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John peters2 

Hydrologic simulation models provide a means for extending the lead t h e  
associated with flood warnings. Following a brief discussion of warning ob- 
jectives and approaches to short-term hydrologic forecasting, characteristics 
of rainfall.--runof f models for forecast applications are discussed. HEC-1 and 
HEC-2 are described as illustrations of models that can be applied to develop 
warning criteria; HEClF and the Sacramento Methd are descriM as illustra- 
tions of models for real-time application. Finally, aspects of &el selec- 
tion and use are discussed. 

WARMING OI3JECTJTES 

The value of a flood-threat recognition system depends to a large extent 
on the Iead time it provides for issuing warnings, enabling evacuation, etc.. 
A minimum lead time must be provided for a system to be practically useful. 
The lead time that is poten- achievable depends on (1) the spatial and 
temporal characteristics of storm rainfall a1c1 the ability to sample/forecast 
these, (2) rainfall-runoff response characteristics of the watershed and the 
ability to simulate these, and (3) the time required to recognize and evalu- 
ate the flood threat and take appropriate action. The value of a warning 
system depends also, of course, on its reliability. Consider Figure 1, which 
illustrates aspects of reliability. Sets of storm events are labeled {A), 
{Bl , {C') and {Dl, where : 

{A] storm events that cause flooding 

CB3 = storm events that do not cause fl.ouding 

( C ]  = storm events that cause flooding but for 
which warrsings are not issued 

CD3 = s.t;orm events that do not cause fl.ding but 
for which warnings are i.ssued 

-- . -- - -- - - 
1. P a p r  presented a t  the United States - Republic of: China Workshop on Natural 
Di.saster Reduction, Taipei, Taiwan, June 24-26, 1993. 
2 Senior Ergineer, US Army Corps of Engineerg, Hydrol.ogic Engineering Center, 
Davis, Cal.i.forni.a, 95616, USA. 



The goal of a warning sys t~m i.s t o  minimize both { C }  and {Dl.  Events 
from {C) can cause damage and loss of l i f e  tha t  cou1.d possibly be prevented; 
events from {D} increase the likelihood .that; future warnings w i . l l  be ignored. 
Al.ternative warning systems w.i.11. be reflected by different configurations of 
{ C )  and {Dl.  

The basis for  a warning can range from measured river stage (elevation) 
a t  an index gage to results of a rainfall--runoff simulation that  incorporates 
recent rain data and estimates of future ra infal l .  Although the more sophis- 
ticated warning systems may provide longer lead times, thei r  re l iabi l i ty  is 
not necessarily greater than that  associated with simpler systems. Both lead 
t i m e  and re l iabi l i ty  should be evaluated when analyzing alternative warning 
systems. 

The tradeoff between lead time (warning t i m e )  and warning re l iabi l i ty  
can be i l lustrated by considering a simple threshold--stage method of warning, 
as shown in  Figure 2 . The warning stage is sensed at  location A.  The pri- 
mary flood threat is downstream a t  location B. The problem is to choose a 
threshold (index) stage for location A such that  when that stage is exceeded, 
a warning for flooding a t  location B is to  be issued. I t  is desired that the 
lead time t o  prepare for the flood threat be as long as  possible. The lower 
the index stage a t  A, presumably the more lead t i m e  w i l l  be provided. How- 
ever, i f  the threshold stage is too low, there will. be too many false warn-. 
ings, so that  genuine warnings w i l l  not be heeded. In terms of Figure 1, as  
{C} becomes smaller, {D} beGomes larger. 
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1ke graphs :in the lower portion of Figure 2 represent relat;i.onships that  
could be developed by analyzing a set; of histori.ca1 storm events (Dotson and 
Peters, 1.990). Lead .t.ime is a variable that depends on event-specif ic storm 
and runoff characteristics. Storm and streamf1.0~ data from historical events 
provi.de useful infomti .on for assessing the magnitude and variabi.lit;y of lead 
time. 
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A 

"Short-term" here refers to forecasts with lead times of hours to sev- 
era l  days, as required for flood warning purposes. By contrast, long-term 
forecasts, which provide lead times up to a year or  more, are useful for water 
management decisions. 

