US Army Corps
of Engineers
Hydrologic Engineering Center

Critical Water Surface by
Minimum Specific Energy Using
the Parabolic Method

January 1980

Approved for Public Release. Distribution Unlimited. TP'69



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Department of Defense, Executive
Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
January 1980 Technical Paper

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Critical Water Surface by Minimum Specific Energy Using the

Parabolic Method 5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Bill S. Eichert

5e. TASK NUMBER

5F. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER
US Army Corps of Engineers TP-69

Institute for Water Resources
Hydrologic Engineering Center (HEC)
609 Second Street

Davis, CA 95616-4687

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/ MONITOR'S ACRONYM(S)

11. SPONSOR/ MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A method for determining critical depth for a cross section of any shape is presented. The method is incorporated in the
U.S. Army Corps of Engineers, Hydrologic Engineering Center's Water Surface Profile Computer Program (HEC-2). The
method proposed determines the minimum specific energy by using a parabolic interpolation.

15. SUBJECT TERMS
critical depth, HEC-2, backwater, mathematical models, minimum specific energy, parabolic equation, coriolis coefficient,
open channel hydraulics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE OF OF
ABSTRACT PAGES
U U U uU 29 19b. TELEPHONE NUMBER

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18




Critical Water Surface by
Minimum Specific Energy Using
the Parabolic Method

January 1980

US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street

Davis, CA 95616

(530) 756-1104
(530) 756-8250 FAX
www.hec.usace.army.mil TP-69




Papers in this series have resulted from technical activities of the Hydrologic
Engineering Center. Versions of some of these have been published in
technical journals or in conference proceedings. The purpose of this series is to
make the information available for use in the Center's training program and for
distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of
the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an official
endorsement or approval of the use of such commercial products.



CRITICAL WATER SURFACE BY MINIMUM SPECIFIC
ENERGY USING THE PARABOLIC METHOD

by
Bi11 s. Eichert!!)

GENERAL - The critical state of flow is defined as the condition at
which a maximum discharge is obtained with a given energy, or where a
minimum energy is required to produce a given discharge. For a simple
geometric channel (rectangular, trapezoidal, semi-circular, etc.) the
critical velocity (VC) may be computed from the area (A) and top width
(TW) by the formula: X_g.= _A . For complex cross sections, where
channel and overbank f]osg bo%gwoccur, this equation can give answers
which are greatly in error due to the ability of the hydraulic radius
to increase materially with only a small change in area. For a cross
section that has horizontal overbanks, the formula will erronecusly
show that the critical discharge flowing at the top of the banks is
greater than the critical discharge when flowing at just above the banks.
This condition can be properly evaluated for a given discharge using a
cross section of any shape by dividing the cross section into several
subsections in order to define the nonuniform velocity distribution, and
by determining the critical water surface elevation that corresponds to
the minimum specific energy. For a complex cross section, the energy
gradient and the water surface elevation are usually assumed constant
across the entire width of the cross section, and the energy gradient is

then equal to the water surface elevation plus a weighted velocity head.

(1) Assistant Chief, Hydrologic Engineering Center, U.S. Army Corps of
Engineers, Sacramento, California. 1969.



As a result of nonuniform distribution of velocities over a cross
section, the velocity head of a cross section (V2/29) is generally greater
than the value computed by dividing the square of the mean velocity (Q/A)
of the cross section by twice the gravitational constant (g). This state-
ment is true because the square of the average velocity is less than the
weighted average of the squares of the point velocities. The true velocity
head may be expressed as aV2/29, where alpha is the energy-head coefficient,
or Corioli's coefficient. The method presented in this paper does not
assume a Corioli's coefficient of unity as most hand methods do, but
accounts for the nonuniform velocity distribution between the subsections
by assuming that the weighted velocity head of the cross section (WHV) is
equal to the average velocity head for each subsection of the cross section
when the subsection velocity head is weighted in proportion to the discharge
capacity of the subsection. The discharge capacity of each subsection (Q)
equals the product of its area (A) and its average velocity (V), or using

