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A HYDROLOGIC WATER RESOURCE SYSTEM MODELING TECHNIQUE
By L. G. Hulmanl and D. K. Erickson2

ABSTRACT

The record Northeastern United States drought of the 1960's has neces-
sitated a detailed reappraisal of water resource systems previously proposed
in the affected areas. The agbility to judge the competency of proposed
engineering structures in the Delaware basin has been hampered'by the diver-
sity of projects, the political constraints”on exlsting projects in the upper
portion of the basin and the numerous alternative demands on available
svrface water. To facilitate analysis of the effects of the drought, a
mathematical modeling technigue has been developed to allow simulation of the
hydrologic properties of the lower Delaware basin and proposed engineering
structures. The technique and its application to the Delaware are discussed.

The results of the reappraisal of project yilelds utilizing the model are

presented and compared with pre-1960 yield estimates.

lFormerly Assistant Chief, Hydraulics Branch, U. 5. Army Engineer District,
Philadelphla; now Acting Chief, Special Assistance Branch, The Hydrologic
Engineering Center, Corps of Engineers, Sacramento, California.

2Hydraulic Engineer, U. S. Army Engineer District, Philadelphia.



THE DROUGHT AND THE DELAWARE

Perhaps the greatest surface water supply demand in the United
States is generated in the populous northeast. The record drought in this
section of the country which exceeded previous records began in August 1961
and persisted for a period of six years. Subnormal precipitation and
deficient water supplies occurred over an area extending from Maine to Virginia
and at times westward to Indiana. The most continuously dry weather occurred
in northern New Jersey and southeastern New York. Within the Delaware River
Basin there was an accumulated surface water deficiency equivalent to more
than two and a half years of normal runoff.

Precipitation over the Delaware Basin was below normal for six con-
secutive years, from August 1961 through May 1967.3 Historical records
indicate that droughts of this length and severity in this part of the United
States have a recurrence interval of about once in every 140 years.u
Precipitation and stream flows for the drought fell below 2ll minimums re-
corded in the previous 1930-31 basin-wide drought of record. A study of
the drought of the 1960's for flows at Montague, New Jersey on the Delaware
River indicates that the minimum 18~ and 30-month flows have recurrence

intervals of approximately 500 years and 400 years, respectively.5

3Dela;ware River Basin Commission Resolution 67-3, dates 15 March 1967
uPalmer Drought Index

OProbability of Allowable Yields in the Delaware River Basin, by
Clayton H. Hardison, USGS, Washington, D. C.



In comparison, the previous 1930 drought of record had recurrence intervals
of 12.5 years and 15.5 years for the 18- and 30-month minimum flows.

Although the Delaware River Basin has a drainage area of approximately
13,000 square miles, its service area is much larger. The water service
area of the basin includes about 25,000 square miles comprising 53 counties
located in the states of Delaware, Pemnsylvania, New Jersey, New York,
and Commecticut. The water resources of the basin are fundamental to the
economic and social well~being of some 25 million people who live within
the water service area, most of whom live within the Wilmington-Phildelphia~
New York City urban corridor.

Figure 1 shows the limits of the basin and its general water service
area. An interconnected three-reservoir-system is a major water supply
source for New York City in the upper portion of the basin in New York
State. The downstream releases and out-of-basin diversions from the three
reservoirs (Cannonsville, Pepacton, and Neversink) are regulated by Supreme
Court Decree6 which limits diversions to 800 m.g.d. and requires maintensnce
of minimum flows downstream at Montague, New Jersey (Milford, Pa.) to 1,750 cfs.
These three reservoirs control 915 square miles of the total drainage area
of 3480 square miles above Montague. A brief description of the system is

presented below.

