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A METHOD FOR ANALYZING EFFECTS OF DAM FAILURES 

IN DESIGN STUDIES") 

by William A, Thomas (2) 

ABSTRACT 

In the planning and design of dams and embankments for large 

multiple-purpose projects, it is usually necessary to evaluate the 

effect of potentially disastrous extreme events to insure that the pro- 

posed developments do not produce an unnecessary increase in the 

disaster potential. One such case which is being encountered more 

frequently now involves the design of dams and embankments for projects 

located downstream from an existing dam. If the existing structure is 

relatively old or if there is reason to believe that the probability 

of failure is relatively great, it may be desirable to consider the 

effect of a potential failure during the design of the downstream 

structure. 

In the design studies for a dam to be located downstream from an 

existing dam, the effects of failure of the upstream structure have been 

calculated. The flood wave which would result from failure of the up- 

stream dam has been calcul.ated and routed through the reservoir that 

wou1.d be formed by the downstream structure. The analysis utilized the 

 or presentation at the ASCE Hydraulics Division Specialty Conference, 
Cornell University, August 1972 

'2)~esearch Hydraulic Engineer, Research Branch, The Hydrologic Engineering 
Center, U. S, Army Corps of Engineers, Davis, California 



unsteady flow equations to evaluate the effect of the flood wave under 

three different conditi.ons of impoundment in the downstream reservoir 

at the time of failure. The structure that was assumed to fail was 

treated as a finite discontinuity in the water surface elevation at 

an internal point in the computation net rather than as a boundary 

condition. The design, verification and use of the digital simulation 

model for the analysis are presented. 



A METHOD FOR AMALYZING EFFECTS OF DAM FAILURES 

IN DESIGN STUDIES 

by William A. Thomas (2) 

In recent  years ,  the  f a i l u r e s  of s e v e r a l  s m a l l  dams have prompted 

design,  cons t ruct ion  and regula tory  agencies working i n  the f i e l d  of 

water  resources development t o  consider and analyze the  e f f e c t s  of 

f lood waves t h a t  could r e s u l t  from f a i l u r e  of e x i s t i n g  o r  proposed 

dams. These f lood waves, r e f e r r e d  t o  here in  a s  dam-break f loods ,  a r e  

of p a r t i c u l a r  importance because of the  l a r g e  momentum fo rces  associa ted  

with them, Ef fec t s ,  such a s  the  extent  and dura t ion  of inundation i n  the  

f lood  p l a i n  below a breached dam, the  r a t e  of t r a v e l  of the  flood wave, 

the  temporal and s p a t i a l  v a r i a t i o n s  i n  f lood wave a t t enua t ion ,  t h e  

fo rces  exer ted  by the  f lood wave on s t r u c t u r e s  wi th in  the  f lood p l a i n ,  

and the  environmental impact of the  f lood wave a r e  examples of the  types 

of e f f e c t s  t h a t  a r e  important. In  add i t ion ,  each individual  s i t u a t i o n  

w i l l  introduce s p e c i a l  cons idera t ions  i n t o  the  ana lys i s .  

The study which is  discussed i n  t h i s  paper was conducted t o  de ter -  

mine how much force  a dam-break f lood wave would e x e r t  on a downstream 

dam. There a r e  th ree  major a spec t s  t o  t h e  problem: determining t h e  

discharge hydrograph when a dam i s  assumed t o  f a i l ;  rout ing  t h a t  discharge 

downstream t o  the  point  of i n t e r e s t ;  and applying the  r e s u l t i n g  fo rces  

to the  s t r u c t u r e  i n  question. The f i r s t  two aspects  a r e  t r e a t e d  i n  t h i s  

paper. The method t h a t  was u t i l i z e d  t o  c a l c u l a t e  and rou te  the  dam-break 

( l ) ~ o r  presenta t ion  a t  the  ASCE Hydraulics Division Specia l ty  Conference, 
Corneii  Universi ty,  August 1972.  