\ 



Hydrologic models for  short-term forecasting may employ channel routing, 
rainfall-runoff simulation, or both. Choice of a model type depends on re- 
quired forecast lead time, the response characteristics of the basin, and the 
scale of meteorological events. Lettenmaier and Wood (Maidmnt, 1993) list 
four cases, as follows: 

Required lead t h  is larger than the hydrologic response t h  
(the sum of the time of cmncentration for  the basin and the time of 
travel through the river system). In t h i s  case, a forecast of precipi- 
tat ion is required, because future precipitation w i l l  reach the forecast 
point within the lead time. Rainfall-runoff modeling is requi.red. 

e 2. Required lead time is smaller t;han the hydro1,ogic response 
t h ,  and the time of concentration is substantia1,ly smaller ,than the 
time of travel through .the r iver system. This is the c a e  for  large 
river systems for which forecasts can be based on channel routing of up- 
stream observed (gauged) flows. 

Case 3.  Required lead t i m e  is sma1,ler than the hydrologic response 
time, and the time of cmnmtration is subst;ar1tial.:ly larger than the 
time of ,travel through the river system. A rainfall-runoff d e . 1  is re-. 
quired, bt forecasts of future precipitation are not required. 

GgsA This case is one in which the scale of the meteorological event 
is significaritly smaller than the scale of the basin. This would occur, 
fo r  example, on large basins subject to convective storms. In t h i s  
situation, it is necessary to  suwivide the basin or employ a model that 
permits specification of preci.pitation as a distributed input. Also it 
is desirable t o  telemeter data from stream gages on major tri.butaries. 
Rainfall--runoff modeling and channel routing of observed and/or fore- 
casted tributary flows are required. 

For quick,-responding watersheds (i.e. Case 1 ahove), lead times are very 
short, and the time avail.able for  processing forecasts is extremely limited. 
In such situtitions, real-time miel.ing may not be practical,  and it may be 
more appropriate to  app1.y pre-,establ.ished warning c r i t e r i a  with real:-.tim 
observed and forecasted rainfall.  dept;hs/durations as input;s. Histor:i.cal 
events can be analyzed to develop such cr.iteri.a. ?'he hydrologic models used 
for  t h i s  purpose do not require the speci.al. fmctional.i.ty associated with 
real.--time applications . 

Another approach for quick-reswnding watersheds is t o  automatically 
compute forecasts at  frequent intervals (e .g . ,  every 10 minutes), and t o  in- 
clude i n  those forecasts a set of pre-specified (fixed) future rainfal l  
amounts, as  i l lustrated in  Figure 3 .  The amount of forecasted rainfal l  cxm 
then be used to interpolate a discharge hydrograph (ancl associated inundated 
area) from the most recmt pre-computed set of forecasts. Automated forecast- 
ing requires a w e l l  calibrated, robust model. The state--of-the-art of mcxlel- 
ing is such that  generally an experienced modeler must be involved i n  model 
applications and interpreting model results.  



I V E N T U R A  C O U N T Y  F L O O D  A D V I S O R Y  

PROVIDED BY THE 

CALIFORNIA-NEVADA RIVER FORECAST CENTER OF THE NATIONAL WEATHER SERVICE ......................................................................... 
FORECAST PEAK FLOWS IN THOUSAND CFS RESULTING FROM 3 HOUR PRECIPITATION 

3 HOUR PRECIPITATION (IN INCHES) 
1 2 3 4 5 

SESPE CREEK NEAR FILLMORE .45 2.70 10.89 19.39 27.98 

SANTA PAULA CR .12 1.59 5.35 9.04 12.72 

CALLEGUAS CREEK AT CAMARILLO .23 2.16 8.88 29.19 50.90 

REV. SLOUGH (CAL CK PARM) -27 .85 4.02 8.36 12.82 

FAGAN CANYON .02 .09 -36 .54 .71 

SANTA ANA CREM .OO .06 -13 3.98 6.81 

COYOTE CREEK .01 .10 1..37 5.70 9.47 

MATILIJA CR 100% BURNED .18 -48 6.11 14.50 22.52 

MATILIJA CR IF UNBURNED .05 .ll .27 2.39 11.09 

ARROYO SIMI NR SIMI -26 .63 9.95 35.18 55.67 

.......................................................................... 

