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DEVELOPMENT OF GENERALIZED FREE SURFACE FLOW MODELS
USING FINITE ELEMENT TECHNIQUES

D. Michael Gee, Robert C. MacArthur

The Hydrologic Engineering Center, U.S. Army Corps of
Engineers, Davis, California

INTRODUCTION

The Corps of Engineers' Hydrologic Engineering Center is
involved in the development, evaluation, and application of
mathematical models. Two finite element hydrodynamic models,
one for two-dimensional free surface flow in the horizontal
plane and one for the vertical plane are being evaluated.
Although the models are formulated to solve dynamic flow
problems, all work to date has been with steady state solutions.
Recent research has focused on mass continuity performance of
the models, proper boundary condition specification, and
comparison with finite difference techniques. The objective
of this research is to develop generalized mathematical models
for routine use by the engineering community. This paper
presents recent results of evaluation and application of the
models.

THE MODEL FOR TWO-DIMENSIONAL FREE SURFACE FLOW IN THE
HORIZONTAL PLANE

The model for two-dimensional free surface flow in the
horizontal plane solves the governing equations in the
following form:

Continuity

My 2 (un) + &5 (vh) = 0 (1)
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where
u, v = x and y velocity components respectively
t = time
h = depth
ao.= bed elevation
e = turbulent exchange coefficients
g = gravitational acceleration
w = rate of earth's angular rotation
¢ = Tatitude
C = Chezy roughness coefficient
z = empirical wind stress coefficient
V3= wind speed
¥ = angle between wind direction and x - axis
e = fluid density

Before solution, the equations are recast with flow {velocity
times depth) and depth as the dependent variables. A linear
shape function is used for depth and a quadratic function for
flow. The Galerkin method of weighted residuals is used and
the resulting non-linear system of equations solved with the
Newton-Rapheson scheme. Details of the solution have been
pubiished previously by Norton, et al (1973) and King, et al
(1975). General discussions of finite element technicues have
been published by Zienkiewicz (1971), Hubner (1975), and Strang

& Fix (1973).

Evaluation of Continuity Errors

The finite element method yields a solution which approximates
the true solution to the governing partial differential
equations. The approximate nature of this solution becomes
evident when mass continuity is checked at various locations
in the solution domain for a steady state simulation. Although
overall continuity is maintained (inflow equals outflow over
the boundary), calculated flows across internal sections
deviate somewhat from the inflow/outflow values. A study was
made to evaluate errors in continuity as a function of network
density. Poor continuity approximation is important of itself
if water quality simulation is the goal. In the present
applications, however, water surface elevations and velocities
are the variables of interest. Therefore, the impact of




continuity errors on these parameters was also investigated.

Flows on the Rio Grande de Loiza flood plain were
simulated using several networks. This flood plain was
selected because of its complex flow field and a prior study
by the U.S. Army Corps of Engineers (1976) had made the data
readily available. Model performance had previously been
evaluated for simple hypothetical and laboratory flows by
Norton et al (1973) and King et al (1975). The Loiza flood
plain is about 10 by 10 km (6 by 6 miles) in extent and is
characterized by variable bottom topography, one inlet and
two outlets, and several islands. Three of the networks used
in the study are shown in Figs. 1 to 3 illustrating pro-
gressive increase in network detail.

The solution was considered acceptable if flow at all
continuity check lines deviated from inflow by less than I 5%.
Continuity is checked by integrating the normal component of
velocity times depth along lines specified by the modeler.

The continuity check lines used in this study are indicated

by dark lines on Figs. 1 to 3. Note that, because the flow
divides around the islands, in some cases the sum of flows
across two check lines (such as 5 and 6) should be compared
with inflow. Various parameters of the problem are summarized
in Table 1. No attempt was made to calibrate the coefficients
used. =

The continuity approximation improved with increasing
network detail, as expected. Flow at the worst check Tine in
the coarsest network (7 + 8) improved from 79.3% to 98.2% of
inflow as network detail was increased. Network character-
istics, computer execution times, and results of the simu-
latjons with these three networks are summarized in Table 2.
Average depths and velocities along the continuity check Tines
are given in Table 3. The check Tine numbers in Tables 2 and
3 refer to the lines indicated on Figs. 1-3.