( 2 ) ~ e s e a r c h  Hydraulic Engineer, Research Branch, The Hydrologic Engineering 
Center,  U.S. Amy Corps of Engineers, Davis, Cal i fornia .  



f lood waves i n  t h i s  s tudy could a l s o  be used t o  analyze t h e  dam-break 

f lood wave i n  terms of the  o the r  e f f e c t s  mentioned above. However, 

s p e c i a l  s i t u a t i o n s  developed which required s impl i f i ca t ion  of the  

problem i n  order  t o  use t h i s  method, and these  l i m i t a t i o n s  a r e  

discussed a l so .  

I n t e r e s t  i n  t h i s  ana lys i s  was st imulated by a d i f ference  i n  the  

design c r i t e r i a  used f o r  two p ro jec t s .  The p r o j e c t s  a r e  owned by 

d i f f e r e n t  agencies,  and the  c r i t e r i a  used t o  develop extreme hydrologic 

events  t o  e s t a b l i s h  spi l lway requirements and the  height  of the  dam 

f o r  the  proposed downstream s t r u c t u r e  produced a f lood t h a t  would 

completely overtop the  e x i s t i n g  e a r t h f i l l  dam. Therefore, assumptions 

regarding f a i l u r e  had t o  be considered t o  adequately def ine  loading 

condi t ions  f o r  the  proposed dam. (At the  present  time, both the  e x i s t i n g  

e a r t h  dam and its operat ing pol icy  have been modified t o  r e f l e c t  the  

same c r i t e r i a  being used f o r  the  proposed dam.) 

Reservoir o u t l i n e s  of both t h e  e x i s t i n g  and proposed r e s e r v o i r s  a r e  

shown i n  f i g u r e  1. 

Figure 2 s h m s a  p r o f i l e  of the  streambed from the  s i te  of the  pro- 

posed Martins Fork Dam up Martins Fork of t h e  Cumberland River t o  the  

confluence with Cranks Creek and thence up Cranks Creek. Pe r t inen t  

e l eva t ions  a r e  shown f o r  each dam. 

Also, f i g u r e  2 i l l u s t r a t e s  a primary point  of concern i n  the  study. 

Cranks Creek Dam s tands  some 85 f e e t  h igher  than the  proposed Martins 



Fork s t r u c t u r e  and is  located  on1.y 3.9 m i l e s  upstream. How much of 

t h i s  energy head would be  d i s s ipa ted  as the  f lood wave t raveled  t o  

Martins Fork Dam? Sa in t  Venant, Schokli tsch,  Dress ler  and o the r s  have 

shown by theory and experiment t h a t  t h e  energy producing a dam-break 

f lood wave is  t h e  depth of water  a t  t h e  i n s t a n t  of f a i l u r e ,  provided 

the  downstream channel is dry. Their  t h e o r e t i c a l  expression,  f n  which 

energy losses  a r e  neglected,  shows t h e  peak discharge a t  a f u l l y  

breached dam t o  be 

where : 

a x  = peak discharge of the  dam-break f lood hydrograph 

Wd 
= i n i t i a l  water su r face  width a t  the  dam 

Y = i n i t i a l  r e s e r v o i r  depth a t  the  dam 
0 

g = acce le ra t ion  of g rav i ty  

The value of peak discharge ca lcula ted  with equation 1 agrees  

reasonably well  with experimental da ta  obtained from t e s t s  conducted 

by the  U.S. Army Waterways Experiment S ta t ion  ( reference  6). Therefore, 

the  f a c t  t h a t  immediately a f t e r  a f a i l u r e  t h e  r e s e r v o i r  depth a t  the  

dam decreases r ap id ly  t o  ha l f  i ts  o r i g i n a l  va lue  does n o t  i n d i c a t e  a 

corresponding l o s s  of t o t a l  energy head a t  t h a t  locat ion .  Rather, t o t a l  

energy has been r e d i s t r i b u t e d  t o  include a l a r g e  i n e r t i a  component and 

a k i n e t i c  energy component, i n  addi t ion  t o  t h e  pressure  p lus  p o t e n t i a l  

energy component; and the  sum of these  components y i e l d s  the  r e se rvo i r  



elevat ion j u s t  p r i o r  t o  f a i l u r e .  The important energy l o s s e s  occur a s  

t h e  f lood wave moves downstream and include f r i c t i o n  losses ,  bend 

losses ,  expansion and contrac t ion losses  and others .  

