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INTRODUCTION

In recent vears a number of workers have stressed the necessity of a
unified approach to the study of subsurface water flow above and below the
water table because from a fluid dynamic point of view the water table is
an artificial boundary (Stallman, 1961, p. 40, Childs, 1960, p. 781, Freeze,
1969, p. 153, Klute, 1969, pp. 61-62). 1In connectibn'ﬁith';hisrgéheral concept,
it is of particular importance to include phenomena taking place in the
unsaturated region when analyzing unconfined ground water flow problems
(Taylor and Luthin, 1969, p. 144, Rubin, 1968, p. 607, Coolevy and Donochue,
1969, p. 2). As has been pointed out in the above mentioned references,
golutions to unconfined flow problems have often been unrealistic because,
among other simplifications, the water table was treated as a fluid discon-
tinuity across which only a known quantity of fluid could move (e.g., when
using the Dupuit~-Forchheimer assumptions or the concept of a classical
bounding surface (Lamb, 1945, pp. 6-8)). However, the water table is generally
not a discontinuity, and replenishment to the saturated region from the
unsaturated zone (and vice versa) is usually a consequence of water movement
in the unsaturated zone, even for steady-state flow (see for instance Taylor
and Luthin, 1961, p. 151, figure 4). In order to study subsurface water
flow under variably saturated conditions and verify the use of the theory
under field conditions, satisfactory methods of solving the nonlinear

partial differential equations governing flow for general problems must

be developed.



Flow of water in unsaturated regions is generally treated as a special
case of multiphase fluid flow whereby the movement of one phase, air, is
neglected. Unsteady-state, multiphase fluid flow has been investigated
by a number of workers in the petroleum industry (see for example, Douglas,
Peaceman, and Rachford, 1959, Welge and Weber, 1964, Fagin and Stewart, 1966,
Coats, Nielsen, Terhune, and Weber, 1967, Breitenbach, Thurnau, and van
Poolen, 1968a, Breitenbach, Thurnau, and van Poolen, 1968b, and Breitenbach,
Thurnau, and van Poolen, 1968c). The solution methods developed for these
multiphase flow problems provide valuable background for development of

solutions to problems of water flow in variably saturated porous media.

One problem in the general class discussed above is flow to a well
being pumped in an unconfined flow system. Taylor and Luthin (1969) have
outlined a finite difference procedure that involves explicit extrapolation
of the water table position and water content distribution in the unsaturated
region and implicit solution for head distribution in the saturated region
for each time step. They have applied the method to a well that fully
penetrates a single incompressible aquifer. The objectives of the study
reported herein are (1) to develop an implicit finite difference solution
to the problem of axi-symmetric flow to a water well that partially or
completely penetrates one or more horizontal elastic rock units, the upper
one of which is unconfined, and (2) to design the method to be potentially
applicable to other problems of liquid flow in variably saturated porous
media. This report is an extension of previous work by Cooley and Donohue

(1969).



MATHEMATICAL FORMULATION OF PROBLEM

All symbols used are defined in the 'Notation" section of the appendix.
The indices are defined separately at the end of that section.

For the purposes of the present study, the variably saturated porous
medium is assumed to deform elastically in response to fluid pressure changes
similarly to the manner of completely saturated elastic porous material.
Thus, application of the following development is restricted to cases
involving water saturation greater than residual water saturation. When
water saturation equals residual water saturation, water is assumed to be
immobile. Using the concept of coordinates deforming because of elastic com-
pression or expansion of the porous medium (Cooper, 1966), the continuity

equation is
- J[[]%-(o@)dv = gsz[[[gwpndV. k (1)
V(t) v{t)

In the volume element V{t) = AxAyAz, Az 1s taken as the deforming coordinate.

Equation 1 can be expanded and rearranged (see appendix) to yield

5 ow
d[[].V (pv)+pn - 4 S ( JL-% AL pn W;gﬁ]dv=0. (2)

vi{t)

Because this equation must hold for any arbitrary volume,

as In awg
=V {p¥) = n o LA 8, (n at oo 50t en 59 (3)

The term in parentheses in equation 3 can be approximated for small changes
in fluid density, o, as GSq gg (see appendix or Cooper, 1966, pp. 4788-4789)
where

S = npglct+ec ). (1)
s n



Change in fluid density with pressure is very small. Cooper (1966, p. 4789)
has stated that the term resulting from assuming p variable in V+(p¥V) is

usually negligible. Using the relationship for S_ and Ve (p¥)=pV+V, equation

3 becomes

35

N W oH
Vv = e e S —,
v n at * qus ot (5)

One form of Darcy's law for water partially or completely saturating a

porous medium is

¥ = - KK VH. (6)

Combining equations 5 and 6 there results

aSU’ oH
Ve X : o= X —_—,
(KI(I'VH) = 1n it + S SS Tt (7)

The first term on the right side of equation 7 can be modified using
the definition of air saturation (Sa = 1~Sw) and capillary pressure (Pc=Pa-P),
and the assumption that they are related uniquely for either imbibition or

drainage (Douglas, Peaceman, Rachford, 1959, p. 298):

a 2P

3t At} ” (8)
(o4

If it is assumed that the change in air pressure, Pa’ will be much smaller
than the change in water pressure, P, with time

ds 9P ds ds

p 2 & ., 22 __adl 9)
T AP Bt ap 3c PR Ep ar
Equation 7 may therefore be written
ds
X a, oH
AV = - JORSEad) W viaied
y (KKrVH) (Swss nog 5 Yl (10)



In the present study hydraulic properties are considered to be constant
in any one rock unit, ir, but to vary between units. The equation for each

unit written in the cvlindrical coordinate system with axial symmetry is

dH ? gg) - Sw(bs)ir B M4.P8 dsa 9H (11)

KR5R) + 37 K37 K. K. dp 3t
ir ir

In order for one solution to apply to a number of different problems,
equation 11 should be rewritten in‘dimensionless form (Smith, 1965, p. 9).