Table 1 Data for Loiza Flood Plain Simulation

1. Boundary conditions:
a. Inflow (line 1) = 8200 cms (290,000 cfs)
b. Outlets (1ines 11 & 12), water surface elevation =
2.5 m (8 ft) MSL
c. All other boundaries; either tangential flow or
stagnation points
2. Bed roughness: Chezy C spatially varied from 5.5 to 22
m'/?/sec (10 to 40 ft'/?/sec)
3. Turbulent exchange coefficients: varied with element size
from 24 to 48 m?/sec (260 to 500 ft?/sec)
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Figure 1 Continuity Check Network 3.1
(Dark Lines Indicate Continuity Check Lines)

Table 2 Continuity Performance of the Networks

Network 3.1 3.3 3.5
No. of Nodes 310 375 432
No. of Elements 131 162 189
CDC 7600 Execution Time (sec) 22 31 45
Check
Line Percent of Inflow
1 (inflow) 100.0 100.0 100.0
2+ 3 89,2 90.8 96.2
4 114.9 106.8 104.9
5+ 6 87.5 92.0 96.4
7+ 8 79.3 90.1 98.2
-9+ 10 99.8 99.4 98.7
11 + 12 100.0 100.0 100.0
(outflow)
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Figure 2 Continuity Check Network 3.3
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Figure 3 Continuity Check Network 3.5



Table 3 Flows (as percent of inflow),
depth, and veloc¢ities for the networks

NETWORK 3.1 3.3 3.5
Line
% 100 100 100
1 Y(m) 5.09 5.34 5.36
V(mps) 1.92 1.83 1.83
% 50.4 50.1 53.7
2 Y(m) 3.02 2.84 2.87
V(mps) .70 74 .79
% 38.8 40.7 42.5
3 Y(m) 2.48 2.51 2.63
V(mps) 2.52 2.62 2.61
% 114.9 106.8 104.9
4 Y(m) 2.91 2.78 2.78
V(mps) .66 .65 .63
% 36.0 37.9 39.7
5 Y(m) 1.91 1.98 2.02
V(mps) .75 .76 .78
% 51.5 54,1 56.7
6 Y(m) 3.82 3.90 3.76
V{(mps) .90 .93 1.01
% 36.8 37.9 40.9
7 Y(m 1.86 1.88 1.91
V{(mps) .62 .63 .67
% 42.5 52.2 57.3
8 Y(m) 2.26 2.37 2.37
V{(mps) .80 .94 1.03
% 42.1 41.0 42.6
9 Y(m) 2.48 2.48 2.50
V{mps) .24 .23 .24
% 57.7 58.4 56.1
10 Y{m) 3.09 3.07 3.05
V(mps) .31 .31 .30
% 45.8 46.0 47.0
11 Y(m) 2.36 2.37 2.37
V{(mps) .67 .68 .69
% 54,2 54.0 53.0
12 Y(m) 2.3]1 2.31 2.30
V{mps) 1.06 1.06 1.05




For most of the check lines, the improvement in con-
tinuity obtained with increasing network detail was associated
with changes in both velocity and depth. In two cases, lines
6 & 8, the velocity changes were substantial. This region of
the flow field is characterized by a rapid change of direction.
The results reinforce the caveat that increased network detail
is important in such regions. Furthermore, it appears that
depth is somewhat less sensitive to errors in continuity than
is velocity. Therefore, if one is interested in water surface
elevations only, a less stringent continuity performance
criterion could be accepted than if velocities are of interest.

Application to McNary Dam Second Powerhouse Study

An example of a "production" type application of the horizontal
flow model is the second powerhouse site selection study for
McNary lock and dam on the Columbia River. Flow fields down-
stream of the dam were simulated for several possible locations
of the second powerhouse. Of interest were velocities, both
magnitudes and directions, in the vicinity of the approach
channel to the navigation lock. The study area and several of
the possible second powerhouse locations are shown on Fig. 4.
Finite element networks for the existing condition and for the
south shore powerhouse with excavated discharge channel are
shown in Figs. 5 and 6. Data are summarized in Table 4. The
roughness coefficient was calibrated to reproduce an observed
condition.