6195M, Amended U. S. Supreme Court Decree, 347 US 995 (195L)



The proposed development of the water resources of the Delaware River
Bassin was embodied in a comprehensive study which culminated in a pl.anT
for eight major federal and numerous smaller reservoirs, and the creation
of a joint federal-state commission to administer basin water resources.
The resulting Delaware River Basin Commission adopted the comprehensive plan
as its own and subsequently evoked emergency powers8 to control diversions
during the record drought. With the conclusion of the drought it became
evident that a reappraisal of the yield prospects of major reservoirs in the
comprehensive plan would be required.9
NEW YORK CITY RESERVOIR SYSTEM

The New York City water supply system is comprised of three major reser-
voir sub-systems; the Croton, Catskill and the Delawere. The Delaware
sub=-system on the western and southern slopes of the Catskill Mountains is
over 100 miles from New York City and uses Rondout Reservoir in the Hudson
for intermediate storage by conduit connection. Rondout Reservoir is located
on Rondout Creek, a tributary of the Hudson River, and has a capacity above
minimun operating level of 153,250 acre feet, (50 billion gallons). Never=-
sink, Pepacton and Cannonsville Reservoirs have capacities sbove minimum
operating levels and watershed areas of 107,300 acre feet (35 billion gallons)
and 93 square miles, 429,100 acre feet (140 billion gallons) and 375 square
miles and 294,200 acre feet (96 billion gallons) and 45 square miles, re-

spectively.

Tﬁouse Document 522, 8Tth Congress - 2nd Session

8Dela:ware River Basin Compact

Prrs sin Man ement”, An Interstate Approach by James F. er t,
NOTV%SSQa Vol. Journal of Hydraulics B?v1sion,y Ch, Aug. 1

L



The Delaware Aqueduct can deliver water to New York City via Rondout
at a meximum rate of about 890 million gallons per day. This 890 m.g.d.
capacity compares with capacities of 590 m.g.d. from the Catskill Aqueduct,
290 m.g.d. from the Corton Aqueduct, and a Supreme Court Delaware Decree
limiting rate of 800 m.g.d.

COMPREHENSIVE PLAN RESERVOIR SYSTEM

The comprehensive plan includes eight major reservoirs above Trenton,
in addition to the three owned and operated by New York City. Of the eight
reservoirs, two are already in operation, but have not been modified to
include water supply storage, one is under construction and three are in pre-
liminary design stages. The eight reservoirs are : Prompton, Tocks Island,
Francis E. Walter, Beltzville, Aquashicola, Trexler, Hackettstown, and
Tohickon. All of the reservoirs, except Prompton, are located below
Montague, New Jersey., Figure 1 shows the location of the eight compre-
hensive plan and New York City reservoirs with respect to the Delaware
River Basin above Trenton. Six projects are to be developed by the
federal government with significant loeal cooperation, the Hackettstown
and Tohickon projects to be developed by non-federsl interests. Table 1
below gives pertinent details for each of the eight reservoirs.

RE-EVALUATION OF THE NEW YORK CITY DELAWARE SYSTEM YTIELD

In the Amended Decree of the U, S. Supreme Court, dated 7 June 1954,
New York City was authorized to divert water from its reservoirs in the
Deleware River Basin, and was required to make compensatory releases to
the Delaware River to maintain certain minimum rates of flow at the gaging

station at Montague, New Jersey. Diversions equivalent to 800 m.g.d. were

authorized by the decree with all three New York City reservoirs in full operation.
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The decree specified that the compensatory releases were to be made from

one or more of the reservoirs and was designed to meintain a minimum

basic rate of flow at Montague of 1,750 cfs; in addition, excess quantities
of water, depending upon New York City consumption, were to be released
beginning 15 June each year and to be continued not later than the following
15 March.

In reappraising the safe yield for the Delaware System for the drought
of the 1960's, both the office of the Delaware River Master and the New
York City Department of Water Supply, Gas, and Electricity (now the Bureau
of Water Resources) were requested to undertake separate studies. The
studies by the two organizations were carried out as parallel but separate
work and generally used the same methodology.