For the dimensionless variables defined in the appendix, equation 11 becomes

D D
ds (80
1323 9h 3 oh a v ir 3h
R Sht - Sty < - b
T 9% (Krr Br) + 3z (Kr 3z Sw(qr)ir dp D D (12)
h Kir at

Boundary conditions used for the problem, illustrated in figure 1, are
similar to those used by Tavlor and Luthin (1969) and Rubin (1968) for similar

problems. Using dimensionless variables, at the well bore, T

dh . D \
P 0 02z g Zg t7 20

h=nh z. 22z <h tD > 0

W B~ T -
D (13)
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A s

3h D

vl 0 z €z < bT tT 20 )

The hydraulic head in the well bore, hw, is to be interpreted as the value

necessary to vield a prescribed constant discharge, Q. On the top and bottom

boundaries (i.e., at z = b_ and z = 0, respectively)

T

Ey 0 r, $Ts T, t 20 (14)



At the lateral external boundarv, T

- D
h he 0 < 2z < bT t >0 {15)

The boundary conditions at the horizontal interfaces between rock units are

3h

e o -
(kKr Sz)if (KKr oz ir+l (16)
and
3h _ ¢oh
(3r)ir (ar)ir+l (17
The initial condition
) , D
h =h r £r<r 0 <2z 2h, t" =0 (18)
e W e T

completes the basic formulation of the problem.

In addition to the basic differential equation and its boundary and
initial conditions, relationships between water pressure, relative permeability,
and saturation must be stated. The following functions are used in this

study because of their usefulness for expressing a wide variety of conditions:

(o4
D (~ph)
Sa P .w-u,..‘.é__,_ R p‘h < 0 (19)
- +
( ph) A
and
S =S d
| Jar "a = (1-s%4
K. = [ 5. } (1 sa) , S, <8 (20)

Equation 20 is a generalization of an equation given by Corevy (1954, p. 39).



FINITE DIFFERENCE EQUATIONS

Finite difference equations were derived using the mesh integration method
of Varga (Varga, 1962, pp. 182-186, 190-191, Spanier, 1967, pp. 219-222)
generalized to retain, in an approximate manner, the nonlinear aspects of
equation 12. To use the method the entire region being analyzed is divided
into a rectangular mesh,each internal node point of which is enclosed by a
mesh volume (figure 2). Boundaries of the volume element extend to half the
distance between the central and all adjacent node points for all interior
nodes. Because the mesh is arranged so that node points lie on rock-property
region and external boundaries, a region boundary divides mesh volumes lying
along it in half, and only one half of a mesh volume exists on external bound-

aries (figure 2).

Neglecting the small change in volume of mesh volume element V2 due
to elastic deformation, equation 12 can be restated in integral form for a
volume element internal to a rock propertvy region or external boundary using

the divergence theorem:

D fLa_ 3hy L3 ] - D 3h
Kiré[l]{r or (Kr ) + 3z X T 8 3] V= Kird[]kr 3N ds
Vz

S

=) [[[ls sy, - ii— CLE 2 21
v ir w o riir dph atD (21)
VR
where N is the direction normal to surface S2 enclosing volume element
Vz. For a volume element lying on a rock property region boundary,
3h D ah
irUrS‘\IdS+‘< 1[[Kr3NdS
AY b
z’lr \Sz’ir+1
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dSa ah
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%y Phl ot
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The symbol (sz)ir refers to the half of the surface lving in region ir, and
the other symbols invoiving SZ and Vz are to be interpreted similarly. It
should be noted that the portions of the surface integrals expressing discharge

across the boundary are of equal value but opposite sign, thus cancelling one

another.

Equation 21 can be rewritten in the (r,z) coordinate system yielding

Z3+1/2 Zi+1/2
D 3h D . 9h
i+1/2 Kear 92 7 20408, , roor dz
j-1/2 j-1/2
r,
i+1/2 i+1/2
+2rK” L ~2nx? kB rar
ir : T 9z y= ir r r 22 2=z
i-1/2 “TZ541/2 ~ Fi-1/2 TEy-1/2
254172 [Ta+1/2 D
D 45,1 sn
=27 (8 ). [S (), - ~-—] ~—= rdrdz (23)
v ir w orir dph atD

Zy-1/27 Ti-1/2

Fquation 22 gives a similar equation except the right side and the first and
second terms on the left side of equation 23 are each split into two integrals,
one for each region, with limits to the integrals in the z direction

extending from 7 and from z,

541/2 j-1/2 O %ye



Each of the integrals on the left side of equation 23 is now approximated

by terms of the form

3+1/2 h, ,~h, | 3+1/2
D sh .o . D S 0 e 0. |
217258y Kear 42 % 270098 B 54070, 5 = /f dz
3-1/2 | Zy-1/2
“EAD54172,5 Mir,y By y) (24)
The right side of equation 23 takes the form
3+1/2 1+1/2 as?
D “a 71 %h
2n(S_), S ). --w*"} = rdrdz
y ir , w “rlir dph atD
~1/2 1-1/2
) B (w#1/2) ASD (n+1/2) (n+1) (n) Z, 141/2 ri+1/2
OO CR N CIN NS e -J~D Ladf fr rdrdz
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7 S
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Equation 24 and the other similar terms must be placed somewhere in the time
interval n, n+l. Because the actual placement depends on the method used to
solve the finite difference equations, discussion will be deferred until the

solution methods are explained.

It is important to note that, because node points are placed on internal
boundaries, dual values of Kr and Sg will exist at these points. One value
is calculated using equations 19 and 20 with constants A, ¢, and d character-
istic of one region, and one value is calculated using comstants character-—
istic of the other region. Each value of Kr and SZ is used with its

appropriate integral term.