2/35“2)/m. For an assumed water

Manning's formula, Q = AV = (1.486A R
surface elevation the area (A), hydraulic radius (R) and Manning's roughness
coefficient (n) are known. Initially, an index slope of the energy gradient
(S]) is established such that 51/2 = .01 (subscript 1 on Q],V],R], S]
indicates index values), and the resulting index discharge (Q]) is computed
for each subarea and totaled for the entire cross section. Since the

actual discharge which is to be used in the backwater computations, (zQ)
equals the sum of the discharge through the subsection, and since the area,
hydraulic radius and roughness coefficient are equal, the slope (S) can be
computed from the following equation:

2



Q] ) 51/2]
AV
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Thus:
s = [(.01 )/ =Q1]°
The velocity head of each subsection, based on uniform velocity distribution
within the subsection, is:
HV = (Q/A)° / 2g
The weighted velocity head for the cross section is therefore:

WHV = (z (Q x HV x COR) )/ £ Q = £ (QHV) /z Q

where: COR = Corioli's coefficient

PARABOLIC METHOD - The relationships between the water surface elevation

and the energy gradient is approximated by the parabolic equation using an
optimization routine that converges rapidly upon the desired critical
condition.

The parabolic method of determining the minimum energy elevation (EG)
requires three water surface elevations and the corresponding energy
elevations (EG1, EG2, EG3) which are obtained by adding the water surface
elevations to the weighted velocity heads. A special case which simplifies
the formula for the parabolic estimate of the minimum energy occurs when
the three estimates of water surface elevation are separated by two equal
intervals of elevation (HTINC). The procedure of assuming three water
surface elevations equally spaced followed by an estimate using the
parabolic equation is referred to as a cycle during the rest of this

paper. The basic formula for the water surface elevation at the minimum



energy point (based on a true parabola) was derived as follows:

let k = critical water surface elevation
h = minimum energy elevation
y = any water surface elevation
x = the energy elevation corresponding to y
p = constant for the parabola

From the basic equation of the parabola:
2
(y - k)" =2p (x - h)

Equations for any three estimates of the water surface elevations

(y1s¥95y3) are:

(yy - k)? = 2p(xy - h)
(v, - K)° = 2p(x, - h)
(v3 - K)? = 2p(xy - h)

Since there are three equations and 3 unknowns (k,h,p), these equations
may be solved simultaneously, by standard methods not shown here to yield:

2 2 2

VI Tt yg - Zklyy -2y tyg) Xy - 2%+ xg

(v = ¥)(yy +y, - 2k) Xy = %,
Since the value of k (the only unknown) is in both numerator and
denominator and the equation apparently is in its simplest form, the
equation will have to be solved by successive approximations. However,

if a uniform increase is made between Y12Y2s and Y3 such that:

Yp =¥yt ty
Y3 =yt 2y



Then, by combining the three equations above, simplifying and solving

for k, we find:
=y, t .00y + = Ay
1 X 2x2 + x3

or, in terms used during rest of paper:

MSEL = WSEL1 + .5 * HTINC - JL % HTINC
where:

WSEL = parabolic estimate of water surface elevation

WSEL1 = first assumption of water surface elevation in each cycle

HTINC = constant increment of height added to first and second WSEL

D1 = difference in energy gradients for the second and first
assumptions (EG2 - EG1)

D2 = difference in energy gradients for the third and second
assumptions (EG3 - EG2)

D3 = difference between D2 and D1

The value of HTINC should be chosen very carefully an its magnitude may
double or triple the number of iterations required to determine critical
depth. For this application, HTINC is assumed equal to 5% of the difference
between the water surface elevation assumed (WSEL1) and the minimum elevation
in the cross section (ELMIN). Since the assumed water surface elevation
changes for each optimization cycle (set of three or more guesses), the
value of HTINC also varies for each cycle.

The first assumed water surface elevation for the first cycle is made
without knowledge of the parabolic parameters, and is made as close as

possible to the true answer in order to reduce the number of iterations.



