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APPLICATION OF THE FINITE ELEMENT METHOD TO VERTICALLY
STRATIFIED HYDRODYNAMIC FLOW AND WATER QUALI'TYl

R. C. MacArthur2 and W. R. Norton3

INTRODUCTION

Continuing interest in the internal processes of reservoirs, lakes and
estuaries has intensified the development of mathematical models for
simulation of vertically stratified flow. Motivated primarily by the
long term desire to predict the water quality response to system
modifications, current modeling efforts have focused on the need to
describe flow coupled with temperature and/or salinity fields in order
to forecast the influence of density induced flows. Computational
algorithms have shown sufficient promise that efforts are under way

to collect prototype data which can be used for calibration and
verification of both flow and water quality models,

Among the several models which have been formulated to simulate density
induced flows and water quality is one called RMA-7. This model, which
was originally developed for the Office of Water Resources Research,
(King, 1973) has existed for several years but has received relatively
little use in prototype applications. It is the intent of the work
reported herein to demonstrate the operation of the current version of
RMA-7 and to offer appropriate information and comments on the use and
implementation of the model.

Specifically, the paragraphs which follow contain a brief description of

the mathematical basis of RMA~7 as well as an example of its implementation
on a prototype system which approximates the physical dimensions of the
gso—called GRH flume at the Corps' Waterways Experiment Station in Vicksburg.
Also included are some results obtained by the model from the simulation of
temperature and dissolved oxygen for Lake Taneycomo in Missouri. Several
statistical comparisons are included between simulated and measured values
for Lake Taneycomo which are designed to quantify, to some extent, the
accuracy of the model.

1
Presented at the 3rd Intermational Conference on Finite Elements in Water
Resources, May 19-23, 1980, the University of Mississippi, Oxford, MS.

2Hydraulic Engineer, the Hydrologic Engineering Center, Davis, California.

3Principal, Resource Management Associates, Lafayette, California,



GOVERNING EQUATIONS -~ DIFFERENTIAL FORMS

RMA-7 is a two dimensional mathematical model which describes the behavior
of velocity, pressure, temperature and dissolved oxygen in the vertical
plane with homogeneity assumed in the third (lateral) direction; the model
will accommodate width gradients in both the X and Y directions. This
model is formulated on the classical concepts of conservation of mass,
momentum, and energy although it is somewhat unusual as it retains the
complete vertical momentum equation and does not make the assumption that
pressure must be hydrostatic.

Hydrodynamic Model

The equations used in RMA-7 have the following differential
forms:

Velocity equations.

du 3u du, , 3p _ 3%u 2% _
p(at + u nx + v ay) + e " Eax 337 Exy 57" 0 (1)
Bv . dv . _dv, . 3 - 3% 9%v _
p(at tus+ v ay) + 3y + pg - ny =z eyy 35z = 0 (2)
Continuity equation.
3 9
. (wu) + ‘é; (wv) =0 (3)
Temperature equation.
Cp é-'I—‘+ Cpu §2-+ C v-éz-— D T - 2’1 =0 (4)
ot x P oy x ox? y oy2 = ¢2 =
where u = X direction velocity
v = Y direction velocity
P = pressure
T = temperature, degrees C
t = time
p = fluid density
= £(T)

g = gravitational acceleration

C = specific heat
¢2 = thermal heat source or sink
w = width
Exx, €
EXX’ XY = eddy viscosity coefficients
yX,fyy

DX,Dy = eddy dispersion coefficients



Water Quality Model

The equations used in RMA-7 to describe the behavior of dissolved oxygen
have the differential forms:

Dissolved oxygen equation.

(5)
dcy acy ocy 3%c) 3%¢y - =0
3t + u I + v dy - Dx %2 Dy 3y2 + Kac2 apca
Carbonaceous biochemical oxygen demand (BOD) equation.

dc2 3c, dc, 32c, 3¢, . -

3t + u Y. + v ay - x 9x2 y ayz + Kaco 0 (6)
Phytoplankton equation.

ac3 dc dc 22¢ 3%c

5o tu —iax + v ——3-8}7 D_ ———13x2 - Dy _13;72 nes = 0 ¢))

where c¢3 = dissolved oxygen concentration
c2 = carbonaceous BOD concentration
c3 = phytoplankton concentration (dry weight)
K2 = BOD decay rate
a = the mass of oxygen produced per unit mass of phyto-
plankton growth
‘¥ = .the local rate of phytoplankton growth

_n ) -
max I + Ky

where Mp,, = the maximum specific phytoplankton growth rate at
‘ the local temperature
I = the intensity of light at the local depth
Ky = the light half saturation constant
T the phytoplankton respiration rate at the local
temperature
and all other terms as previously defined.