On all external boundaries the finite difference equations must be
modified to incorporate the boundary conditions. Where the head, h, is known
on the boundary, this is accomplished by using the known head in its
appropriate place in equations written for node points just interior to the
boundary. Equations are not written for boundary points. For the no flow
boundaries the node point on the boundarv is unknown, and a reflection
condition is imposed using an imaginary line of points just outside the

boundary. For example, at the well bore,

hy . -h .
h 2.0 eid Ly, (26)
ar r, - r
2 ¢

where i = 1 at the well bore, and equation 24 would become

?i41/2
D sh . - =
2wrlkir Kr 3T dz = (KrAx)l,j (hZ,j ho,j) 0 27
zZ.,
j-1/2

10



Therefore, the reflection condition is imposed simply by eliminating the
term for discharge across the boundary from each boundary point equation

where the no flow condition exists.
SOLUTION METHODS

Three methods were selected to solve the matrix equations resulting
from the finite difference scheme: a form of the direct alternating
direction implicit method (ADIP), the iterative alternating direction
implicit method (ADIPIT), and line successive over-relaxation (SLOR).
The first two methods have only been applied to problems involving wells
that fully penetrate a single, elastic, unconfined aquifer; whereas, the

third has been applied to more general problems.

The ADIP applied to time level (n+l1/2) involves replacing difference
approximations for flow in one direction (for instance, the r direction)
by an implicit approximation (Smith, 1965, pp. 17-18) and replacing the
derivatives for flow in the other direction (i.e., the z direction) by
an explicit formulation (Smith, 1965, p. 11). At the time level (n+l)
the derivatives approximated by the implicit and explicit methods are
reversed. This two-step procedure is then repeated to advance to time
step (n+2), etc., through all time steps. For an implicit solution in the

r direction the finite difference equation for nodes interior to a boundary

are
(nkl/2) {(n+1/2) {(n+1/2) {(n+1/2)
KeADswy2, 5 Paaay ~ Py y) - KA 12,5y 5 7 i)
(n) (n) (n) ) (n)
+<KrAx)i,j+1/2(hi,j+l - hi,j) B (KrAz)i,j-—l/Z(hi,j hi,j~1

11



o]

' (n+1/4)

(v ). AS

- b Ci.3 (n+1/2) _a (n+1/2) . (n)

= (8 ), (8.) ir ", hy s h.’j) (28)

acP/2 LA 1,3

and, for implicit solution in the 2z direction,

(n+1/2) (n+1/2) (n+1/2) N (n+1/2)
®A 111725 Mg,y ~ 0y y) KAI s 17205 By 5 ~ by )
(n+1) (nt1) (n+1) B (n+1)
FRAD S 5172 My g T By ) KA g, 52172B 5 ~ 0y 520
D\ (n+3/4)
_ )y s y@1/2) o |25 Ll ALy,
AtD/Z wii,j “rlir Ap i3 | i,j i,3
where
D\ (n+l/4) (n+1/2) D, {(n)
,ﬁfé - (qa)i j (Sa)i,]
A [ 1, (p ) (/D)7

and the corresponding term in equation 29 is defined in a similar manner.

Equations for node points on no flow boundaries have one complete term

deleted as indicated by equation 27.

If each of the four terms on the left sides of equations 28 and 29 are

replaced with Q's for simplicity and then the equations are added, there

results
(n+1/2) _ (o+l/2) (n) (n+1) (n) (n+1)
Qit172,5 7 -1/2.3) +3 [(Qj,j+l/2+ U, 441720 7~ @ oyt Qi,ju1/2>}

v,) '
A % (n+1/2) o) (n)y oDy (n#l) Dy (n)
AeD [(S 21,1 AL IE LD )i, s G5] ] (39)
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This equation, which is approximately centered in the time interval n,n+l,
D

is analogous (except for the dependence of Sa and Kr on values of ph) to

the unsteady-state heat flow equation solved by ADIP given by Spanier

(1967, p. 235, equation 58).

The method as defined by equations 28 and 29 cannot be applied directly
because SZ and Kr are not known initially. A successive approximation or
iteration technique was used in order to make Sg and Kr at each node agree
with the value of Py at the node. Values obtained at the last time level
(for instance n) were used initially, the appropriate equation (for instance,
equation 28) was solved, then Si was recalculated from the new head. The

D . . ; .
new Sa for use with the next approximation was obtained from

D (k) _ ,.D, (k- 1) aD, (k) D, {(k-1)
(Sa)i,j = (Sa)l,J ms (Sa)l,] (Sa)i,j , oSwSSI (31)
(k-1) , .
where (S ) ¥ is the value computed from the (k-1)th approximation,
(SD)(k? is the value computed from the kth approximation {(i.e., the value

just computed from pressure head (ph). .), and (G )(k? is the interpoclated

value to be used for the next approximation. This procedure was necessary

because, if (S )( ? was used directly in the next iteration, the method
frequently dlverged, The value of (Kék))i 5 was calculated from (Sz)iki.
Iterations were stopped when

Ih:fk.':l) .(k)‘ l 510—6,

and convergence was always obtained within 5 to 10 iterations.

13



After convergence, if the discharge vielded by hw was correct, advance-
ment was made to the next time level (for instance, (n+l1/2)), and the
iterative method was applied to the appropriate equation (equation 29 for
the examples used above). The procedure for finding hw to vield the correct

discharge is discussed further on.