(Taylor and Weikel 1991) 

A large number of hydrologic models are avai lable for developirg rain-- 
f a l l  hyetographs, simulating runoff and determining inundated areas for his- 
tor ical  and/or hypothetical storm events. Such mcx3els can be used effectively 
in the d e v e l o p n t  of hydrologic criteria for  flood warning. Characteristics 
of two such models, and associate3 data managemerit software, are described i n  
the following sections. The programs are well documented and can be used on 
IBM-compatible microcomputers as wel.1 as UNIX-based workstations. Either 
metric or  English units may be used. 

Cambllltles . . . 
.- The fundamental capabi1i.t~ of HEC-1 (Iiydro1og:ic Engineer- 

ing Center, 1990a) is to develop discharge hydrographs for hi.storical or  hypo-. 
thetical storm events at  s p x i f i c  locations in a basin. ?'he basin can be 
subd.ivi.ded into any number of subbasins, and modeling elements such as uncon- 
trolled reservoirs and diversions can be accommodated. The program includes 
opti.ons to: 



o optimi.ze values for unit  hydrograph and/or loss ra te  parameters 
o optimize values for routing parameters 
o simulate snow pack/snow melt 
o simul.ate dam overtopping/breaching 
o incorporate alternative land use/devel.opment conditions, and mul- 

t ip le  storm events, i n  a single program application 

A vari.ety of al..t;ernative methods are available for  simulating precipi..ta tion., 
losses, base flow, runoff t rans fomt ion  and routing. 

. . - The spat ia l  averaging of precipitation can 
be per~rded~a?yTXZt;oh&% and input fo r  direct  use. Alternatively, 
precipitation for individual recording and non-=ording gages can be speci- 
fied, along with associated weighting factors fo r  each subbasin. Additional 
weighting to accommodate gauge bias (e.g.,  difference in normal annual pre- 
cipitat ion for a gauge vs. a subbasin) cm be employed. 

b ~ ~ e ~ , . m d  Bas& - Losses can be specified in terms of ( 1) an in- 
i t ia l .  loss and constant loss rate, (2)  a four parameter exponential loss func- 
t ion (unique t o  HEC-.I), (3) an initial loss and a "curve number" based on land 
use and US Soil Conservation Service (SCS) s o i l  classifications (Soil 
Conservatiori Service 1972), (4) the Holtan method, and (5) the Green and Ampt 
method. Base flow is specified by means of three input variables. 

Rwnoff - Precipitati.on excess can be transformed to direct 
runoff with a unit hydrograph or  kinematic wave techniques. Unit hydrograph 
options all.ow a unit hydrograph to be input di-tl.y o r  to be expressed in 
terms of Clark, Snyder o r  SCS parameters. The kinematic wave option permits 
depiction of subbasin runoff with elements representing up ,to two overland- 
f 1 . 0 ~  planes, two coll.ector channels and a main channel. 

Bslbfdhng - Primary routing options are the Muskingum--(we, Modi.fied F'uls 
and Musk:ingum methods. For the Muskingum-Chge and Modified fils methods, a 
routing reach can be speci.:fi.ed in terms of a length, slope, three Manning n 
val.ues (for a main channel and ].eft and right overbnks) , and a cross section 
defined wi.th eight pairs of: coord.inates. 

HEC-2 (Hydrologic Engineering Center, 1991) is intended for calculating 
water surface profiles for  steady, gradua1ly varid flow in  natural o r  man- 
made channels. Both subcritical and supercritical profiles can be calculated. 
The effects  of various obstructions such as bridges, culverts, weirs, and 
structures in the flood plain may be simulated. The computational procedure 
is based on the solution of the one-dimensional energy equation with energy 
losses due t o  friction evaluated with Manning's equation. The energy and. 
energy-loss equations are solved i terat ively between each pair of cross sec- 
tions with the "standard step" method (Henderson, 1966). 