Equations 1 through 7 represent the mathematical basis for the model RMA-7.
It is recognized that these equations provide an approximate representation
of the governing processes in that certain second order terms with respect
to width have been dropped and that the viscosity/dispersion terms are
largely empirical. Notwithstanding these shortcomings, however, the above
relationships have shown promise in simulation of observed phenomena, and
provide a general framework for testing and improving the procedures
necessary for simulation of vertically stratified flow.

As can be seen, the first four equations and the second three equations
each form a closed set which must be solved simultaneously. The coupling
between the two sets is manifest in the convective velocities u and v,
and in the water temperature, T. Fortunately, the coupling between the



two sets is of the "feed forward" type in that equations 1 through 4 may
be solved independently of equations 5, 6 and 7, with the results of the
hydrodynamic solution acting like coefficients in the solution of the
water quality model.

In addition to the volumetric terms shown above, the model contains a
number of additional features to account for surface effects and source/
sink terms. Most important of these are: 1) bottom friction at the
soil-water interface calculated as a function of bottom velocity and a
Chezy coefficient; 2) surface heat exchange as a function of the water
temperature, the equilibrium temperature and an exchange coefficient;

3) internal absorption of short wave solar radiation as a function of
depth; and 4) surface oxygen exchange as a function of the local oxygen
deficit and an exchange coefficient which is a function of wind speed.

SOLUTION TECHNIQUE

The governing equations are solved by the finite element method using
Galerkin's criteria for the method of weighted residuals. The formulation
employs a mixed set of basis functions, with quadratic functions used for
all state variables except pressure where a linear function is used. The
linear pressure function implies a constant element density, which is
calculated as a function of average nodal temperatures. Green's Theorem
is used to lower the order of all second derivatives in the viscosity/
dispersion terms, resulting in surface integrals which must be evaluated
(either implicitly or explicitly) along system extremities. Green's
Theorem is also used on the pressure terms of equations 1 and 2 permitting
a surface integral to be used as a discharge boundary condition rather than
a specified pressure value; this procedure permits retention of all nodal
continuity equations and substantially improves the model's performance.

RMA-7 uses an implicit, Newton-Raphson computation scheme to achieve a
solution to the set of nonlinear equations which define the model. The
computer program accommodates either triangular or quadrilateral
isoparametric elements with numerical integration used to evaluate

all surface and area integrals. The use of the isoparametric formulation
with interelement geometric slope continuity allows flow to move parallel
to boundaries at all points while at the same time providing a means for
reasonable representation of real physical systems.

EXAMPLE PROBLEMS

The model described above has been applied to several physical situations,
two of which are summarized below. The first example shows results
calculated from tests conducted with the geometry of the GRH flume at WES.
The second shows results calculated from conditions found in Lake Taneycomo
in Missouri. The first example was run using only the flow and temperature
portions of the model, while the second includes flow, temperature and
dissolved oxygen. The networks used for each of these example problems

are reproduced in figure 1.



Example Problem 1 ~ GRH Flume

The GRH flume is a hydrodynamic test facility which is 80 feet long and
varies in depth from approximately 1 foot at its upper (inflow) end to

3 feet at its lower (outflow) end, with two different cross sections
along its length. The inflow section, which is 20 feet long, has a
horizontal bottom and varies linearly in width from 1.0 foot to 2.85
feet. The lower section has a constant width of 2.85 feet, but a bottom
which drops 2 feet over its 60 foot length.

RMA-7 was applied to the GRH flume geometry by construction of a finite
element network containing 57 elements and 158 node points as shown in
figure 1. In constructing this network it was felt desirable to allow
flow to move parallel to the flume bottom at all locations. For this
reason continuous curves were passed through the breagkpoint on the flume's
bottom 20 feet from the upstream end and at the transition to the outlet.
This type of construction permits continuous velocities to exist along

the flume bottom and completely eliminates artificial stagnation points.
The small discharge nozzle at the outlet has been included for each
boundary condition specification and does not exist on the physical flume.