The ADIPIT is similar to ADIP except directions for implicit and explicit
solutions are alternated during iterations at time step (n+l). Equations

for the method at an internal node point are

(K )(k3n+l/2)

B (k+1/2,n+1)
r < 141/2, ] (h, .~ h, L) (KA

(k,n+l/2) .
i+l,] i,] rUx (h h )

i+1/2,5 i,3 i-1,]

) (k+1/2,n+1)

n+l/2) )(k,n+l)~ (K A >(k,n+l/2)(h. o h

_ )(k,n+l)
i,j+1 1,5 Trz i,] i,j-1

« y (k,
+(Krnz) (h
D (k,n+1/2)

v ) AS :
. . b'i,j (s )(k n+1/'2)(q ). ! (h(k+1/7 n+l) h(n)

At w i, ir Aph 1, 1,3 1,1

=k, n+1/ 2} (k+1/2,n+1) (k n+l)
+wk+l/2 [(KrA)',j 1 & i,i 1,3 ) (32)
and
(k,m+1/2) (k+1/2,n+1) _ (k, n+1/2) _ (k+1/2,n+1)
KAD 41725 My, 57 1Ly KADivyo,; By Mg,y
(k,n+1/2) (k+1,n+1) O\ (k,n+1/2) _ (k+1,n+1)
(KA (hy 417 Py 4) - (KA (hy 57 By 4-1)
D\ (k,n+1/2)
_ )iy s )(k n+1/2)(g ) A5, p(HLIH)_ (),
- D Ap o { 1,3 . s
At h/ 1,1
‘‘‘‘‘ (k n+1/2) (k+1,n+1) (k+l/2,n+1)
+wk+l/2 [ ({ A) ] (hi,j 1 j ) (33)
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where

(k,n+1/2)_ (k,n+1) (n)
K AD 4172, 2 [(K AJdssiga)y + (KA )1+1/z,3]

etc. for similar terms,

Ry 5= KA 1o gt Kb i 1yp 5% RAD L o (AD, 0
and

ffz (k,n+1/2) _ (Sg)i?;n+l) (Sa)i?z

Aph 1] ( h)fk3n+l) ( h)(n)

Equations 32 and 33 can be envisioned as relationships for iteration
through "pseudo time” at each real time step. The last term of each equation
is analogous to the storage change term in equations 28 and 29 with the
acceleration parameter, oy

(k n+l)

(K A) » called a normalizing matrix, being used to accelerate convergence

)

9 occupying the position of Z/AtD and

(Douglas, Peaceman, and Rachford, 19539, p. 307, and Douglas, 1962, p. 62).
The form of the normalizing matrix used here is that of Welge and Weber
(1964, p. 352-353). Convergence of the process at time step (n+l) has been
reached when "pseudo steady-state” conditions occur, that is, whenever

(1) _ ()| (a+l)

LA

where € is some small number (chosen as 10~7 in this study).

Speed of convergence depends greatly on the choice of Wet1/2° For the
case involving linear difference equations it can be shown that a sequence of
parameters, in which each value is changed either at each half iteration
(at k+1/2, kt+l, k+3/2, etc) or at the end of each complete iteration, produces
the most rapid convergence. Usually the sequence starts with the largest

value, then each parameter is used in decreasing order of magnitude until the

15



minimum is reached. At this point the cycle is restarted using the largest
value again, and the process is continued until convergence results. The
maximum and minimum values can be shown to be the maximum and minimum
eigenvalues of the tridiagonal matrices resulting from the difference
approximations for flow in the r or z directions if these tridiagonal matrices
commute. Also, if these matrices commute and are nonnegative definite, the
optimum number and value of the parameters w > w > w_, can be

g : max k+1/2 min
calculated. An excellent review of the theory and procedures developed can be
found in Spanier (1967). For the linear case involving noncommutating positive

definite matrices, convergence is assured if enough acceleration parameters

applied in monotonically nonincreasing order are used (Pearcy, 1962).

The procedures developed for the linear, commutative case have been used
in the past (see for instance Douglas, Peaceman, and Rachford, 1959, Welge
and Weber, 1964, and Coats, Nielsen, Terhune, and Weber, 1967) with good
results, and this procedure has been adopted here. For equations 32 and 33,
the maximum possible eigenvalue of linearized versions of either tridiagonal
matrix is about 2.00, and, because convergence was found to be relatively

insensitive to the value of the maximum acceleration parameter, it was

always set equal to 2.00. No satisfactory theoretical method was found to
estimate the minimum acceleration parameter, and the selection of it is

discussed under "Comparison of Solution Methods”. The number and values of
the other parameters were found from a scheme given bv Varga (1962, p. 226~

229) for generating approximate values for the linear, commutative case:

16



&
= 1.309 log (25&55

min

(34)

_ 2p- 1
C N (2.41)

The term m is rounded to the nearest integer and is two less than the total
number of parameters used, ook and Wos constituting the remaining two.
When used in equations 32 and 33, the parameter was changed at each iteration,

i.e., at k, k+l, k+2, etc.

Line successive over-relaxation {SLOR) is an iterative solution procedure
for which the equations for intermal node points of lines oriented in the z

(or j) direction can be written

(k+1,n+1/2)

(k,n+1/2) ~ (k+1 n+1) h(k+l,n+l)

(k,n+1) (k+1,n+1)
&, )1+l/2,J (hi+l,j - ﬁi,j ) - RAD ~1/2,1 (hy i,3 i-1,j )
(k,n+1/2) ,, (k+l, n+l) . (k+1,n+1) (k,n+1/2) o (ktl,n+l) (k+l n+l)
HERAD Y, Ji+1/2 (ﬁl i+ B i,] ) - & z)i,j—1/2 Gy 5 i,3-1 )
D\ (k,n+1/2)
V), . AS ‘
= m“éw%Ll (s )(k n+1/2)(s )i p Kwﬁ (ﬁikfl’n+l)- hin?) (35)
At w i, d ph 1,4 »J 2]
and
(k+1 n+1) (ﬁ(k+1 ntl) (k n+1)) + h(k n+1)’ 1<w<?2 (36)
:J i, 3 53 1 ‘)