In this application, the initial assumption normally made is that the
critical depth for the current section is equal to the critical depth
at the previous section. The next two assumptions increase the esti-
mates by a fixed amount (HTINC), while the fourth estimate is based
on the equation of the parabola.

If the quantity (D2 - D1) is positive, the optimization procedure
is converging and the above equation is appropriate. From Exhibit 1,
note that for subcritical flow (depth greater than critical) D1 and D2
are positive and that D1 must be less than D2 for convergence while for
super-critical flow D2 and D1 are negative and D2 must be numerically
smaller than D1 for convergence.

If (D2 - D1) is not positive, then the function is not converging
(possibly due to some local irregularities in the cross section) and the
next extimate of the water surface should be a large step in the
direction of decreasing energy. (A limit of 50 percent in any step is
used in order not to bypass the minimum energy point in the case of
highly irregular functional relationships.)

The value of D1 is used to indicate the direction of the change.
Positive values of D1 indicate that the trials are on the subcritical
flow side and that the estimates of water surface elevation should be
decreased. Negative values of DI are indicative of trials in the super-
critical flow range and indicate that the estimates of water surface

elevation should be increased.



If D2 and D1 are both equal to zero, critical depth has been found.

If they are equal to each other, but not equal to zero, then a negative
value of D1 indicates an increase is needed and a positive value indicates
a decrease.

If the estimate based on the parabolic method (EGC) produces an
energy gradient that is greater than the first estimate of this cycle
(EG1), then the estimated change is too large and has passed beyond the
critical water surface elevation. When this condition occurs, the
estimated water surface elevation is changed so that the magnitude of
change from the first estimate of the last cycle is reduced by 70 percent
(WSEL = .3 WSEL + .7 WSEL1). If this condition occurs on the next try
also, then the previous estimated change is again reduced by 70 percent.
This reduction process may be used up to 5 consecutive times which would
provide a minimum change of .002 (.35) times the change indicated by the
parabolic equation.

When the estimate from the parabolic method given an energy gradient
which is less than the first assumption of the cycle, the estimate is
converging toward critical depth. This estimate is either accepted as
being close enough to the minimum specific energy or another complete
cycle is made using the previous estimate as the first assumption (WSEL1).
The above process is repeated until the answer is within acceptable Tlimits.

The estimated critical water surface elevation is accepted in this

application when:



(1) The difference between the last two estimates by the parabolic
method, or the last 70 percent reduction of that estimate, (WSEL - WSEL1)
is less than the smaller of .5 foot or 2.5 percent of the estimated depth
from the critical water surface elevation to the minimum elevation in the
cross section, and

(2) When the last energy gradient elevation for the estimate by
the parabolic method (or the last reduction of that estimate) was an
improvement over the energy gradient elevation for the previous cycle
(EG1), or was no worse than .01 of a foot.

Numerical examples are shown on Exhibit 3 for 3 typical problems. In
Example 2, the first estimate of the critical water surface elevation was
so close that only one cycle was necessary to determine the critical
condition. In Example 3, the estimate by the parabolic equation was not
controlling in the entire process since it required a change greater than
50 percent of the depth each time it was computed. A description of the

cross sections used in the three examples is shown in Exhibit 4.
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EXHIBIT 2

SPECIFIC ENERGY CURVE

EGL EG2 EG3
D1 D2
o -
positive positive —
/’/
/,,,,,,,;<}/’/’ WSEL3
WSEL2
WSELL
SUB-CRITICAL FLOW
— — S ) g
SUPER-CRITICAL FLOW
HTINC
< WSEL3
& \\* WSEL2
\r WSELL

b2 Dl

negative ‘negativgl

EG3 EG2 EGL

ENERGY GRADIENT ELEVATION



2 30 | 8beq
€ LI9THX3

oTTOqBIR]
Léq* £q esesaoul
LG 8q eseaxoul
oTTOgRIE]
¢zQ* £q sseaxoul
G2g9° £q esesaoul
#0TTOqRICd

