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WORTH OF STREAMFLOW DATA FOR PROJECT DESIGN - A CASE STUDYl

by D.R. Dawdy", H.E. Kubik>,
A L.R¢ Beard ) a-nd E-R‘ Close

INTRODUCTION

Hydraulic structures are designed on the basis of hydrologic and
economic data. The cost of data upon which the designs for the structures
are based can be determined, but benefits resulting from the data are at
best imputed as equal to or greater than the cost of the data. The
marginal costs of hydrologlc data are approximately constant over time,
disregarding general economic inflation or depression. The information
content of each added year of data, defined as the reciprocal of the
varisnce of the estimafe of the mean for the data, gemerally is constant
over time. However, the worth per unit of information decreases with time.
As the worth of information decreases, there may be a point at which the
marginal cost and worth of information are equal for a given data set.

In order to design a hydrologic data gathering system properly, the
relative wvorth of alternative types of data must be assessed. A major
type of hydrologic data 1z data on streamflow., The worth of any type of
data must be measured in terms of its ultimate uses. Surface streamflow
data have two major uses. One use is to provide general regional informa-

tion. This type of data has transfer value. It represents "natural"

1 For presentation at the 49th Annual Meeting of the American Geophysical
Union, Washington, D.C., 8 April 1968,
3 Research Hydrologist, Hydrologic Systems Laboratory, U.S. Geological Survey.
Hydraulic Engineer, The Hydrologic Engineering Center, U.S. Army Corps of
Engineers, Sscramento, California.



conditions and may be used in combination with similar data at other
sites to gain a regional description of the streamflow of an area.

A second use 1s for project operation and design purposes. Data may

be obtained for operations or flood warning, or a surface water streamflow
gage may be maintained at a potential reservoir site in order to gain
information on which to base the design of a water resource project.
Usually such a gage maintained for project design has two measures of
worth, for although its primary worth may relate to its project design
purpose, if it measures a "natural” basin, its inherent information has
transfer value until such time as the dam is built and water is stored in
the reservoir.

A measure of the worth of data used for project design may be assessed
by measuring the worth of net benefits foregone as a result of the lack of
data. If a "true" optimal design and the associated costs and benefits for
a gilven project are known, the change in worth as a result of a sub-optimal
design based on a sample of data can be measured in terms of the net benefits
Toregone, either through underdesign or overdesign.

Unrelisbility in the ultimate design results from errors in data.
Errors in data result from both measurement errors and sampling errors.
Measuring errors may be reduced by expending more rescurces in terms of
equipment and manpower so as to obtain more accurate or more frequent
measurements of flow. The relative importance of an estsblished streamflow
gaging station determines both the accuracy required and the maximum feasible

cost for obtaining that level of accuracy for the record.
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Sampling error is a more important factor in ultimate reservoir
design than is error in streamflow measurement and is usually over-
riding. Any set of data collected over time at a site provides an
estimate of what mey occur in the future at that site. The longer
the record, the better the estimate. The deviation of this estimate
of the future from what will actually occur during a period of interest,
say project economic life, is a result of sampling error. The purpose
of the present study is to assess this effect of sampling error on the
worth of data used for ultimate reservoir design. The pilot study examines
the contemplated methodology as applied in a limited manner to one location
for design of a multipurpose reservoir for water supply and low flow regula~

tion, with flood control and minimm pool fixed.

DESCRIPTION OF PROCEDURES USED

In order to assess the effect of sampling errors in streamflow data
on reservoir design, several factors must be considered. First, a "true"
optimum design must be known, so that departures from this design can be
measured. Second, the variability of the departures from the true design
should depend upon the length of record used for design purposes and the
statistical properties of the streamflow for the basin to which the design
is applied.