In the analysis the amount of water available was considered to in-
clude full reservoirs at the beginning of the period and the inflow which
was actually received. TFor each reservoir the usable capacity was thst
allowable above the minimum operating level. The three reservoirs were
analyzed in combination., The draft requirements were diversion to New
York City for water supply, and releases to maintain specified flow rstes
of the Delaware River at Montague, New Jersey. Relesses were made at
"conservation" rates when a larger rate was not required to maintain the
applicable minimum flow at Montague. Conservation rates were defined as
minimum releases to maintain at a1l times a suitsble streamflow below the

reservoirs.



Several "design" or specified minimum flow rates at Montague were studied
rather than different diversion rates for ease of computation. Various
design rates ranging from O to 2,650 cfs were considered.

It was assumed that the three reservoirs would be operated as a unit
so that, after considering inflow, the contents of the reservoirs would be
maintained at equal per cent cgpacity. It was alsc assumed that the combined
cgpacities of individual reservoir outflow facilities could accommodate
all releases and this was found to hold true in 211 cases examined. Monthly
flow data were used, except daily data were substituted for months of the
criticel period.

These dats were used as basic upper basin inflow for study of drought
effects downstream. The results of the individual studies by both the City
of New York and the Delaware River Master were essentiglly the same and
are summarized in table 2,

A comparison of N.Y.C. diversion rate for the drought of the 1930's
and that of the 1960's, with a design rate of 1,750 cfs being maintained
at Montague, shows a capability of 800 mgd for the 1930's versus U480 med

for that of the 1960's.
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3/
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10/

TasiE 220/

RELATTONSHIP OF DIVERSIONS AND RELEASES -
NEW_YORK CITY RESERVOIRS - DROUGHT OF 1960's

DESIGN RATE AT MONTAGUE DIVERSION RATE
C.F.S. M.G.D.
Del. River Master New York City
Analysis Analyeis
1750 and zésol{ 225 235.7
1750 and 2200 354 ——
17502/ 182 582.3
1700/ 502 ——
15252/ 576 579.1
10002/ .- 6021
12002/ 680 683.3
10002/ - 734.6
9502/ 43 ———
03/ 821 822.5
o/ 818 818.1

2650 and 2200 cfs are rates for excess release period only
No Excess Releases

Conservation Releases Only

Excluding all Downstresm Releases

Results of New York City and Delaware River Master studies as presented
in Delaware River Basin Commission Committee Report Chapter 2 Section 9

\D



MODELING REQUIREMENTS

With the chronological limits of the drought defined and the reservolr
system and upstream flow constraints delineated, four decisions were
required before developing a mathematical simulation model for yield
analysis. Each decision is discussed below.

a. Flow Records The use of streamflow records in simulation models

requires that the averages for the time period employed (daily, weekly
or monthly average flows) reasonsbly describe actual flow histograms.
If large deviations from averages occur during the beginning and later
periods of a drought, and the length of drought is short with respect to
these deviations, a significant error in the estimate of yield or reguired
storage may result.

The continuous yield available from a single reservoir is simply
the sum of the storage and the accumulated inflow minus losses, such as
evaporation, divided by the duration of drawdown. During the duration of
drawdown 1t is further understood that the storage at any intermediate time
can be no greater than the initisl value. Conversely, at no time, except
at the end of the drawdown period, can the storage be less than the minimum
availsble if the yield is to be continuous. These relationships may be

expressed mathematically as follows:

t =T
B
t =1
1t 2:: T (T - By - 02 855 (2)

and

10



%
S. + ; (I, - B, - 0.)<8; ; (3)

Y = average continuous yield,
Sl = initial storage available,
S, = minimum storage available,

t = time period number,

T, = first time period number,

1
T2 = last time period nunber,
It = inflow during time period t,
Et = losses, including evaporation, during time period t,

Ot = outflow during time period t,

1 = any time period between Tl and T2, inclusive.