D a t a  management is a significant aspect of hydrologic evaluations. ?he 
DSS software (Hydrologic Ekgineering Center, 1990) is intended for eff icient  
management of time series data of any type, such as rainfal l  hyetographs and 
discharge or  stage hydrographs. Paired-function data, such as stage--discharge 
rating curves, di scharge-f requency or  stage-frequency relationships, can also 
be accomodatxxl. The DSS syst;em includes a set of u t i l i t y  programs intlended 
for  data entry, data editing and graphic displays. Figure 4 il.1ustrat.e~ the 
role  of DSS in  data management. A typical application with HEC--1 is to f i r s t  
s tore observed precipitation and discharge data in a DSS file with a data 
entry u t i l i t y  program, and then to automatically retrieve such data as part of 
an HEC-1 execution. Simulati.on results can be written to the same DSS f i l e ,  
and another u t i l i t y  program can be used to develop graphs or  tabulations of 
any data in the f i l e .  

Figure 4. ROLE: OF DSS IN DATA MANA- 



Simulation models are of two types, event and continuous. Continuous 
modeling generally attempts a continuous accounting of soil moisture, whereas 
event models require specification of initial conditions (e.g., loss rates) 
that pertain to the "event". Advantages of event--type approaches are that 
they generally do not require representation of evapotranspiration and subsur-- 
face water balances. Because event--type approaches are simpler, they gener- 
ally use fewer parameters and are easier to calibrate. However for short-term 
forecasts, there may be substantial uncertainty with respect to initial condi- 
tions, espially after dry periods. The following sections describe first an 
event-type model, HEClF, and then a continuous-type model, the Sacramento 
Watershed Model. Comments on model updating are also provided. 

The event-type approach involves the following steps in determining 
runoff from a k i n :  

o specification of precipitation (spatial and temporal distribution) 

o specif i.c.xit.i.orl of " losses " and rainfal.1. excess 

o transformation of rainfall excess to direct runoff 

o speci.fication of base flow 

o combining of base flow and direct runoff to obtain total runoff 

If a basin is divided into subbasins, the above steps are performed for each 
subbasin, and routing and combining of hydrographs are performed as required. 

HEClF, which is an adaptation of computer program HEC-1, is an example 
of an event-type model used for forecasting (Peters and Ely, 1985). The basic 
HEC-1 capabilities for calculating runoff with a unit hydrograph approach from 
a multi-subkin watershed, and for parameter optimizat;ion, are retained in 
HEClF. However, HEClF contains additional capabilities that facilitate the 
task of runoff forecasting. Aspects of application of IlEClF are as follows: 

1.. Forecasting with HEC3.F i.s .intended to involve a "hands-,on'' process by 
which the analyst can readily compare s.imul,ated hydrographs with ob- 
served hydrcgraphs (up to the time-of-forecast) and adjust loss rates, 
or perhaps other parameters, to improve resu1.t~. 

2. Forecasting is generally performed in two separate executi.ons of HEC1.F. 
In the first;, unit hydrograph, loss rate and base fl.ow parameters are 
optimized for gauged headwater subbashs. The t.ime window "T" ,in 
Figure 5 is the period over which an objective function to optimize the 
above parameters i.s evaluated. The window i.s approximately equal to the 
time base of .the unit hydrograph for the subbasin. An objective func,- 
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Figmx 5. PAEMEEEB ESTIBUTION WITH HM=lF 

,time base of the un.it hydrograph for  the subbasin. An objestive func- 
tion is minimi.zed by a univariate gradient technique (Ford e t  a l ,  1980). 
The ob j s k i v e  funstior~ is as .fol.l.ows : 

where STDER = objecti.ve fi,mct i.on 
&OBSi = ordinate i of the observed hydrograph 
WCWi = ortiinate i of the computed hydrograph 
mi = weighting factor applied tit ordinate i 
N total. number of hydrograph ord.inates encompassed 

by the objective function 

The equatiorl definirg the weighting factor is as foll.ows: 



where J = number of A t  intervals from the beginning of the t i m e  
peri.od for  parameter estimation (T) to the time of 
ordinate i 

The objective function is a quantl,tati.ve m u r e  of the goodness of fit 
of the calaa.lat;ed hydrograph to 'the observed hydrograph. The weighting 
factor has a value of 1, at; the time-a£-forecat, and diminishes t o  a 
value of 0 at the beginning of the t i m e  window "T". ?'he purpose of the 
we,iehting is to insure a relatively cl,ose fi.t of the calmfated to the 
observed hydrograph in  the vicinity of the th-of--forecast .  