This study was greatly facilitated by an automatic re-
ordering algorithm (Collins (1973)) which has been incorporated
into the model. This algorithm makes modification of a network
(compare Figs. 5 and 6) straightforward in that the entire
network need not be re-numbered. The existing numbering scheme
is utilized for input/output and the system of equations
internally re-ordered to reduce storage. i
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STUDY AREA SHOWING POSSISLE
SECOND POWERHOUSE LOCATIONS







Table 4 Data for McNary Second Powerhouse Study

1. Upstream boundary condition:
a. Spillway: Q = 7000 cms (250,000 cfs) for calibration

runs
Q = 0 for production runs
b. Existing powerhouse: Q = 6500 cms (230,000 cfs)
c. Second powerhouse: Q = 7000 cms (250,000 cfs)
2. Downstream boundary condition: Water surface elevation =
82.4 m (270.3 ft) MSL*
3. Al1l other boundaries:
stagnation points
55 ml/z/sec (100 ftl/z/sec)

4. Roughness: Chezy C =
5. Turbulent exchange coefficients: Varied with element size

from 4.8 to 14.4 m?/sec (50 to 150 ft2/sec)
*For production runs in which total river discharge was 13600
cms (480,000 cfs). This elevation was varied according to a
known stage-discharge relationship for other discharges.

Either tangential flow or

A vector plotting routine was used to display simulated

flow fields. Two such plots are shown on Figs. 7 and 8.
Plots of this type are considered essential for interpreting

and analyzing complex flow fields.
Continuity errors were generally less than *5% with the

exception of the constriction near the downstream boundary
where errors were on the order of -15%. If future detailed
studies are made, and velocities in that area become important,

more network detail will be provided.
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Figure 7 Velocities for Spillway Q = 7000 cms (250,000 cfs),
Existing Powerhouse Q = 6500 cms (230,000 cfs),

S1ip Boundary Conditions
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Figure 8 Velocities for Spillway Q = 0, Eiisting Powerhouse
Q = 6500 cms (230,000 cfs), Second Powerhouse Q =
7000 cms (250,000 cfs), S1ip Boundary Conditions

The model allows two valid types of boundary conditions
at boundaries where no flow enters or leaves the system. One
is the stagnation point where both components of velocity are
zero; the other is the slip boundary condition where the
velocity on the boundary is tangential to the boundary. The
s1ip condition requires use of curved-sided elements on the
boundaries. Use of curved boundaries with tangential flow is
favored. Use of stagnation points along the boundaries results
in a substantially different solution as shown in Fig. 9. Not
only is the velocity distribution altered, but calculated head
loss in the reach is about 0.21 m (0.7 ft.) greater than with
the slip boundary condition. Continuity performance for the
two simulations was similar, though in other problems analyzed
by Resource Management Associates (1977), the slip condition
was superior. Use of different boundary conditions should be
investigated in an attempt to identify under what conditions

the modeler should choose slip or stagnation point boundaries.
It is encouraging to note that the McNary study required

no code changes to the model.
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Figure 9 Velocities for Spillway Q = 7000 cms (250,000 cfs),
Existing Powerhouse Q = 6500 cms (230,000 cfs),
Stagnation Point Boundary Conditions

TWO~-DIMENSIONAL MODELS IN THE VERTICAL PLANE

Two-dimensional (Jongitudinal and vertical) hydrodynamic models
have been developed to aid the Corps in the description and
analysis of reservoir water quality. The importance of the
Tongitudinal as well as the vertical exchange in long,
relatively narrow and deep impoundments has been studied by
Pritchard (1971), Anthony and Drummond (1973) and the Tennessee
Valley Authority (1969). Investigations such as these have
shown that the hydrodynamics of a stratified reservoir in-
fluences the water quality and, therefore, the biological
productivity of deep impoundments. Additional objectives for
the development of multidimensional models are to be able to
predict the effects that outlet type and location, degree of
stratification, and reservoir operation have on the water
quality in downstream rivers and streams.