The most accurate method of determining the evor resulting from
hydrologic modeling using longer period streamflow records would be to
compare the results of two models, one using longer period flows such as
monthly averages, and the other using shorter period records such as daily
flows. OSuch a luxury was not available for this study. An estimate of the
potential errors inherent in the use of monthly average streamflow records 7
was assumed to be the magnitude of errors resulting from predicting local
continuous yields on a monthly basis, and then using daily records to
check the prediction. The assumption was further simplified by neglecting
evaporation and variations in yield requirements (potential errors from these

sources have been investigated previouslyll/).

11/ Technigues for Evaluation of Long-Term Droughts, by A. J. Fredrich,
Presented at ASCE Water Resources Conferences, Néw Orleans, Feb. 1069

11



Streamflow records selected for analysis were those required for
simulation of daily reservoir system operation and are listed in table 3.
The period of record utilized was from June 1960 throuch May 1967.

Storage at the end of any day in excess of the starting value was
ignored. If in making the continuous yield release the hypothetical
reservoir storage was negative, the release was limited to the inflow for
the day and the average outflow available from the storage remsining at
the beginning of the day. The flowing eguations were then assumed to
represent the magnitude of yield and storsge errors in the use of gverage
monthly and daily streamflows.

Y =Y

E, = (-—‘%(;———-‘1) 100 (1)

S -8

= (—’-“g;—g-) 100 (5)

bxf
t

E, = potential error, in per cent, in yield estimates using
monthly in place of daily streamflow records,

Y. = average yleld using daily flows,

d
Ym = average yield using monthly flows,
ES = potential error, in per cent, in estimates of storage

required to maintain Ym’
S, = storage required to maintain Y using monthly flows,

Sd = gtorage required to maintain Ym using daily flows.

The errors were then plotted against the yield expressed as a percentasge
of the average annual flow. An enveloping function was drawn to represent

the upper limit of each type of potentisl error. Figure 2 is a typical plot.

12



Table 3 summarizes the meximum potential yield and storage errors from
enveloping functions for each streamflow record studied.

The relative order of magnitude of the potential yield error indicated
in table 3, possible use of the model for simulating hydroelectric power
facilities on a daily basis and the necessity for determining flow-durations
for period other than calendar months, resulted in the use of daily flows
in the simulation model.

b. Flow Requirements. Individual reservoir yields are generally

based upon a demand at a single point. With a system of reservoirs,
however, the demands at downstream points controlling more than one res-
ervoir must be considered. For the Delaware, a single downstream control
point at Trenton was selected as critical. The basic constraint on the
entire system, therefore, was the determination of the maximum flow which
could be maintained at Trenton throughout a recurrence of the drought.

In addition, conservation requirements immediately below each project

will require a minimum release at all times, and the possibility of out-of-
basin diversions must be considered. Variability in demand with respect

to time was not considered.

c. Reservoir Operation. Recreation, water supply and flood control

requirements at each project will allow the use of operational rule curves,
or time variable desirable conservation pool levels. The additional vroject
at Tocks Island, hydropower, will allow the use of multiple rule curves.
Accordingly, the model must take cognizance of individual reservoir oper-
ational constraints. Individual rule curves for each project, with two

for Tocks Island, were, therefore, specified.

13



TABLE 3
ESTIMATED CONTINUOUS YIELD AND STORAGE ERROR USING MONTHLY FLOWS
(June, 1960 through May, 1967 period)

Yield Storage
Yield as Per- Error Error
Streamflow Mean Annual centage of Mean Storage % %
Station Flow=-cfs Anmusal Flow dsf Ey BEs
Delaware River @ 6,408 19.6 20,270 4.9 35.5
Montague, N.J.
(adjusted to re-
flect operation
of NYC reservoirs)
during the drought
Delaware River @ 6,408 25.3 165,340 6.2 12.3
Montague, N.J.
(nistorical)
Bushkill @ 238 19.7 2,7ho 7.6 14.8
Shoemakers
Lehigh River @ 196 35.6 1,080 6.3 47.0
Walter Dam
Inflow, Walters 196 43.5 1,970 7.9 38.5
Dam est.
Lehigh River 1,940 13.7 5,480 5.8 32.3
@ Walnutport
Pohopoco Creek 228 34,7 8,320 6.5 12.3
near Parryville
Aquashicola Creek 158 9.5 155 L,7 26.6
near Palmenton
Jordon Creek @ 118 25.5 4,400 5.2 8.2
Allentown
Jordon Creek near 92 32.2 126 26,8 297.7
Schnecksville est. ,
Lehigh River @ 2,294 49.8 105,200 .7 10.1
Bethelehem