The optimization process has h i l t - i n  constraints that prevent physi- 
cally unreasonable values for  the parameters t o  be optimized (Hydrologic 
Engineering Center, 1989). For example, i f  the ra infal l  is concentrated 
very near the t ime-of-forec~t ,  there w i l l  be l i t t l e  hydrograph "rise" 
with which to  optimize parameters. 1.n t h i s  case, the optimization is 
permitted only for  b e  Plow parameterr;. 

3. Following the parameter optimization application of HEClF, the analyst 
reviews optimization results  and parameter estimates as an aid to set- 
ting values of loss rate and base flow parameters for  the remainder of 
the basin. 

4. The second application of HEClF performs runoff comput;ations, and rout- 
ing and combining operations throughout the basin. A t  each location for  
which an observed hydrograph is available, "blending" can be performed. 
A blended hydrograph consists of the observed hydrograph up to the t he - -  
of-forecast and an adjusted simulated hydrograph a f te r  the time-of-fore-. 
cast. The adjustment is made ei ther by a vert ical  shifting of the sha- 
lated hydrograph with a constant increment of discharge (positive o r  
negative), o r  by providing a smooth transition from the observed t;o the 
unadjusted simulated hydrograph over six time intervals following the 
time- of-forecast . The transition is computed by linearly diminishkg 
the "error" (difference between the observed and computed discharge) at 
the time-of - forecast to zero over the six time intervals. The two types 
of blending are i l lustrated in  Figure 6. The blended hydrograph is used 
i n  subsequent routing computations. 

HEClF is generally used in  conjunction with the program PREClP 
(Hydrologic Engineering Center, 1989) for  processing gauged rainfal l  data, and 
DSS. The PRECIP program develops hyetographs of spatial-average rainfal l  for 
each subbasin using an inverse distance-squared weighting procedure. I f  data 
for a gauge is missing, the program automatically obtains data for the next 
nearest gauge. The DSS graphics u t i l i t y  program fac i l i t a tes  data review and 
analysis, as well as evaluation of forecast results .  Runoff forecasts based 
on scenarios of future (forecasted) rainfal l  can be readily evaluated. 
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Figure 6 .  TloeO MEXHOD6 FOR l3LElDING 

An example of a continuous.-.tm model used for real-.-time alppl.i.ctitions is 
the Sacramento Watershed Model (Burnash et al, 1gr73), developed by the Cali- 
fornia-Nevada River Forecast Center of the US National Weather Service. It 
has been in use for a number of years by that agency and is al.so a compunent 
of the National Weather Service River Forecasting System (NWSRFS). 

The Sacramento Model simulates runoff processes in headwater basins. It 
provides a conceptual. representation of (1) soil moisture storage (as Imth 
t e ~ ~ s i c ? ~ ~  and f m  water) at two levels , an upper zone and a 1 ower zone ; 
(2) direct runoff from impervious surfaces, water Mies and saturated ground; 
(3) percolation from the upper zone free water storage to the lower zone; 
(4) evaporation from surface water and evapotranspiration from tension water 
storage; (5) interflow from upper zone free water storage; and (6) baseflow 
and subsurface outflow (out of the basin) from lower zone free water storage. 
A unit hydrograph can Ix applied to surface runoff and interflow, and the 
resujting flow can optionally be routed with a non-linear "layered" Muskingum 
method. Figure 7 illustrates storage and runoff components of the Sacramento 
Mode 1 . 