I n  addi t ion  t o  energy considerat ions,  the  volume of water which 

is  ava i l ab le  i n  Cranks Creek Reservoir t o  s u s t a i n  the  f lood wave must 

be considered. Figure 3 shows the  capacity of each rese rvo i r  a s  a 

function of i ts  elevation.  The increase  i n  e leva t ion  of Martins Fork 

Reservoir due t o  s t o r i n g  the  volume of water i n  t h e  flood wave could 

possibly be g r e a t e r  than the  energy considerat ion.  This would depend 

on rate of energy d i s s ipa t ion  and the  r a t e  of outflow from Martins 

Fork. It is a l s o  poss ib le  t h a t  the  maximum force  could r e s u l t  from 

some combination of the  energy and volume considerat ions.  Therefore, 

a time h i s t o r y  of t h e  f lood wave motion is required t o  adequately analyze 

the  problem. 

Methods which a r e  commonly used i n  f lood rout ing,  such a s  t h e  

modified Puls ,  Muskingum, Tatum, and straddle-stagger,  permit d i r e c t  

considerat ion of volumes only. I n d i r e c t l y ,  energy considerat ions a r e  

in fe r red  by c a l i b r a t i n g  these  methods t o  some experienced event. Such 

methods a r e  inadequate f o r  routing the  dam-break flood--at l e a s t  i n  the  

e a r l y  s t ages ,  because energy plays such a dominant r o l e  i n  the movement. 

Therefore, one must r e s o r t  t o  a so lu t ion  of the  b a s i c  equations of 

unsteady flow t o  consider both cont inui ty  and momentum. 



A number of so lu t ion  techniques have been advanced over t h e  pas t  

few years ,  but  the  method presented by Garrison, Granju and Pr ice  

(reference 1) has  been used i n  t h i s  study. It is ,  however, based on 

a so lu t ion  of t h e  gradually var ied  unsteady-flow equations through the  

use  of an e x p l i c i t  f i n i t e d i f f e r e n c e  scheme developed by Stoker. Terz id i s  

and St re lkoff  (reference 5) ,  i n  s t u d i e s  involving a hydraul ic  bore,  

demonstrated t h a t  such a so lu t ion  technique ca lcula ted  t h e  wave height  

c o r r e c t l y ,  bu t  f a i l e d  t o  maintain cont inui ty  i n  t h a t  an excess water 

volume was developed f o r  the  wave. The problem w a s  corrected by accounting 

f o r  energy losses  r e s u l t i n g  from flow condit ions i n  t h e  wave f ron t .  On 

t h e  o ther  hand, Martin arid D e  Fazio (reference 3) s tudied cases of r ap id ly  

var ied  flow involving an undular type of flood wave movement r a t h e r  than 

a bore type, and they found t h e  so lu t ion  developed by Stoker t o  be 

adequate f o r  t h e i r  design s tudies .  Because of t h e  depth of water down- 

stream from Cranks Creek Dam, the  f lood movement i n  t h i s  study was 

expected t o  be more l i k e  the  undular wave than a hydraulic bore. There- 

fo re ,  Stoker 's  so lu t ion  technique was considered s a t i s f a c t o r y .  However, 

cont inui ty  checks w e r e  made t o  insure  a reasonable volume was being 

maintained during the  routing.  

Numerous assumptions were necessary i n  order t o  rou te  t h e  dam-break 

fl.ood. Generally, they can be  divided i n t o  two categor ies  : (1) those  

b a s i c  t o  es tab l i sh ing  t h e  problem and method f o r  so lu t ion ,  and 



(2) those necessary i n  assigning values used i n  the  a c t u a l  ca lcula t ions .  