1L



TABLE 3
ESTIMATED CONTINUOUS YIELD AND STORAGE ERROR USING MONTHLY FLOWS

(contd.)
Yield Storage
Yield as per- Error Error
Streamflow Mean Annual centage of Mean Storage % %
Station Flow-cfs Annual Flow dsf Ey Eg
Musconetcong River 121 25.2 1,660 b.2 13.2
Hackettstown
Delaware River 8,223 23.3 78,480 3.2 13.7
@ Belvidere
Delaware River
@ Regilsville 11,260 24.8 83, 400 2.4 9.7

15



System operation, and the resulting determination of individual
project releases to meet downstream requirements, was based on allocation
of the flow deficiency at the downstream control point. An index parameter
was used which included consideration of a combination of storage remsining
in the individual project below specified rule curves as a percentage of
the total storage left in the system, and the ability of the individual
reservolr to refill itself to maximum conservation pool level under an
assumed minimum future inflow condition, By using such a combination, con-
sideration is given to both existing and potential (future) conditions.

The actual future inflows could be used in a "hindsight" evaluation.
Conversely, a prediction of future flows could be used which would take
into account some estimate of minimum future inflows. It was desirable
that the model not be of the hindsight type, i.e. that it embody only
knowledge of what has occurred to form a basis for future reservoir oper-
ation. Accordingly, minimum historical sequential flows were used to
project future storage levels in the allocation of releases.

The mathematical relationships used to determine the necessary indi-

vidual project release for each day of simulated operation are as follows:

Rp = Cp * Ky + WS, (6)
Kg = (55 - Rep) - Cp (7)
WSp = IVOL (Dp) (8)

16



and

s

where:

Br

d.

N
={(RCy - sg)/ g—,—_l (Rog - SR)} (1 - To/T)

average daily reservoir release in cfs,
required daily conservation release in cfs,
average daily flood control release in cfs,

sverage daily supplemental release from reservoir
R in cfs

projected storage in reservoir R, in dsf, at the end
of the day with evaporation but no relesses,

= rule curve storage in dsf,

= average daily conservation release in cfs,

total daily reservoir system release required at
Trenton, in cfs,

release distribution factor for reservoir R,

time in months, to fill reservoir R from its present

level to its rule curve assuming minimum future inflow,

arbitrary maximum reservoir filling period of 12 months.

(9)

Routing Requirements. The short time frame selected, one day,

requires downstream routing of reservoir inflow holdouts and subsequent

releases from their respective locations in the basin.

Considering the

time frame of one day, a simple travel time - volume algorithm was employed

which allows the time of each reservoir's operation to be adjusted to the

time at the downstream control point, That is, releases from

1T



to meet downstream flow requirements would begin the number of travel time
hours before the beginning of the day at the downstream control point and
continue for a full day. Therefore, each day's release from each reservoir
would be composed of any flood control release, miminum conservation re-
lease and the allocated and routed supplemental water supply demands on two
different days.

With the method of determining reservoir releases established, it
is then necessary to develop the algorithm for ascertaining the maximum
flow which could;be maintained at the downstream control point during the
simulated drought. The method employed is simple interval halving. An
initial estimate of the maintainable flow at the control point is assumed
and the system operated until any of the reservoirs becomes empty, or
until the period of simulation has been completed. If no reservoir was
emptied, the maintainable flow is increased; conversely, if a reservoir(s)
was emptied the maintainsble flow has been assumed, a new value equal to
half the previous estimate is furnished. If a previous lower estimate iras
made, a new value equal to the average of the present and previous lower
values is computed. Conversely, if the maintainsble flow is to be increased,
and no higher previous estimate was made, a new maintainasble flow equal to
twice the present value is computed. If a larger value had been tested,
the new value of the maintainsble flow is computed as the average of the
higher and present values. With 2 new estimate of the maintainable flow
available, simulation is again begun and the process repeated until the
difference between successive estimates is within e specified tolerance, or

until a specified maximum number of iterations have been made.