" TR

¢l £q aseaxoul

29BWILSS STqeUOSEdY

HLVWLLSE
J0
S1isvd

(o1)

660"

LU

ceo”

(6)

2lo:

€9T1" -

809"

(8)

yadep %0G Jo a8ueyo @ 03 POJTWIT SJLWIFSHxk

6£9° 4 QRG6Q° ETT 92°602T G 0T
€10° H6° € Tehg6 12t #0*0TeT f 6
92¢*H L6t 6QTT6°ETeT 64°602T € 8
TLL % Len® 26869°£12T €1°602T 2 L
906" - UV TOg6Q* £T2T GT°602T f 9
9€L* 6 Geg* 69090 #T2T 2€ goeT € g
190 L Geg* 76996 " 12T 6*lozgt 2 i
el 09N T T1096° L12T 06°912T f g
2091 TN ghese LT1et Gleg1er € e
LoL°T GL* 71994 9TeT ¢1et 2 T
(0021 - T® axsAur ‘uotjoes JeTnduejodd Mg ,00T) - T oTdwexy
Td QvEH EONVHD QEIOINOD ATANSSY  NOLIJWNSSY ON
AITDOTHA IHOIAH J0 ‘T4 INIIQVYD TH EOVJENS HIAL TYIYL
CIIHOTAM  INFWAYONT XDYANK HALYM
(L) (9) ($) (1) (€) (2) (1)

GOHLIW J1709vuvd

A8 3JV4INS YILYM WIILTYD
€ LI9IHX3

W



2 40 g 8beq
€ LI9IHX3

i 1] 14

i n 11
%0/, Lq sonpey
*UoTyendy oTTOqRIRg

u 113 11

966" T £q oseagour
uowou

%0J. £q sonpay

¥uoTqenby orTogeaed

26" T £q eseoaour

26T £Aq eseaxoul

gsong sTqBUOSBOY

uotlenbe orTogBIRg
006* Aq sswaaoul
006 Aq 9sewaaour

ssend aTgrUOSEIY

(o1)

€€0"  QES'T G06°T

610" TTH'T €6E°T

HeT® G6T° T9O°

GTE"
09€'9
966° L
Loz €T
2T19° L
HGT
wre"
90¢*
€TL 0T
08t L9
L3T*

680" L
Gg&*s
0629
621 L

yqdap ROm Jo o8uryd 03 peaTwrT Sem uorzdumsse oTTOqeRIEdy

866 T
865 T

26t T

26H° T

006°

006"

(9)

€16°691
962°6LT
QT9°GLT
LG6E QLT
250" €e2
659°2LT
[CAMVAS
LT19° 691
716°9LT
qLngzge
6%9°€LT
LeeelT

GHg oLT

621191
68E 1ot
06T #9T
OET* Ot

(t)

02° 69T
76°99T
90°g9T
GTT* 49T
66T
T62LT
T6°0LT
TE* 69T
92" 99T
60°94T
cGELT
L0*elt

29°0.T

HO* 1ST
08° 94T
06° 15T

00° 26T

(€)

S0 BN S (A AN T * T @

N \O

€T
Al

T

13



EXAMPLE 1
Elev Station
1215 0
1200 0
1200 100
1215 100

(1)The implied accuracy of one hundredeth of a foot is
misleading since this cross section was obtained
by the computer by interpolation between two given
cross sections.

EXAMPLE CROSS SECTION DATA

EXAMPIE 2
Elev Station
160 557
146 560
139 581
139 585
12 591
143 599
166 605

EXAMPLE 3
Elev Station
(1)183.57 0
173.57 103.86
162.57 259.64
161.57 266.57
153.57 270.37
148.57 273.84
147.57  275.91
1k2.57 278.68
'1h1.57 281.80
145.57 288.38
160.57 291.84
162.57 294.26
163.57 346.19
153.57  48L4.67
153.57 519.29
173.57 657.76
183.57 692.38
193.57 692.38

EXHIBIT 4
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