Figure 8 is a schematic representation of analytical aspects of the 
Sacramento Model. Processes are characterized in terms of storages of speci-- 
fied capacities which are filled from precipitation and percolation, and 
depleted by percolation, evapotranspiration and lateral drainage. Table 1 
contains brief definitions of 17 parameters for defining the producti.on of 
runoff from rainfall. The Table does not include parameters associated with a 
unit hydrograph or charitle: routing. 
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Table 1. Parameters for the Sacmmento Watershed Model 

PCTIfvi Permanently impenious hc t ion  of basin contiguous s%th stream channels Hainfat1 on this pMiort of 
the bzsin bypasse:; storages and contributes instEint!y to rurtoff 

Aoih3F' Fractiofi of ttfie basin ~4iict-i b e c o ~ e s  imperior_rs v&ieri upper:-zone tension gorage becomes filied i.i .e.., 
behavior is same as for PCT&$j 

Sfi.fiiv'q Fnction of basin covereb by streams, !akes, and riparian vegeMon igenaralr~t about 40% to I 00% of 
PCTlMj Empatj?inspirati~lri occtlrs at the poterttial r a e  from h i s  poition of the basin 

UrT~ftF~rl !31.1aximt~i-~~ deah (over nortim~er4ous areas1 of upper zone tension vmer Storaue 'This str~irz~le ffiust 
be fitied before a r t yme r  i?ecomes amitable for free water storage . Water kclm this mrsge  is "kclea by 
direct evatpntion from tt-te soil :surhce or by ~tapotrzrispiratiorr by shallow-rocrted vegeSttis>n 

S -  Marimurn depth [aver nortin-ipemious areas) of upper zone fvee w t e r  Water from this zone feeds the 
upper zone tension Batsrr  ora age, p e ~ c o i d e ~  to tt-te lci&er zone cjr contibi&s to interficiev ba&ten tt-ie 
free water storage is fuil, rainfall contributes to surface runoff. 

LrUC Depletion coefficient fur upper zone free vbater storage Upper zone lateral drainage (i e interflovd) is de- 
t?rmined on a daib basis as the product of this coefficient and mi lable contents Percolation frclrn the 
upper zone [during a tinn intertialf is accommodated prior to determination crf interflow 

Proportitx of water percoising from t i e  upper zone to the lovter zone b."Qtich passes direct& to the free , 

water  rages k4titPiout cc!nBibt&ng to the tension water Gorage 
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The parameters in Table 1 provide substantial f lexihil ity for repre - 
senting rainfall-.runoff processes. Iiowever calibration of these parameters 
can be a very challenging task, and there is the potential for mis-calibration 
such that the model is treated essentially as a "black box" without due regard 
for representation of the essential. runoff characteristics of the basin. A 
poor1.y calibrated model is ill-suited for prediction, especially where condi- 
tions differ significantly from those used for calibration. It is generally 
necessary to have, as a minimum, several years of continuous precipitation and 
streamflow data as a basis for calibration. 

A simple water balance of annual quantities of runoff, rainfall and 
evapotranspirat;ion over a period of several years carr be used to gain insight 
into the runoff characteristics of a basin. Such an evaluation can facilitate 
recognition of subsurface outflows that; bypass the river channel, or problems 
in definition of rainfall volumes. Runoff (streamflow) measurements are 
generally the most accwate data source for this evaluation. Spatially-aver- 
aged rainfall data may be highly uncertain because of large sampling errors 
(due to sparse gage networks) and because of errors inherent in the meas- 
urement of rainfall. Wind effects (e.g., turbulence over the gage opening) 
tend to c-xuse rainfall measurements to be biased on the low side, as illus- 
trated in Figure 9. Underestimates of point rainfall depths of 15% or more 
are typical. 
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Evapotranspiration must be estimated, as it is not measured. Actual 
evapotranspiration can differ sigrlificantly from evapotranspiration potential, 
depending on water availability. Evapotranspirati.on potential is sometimes 
based on application of monthly or seasonal  coefficient;^ applied to measured 
pan evaporation. However there is much uncertairlty in this approach, as the 
physical processes and energy fluxes associated with pan evaporation can he 
substantially different from those associated with evapotranspiration. The 
Sacramento Model lumps evaporation from water Mies and moist soil with eva- 
potranspiration from vegetation. Generally the latter is the dominant proc- 
ess. Because of the difficulty in using pan evaporation data as a surrogate 
for the total basin evapotranspiration, applications of the Sacramerlto Model 
commorrly utilize direct estimates of basin evapotranspiration, for example 
using data such as that provided in Figure 10 (Burnash, undated). 
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Figure 10. AVERAGE DAILY EVAPOTRANSPIRATION DEEdAND 