As well as the general interest in simulating flows in
the vertical plane, this research has provided the opportunity
to compare the performance of an implicit finite difference
method (FDM) model with that of a finite element method (FEM)
model. The FDM model was developed by Edinger and Buchak (1977)
and is named LARM (Laterally Averaged Reservoir Model). The
FEM vertical model was developed by Norton et al (1973)and King
et al (1975). Although initial development of the vertical FEM
model was accomplished at the same time as that of the hori-
zontal model previously discussed, further refinement and use
of the vertical model has lagged considerably.

The primary objectives of the comparison of these two
hydrodynamic models were: (1) to compare the relative ease
with which the required data and boundary conditions could be
prepared and coded; (2) to compare the overall performance of



the two different approaches with respect to stability,
convergence, accuracy and practicality; and finally, (3) to
compare relative run times and simulation costs between the
two methods for similar problems. The following paragraphs
present the fundamental equations used by the two models.

Governing Equations

Both models incorporate similar forms of the so-called phenom-
enological equations for momantum, along with the continuity
equation and a form of the convective-diffusion equation for
thermal or material transport in the vertical. Note, however,
that the FEM model retains the vertical momentum equation,
which is replaced by the hydrostatic pressure distribution in
the FDM model. Both models utilize a Cartesian coordinate
system with the longitudinal x dimension positive downstream.
The vertical z dimension is referenced positive upward from
the x-axis in the FEM model, while it is positive downward
from the x-axis in LARM. Both models allow for a variable
width in the lateral y direction.

FEM Hydrodynamic Model
Momentum Equation:

pb (%E-+ Y+ w2y 4 a(pb) _ exx2— (b2Y) = €xz & (b2Y)

t 9X 0z X X T oX 3z oz
+ pgc'zu[u]Ab - gvz Cos p A =0 (4)
- %2z &= (b25) =0 (5)

Continutty Equation:
3 + 9 =
Si{bu) * 5zbw) =0 (6)

Convective-Diffusion Equation for Density:
3bp. 3 L 30y _p 2 (poey - p 2 (pdP)=
tb (Ut wiz) - D (b3x) = D, 57 (b3)= 0 (7)

ot X 9X
where
u, w = fluid velocity in the x and z directions respectively
b = breadth
p = pressure
Dys D, = eddy diffusion coefficients in the x and z directions
respectively
Ay = area over which bottom stress is effective
As = the area over which the wind stress is effective

Other variables have previously been defined.

/2



FDM Hydrodynamic Model LARM
Momentum Equation:

9 8 (2 °_ s _8_ au
E?KUb) *ox b) + 37 (uwb) + o aX (pb) - 5x (bey 5 )

- g~z- (sz) =0 (8)

Boundary stresses are found using the following expressions:
at the surface:

.o a2

1, = v, Cos ¥ (9)
at the bottom:

r, = & ulul (10)
Hydrostatic Pressure distribution:

P _ =

5y ~P9=0 (11)

Continuity Equation:
d + 9 =
o (ub) + <= (wb) = gb (12)

Thermal Convective-Diffusion Equation:
3(Tb) , af{uTb) , 3(wTb) o oT y _ 3 9T y _ fb_
¥ * 3X (Dxb ) 3z (Dzb ) =

ot ax 8z B3 8z °Ch
(13)
Equation of state:
p = o(T) (14)
where
p = fluid density
by = density of air
1, = boundary shear stress
g = lateral inflow per unit volume
T = temperature
Dy, D, = heat transport dispersion coefficients
% = heat inflow per unit volume
Cp = specific heat

Other variables have been previously defined.

Description of the Test Problem

Data collected by the Tennessee Valley Authority (TVA)(1969)
were used to test and compare the two vertical models in a
reservoir simulation. These data were for the Fontana Reservoir
in North Carolina. The models were applied to the first 23 km
(14.5 miles) of the reservoir upstream from the dam. To
simp1lify geometric requirements, a uniform reservoir breadth of
638 m (2095 ft) was used. This breadth was selected to conserve




reservoir volume. The bottom profile and elevations were
determined from sediment investigation cross sections. Con-
ditions that existed in the reservoir during the last week

of March, 1966 were used to provide the boundary conditions
for the simulation. Water temperature profiles, water surface
elevations, and flows into and out of the test reach were
obtained from the TVA (1969) data. The reservoir was strati-
fied and was approximately 108 m (353 ft.) deep at the dam.
Surface heat exchange, wind velocity, and tributary inflows
were all assumed to be zero for the purposes of this investi-
gation; a steady inflow and outflow of 140 cms (5000 cfs) was

used.