For this pilot study the streamflow record for Arroyo Seco near Soledad,
California, was chosen. The measured record of flow was used to establish

statistics describing the historical record(l). A 500-year base "record"



then was simulated with statisticel properties similar to the measured
record(e). The 500~year record was used to determine an optimum design
for a simplified multipurpose reservoir(3) for both a "high" and a "low"
yield at the site, and these designs were treated as true optimal designs
for the purpose of comparison in this study. In order to impart reglism
to the study, seasonal variation of water demand was used, seasonal flood
space and constant minimum pool were provided, evaporation was computed,
and the reservoir was located so that 20 percent of the runoff above the
control point occurs downstream from the reservoir.

An optimum design is a function of cost and benefit functions as well
as the hydrologic data used for design. A cost function for comstruction
and maintenance was used (Figure 1) which was based on an average of a
group of cost curves for the Delaware River Basin(h).

In order to simplify the pilot study, operation criteria for flood
control were held constant. Incidental benefits for flood control were
neglected, thus keeping flood control benefits constant. A flood control
pool of 50,000 acre-feet was estimated from the historical record. The
estilmate was based on the flood volumes for various durations, exceeded
on the average once per hundred years, and a constant draft at bankfull
capacity. The flood storage chosen was based upon the most critical
flood duration.

Conservation storage, on the other hand, was optimized with a

criterion based upon the percentages of deficits from target flows on a



yearly basis. Thus & conservation pool designed for a "50 percent
yield" would have a set of target flows which, when sumed together,
would equal 50 percent of the long term mean annual yield for the basin.
Target flows are flows required at s downstresm demand point either for
water supply or low-flow regulation, or for a combination of both.

The number and amounts of shortages that can be tolerated in the
operation of a water resources project depend on the type and nature of
use, Large shortages are far more serious in their economic effect than
are small shortages, and the economic impact of & shortage under project
conditions consequently varies with some power (greater than one) of the
percentage shortage. The shortage index used in this study is a function
of the square of the annual shortage and is considered to be a practical
type of index for ordinary planning purposes. This implies that shortages
of 4O percent are b times as serious as shortages of 20 percent and that a
shortage of GO percent would be 9 times as costly as a shortage of 20
percent, Use of such a relationship permits the summsrizing of all
shortages expected within the economic life of a system into a single index
convenient for planning purposes. While an actual loss function can differ
in mathemstical form, it should be possible to select a quadratic function
that closely approximates the actual function,

The design assumed to be optimum for the purpose of deriving criteria
in this study is represented by a shortage index of 0.25, which is defined

as the expected sum of the squares of all annual shortages during a 100-year



period, if each annual shortage is expressed as & ratio to the annual
demend. This would permit, for example, 25 shortages of 10 percent

each during 100 years, or about six shortages of 20 percent each, or

one shortage of S0 percent(S). The optimum reservoir size is determined
by sequential operation studies (successive approximstions) using the
entire 500 years of flows, until a shortage index of .25 is attained,

A hypothetical function of shortage index vs. benefits was constructed
on the basis that the marginal benefits equal the marginal cost for the
optimun size of reservoir, which follows from the accepted definition of
economlic optimality. Benefits were related inversely to the shortage
index. Thus, the rate of change of benefits with reservoir size is computed
equal to the rate of change of cost with reservoir size at the optimum size.
This rate of change is obtained directly from the typical reservoir cost
curve (Figure 1), The rate of change of shortage index with reservoir size
is obtained by computing the shortage index for various reservoir sizes
(vy making sequential operation studies) based on the entire 500~year record.
Appendix 1 summarizes mathematically the development of hypothetical cost
and benefit curves for a reservoir which maintained a 50 percent yield for
Arroyo Seco. Cost and benefit relationships are shown on Figure 2.

Once cost and benefit curves were developed and an optimum reservoir
was designed, records of various lengths could be chosen arbitrarily from the
the 500-year base record and used to design sub-optimasl reservoirs. Each

sub-optimal design was so costructed as to develop a shortage index of



0.25 for the particular period of record used. The variability of these
sub-optimal designs would be assessable in terms of costs and benefits in
relation to the true optimum, and net benefits foregone as a result of
sampling error could be determined.

Simulated records of selected lengths were obtained by dividing the
500-year base "record” into five 100-year samples, ten 50-year samples,
twenty 25-year samples, and fifty 1lO-year samples. Pertinent statistics
for the simulated records are shown in Table 1.

