potential after reallocating ten and twenty percent of the

existing flood control storage to power, respectively.

The results indicate that the non-sequential flow-duration
estimates of average annual energy were generally larger than the

estimates resulting from sequential routing efforts.

Conversely,

standard non-sequential estimates were generally smaller than the

estimates resulting from sequential routings.

On the average the

adjustment
energy

the

energy
fractional

differences were 1.046 and 0.960 for the'existing project comparison;
1.054 and 0.956 for the 10 percent reallocation comparison, and 1.059 and
0.952 for the 20 percent reallocation comparison, respectively.
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Additionally, comparison of average annual energy estimates
calculated by both the sequential and non-sequential methods
resulted in fairly constant deviations in the energy estimates for
all three cases tested for each of the twenty-six brojects.
Although the absolute energy estimates differ on the average by five
percent, the estimates of incremental energy gained from reallocating
additional storage to power are averaging within about one percent.

These observations suggest that the flow-duration adjustment
option is adequately redistributing the available streamflow for
power potential analysis and therefore indicates that the primary
cause of the difference in energy estimates is due to a difference
in power head between the two techniques. This was expected because
the average headwater elevation in all the non-sequential simulations
was assumed to be at the top of power pool. A more practical
selection would be to choose the normal pool headwater level as a
fractional percent of the total power pool available. If the project
is existing, past operation of the project may give a clue in estab-
lishing this fractional percent value. For proposed projects, results
from Table 2B indicate that a fractional percent ranging between (.85
to 0.95 is appropriate for projects exhibiting sufficient power
storage (power storage to mean annual flow ratio greater than 0.10).

DEPENDABLE CAPACITY COMPARISON

Dependable capacity can be defined as the capacity which
under the most adverse flow conditions on reécord, can be relied
upon to carry system load, provide dependable reserve capacity,
and meet firm power obligations, taking into account seasonal vari-
ations and other characteristics of the load to be supplied(3).“
The association to the '"most adverse flow conditions on record," in
the definition of dependable capacity strongly supports the notion
that parameter C; might be valuable as an indicator in approximating
this capacity value. This assumption was tested and it was found
that dependable capacity could be estimated by using the power
equation as follows:

DCAP

C(C1/PF) HeuvirieiievirnoeontonessassanaceasaneessBEQub
Where:
DCAP = dependable capacity in kilowatts:

C = .084603 conversion factor which expresses power in
kilowatts;

C,= the minimum flow parameter as previously defined;

frt
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PF = the average annual plant factor relating dependable
capacity to its firm energy requirement;

H = net power head in feet;

&

e = overall efficiency (assumed equal to a constant 0.86)

The quantity (Cy/PF) represents the expected minimum flow adjusted
for average time of hydropower plant operation.

Equation 4 was employed with data from all 113 projects used,
to develop the parameter ADJF and the resulting estimates of
dependable capacity were compared to corresponding dependable
capacity values estimated from sequential routing techniques (HEC-5).
This comparison, depicted in Figure 4, resulted in an R-squared
value of 0.985 and a standard error of 10,700 kilowatts. Comparison
of empirical (non-sequential) to sequentially determined capacities
varied over a range of 100 kilowatts to 650 megawatts. A departure
in plotting position above an imaginary 450 line represents an
underestimate of dependable capacity determined empirical as compared
to dependable capacity estimated using sequential routing techniques.
Conversely, a departure below this line represents an exaggeration
of dependable capacity. Maximum departure about this line, in terms
of percent difference, occurs for small installations (i.e., projects
having installed capacities less than 2 megawatts). Small install-
ations are generally associated with projects possessing limited
storage capacity and correspondingly small power storage to mean
annual flow ratios (PSR). Since the regression equation used to
estimate ADJF (Equation 3) was incorporated in the empirical determi-
nation of dependable capacity, the problem of increased scatter
associated with small PSR's is most probably the underlying
influence causing these maximum departures to occur in this capacity
range.

An approach to alleviate this problem of increased scatter
is to introduce a parameter into the regression analysis for
determining ADJF which represents a measure of the diversity
associated between energy demand requirements and inflow avail-
ability at a project. Although this approach was not performed
for this paper, an initial attempt at defining this parameter can
be suggested by plotting the firm energy demand requirements of a
project against project inflow in the form of normalized distributioms.
As an illustration, assume the monthly distributions of inflow and
firm energy demand can be determined from available data and are
as follows:
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Monthly

Inflow JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
(cfsm) 175 150 75 175 250 375 325 300 250 175 125 125
Monthly

Firm Energy Required
(W) 80 75 60 60 70 80 %0 110 110 100 80 85

The distributions can bé normalized by dividing the monthly
values by annual inflow (2,500 cfsm) and annual firm energy (1,000MWH),
respectively. Figure 5 is a superimposed plot of these normalized
distributions, where the area under each distribution is unity.

The plot graphically displays the diversity between energy demand

and flow availability. In general, from April through August, this
project will have sufficient storage available to meet all energy
demands and might actually be accumulating storage and experiencing
spill., From September to March, inflow recedes and storage

depletion occurs to supplement flow needed for power generation.
Therefore, an initial definition of the diversity parameter might

be to accumulate the percent differences between the distributions
throughout the year whenever percent of energy demand exceeds percent
of annual inflow. This suggestion is only one of several alternatives
which can be conceived to measure diversity. Future funding may
allow for further investigation in this area.

In conclusion, the non-sequential adjustment technique has
been shown to be a viable alternative to use in estimating energy
and capacity values associated with power storage projects. It
is recommended that this option be employed (through the use of
computer program HYDUR) throughout the screening process of any
basin wide power potential study. Once project alternatives
become manageable, a more detailed sequential routing effort should
be undertaken.
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