18



THE MODEL

The reservoir system, the general method of analysis and its infternal
and external constraints are discussed ebove. With these in mind, the
final requirements for the model are the determination of the locations
of streamflow simulation in the model, the "design" features to be studied,
and the statement of the logical methodology required for conversion to
instructions necessary for computer processing. Figure 2 shows the locations
of 15 gaging stations that were used as key flow points in the model.
These stations were selected for use as either a means of determining in-
flow into a reservoir, or as a streamflow routing check point and for com~
puting intervening ares flows. Inflows into the reservoirs were camputed
by two methods. Where gaging station records were available in the same
watershed, simple drainage area ratios were used to adjust such records to
approximate inflow. Where such records were not available, correlation
relationships with streamflow data elsewhere in the ares were used.

The gaging stations employed, and their use, are listed below.

GAGING STATION USE
RESERVOIR INFLOWS

Project Use Gage ILocations
1. Tocks Island Inflow - Delaware River @ Montague, N, J.
Inflow - Bushkill Creek @ Shoemakers, Pa.
2. F. E, Walters Inflow - determined from existing pool.
Lehigh River @ White Haven, Pa.
3. Beltzville Inflow ~ Pohopoco Creek @ Parryville, Pa.
4, Aquashicola Inflow - Aquashicola Creek @ Palmerton, Pa.



GAGING STATION USE
RESERVOIR INFLOVWS

(Contd.) .
Project Use Gage Locations

5. Trexler Inflow - Jordan Creek near Allentown, Pa.

(June 1961 - Sept 1966)
Jordan Creek near Schnecksville, Pa.

(Oct 1966 - May 1967)

6. Hackettstown Inflow - Musconetcong River @ Hackettstown

7. Tohickon Inflow - Tohickon Creek @ Pipersville

INTERMEDIATE CHECK POINTS-AND. INTERVENING FLOW

Delaware River

Delaware River at Belivdere, N, J.
Delaware River at Riegelsville, N, J.
Delaware River at Trenton, N. J.

Lehigh River

Lehigh River at Walnutport, Pa.
Lehigh River at Bethlehem, Pa.

The "design" features required for simulation by the model are
as follows:
a. Varisble control of inflow to the largest reservoir in the
system; i.e., control of inflows to Tocks Island Reservoir by the New York
City Delaware River Reservoir System at various minimum or "design" levels;
b. Staging of projects in the system; i.e., the effects of various
combtinations of reservoirs in the system;
c. Variable individual project water supply storage capacities;
d. Varisble diversions from reservoirs and/or downstream control

points.



The statement of the methodology of the logical process of reservoir
and control point simulation is shown in figures L and 5. Each descriptive
block indicates a logical separable process or event, Lined arrows con-
necting the blocks illustrate the sequence of events within the model.

The statement of this methodology allowed the direct development of the
computer program employed for use in the Delaware Basin.

For each day of simulation, the following process is followed:

a. compute the differences between anticipated and regulated
flows at Montague and route the resulting holdouts (differences) to down-
stream control points without reservoir regulation;

b. determine 2ll reservoir inflows and route differences
between inflows and observed flows to downstream control points;

c. make mandatory conservation, power and flood control releases
from all reservoirs, adjust reservoir storages and route inflow-outflow
holdouts to downstream control points;

d. 1if the resulting flow at Trenton is less than the estimated
minimum maintainable flow (TGOAL), allocate the difference, or supplement,
among the upstream reservoirs, route the allocated releases and adjust
storages.

e. 1if any reservoir in the system is drawn below its stipulated
minimum operating level, or if the simulation period is over, compute a new
estimated maintainable flow, and start simulation agein.

f. 1if no reservoir is empty, or if the simulation period is not
over, compute reservoir and flow statistics, advance calendar one day and

repeat process.
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The relative size of the model and its algorithm required the availa-
bility of a large-sczle computer system. A Control Data Corporation
CDC-6600 computer system at New York University and an IBM 360, model 65,
at the University of Pennsylvania were employed.