To run RMA-7 it is necessary to specify values for eddy viscosity and
eddy diffusion coefficients. At present, this is done by experience
and numerical testing of problems which have known or assumed velocity
and temperature distributions. In the GRH flume case, a series of
numerical tests were conducted on a steady state problem to determine
a set of satisfactory coefficients, and the network's sensitivity to
the various coefficients. The values determined for the GRH flume had
the relative values of exy = 0.05, exy = 0.0005, eyx = 0.01, eyy = 0.1,
Dy = 0.1, and Dy = 0.0005, after accounting for element distortion and
size.

Results from two examples are shown, one for a homogeneous flow and one
for a nonhomogeneous flow. In each case a flow of 10 gpm was introduced
into a still flume with a linear velocity distribution in the lower
element at the inflow end. The homogeneous case was run isothermally

at a temperature of 10.3°C, while the nonhomogeneous case was started
with an initial temperature of 10.3°C and an inflow of 5°C.

Velocity distributions produced by each condition are graphically compared
at three times in figure 2. The effects of the density stratification are
quite evident between the two cases with the colder, more dense water
underflowing the lighter and warmer water near the surface. The results
shown are representative of ongoing work with the GRH flume, although no
measured data is currently available for model/prototype comparisons

under the conditions simulated. The general shape of velocity distribu-
tions, and the arrival time of the temperature front (15-18 min) are in
general agreement with measured data, however, and suggest the model will
perform well when suitable data become available.
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Example Problem 2 - Lake Taneycomo

The second example problem presents results obtained from the simulation
of Lake Taneycomo in southern Missouri. Lake Taneycomo is a 26-mile-long
reservoir bounded by Table Rock Dam upstream and Bull Shoals Reservoir
downstream, and is used for power production and recreation among other
things. As low dissolved oxygen has been observed in the lake, RMA-7 was
applied with the goal of evaluating the impact of changes in reservoir
operation on the ambient levels of dissolved oxygen.

To conduct the required simulations a network of 92 elements and 246 node
points was constructed as shown in figure 1; lateral width varied from
about 200 to 1000 feet with depth at a typical cross section. Diffusion
coefficients and eddy viscosity coefficients were chosen to be consistent
with those used in the GRH flume when scaled for element distortion.

Detailed water temperature and dissolved oxygen measurements were available
for three separate week long periods in the fall of 1977. RMA-7 was
calibrated against two of these periods and verified against the third.
Typical measured and simulated vertical profiles for temperature and
dissolved oxygen are presented for stations Té6 and T8 in figure 3 for

the earliest calibration period. It should be noted that the model had
simulated over five days of operation by the time shown in these figures,
and that the inflow hydrograph varied from 0 to 7000 cfs in a four to six
hour period on a regular basis.

In order to bring a degree of quantification to the accuracy of the model,

a linear least squares regression of simulated to observed temperature

and dissolved oxygen has been made as shown in figure 4, with the statistics
for each fit given in table 1.

As can be seen, these statistics indicate a fairly good fit of both temper-
ature and dissolved oxygen, and seem reasonable in light of the uncertainty
in both the model's upstream inputs (BOD, dissolved oxygen, meteorological

data, etc.) and the usual measurement errors.

Table 1l.--Regression Statistics

STATION T6 STATION T8
Regression
Statistic Temperature Oxygen Temperature Oxygen
intercept 4,77 - 3.27 0.29 3.30
slope 0.58 0.45 0.96 0.39
s.d. error 0.65 0.49 0.43 0.30
correlation 0.44 0.30 0.89 0.81
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SUMMARY AND CONCLUSIONS

The above information summarizes the application of a two dimensional
finite element model (RMA~7) to two prototype stratified flow situations.
In each application a stratified flow was simulated as a result of density
differences arising from temperature gradients. In the second example
dissolved oxygen, BOD and phytoplankton were also routed in accordance
with the overall flow fields.

Based on the data contained herein it seems reasonable to conclude:

. the finite element method in general and RMA-7 in particular,
is capable of simulating vertically stratified two dimensional
flow,

. the proper definition of eddy viscosity and dispersion coeffi-
cients is essential to proper model operation, and that there
may be transferability of values from problem to problem if
element size and distortion is accounted for.

. the RMA-7 model appears to give reasonable answers, but it is
not currently possible to evaluate its accuracy in relation to
velocity due to a lack of prototype data; initial comparisons
of temperature and dissolved oxygen data are promising and
will improve as calibrations become more rigorous and
quantified.
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