I n  most cases,  judgment w a s  guided by the e f f o r t  t o  produce the  most 

c r i t i c a l  s i t u a t i o n  f o r  Martins Fork Dam. The assumptions a r e  l i s t e d  

below: 

a. The f a i l u r e  of Cranks Creek Dam is  instantaneous and 

complete. 

b. Pressure d i s t r i b u t i o n  is  hydros ta t i c  a t  each cross  sec t ion.  

c. Velocity d is t r ibut i .on  is uniform over t h a t  port ion of t h e  

cross  sec t ion  conveying flow. 

d. Steady flow n-values are applicable.  

e. An e x i s t i n g  r a i l r o a d  crossing j u s t  downstream from Cranks 

Creek Dam is  washed out  upon impact of the  f lood wave and t h e  r e s u l t i n g  

energy l o s s  is  negl ig ib le .  

f .  Energy l o s t  a t  t h e  junction of Cranks Creek and Martins 

Fork mainstem is  negl ig ib le .  

g. The e f f e c t  of t r a n s i e n t  waves on energy d i s s i p a t i o n ,  due 

t o  s inuos i ty  of the  channel, can be ignored. 

h. Changes i n  boundary geometry due t o  scour and f i l l  can 

be neglected. 

i. The model is v e r i f i e d  when rese rvo i r  volumes and t h e  

spil lway design f lood outflow hydrograph matches d a t a  obtained from 

conventional routing techniques i n  e a r l i e r  s tudies .  
" 



j. The overflow r a t i n g  curve f o r  Martins Fork Dam i s  no t  

a f fec ted  by tai . lwater .  

Pe r t inen t  da ta  f o r  both p r o j e c t s  a r e  shown i n  t a b l e  1. 

Table 1, Bertfnent  Data S s r  Both P r o j e c t s  

Location bv Stream Name 

Cranks Creek Dam, Proposed Martins 
- Exis t ing  - -- Fork Dam -- 

Cranks Creek Martins Fork of the  
Cumberland River 

Miles above mouth 2.4 15.6 

Drainage Area( (sq. m i .  ) 24.8 55.7 

T z  of Dam Earth F i l l  Concrete 

Top of dam e leva t ion  ( f e e t )  1443 
Streambed el.evati.on (approx, 

f e e t )  1323 
Length of d a m  ( f ee t )  640 

Spillway, 

Crest e l eva t ion  ( f e e t )  1430 
Crest length  ( f ee t )  200 
Design f lood,  peak-discharge 

(c f s )  2 5 100 
Design f lood,  peak-elevation 

( f e e t )  1441.5 

Reservoir Capacity -- --------- 

Normal summer operat ing pool,  
e l eva t ion  ( f e e t )  142 0 
capaci ty  (acre-feet)  6 400 

Capacity a t  spi l lway c r e s t ,  
e l eva t ion  (acre- f e e t )  9000 

Top of dam e leva t ion  (acre-feet)  14000 

Distance between the  two p r o j e c t s  
(miles) 



Reservoir Elevations a t  Fa i lu re  

Three cases were se lec ted  f o r  study. These d f f fe red  only i n  

e l eva t ion  of t h e  r e se rvo i r s  a s  shown below: 

Reservoir Conditions a t  F a i l u r e  - 

Condition Cranks Creek Martins Fork N e t  Head a t  
No. - .--- - Res. Elev. -- Res. Elev. Cranks Creek Dam Remarks -- -- 

1 1441.5 1.358.3 83.2 SDF c r e s t  (1) 

Typical  
I1 1419.5 1309.5 110.0 summer pool 

I11 1430.0 1341.0 89 .O Spillway c r e s t  

'l) spi l lway Design Flood (SDF) 

Condition I w a s  se l ec ted  because i t  represented the  l a r g e s t  t o t a l  

energy ava i l ab le  a t  Cranks Creek Dam. However, i t  did no t  produce the  

l a r g e s t  head d i f f e r e n t i a l  poss ib le  a t  Cranks Creek Dam, nor did it 

produce the  most severe condit ion f o r  impact when the  f lood wave reached 

Martins Fork Dam. Therefore, Conditions 11 and I11 were se lec ted .  Con- 

d i t i o n  I1 corresponds t o  a t y p i c a l  s u m e r  operat ing pol icy  f o r  the  

r e s e r v o i r s  and represents  maximum energy head f o r  producimg the flood 

wave at  Cranks Creek Dam; whereas Condition I11 represents  an extreme 

condit ion f o r  developing impact loads a t  Martins Fork Dam. 