The results of the use of the model in determining project yields and
downstream maintainable flows by simulating the 1960's drought in the
Delaware Basin, and a comparison with similar data previdusly developed
for the second most severe 1930's drought, are presented in the following

section.

CAPABILITY OF MAJOR RESERVOIR PROJECTS
IN THE COMPREHENSIVE PLAN

Figures 1 and 2 show the location of the eight reservoirs in the
comprehensive plan, the location of upstream reservoirs, and intermediate
stream gaging stations which were simulated in the model to determine
the effects of the recent (1961-67) drought. Table 1 lists the pertinent
statistics for each reservoir in the comprehensive plan and indicates its
present state of development. Water use gtudies made prior to the recent
drought indicated that the 1930-32 period was the driest of record and
yields based on this period, using monthly flow, are presented in table 5
for reference. The operation of the three New York City Delaware Basin
reservoirs during the 1960-1967 period was not in accordance with the 1955
Amended Supreme Court Decree., Cannonsville was completed during the period

and was not sufficiently filled to require meeting a 1750 cfs goal at
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TABLE 4

RESERVOIR-STREAMFLOW STATION TRAVEL TIMES

Location to Location  Estimated Travel Times (Hrs.)
Tocks Island Reservoir Belvidere 9
Belvidere Riegelsville 6
Hackettstown Reservoir Riegelsville 8.5
Walter Reservoir Walnutport 20
Beltzville Reservoir Walnutport 10
Aguashicola Reservoir Walnutport 4
Walnutport Bethlehem 16
Trexler Reservoir Bethlehem 18
Bethlehen Riegelsville 12
Tohickon Reservoir Trenton i1
Riegelsville Trenton 1h

TABLE 5

COMPARTSON OF CONSTANT PROJECT YIFLDS®
' +2 te T )
1930's Drought 1960's Drought
Project Yield Estimate cfs Yield Estimste cfs

New York City Reservoirs 1240 YHTM
Prompton 66 68
Tocks Island 2777 2835
Walter 268 288
Reltzville 105 88
Aquashicola 78 76
Trexler 68 4o
Hackettstown 85 57
Tohickon 5k 1

1assum.es 1750 design rste @ Montague 2using nonthly pre-1960 flows

3using deily flows no excess releases
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Montague. Furthermore, the depletion of the system required the imple-
mentation of emergency operations under control of the Delaware River Basin
Commission. Because of the obviously limited amount of water available
during the period, it was decided that flow would be simulated at Montsgue
for several selected "design rates" varying from 950 to 2650 cfs. The
reconstitution of Montague flows under a fully usgble three-reservoir

New York City Delaware System was accomplished by the New York City
Department of Water Resources, Bureau of Water Supply, and checked by
comparable computations made by the Delaware River Master. Data furnished
for the lower basin model consisted of information from which the recon-
stituted Montague flows (June 1, 1961 to May 31, 1967) could be easily
computed for any desired "design rate", or minimum flow.

Because of the location and relative size and effective contribution
of Prompton Reservoir and Lake Wallenpaupak (a Lackawaxen Basin recreation-
power reservoir) with respect to the other reservoirs in the system, it
was concluded that simmlation of these projects would not be required.
Studies made for modification of Prompton Reservoir to include permanent
water supply storage have been accomplished12 and include the evaluation
of the "1960's" drought through 1966. It was concluded, therefore, that
the relatively small yield of 68 cfs from this project could be more easily

added separately to the Tocks Island yield.