Burnash ( h a s h ,  undated) suggests initial (typical) values for the 1 7  
parameters 3.isted previously. He also provides a rationale for estimatirlg 
values for several of the parameters from direct analysis of carefully se- 
lected portions of historical rainfall and streamflow data. For example, 
PCTIM, the impervious fraction of the basin contiguous with stream channels, 
can be estimated on the basis of small runoff events following long dry peri- 
ods. Presumably surface runoff from the events is from the impervious f rac- 
tion of the basin. PCTIM can be estimated from the ratio of surface runoff to 
rainfall accumulated for several such events. 

Because of interdependence of parameters and wlcertainty associated with 
rainfall data and evapotranspiration estimates, caution must be exercised in 
attempts at automated calibration. Burrlash recommends review of monthly error 



summaries with due consideration of uncertainties in the driving inputs. 
Application of a model like the Sacramento Model requires substantial knowl- 
edge of the runoff characteristics of a basin and skill in interpreting cause 
and effect relationships among essential processes. Experience in applying a 
model of this type can itself be a means for acquiring understanding of basin 
rainfal.1-runoff behavior. 

A real-time gauging network provides observed streamflow data up to the 
time-of-forecast. This data can used to adjust model inputs, states (i.e. 
volumes of water in storage) and/or parameter values so that the model is more 
"in tune" with current conditions. Osle such approach is to apply Kalman fil- 
tering for automated adjustment (Georgakakos, 1986). For flash floods, auto- 
mated adjustment may not be practical because by the time a stream rise oc- 
curs, the time at which the forecast is required may already have passed. For 
an event-type model like HEClF, model updating can be achieved using a combi- 
nation of optimization for headwater subbasins and manual adjustment. 

MODEL SELECTION AND USE 

Factors to consider in selecting a model are (1) the knowledge and 
skills of the model user, (2) the hydrologic regime to which the &el will be 
applied, and (3) data availability and data requirements. A widely cited 
study by the Wor1.d Meteorological Organization (World Meteorological 
Organization, 1975b) indicxites that in humid environments, soil moisture 
accounting models may not offer much advantage over simpler "event" approaches 
because of the relatively stable moisture conditions. However for arid and 
semi-arid climates, use of explicit soil moisture accounting models (like the 
Sacramento Watershed Hodel) can be advantageous. 

Because of the complex nature of physical processes that constitute the 
hydrologic cycle, the heterogeneous characteristics of a watershed (including 
the subsurface) , and the uncertainty associated with model inputs, rainfall- 
runoff modeling is a difficult and challenging task. The skills of the 
analyst applying the model can t e  significant1.y more important than the model 
itself. This is supported by Loague and Freeze, who in conclusior~ to a paper 
describing a comparison of modeling techniques on small upland catchments, 
state the following: 

"In many ways, hydrologic modeling is more an art than a science, 
and i.t is likely to remain so. Predictive hydro1ogi.c modeling i.s 
normally carried out or] a given catchment; using a specif.ic model 
under the suprvi.si.on of an individual. hydro1,ogist. ?'he useful.-- 
ness of the results depends in large measure on the talents and 
experience o.f the hydrologist and his uriderstanding of the mathe-. 
mtical nuances of his particular model and the hydrologic nuances 
of his parti.cular catchment. ..." (Loague and Freeze, 1985). 



The a b v e  comments should ke borne i n  mind when considering the 
role of rainfall-runoff modeling in  flood forecasting. Modeling can 
provide valuable information which, when considered in relation to the 
current state of a basin and meteorological forecasts, can aid in the 
making of reasonable flood warning decisions. However, there w i l l  al- 
ways be significant uncertainty associated with mudel predicti.ons, and 
careful interpretation of: model results is essent,ial. 
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