The s tudy was divided i n t o  severa l  major s t e p s ,  each of which is  

discussed i n  d e t a i l  i n  the  following paragraphs. 

Es tabl ish ing t h e  e o m e t r i c  Model - -- -- 

The proposed Martins Fork Dam formed t h e  downstream boundary of 



the  model, and the  upstream end of Cranks Creek Reservoir formed the  

upstream boundary. Cross sec t ions  were located  t o  def ine  t o t a l  volume 

i n  each rese rvo i r ,  and, where they extended up t r i b u t a r y  arms, a r t i -  

f i c i a l  flow boundaries were imposed t o  separa te  t h a t  por t ion  of the  

sec t ion  which conveys flow from t h a t  por t ion  which only s t o r e s  water.  

From these sec t ions  geometric da ta  were ca lcula ted  f o r  nodal po in t s  

spaced 1.82 ha l f  m i l e  a p a r t ,  thus forming the  b a s i c  geometric model f o r  

the  unsteady flow computer program. 

Determining Hydraulic Roughness 

Since f r i c t i o n  l o s s  was such an important considerat ion i n  t h i s  

s tudy,  the  s e l e c t i o n  of r e a l i s t i c  n-values f o r  Manning's equation was 

of primary importance. Values of 0.05 f o r  the  channel and 0.10 f o r  the  

overbanks had been used i n  o ther  s t u d i e s  by engineers f ami l i a r  with the  

streams i n  t h i s  a rea .  These values  were, however, based on n a t u r a l  

condit ions.  Values of 0.03 and 0.01 had been used f o r  r e s e r v o i r  condit ions.  

Since the  flow v e l o c i t y  associated with the  dam-break f lood was expected 

t o  be more nea r ly  t h a t  f o r  n a t u r a l  condit ions than t h a t  which would be 

expected with the  r e se rvo i r  impounded, the  n a t u r a l  condit ions n-values 

were used. These were adjus ted  i n t o  composite va lues  f o r  the  e n t i r e  

cross  sec t ion  and t o  account f o r  the  s inuos i ty  of the  v a l l e y ,  which 

r e s u l t e d  i n  a composite n-value of .07 f o r  each c ross  sec t ion .  In  Cranks 

Creek t h i s  value was reduced t o  .05, s ince  t h e  flow condi t ions  would tend 

toward preimpoundment condit ions a s  the  water drained out .  



Verifying the  D i g i t a l  Model we+ 

Before rout ing  the  dam-break f lood,  the  Spillway Design Flood f o r  

Martins Fork w a s  routed through both reservoi rs .  The r e s u 1 . t ~  compared 

favorably wi th  those  from e a r l i e r  s t u d i e s  i n  which conventional rout ing  

techniques were used. Also, water su r face  p r o f i l e s  were ca lcu la ted  f o r  

the  peak discharge of the  spi l lway design flood. These p r o f i l e s  were 

compared with p r o f i l e s  ca lcula ted  using a s teady flow, backwater computer 

program. The comparisons from these  t e s t s  were considered s u f f i c i e n t  

t o  v e r i f y  the  model f o r  the  proposed study. 

Es tabl ish ing Boundary Conditions and I n i t i a l  Conditions - ---.- 

A discharge r a t i n g  curve was used f o r  the  dormstream boundary 

condit ion a t  Martins Fork Dam. It included flow over the  top of the  

dam, a s  we l l  a s  through the  spi l lway.  

The Spl.llway Design Flood discharge hydrograph was used a t  the  

upstream boundary i n  Condition I. In  t h e  o ther  two cases ,  inflow 

was assumed t o  be zero. 