Discussion
The time and effort necessary to describe the reservoir
geometry for both the FDM and FEM models were comparable. To
achieve calculated results at comparable locations in space,
optional quadrilateral elements were used so that the finite
element network (Fig. 10) was almost identical to FDM grid
(not shown). It is recognized that this network does not
exploit the capability of the FEM model to allow increased
geometric resolution where desired, such as near the reservoir
outflow point, but this simplification was useful for com-
parison of results.

The convergence of the FEM solution was noted to be
somewhat more sensitive to the magnitude of the turbulent
exchange coefficients than the FDM model. The ranges of values
of the coefficients over which convergent solutions can be
obtained for the two models have not yet been firmly estab-
lished. Additional sensitivity investigations shall be under-
taken at a later time. Ariathurai, et al (1977) examined
similar equations and found that stability and convergence of
the solution could be related not only to spatial and temporal
step sizes but also to the Peclet number which is the ratio of
convective transport to diffusive transport.

The flow fields calculated with the FDM and FEM models
are shown in Figs. 11 and 12 respectively. The vertical scale
of Figs. 10-12 is exaggerated by a factor of 100. Coefficients
used (refer to equations 4-7) were: eyx=24, exz=4.8x10-3,
€Z§=240, Dy=23, Dz=9.3x10-7 m2/sec (260,0.05, 2600, 250, 10-°
ft4/sec). Although the models have numerous detailed differ-
ences, particularly in the description of boundary conditions,
the calculated flow fields are similar and reasonable. For the
test application, the reservoir was thermally stratified, with
the incoming fluid cooler and more dense than the fluid in the
surface layers. The stable density gradient in the region of
the thermocline tends to inhibit vertical momentum and material
transport, yet circulation appears in the upper layers. The
circulation in the surface layers is driven by internal hori-
zontal shearing between the cool water flowing toward the
outlet and the warmer water above. A similar flow pattern is
also observed in the bottom region below the main flow in the

oy
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FDM model (Fig. 11). Generally, the FEM solution predicts
larger vertical velocity components, perhaps due to the
retention of the vertical momentum equation. Comparison of
the solutions with available field data will be undertaken
once general performance characteristics of the two models
are further defined.

For these steady state simulations, the FDM took about
6 times more CDC 7600 computer time than the FEM. The primary
reason is that, to achieve a steady state solution, the FDM
model must be run through pseudo-time with constant boundary
values until transients from initial conditions die out (about
75-100 days in this case). The FEM model, however, has the
capability of solving the system once with zero time deriva-
tives to arrive at a steady state solution. Comparative costs
for dynamic simulations will depend primarily upon length of
time step and number of elements used to define the study
region.

SUMMARY

The work to date with the horizontal flow model indicates the
following:

(1) Internal continuity errors can be reduced to
acceptable levels by increasing network detail, particularly
in areas of large curvature of the velocity field.

(2) Errors in continuity tend to be reflected more
strongly in the velocity than the depth.

(3) General application of the model to steady state
simulations is feasible at present.

The preliminary work with the vertical flow models
indicates the following:

(1) The finite element method model is less costly than
the finite difference model for steady state solutions.

(2) Simulation of flows in which density gradients are
important requires careful selection of turbulent exchange and
eddy diffusion coefficients.

(3) The finite element model predicts larger vertical
velocities than the finite ditference model, perhaps due to
the retention of the vertical momentum equation.

(4) More experience with, and development of, the
vertical models will be required before "production" appli-
cations can be easily made.

Indicated areas of further work are:

(1) Verification of models' performance when an adequate
data set becomes available.

(2) Development of guidance on selection of turbulent
exchange coefficients, relationship to flow properties etc.

(3) Investigate models' behavior for dynamic simulations.

(4) Evaluate use of stagnation vs. slip boundary con-
ditions in the finite element models.

(5) Extend simulations with the vertical models to
variable breadth problems.
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