EXAMPLE

To illustrate the procedure, a brief description of the analysis is
presented for an arbitrary demand taken as 50 percent of the mean annual
flow. On the basis of the 500-year simulated record and the cost-benefit
curves shown in Figure 2, the optimum size of conservation pool for 50
percent yield was found by suceessive approximstions to be 71,000 acre-feet,
producing a reservoir with total contents of 131,000 acre-feet, when added
to the optimum flood pool of 50,000 acre-feet and the dead storage of 10,000
acre~feet. Eighty-five sub-optimal reservoir designs were similarly obtained
based on the 10-, 25-, 50~, and 100-year samples as described gbove, In
order to provide a common basis for comparison, operation studies of 1l0-year
records assumed nine repetitions of the flows to obtain 100 years of operation,
those of 25«year records three repetitions, and those of 50-year records one
repetition. The results are shown in Table 2, Similar results are shown
for a demand equal to TO percent of the mean annual flow. Over 100,000
years of multipurpose operation by computer simulation were required to

obtain the table. For each sample, the size of the conservation pool chosen

T



and the net benefits minus cost (B-C) for the chosen design were

computed. Considering that each of the samples is equally likely to
occur, the average B~C for each record size can be considered as the
expected B-C resulting from basing the design on a record of that given
length. As expected, B«C generally increases with length of record.

The increase in net B-C between two lengths of record is the "worth"

of the added increment of record. Dividing by the length of the added
increment gives the average worth per year of added record in that
increment. For example, designs for 50 percent yield ba.éed ﬁpon a
ten-year record gives an average B-C of $15,100,000, whereas a twenty-five
year record gives an average of $17,900,000. The difference is $2,800,000
dollars gained by adding fifteen years of record, or $2,800,000/15 =

$187 2000 worth per year on the average for the added fifteen years. As

is shown in Table 2, this worth declines as the length of record increases.
If costs are sbout $1,500 per year to maintain a streamgaging station, and
if the construction of a $20,000,000 project is plenned, the bregk-even
point for cost and benefit for a gaging station used for this one design
purpose would be well beyond a length of 100 years. Table 2 indicates
that for a reservolr designed to deliver a higher yield of 70 percent

of the mean annual flow of Arroyo Seco the worth of data increases.

If the construction of a $36,000 ,000 project for T0 percent yleld is

planned, the worth of data per dollar of construction cost increases by



2 to 10 times in relation to the lower-yield reservoir. These computed
worths are minimum worths. If the data have transfer value, the worth

of this transfer velue must be included in the total worth for the record.
CONCLUSIONS

A procedure for evaluating the worth of streamflow data for project
design has been described, and a simplified example shown. The continua~
tion of this study will include evaluation of streamflow synthesis in
design improvement, and evaluation of the worth of transferring data
from one location to another. The overall results will be summarized in

terms of stream regimen characteristics.
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APFPENDIX I,~-DEVELOPMENT OF COST AND BENEFIT CURVES,

ARROYO SECO NEAR SOLEDAD, CALIF., 50 PERCENT YIELD

1. Assume dB

2., Find C = &

dac

aS| opt = &S| opt
b b, -1
st ;a4 =a b ST = .1207
= .

from typical cost curves

3. Find Bmax which can be based on a worth per acre-foot of water

L, Assume Bx = Bmax - KIX - gg. = =K EEE
as

5. .ggl - ac = .1207 = - K dI

" as| opt dSi opt dS| opt

b2 b2 -]
6. Find I = a, S 5 4L = a, b, 8 (from routing)
das
b2~l l—b2
Te e #1207 = =K (82 b2 Sopt ) ; K= = .izqg SoPt = 1l.572
2

8y 8ps Py, by

opt

empirical constants

benefits, in millions of dollars
maximmm obtainable benefits
benefits for storage level x
cost, in millions of dollars
deficit index

proportionality constant

storage in thousands of acre-feet

indicates the value when evaluated at the optimal point.
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