Local a r e a  inflow entered  the  model a t  the  confluence of Cranks 

Creek and Martins Fork mainstem. No other  l o c a l  inflow po in t s  were 

es tabl i shed.  

For al.1 t h r e e  condit ions of f a i l u r e ,  Cranks Creek Dam was considered 

a s  a f i n i t e  d i scon t inu i ty  i n  the  i n i t i a l  water surface  p r o f i l e .  Using 

t h i s  approach, a s  apposed t o  t r e a t i n g  i t  a s  an end boundary, t h e  increase  

i n  t a i l w a t e r  e l eva t ion  accompanying the  dam-break f lood wave could 



be included i n  ca lcu la t ions  f o r  the  discharge hydrograph a t  the  dam axis. 

Routing the  Dam-Break Flood f o r  Condition I - - -- -- 

The r e s u l t s  of routing the  dam-break f lood f o r  Condition 1 a r e  

shown i n  f i g u r e  4 i n  the  form of discharge and e leva t ion  hydrographs 

a t  Cranks Creek Dam a x i s  and a t  Martins Fork Dam axis .  

The impact of t h e  f lood wave on Martins Fork Dam r e su l t ed  i n  a 

28-foot inc rease  i n  water  su r face  e l eva t ion  above the  SDF peak, a s  

the  i n e r t i a  and k i n e t i c  energy components were transformed back i n t o  

a pressure energy. The peak discharge a t  Martins Fork was 190,000 c i s .  

Four minutes were required f o r  the  wave t o  t r a v e l  from Cranks Creek Dam 

t o  Martins Fork Dam. 

Two a l t e r n a t i v e  methods f o r  computing t r a v e l  time, a wave c e l e r i t y  

computation based on i n i t i a l  depth and a forward c h a r a c t e r i s t i c  computa- 

t i o n  based on c e r l e r i t y  p lus  flow ve loc i ty ,  produced t r a v e l  times of 

6 minutes and 5.5 minutes, respect ive ly .  The t r a v e l  t i m e  ca lcu la ted  by 

the  rout ing  method used i n  the  study appears t o  be  reasonable, based 

upon comparison wi th  these  values.  

The peak outflow from Cranks Creek Reservoir,  curve one of f i g u r e  4 ,  

is  1,400,000 c i s .  The value obtained by applying equation 1, 1,200,000 c i s ,  

compares favorably with t h i s  peak outflow. 

The peak discharge is  important because i t  inf luences  t h e  r a t e  of 

energy d i s s i p a t i o n  due t o  f r i c t i o n .  This point  was i l l u s t r a t e d  i n  the  

study by f i r s t  including a l l  s to rage  volume on Martins Fork mainstem, 

upstream from Cranks Creek, then reca lcu la t ing  the  rout ing  wi th  t h a t  



volume excluded. The peak energy a t  Martins Fork Dam was 4 f e e t  higher 

i n  t h e  f i r s t  case because the add i t iona l  s torage  volume reduced the  

peak discharge and, consequently, the  r a t e  f r i c t i o n  loss .  

The r e s u l t s  of a s e n s i t i v i t y  study i n  which the  composite n-values 

were var ied  is  shown i n  f igure  5. For Condition I f a i l u r e ,  n-values 

of .05,.07 and .10 were assigned and the  f lood wave ca lcula ted  and 

routed t o  Martins Fork Dam. The r e s u l t s  show t h a t  t o t a l  energy remain- 

ing  i n  the  f lood wave when i t  reaches Martins Fork Dam is highly dependent 

upon the hydraulic roughness value. The determination of these  values 

should, the re fo re ,  receive a g r e a t  dea l  of considerat ion i n  planning a 

rout ing study. 

Routing the  Dam-Break Flood f o r  Condition I1 --- -" --. 

The flood t h a t  would r e s u l t  from a f a i l u r e  when both rese rvo i r s  

a r e  a t  normal, summer operat ing pools (Condition 11) is represented 

i n  f i g u r e  6. Under t h i s  condit ion,  the  e n t i r e  contents  of Cranks Creek 

Reservoir would be s to red  i n  Martins Fork Reservoir and maximum pool. 

e levat ion would be we l l  below t h e  spillway c r e s t ,  even including t h e  

impact of the  f lood wave. 