The equation for points lying on a region boundary is identical except the
terms for flow in the r direction and the storage change term (the right
side of the equation) are composed of two terms, one for each region. For

example, for region boundary point (i,3)
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(h - h,

. (n+1/2)
(KrA ) i+1,3 i

)(n+l)
x"i+1/2, ] 3

(nt+1/2) - h

_ . _ (n+1)
- [(KrAx)ir + (KrAx)ir+1 } i+1/2,3 (hi+l,j 1,j)

As can be seen from equations 35 and 36, the procedure is to solve simultan~
eously for all h's along a line using the most recent h's calculated on
adjacent lines as knowns. After all h's on a line are calculated, they are
over—-relaxed or extrapolated using w. The coefficients of the h's for the
line are updated using the extrapolated h's so that they are also the most

recent possible. Convergence at time step (n+l) has resulted when

h (D () ()
1,3

i,3
As for ADIPIT, selection of w materially affects convergence rate, and

Varga (1962, pp. 283-297) outlines methods of estimating it for linear

difference equations. For the nonlinear problems, however, the optimum

w is usually selected by trial and error (McCracken and Dorn, 1964, p. 377).%

It was always between 1.3 and 1.6 for the problems investigated in this

study.

For ADIPIT and SLOR, SZ and Kr were changed at sach iteration. However,
in a manner similar to ADIP, divergence sometimes occurred if the values as
computed directly from h were used for the next iteration. Therefore,
equation 31 was used to interpolate Szﬁ and Kr was obtained from the

interpclated Sg.

* See addendum



It was found desirable to modify the basic equations for the three

(k+1)

solution methods. Instead of writing h as an unknown in each equation,

it was replaced by
h(k+1) - h(k) + Ah(k+l) 37

+
h(k D is the displacement, or the change in h accomplished by one

(k+1)

where A

in the finite difference

(k)

iteration. With equation 37 replacing h

(k+1) can be treated

equations, Ah is the unknown, and terms involving h
as knowns. This procedure, described fully in McCracken and Dorn (1964,

pp. 243-246), accomplishes two main things. First, a higher degree of
accuracy is attainable using fewer decimal places than could be gained using

(k+1) can be relaxed to very near zero.

the original equations because Ah
Second, it was found necessary to test the residual for each equation as well
as the displacement when checking convergence, and the residual is obtained
directly as the sum of all known terms if equation 37 is used, The residual
had to be checked independently of the displacement because of the change

in mesh volumes radially from the well. The same error in h can produce a

much larger error in residual for a large mesh volume far from the well

than for a small one near the well.

For each iteration all three methods yield tridiagonal matrix equations
written in terms of the unknown displacements. The equations can be solved
by a very efficient triangular decomposition technique, the Thomas method
(Bruce, Peaceman, Rachford, and Rice, 1953, p. 79, Peaceman and Rachford,

1955, p. 34, McCarty and Barfield, 1958, p. 142, Lapidus, 1962, pp. 254-255).
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The method and its application to equations of the type used here are

detailed in the above references and will not be explored further here.

The boundary condition below the water level in the well bore was that
of a known, constant head. However, this known head has to be interpreted
as the head necessary to yield a constant specified discharge. Because the
governing partial differential equation is nonlinear, superposition of solutions
to correct the head to produce the desired discharge as was emploved by
Neuman and Witherspoon (1969, pp. 104-108) to analyze flow to a well in
confined strata could not be used. An iterative solution method was emploved

in this study. At the beginning of the first two time steps an initial

approximation for head hék) » k=1, was obtained from Darcy's law for
purely radial flow
‘ T, = T

w 29jb 2'"'1'1 [(‘}'Era(Kb)ir]

where jb refers to the j coordinate of the bottom of the well, and h(°1d)
refers to the value of h at the end of the last time level. The uppermost
bir used was calculated as the difference between the water level in the

well bore and the z coordinate at the region boundary just below the water
level. Also, k as used for the present iteration procedure should not be
confused with k used previously as iteration number in the solution of the
difference equations. Assuming hw as calculated by equation 38, the solution

to the unknown head distribution was made, then the actual discharge yvielded

by hW was calculated from

G _ 73
3=ib

AST,

{ - —_ N _— o
Q5-172 7 Y 54172 ~ UBy2,y D

~~
L
O
o

b
@
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where

AST = (V ) 3 {

w i, i.] i.j3 a’i,j a’i,j

(s )<n+1/2>(g ) DL @y (6P ) (sD)(“+1>]4

The time step superscripts to be used with the Q's depend on the solution

method being used. If
D, (k D
(@ ® - ® > .

(k+1)

then a new trial head hW » was obtained from

() _ . (k=1)
(hW - hW )

k+1 D D, (k-1 k-1
n ) - @) D] 4 D (40)
k k-1 '
(@) - @)t ]
The solution to the unknown head distribution was made again, and Qg was
calculated and tested for convergence. If convergence was not obtained,
equation 40 was reapplied, ete. The terms (0 )(k b and hék-l) for the
first iteration, k=1, were obtained from the last time level:
h(k~l) - h(old)
w
and - h(old)
D, (k-1 - D
@ * Y - | ——¥— g (41)
1 - hw

The above iterative procedure for ADIP was emploved only at time levels
where flow components in the r direction were implicit. Discharges calculated
for all mesh volumes were used explicitly as known quantities for solution
in the z direction. Convergence for all solution methods was obtained in

one, two, or at most three iterations.