12U.S. Army Engineer District, Philadelphis, Prompton Reservoir, Hydraulics
and Hydrology Design Memorandum No. 10, dated Oct. 1966.
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The specific numerical information desired from the model simulation
of the 1960's drought consists of the following:

a. The maximum flow which could be meintained at Trenton for
different minimum flow rates at Montague between 1000 and 2650 c¢fs with
only Tocks Island Reservoir in operation;

b. The maximum flow which could be maintained at Trenton for
different minimum flow rates at Montague between 1000 and 2650 cfs with
Tocks Island and Beltzville Reservoirs in operation;

c. The maximum flow which could be maintained at Trenton for
different minimum flow rates at Montague between 1000 and 2650 cfs with
Tocks Island, Beltzville, Aquashicola, Walter, Trexler, Hackettstown,
Tohickon and Prompton Reservoirs;

d. The average individusl yield available from Tocks Island,
Beltzville, Aquashicola, Walter, Trexler, Hackettstown, Tohickon and
Prompton Reservoirs;

e. The additional potential yield availasble from use of Tocks
Island storage between elevations 328 and 356 which is presently being
considered as a minimum power pool;

T. The effects of out-of-basin diversion under the following
two alternatives:

(1) 300 m.g.d. constant daily withdrawal from the Delaware
River at Frenchtown, N. J,

(2) 150 m.g.d. constant daily withdrawal from Tocks Island
Reservoir and 150 m.g.d. constant daily withdrawal from the Delsware River

at Frenchtown, N. J,



Travel times between reservoirs and key streanm gaging stations were
based on data presented in the basin report referred to previously. Data
available from gaging stations along the Lehigh River and the lower Dela-
ware for actual releases from Walter Regservoir were used to check applicsable
travel times. The results indicated that the besin report values, presented
in table U4 are quite variable within a probable range of at least + 25 per
cent. Table 6 lists maximum maintainsble flow which could have been anti-
ecinated at Trenton, and the average yleld from each project, during the
1960's drought as a function of the "design rate" at Montague, reservoir
staging, individual project water supply storage and extra-basin diversion
rates.

Comparison of project vield estimates for a Montague "design rate”
of 1750 cfs with estimates using the 1930's drought is made in table 5.

It is noted that only a general comparison can be made because of the two
time frames used to make each estimate. The 1930's drought yvield estimates
were based on monthly flow records and are not considered as accurate as
the estimate for the more recent period using daily flows. The table does,
however, illustrate the relative severity of the 1960's drought in the
upper and lower portions of the basin.

Figure 6 is an illustration of the relationship between the minimum
flows meintsinable at Trenton as a function of the Montague "design
rate." Different curves are provided for the various reservoir staging

assumptions. Table 6 summarizes the results of the entire analysis.
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CONCIUSIONS

The development of the mathematical model of the lower Delaware
River Basin including eight water resources projects has allowed a more
accurate determination of the effects of the recent record drought on
future water supply developments. The use of a simulation model employing
daily flow data is considered necessary in this basin because of the rela-
tively short length of drought. Aside from the potential errors in pre-
1960 yield estimates due to use of monthly instead of daily flow records,
inspection of teble 5 indicates the 1960's drought was substantially more
severe than any previously recorded in the eastern and northern portions
of the basin. In the western parts of the basin, however, the drought of
the 1930's is still the most severe of record.

The method of allocating releases among upstream reservoirs could
be improved if a "hindsight" model were employed by using actual future
flow records during the simulation,

Finally, the assumption of a constant maintainable flow requirement
at Trenton and the use of upstream reservoirs for this purpose appears
fictitious. The purchase and use of storage in these projects for water
supply will negate their direct use for downstream flow asugmentation.
Furthermore, it has been concluded elsewhere that the use of a constant
instead of a variable demand for determinstion of project yields may lead
to serious errors. Therefore, additional refinement appears warranted for

each use of individual project conservation storage.
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