This condition was used t o  test f o r  cont inui ty  by ca lcu la t ing  t h e  

volume under the  hydrograph a t  Cranks Creek Dam and comparing the  r e s u l t  

with t h e  elevation-storage curve of f igure  3. The comparison indicated  

t h a t  the  volumes were within 15 percent  of one another, wi th  the  rout ing 

method tending t o  produce an excess of water. This conformed with the  



experience reported by Terzidas and S t re lkof f .  The discrepancy i n  

con t inu i ty  was no t  considered t o  be unreasonable when evaluated wi th  

r e spec t  t o  the  u n c e r t a i n t i e s  associa ted  wi th  o t h e r  aspects  of the  

study. 

Routing t h e  Dam-Break Flood f o r  Condition I11 --------- 

The r e s u l t s  of rout ing  Condition I11 a r e  shown 5n f i g u r e  7, 

The f u l l  impact loading of the  f lood wave is r e f l e c t e d  In  the  24-foot 

increase  i n  water surface  e l eva t ion  a t  Martins Fork Dam. The rese rvo i r  

outflow which w a s  zero  i n i t i a l l y  reached a maximum of 100,000 c f s  under 

t h i s  condition. 

The r e s u l t s  from the  t h r e e  condi t ions  are shown i n  t a b l e  2. 

Table 2. Comparison of Resu1.t~ 

To ta l  Energy Head 
Condition - -.- Peak Outflow i n  c f s  -, a t  Har t ins  Fork Dam 

P r i o r  t o  Impact 
Cranks Creek Martins Fork ---- --"." --- of Flood Wave -- Peak -- 

Several  s p e c i a l  s i t u a t i o n s  which developed during the  ana lys i s  a r e  

discussed i n  t h e  following paragraphs. 

The Junction Problem 

In  planning f o r  the  study,  a technique was proposed whereby flows 

a t  the  junction of Cranks Creek and Martins Fork mainstem would be  



determined by successive approximations using two routing models. 

Br ie f ly ,  t h i s  technique was t o  be  the following: The primary model 

w ~ u l d  extend through Cranks Creek Reservoir t o  Martins Fork Dam. Tire 

secondary model would extend from the  upstream end of the  Martins Fork 

arm down t o  the  confluence with Cranks Creek. The f i r s t  rout ing 

would be made with t h e  primary model, and would assume zero inflow from 

the  Martins Fork mafnstem. The second s t e p  would u t l i z e  e levat ions  

ca lcula ted  f o r  t h e  junction i n  t h e  f i . r s t  s t e p  and route  down t h e  

Martins Fork arm of the  rese rvo i r  t o  determine the  discharge enter ing 

t h e  junction.  Step 1 would be repeated. This a l t e r n a t i n g  between the  

primary and secondary rout ing models would continue u n t i l  the  same 

junction e levat ions  and discharges r e s u l t e d  i n  two successive s teps .  

Such P ' c o n v e r g e n c e ' ~ o u l d  i n d i c a t e  t h a t  a so lu t ion  had been reached. 

This technique proved t o  be unsuccessful.  The changes i n  discharge 

and e levat ion were s o  rapid  t h a t  convergence of r e s u l t s  from t h e  two 

models could not be achieved. Fortunately,  t h e  peak of the  f lood 

wave required  only a minute t o  t r a v e l  from the  confl.uence t o  the  dam. 

During t h i s  t i m e ,  t he  wave would t r a v e l  only a shor t  d is tance  up Martins 

Fork mainstem. Therefore, t h a t  wave t r a v e l  d is tance  could be neglected 

and the  spil lway design f lood hydrograph could be entered a s  l o c a l  

inflow. 