After the second time step, all hydraulic heads were extrapolated, and

. D , ]
new values of S; and Kr were calculated from them. This extrapolation of
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heads, which provided a better set of heads and coefficients to start the
iterations than resulted from using the unextrapolated values, conformed

to the basic logarithmic nature of problems involving flow to a well:

l

. +1 -
) _ Log(t ™, Dy Gy D), L (D)
by ° SPRCS)) (e 5 = Bhg,5 ) TPy (42)
s J 1og(t 'I/t\ /') sd 3] 2.}
{(n+l) | .
Here hi j is the extrapolated value for time step (ntl) (or (n+l/2)

(n+1)
1.4b

for the known head boundary condition in the well bore. TFor all except

for ADIP). The extrapolated term h was used as the initial estimate

early values of time, this procedure often resulted in only one iteration

to obtain the value of hw to vield QD,

The location of the seepage surface was another initially unknown quantity
for each time step, and it's determination was incorporated into the
iteration sequence for solving the difference equations. At the beginning
of the sequence, the top of the seepage surface was set at one node point
below the uppermost node point with zero or positive pressure. Five
iterations were completed with this boundary condition, the node points
were checked, the top of the seepage surface was reset at the uppermost
node point with zero or positive pressure, and the iteration sequence was
completed. This procedure appeared to yield the correct elevation of the

seepage surface for all time levels.

At the end of each full time step (i.e., at integer values of n), a total

material balance check was made to ascertain whether total mass was being
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conserved in the system. The basic balance equation is

-%  (AST)
(4,])
ac’(q) - )

(43)

It
[

The mass balance ratio was always within .002 of 1.00 and was usually much

closer when using ADIPIT or SLOR.
COMPARISON OF SOLUTION METHODS

Because ADIP and ADIPIT have only been applied to problems involving
wells that fully penetrate single elastic unconfined aquifers, comparisons
were limited to this type of flow system. See table 1 for a list of the test
problems.

The ADIP was found to be unsatisfactory for most problems investigated
at least in part because the serial nature of the solution for flow components
in the r and z directions caused a violation of the mechanics of flow at
small values of time. The initial condition was a uniform head distribution;
therefore, solution at n=1/2 for flow in the r direction used the initial
condition explicitly for flow in the z direction. Because no flow can take
place under uniform head conditions, no drainage or desaturation could take
place between n=0 and n=1/2, no matter what size time step was used. Flow
was purely radial, and, due to all discharge at the well bore being derived
from elastic storage, the drawdown water table spread too far. (If the solu-
tion would have been made for flow in the z direction using the initial

condition for flow in the r direction, no flow could exist across the well bore!)
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Solution at n=1 for flow in the z direction produced too much water from
desaturation above the water table because vertical flow could take place

as far from the well as the drawdown water table had spread during the first
half time increment. At n=3/2 the head in the well bore increased, apparently
to compensate for the excess of water yielded from storage over what was
withdrawn as well discharge during the last time step. These oscillations
usually continued through the solution, and sometimes the solution became
unstable. In an effort to combat the oscillation problem, the initial time
step was made very small (.0005 minutes). In order to maintain stability,
the time step could not be increased abruptly, however, and many time steps
were needed to obtain a solution over a pumping period of several hours or
longer. Briggs and Dixon (1968) found that the time step size for ADIP

had to be severely restricted to dampen oscillations of the solution even
for a simple linear case involving a well pumping in a rectangular aquifer
with constant thickness and constant pressure boundaries. They concluded

that, because of the time step restriction, ADIP was often not a satisfactory

solution method.

The ADIPIT and SLOR methods were stable and yielded nearly the same
solutions for all problems investigated (figures 3 and 4). In addition,
they converged with a similar number of iterations (see table 2), although
ADIPIT sometimes used slightly fewer. However, each iteration for ADIPIT
involves two mesh sweeps, one in each direction; whereas, SLOR requires

only one with the result that SLOR used less computer time.
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Another problem with ADIPIT involved the selection and use of the
acceleration parameters., Convergence rate was found to be sensitive to
the number of parameters used and the value of the minimum parameter.
The number was selected by equation 34, and it was found that if more
parameters were used the convergence rate was slower. The minimum parameter
had to be selected by trial and error. Values between .00l and .03 usually
preduced satisfactory convergence, but proper selection within the range had
to be made for each problem. Also, as the time step size was increased
during the course of a problem, the value of ®oin often had to be decreased
or the number of iterations necessary for convergence became large,
sometimes 50 or greater. In contrast, selection of w for SLOR was easier
because only one value was needed at each time step, and often it could be
varied over a range of about #0.05 without altering the number of iterations
greatly (figure 5). In conclusion, although both ADIPIT and SLOR produced
satisfactory solutions for the problems investigated, SLOR was faster and

easler to use.
ACKNOWLEDGMENTS

This study, which was initiated as post-doctorate work at the Pennsylvania
State University, was completed at The Hydrologic Engineering Center, US
Army Corps of Engineers. Support for the initial portion of the study was
granted by the Pennsylvania State University through the Institute for
Research on Land and Water Resources and by the Office of Water Resources
Research, United States Department of Interior. The major portion of the
study was financed by The Hydrologic Engineering Center where the author is

employed. The author would also like to thank Dr. D.A.T. Donohue, who

25



coauthored the initial report on the study, for his guidance and Drs.
P.W. Hughes and J.F. Harsh, and Mr. John Peters for reviewing the manu-
script for the present report.

The opinions expressed herein are those of the author and do not

necessarily reflect the policy of the Corps of Engineers.

26



REFERENCES CITED

Aris, Rutherford, 1962, Vectors, tensors, and the basic equations of fluid
mechanics: Englewood Cliffs, New Jersey, Prentice-Hall, 286 pD.