C r i t i c a l  Depth Controls - - 

A sudden f a i l u r e  of a dam r e s u l t s  i n  a negative wave which t r a v e l s  



up the  rese rvo i r  while the  pos i t ive  wave is being produced downstream 

from the  dam. The geometry of Cranks Creek Reservoir caused a c r i t i c a l  

depth con t ro l  t o  form near r i v e r  m i l e  4 which r e s t r i c t e d  t h i s  negative 

wave from developing upstream from t h a t  point  during Condition T I .  For- 

tunate ly ,  the  amount of s torage capacity upstream from m i l e  4 was small 

and could be neglected because the  computer program did not  perform 

s a t i s f a c t o r i l y  f o r  supercri t i .ca1 flow. Therefore, t h e  upstream boundary 

was s h i f t e d  down t o  m i l e  4 i n  the  rout ing model and the ca lcu la t ions  

continued with no se r ious  e r r o r  r e s u l t i n g  from t h i s  s impl i f ica t ion.  

Dry Channel a t  the  Upstream Boundary 

I n  Conditions I and 111, t h e r e  w a s  s u f f i c i e n t  i n i t i a l  depth so  

the  negative wave could pass upstream from mile 4 without developing 

t r a n s i t i o n s  between s u p e r c r i t i c a l  and s u b c r i t i c a l  flow. However, 

a s  s t rong negative waves would approach the  upstream boundary, the  

water depth would temporarily go t o  zero which, again, caused t h e  

computer program t o  malfunction. Attempts t o  e l iminate  t h i s  problem 

by specifying a minimum s tage  a t  the  upstream boundary caused other  

i n s t a b i l i t i e s  even though 1-second computation i n t e r v a l s  were employed. 

Therefore, rout ings  were terminated. In  a91 cases,  t h e  peak flow had 

passed Martins Fork Dam before routings terminated. 

I n i t i a l  Depth i n  the  Channel . - 

I n  a l l  th ree  cases s tudied,  t h e r e  was a s u b s t a n t i a l  depth of water 

downstream from Cranks Creek Dam. Otherwise, a hydraulic bore would 



have formed and a d i f f e r e n t  formulation of t h e  routing equations 

would have ben required.  (This depth contributed t o  movement of 

the  f lood wave, r e su l t ing  i n  l a r g e r  wave v e l o c i t i e s  than would have 

been experienced i n  a dry channel.) 

Any one of these  spec ia l  condit ions could render a study 

impossible with t h i s  model i f  i ts  inf luenee  predominated, It fs 

believed t h a t  i.n t h i s  study they were t rea ted  i n  a conservative manere. 

A genera l ly  appl icable  so lu t ion  technique which could be used regard less  

of whether the  channel is w e t  o r  dry, junctions with t r i b u t a r i e s  a r e  

present  or  n o t ,  o r  the  flow changes between s u b c r i t i c a l  and s u p e r c r i t i c a l  

condit ions is  not  present ly  avai lable .  Since 1968 The Hydrologic 

Engineering Center has been working, through contracted research,  t o  

0btai.n such a solut ion?  and progress i s  being made; but  the  complete 

so lu t ion  of the  general case i s  s t i l l  i n  the  fu tu re .  

SUMMARY AND CONCLUSIONS 

The object ive  of t h i s  study w a s  t o  develop a reasonable method 

f o r  ca lcu la t ing  energy remaining i n  the  flood wave a t  Martins Fork Dam 

and f o r  converting t h e  i n e r t i a  and k i n e t i c  energies  i n t o  total .  energy 

from which pressure  loadings could be determined. The body of theory 

appears t o  be reasonably w e l l  e s t ab l i shed ,  b u t  methods f o r  i.mplementing 

t h i s  theory require  numerical techniques which u t i l i z e  the  e l e c t r o n i c  

computer, and a complete so lu t ion  of t h e  general  case is no t  present ly  

avai lable .  Some progress is  being made toward such a solut ion;  however, 



in  the meantime, studies of dam-break floods w i l l  be required, and 

these studi.es w i l l  have to  be limited i n  scope because of limitations 

in available methods. A great deal of engi.neerl.ng judgment w i l l  be 

required to  simplify and approximate the actual, probl.em so the existing 

methods can b e  employed, 
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