Breitenbach, E.A., Thurnau, D.H., and van Poolen, H.K., 1968a, Immiscible
fluid flow simulator: Soc. Petroleum Engineers Symposium on Numerical
Simulation of Reservoir Performance, Dallas, Apr. 22-23, 1968, preprint
SPE 2019, 24 pp.

mmmmmmmmmmmmmmmmm _ 1968b, The fluid flow simulation equations: Soc. Petroleum
Engineers Symposium on Numerical Simulation of Reservoir Performance,
ballas, Apr. 22-23, 1968, preprint SPE 2020, 11 pp.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 1968c, Solution of the immiscible fluid flow simulation equations:

Soc. Petroleum Engineers Symposium on Numerical Simulation of Reservoir
Performance, Dallas, Apr. 22-23, 1968, preprint SPE 2021, 13 pp.

Briggs, J.E., and Dixon, T.N., 1968, Some practical considerations in the
numerical solution of two-dimensional reservoir problems: Soc. Petroleum
Engineers Jour., v. 8, no. 2, pp. 185-194.

Bruce, G.H., Peaceman, D.W., Rachford, H.H., and Rice, J.D., 1953, Calculation
of unsteady gas flow through porous media: AIME Trans., v. 198, pp.79-92.

Childs, E.C., 1960, The non-steady state of the water table in drained land:
Jour. Geophys. Research, v. 65, no. 2, pp. 780-782.

Coats, K.H., Nielsen, R.L., Terhune, M.H., and Weber, A.G., 1967, Simulation
of three-dimensional, two-phase flow in oil and gas reservoirs: Soc.
Petroleum Engineers Jour., v. 7, no. 4, pp. 377-388.

Cooley, R.L., and Donohue, D.A.T., 1969, Numerical simulation of unconfined
flow into a single pumping water-well using two-phase flow theory:
Pennsylvania State University, Inst. for Research on Land and Water
Resources Tech. Completion Rept., 25 pp.

Cooper, H.H., Jr., 1966, The equation of ground water flow in fixed and
deforming coordinates: Jour. Geophys. Research, v. 71, no. 20, pp. 4785-
4790.

Corey, A.T., 1954, The interrelation between gas and oil relative permeabilities:
Producers Monthly, v. 19, no. 1, pp. 38-41.

Douglas, Jim, Jr., 1962, Alternating direction methods for three space
variables: Numerische Mathematik, v. 4. pp. 41-63.



Douglas, Jim, Jr., Peaceman, D.W., and Rachford, H.H., Jr., 1959, A method for
calculating multi-dimensional immiscible displacement: Soc. Petroleum
Engineers of AIME Trans., v. 216, pp. 297-308.

Fagin, R.G., and Stewart, C.H., Jr., 1966, A new approach to the two-
dimensional multiphase reservoir simulator: Soc. Petroleum Engineers
Jour., June, 1966, pp. 175-182.

Freeze, R.A., 1969, The mechanism of natural ground water recharge and discharge.
1. One-dimensional, vertical, unsteady, unsaturated flow above a recharging
or discharging ground water flow system: Water Resources Research, v.5,
no. 1, pp. 153-171.

Klute, A., 1969, The movement of water in soils: International Seminar for
fydrology Professors, Univ. of Illinois, Urbana, July 13-15, 1969, 69 pp.

Lamb, H., 1945, Hydrodynamics: New York, Dover, 738 pp.

Lapidus, Leon, 1962, Digital computation for chemical engineers: New York,
MeGraw-Hill, 407 pp.

McCracken, D.D., and Dorn, W.S., 1964, Numerical methods and fortran programming:
New York, John Wiley and Sons, 457 pp.

McCarty, D.G., and Barfield, E.C., 1958, The use of high speed computers for
predicting flood-out patterns: Soc. Petroleum Engineers of AIME Trans.,
v. 213, pp. 139-145.

Neuman, S.P., and Witherspoon, P.A., 1969, Transient flow of ground water to
wells in multiple-aquifer systems: Univ. of California, Berkeley,
Department of Civil Engineering Pub. 69-1, 181 pp.

Peaceman, D.W., and Rachford, H.H., Jr., 1955, The numerical solution of
parabolic and ellipic differential equations: Soc. Indus. Appl. Math.
Jour., v. 3, no. 1, pp. 28-41.

Pearcy, Carl, 1962, On convergence of alternating direction procedures:
Numerische Mathematik, v. 4, pp. 172-176.

Rubin, J., 1968, Theoretical analysis of two-dimensional, transient flow of
water in unsaturated and partly unsaturated soils: Soil Science Soc.
America Proc., v. 32, no. 5, pp. 607-615.

Smith, G.D., 1965, Numerical solution of partial differential equations:
New York, Oxford, 179 pp.

Spanier, J., 1967, Alternating direction methods applied to heat conduction
problems, chap. 11 in Ralston, Anthony, and Wilf, H.S., Mathematical
methods for digital computers, v. 2: New York, John Wiley and Sons,
287 pp.

28



Stallman, R.W., 1961, Relation between storage changes at the water table
and observed water level changes: U.S. Geol. Survey Prof. Paper 424-B,

pp. B39-B40.

Taylor, G.S., and Luthin, J.N., 1969, Computer methods for transient analysis
of water-table aquifers: Water Resources Research, v. 5, no. 1, pp.
144-152.

Varga, R.S., 1962, Matrix iterative analysis: Englewood Cliffs, New Jarsey,

Prentice-Hall, 322 pp.

Welge, H.J., and Weber, A.G., 1964, Use of two-dimensional methods for
calculating well coning behavior: Soc. Petroleum Engineers Jour.,

v. 231, pp. 345-355.

29



APPENDIX

I. NOTATION

constant for relationship of Sg to P general flow coefficient

coefficient for flow in the r direction
coefficient for flow in the z direction
thickness of a rock property region

, B
dimensionless thickness of a rock property region = i
o

i3

dimensionless thickness of total flow system = —

B
:
0

eq s . s D
water compressibility; exponent for relationship of Sa to T

pore compressibility

exponent for relationship of Kr to Sa
gravitational constant

hydraulic head = Ph + Z

initial hydraulic head

. . . H
dimensionless hvdraulic head = .
o

dimensionless head at external lateral boundarv = 1

dimensionless head helow water level in well bore

3z

-, Jacobian

3z’
hydraulic conductivity

hydraulic conductivity of reference rock property region
dimensionless conductivity = 7
o

capillary conductivity

bt

4
relative conductivity = EE

direction normal to S

porosity



water pressure

~ alr pressure

capillary pressure = P - P
P
- water pressure head =»5§

. : h
- dimensionless pressure head =T

Q

~ discharge at well bore; dimensionless discharge at any point

Q

- dimensionless discharge at well bore = -0
K H
00

i

calculated dimensionless discharge at well bore using hw

- dimensionless discharge across external lateral boundary

¥

i

o -specific yield of reference rock property region

§

radius from well center

. . . R
dimensionless radius = o
o

dimensionless radius of external lateral boundary

dimensionless radius of well bore

surface area

surface of mesh volume element

S H
storage ratio = ~§§MM

specific storage

specific yield = n S
ar

S
v

specific yield ratio = —=

air saturation = 1 - Sw

normalized air saturation

residual air saturation

water saturation

(8,0,



<l
i

v -

time

dimensionless time = ?ENS-ET”

discharge of water per unit area

volume

volume coefficient for storage change

mesh volume element

fixed initial volume element, AXAYAZ

volume element that deforms with time

volume of voids

velocity of grains in the Z direction

deforming elevation above the hottom of the flow system

s . . ] Z
dimensionless deforming elevation = o
o

dimensionless elevarion of well bottom
dimensionless elevation of top of seepage surface at well bore
convergence criterion (10-7)

. D
convergence criterion for discharge calculations iterations = .0010Q

fixed initial vertical coordinate
mass density of water
acceleration parameter

. . D, .
interpolation parameter for Sa interpolation
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Indices

i ~ node point number in r direction
ir -~ rock property region number

3 - node point number in z direction
jb - j number of well bottom

js - j number of top of seepage surface
k - iteration number

n - time step number

IT. DERIVATION OF SPECIFIC STORAGE

From the concept of volume element V(t) deforming elastically in response

to pressure changes,

dv(t) = JdVo (1)

(Cooper, 1966, p. 4788, Aris, 1962, p. 83). Using equation 1 and the

relationship
aw
13 _ g
J ot 3z (2)

(Cooper, 1966, p. 4788), the integral involving the rate of change of

storage with time over V(t) may be transformed to an integral over Vo:

) .
™ fff SwpndV

v(t)

)
= 5t f[f SwandV

V

ffjan-'~+SJ(n—£+p%%+p ;gi)] dv

a0

‘jifl[[pn-gz~ + S {(n —E-+ D 5;-+ on ~_g)] dv

v(t)

]
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The compressibility of water is defined as

[¢]

]

!
< |
512

O |t
5l&

Taking the time derivative

3B _ 30
53¢ T B¢ ¢

Aquifer compressibility can be defined

Therefore,

1 d(asv(t))
€a T n8v(n) dp

[}

1 dn,  dGV(r)
nov(t) [5V(t) agp T ® ap ]

ldn 1  d(sv(t))

n dP SV(t)~ dp

d(J8v )
n dP J&V_ dp

ldn 1
n + J

Multiplying by pon and taking the time derivative, there results

w

9P _ 38n £
oncn at P ot + pm 9z

Using equations 5 and 8, equation 3 thus becomes

fffpn +Spn(c+c)~g-§] dv

v{t)
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Iff ~H 43 p?gn (c+cn) §-H-] dav

v(t)

oH
,[[,/ "“““Lg Ss"a“'{] v 9)

v{t)
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ADDENDUM

Further investigation has yielded a method of generating w internally
for each time step except the first. At the end of a time step, the following

gquantities are computed:

”%% max(Ahk) }
o - [ e 11 .
w 28 max(Ahk_l)

rit  max(Ah )

k .
q- [f ) "
w =g max(Ahk_l) | //
2

[G. + w - 1]

G = & Ko%d (3)
Gy “o1d

Here ¥,14 is the acceleration parameter used for the time step just completed,
and (it) is the number of iterations for the last cycle of iterations. Using G

computed from equation 3, a new trial acceleration parameter, w”, is computed:

I — (4)
1+/1-G
if
6 -6°| > 0.1 (5)
W w
then Wy1q I8 adjusted:
= —_ Aol (6)
BT ugrg T @ T e g)
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Equation 3 and 4 represent theoretical relationships between the
spectral radius of the block Gauss-Seidel matrix, G, and the spectral radius
of the block successive overrelaxation matrix, Gw’ with ®o1d as the
acceleration parameter (Varga, 1962, pp. 105-111). The method outlined
by equations 1 through 4 computed close to the optimum w if convergence
of the maximum displacement was monotonic (i.e., if Gw = G;). However,
if the solution oscillated during iterations, then the ®.1d used was too

large,and it was reduced for the next time step using equation 6.
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Table 2. Total number of iterations at each time step for 6 time
steps, test problem no. 4.

Time step h no. of iterations
number v ADIPIT SLOR
1 .9646% 17 25
~8891 35 26

.8916 22 19
2 .8732 26 26
.8813 26 24

. 8882 26 24
3 .8858 26 25
.8864 26 25
.8867 26 25
4 .8855 26 25
5 .8843 26 25
.8841 26 25
6 . 8828 27 26
.8826 25 26

* These values differed in the fifth or sixth decimal place between
methods.
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