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Hydrologic Aspects of Flood 
Warning - Preparedness Programs 

Harry W. Dotson', M.ASCE and John C. Peters', M.ASCE 

Abstract 

A reliable flood-threat recognition system is a vital component of a sound flood 
warning-preparedness program. Fundamental questions associated with the development 
of a flood-threat recognition system are: what warning times can be achieved, and how 
reliable will the warnings be? Answers to these questions depend on watershed and storm 
characteristics, and the flood-threat recognition method being considered. The tradeoff 
between warning time and warning reliability is illustrated, and methods for estimating 
warning time are discussed. 

Introduction 

Flood warning and preparedness programs involve flood-threat recognition, warning dis-, 
semination, emergency response and post-flood recovery. The design and implementation 
of a sound, cost-effective program and the determination of the scope of the program 
depend substantially on the supporting hydrologic analyses. An important aspect of the 
hydrologic analyses is the development of a flood-threat recognition system. The analysis 
includes the evaluation of flood warning times, warning criteria, and the reliability of the 
warning. 

Warning Time and Reliability 

The concept of warning time is illustrated in Figure 1 (FIACWD, 1989). As indicated, 
maximum potential warning time (Tw> is the time from the first indication of precipitation to 
the time flooding begins. Use of time (Tw> as the actual warning time (Tw) would be totally 
unreliable because it would indicate that it floods every time it rains. There must be a flood 
recognition time (T,) which is the time required for specific warning criteria to indicate flood- 
ing is imminent. The criteria could be that a specific amount of precipitation has occurred or 
that a stream has reached a specified stage. The longer the flood recognition time, the 

*Hydraulic Engineer, US Army Corps of Engineers, Hydrologic Engineering Center, 609 
Second Street, Davis, CA 9561 6. Presented at the ASCE Hydraulics Division 1990 National 
Conference on Hydraulic Engineering, August 1990, San Diego, CA. 



warning time. However, one must be aware of the tradeoffs between warning time and 
warning reliability. 
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Figure 1. Illustration of Flood Warning Time 

Consider Figure 2, which illustrates aspects of reliability. Sets of storm events are 
labeled {A), {B}, {C) and {D), where: 

{A) = storm events that cause flooding 
{B) = storm events that do not cause flooding 
{C) = storm events that cause flooding but for which warnings are not issued 
{D} = storm events that do not cause flooding but for which warnings are issued 

Figure 2. Reliability of Flood Warnings 



The goal of a warning system is to minimize both {C) and {D). Events from {C) can cause 
damage and loss of life that could possibly be prevented; events from {D) increase the 
likelihood that future warnings will be ignored. Alternative warning systems will be reflected 
by different configurations of {C) and {D). The basis for a warning can range from meas- 
ured stage at an index gage to results of a rainfall-runoff model that incorporate recent rain 
data and possibly estimates of future rainfall. Although the more sophisticated warning 
systems will tend to provide longer lead times, their reliability may not necessarily be greater 
than that associated with simpler systems. Both warning time and reliability should be 
evaluated when analyzing alternative warning systems 

The tradeoff between lead time (warning time) and warning reliability can be illustrated 
by considering a simple threshold-stage method of warning, as illustrated in Figure 3. The 
warning stage is sensed at location A. The primary flood threat is downstream at location B. 
The problem is to choose a threshold (index) stage for location A such that when that stage 
is exceeded, a warning for flooding at location B is to be issued. It is desired that the lead 
time to prepare for the flood threat be as long as possible. The lower the index stage at A, 
presumably the more lead time will be afforded. However, if the threshold stage is too low, 
there will be too many false warnings, so that genuine warnings will not be heeded. In terms 
of Figure 2, as {C) is made smaller, {D) becomes larger.. 

Stage 

Flood 
Stage at B 

Threshold 
Stage at A 

Time .+ 

I 

t A / L\ 
0 50 100 

%Chance that Flood Level 
at B is Exceeded Lead Time + 

Figure 3. Lead Time Versus Warning Reliability 

Illustration of Flood Warning and Reliability 

To illustrate the tradeoff between warning time and reliability that is implicit in a flood 
warning system, consider a situation like that in Figure 3 in which a threshold stage at an 
index gage is to be used to trigger an alarm that warns of the impending exceedance of 
flood stage at a damage center. Although most flood warning systems are more sophisti- 
cated than this, analysis of a simple system can provide insights that have broader implica- 
tions. 



The basin used in this illustration is part of the Central Great Plains Experimental Water- 
shed near Hastings, Nebraska (USDA, undated). In particular, discharge data collected over 
a 29-year period (1 939-1 967) at three gages on the west branch of Beaver Creek were used. 
The locations are labeled W3, W8 and W11 in Figure 4a. The drainage areas at these 
locations are very small and warning times will be very short. However, the intent of this 
analysis is to illustrate concepts rather than a practical design, and the available data is well 
suited to this purpose. 

Assume that location W11 is the damage center for which a warning is to be issued, and 
that flood stage at W11 corresponds to a discharge of 300 cfs. This discharge was ex- 
ceeded for 16 events during the 29-year period of record. Locations W3 and W8 will be 
considered individually as index locations for triggering a warning. That is, when a threshold 
discharge is exceeded at the index location, a warning is issued. The problem is to deter- 
mine the threshold discharge to be used, and to assess associated warning time and 
reliability. 

Period-of-record discharge data at a 15-minute interval for the three locations were 
acquired. The data were processed to determine events that exceed the flood discharge 
(300 cfs) at W11, and to determine threshold discharge exceedances at W3 and W8. Table 

Table 1 
Warning Time Analysis for a Threshold Q of 200 cfs at W8 

I Flood discharge at Wl1 = 300 cfs. I 
Date 81 Time Peak Q Time of Thresh. Q Time of Potential 
of Flood at Peak Q at W8 Exceed. Warning 
at W11 W11 W11 Exceeded? Thresh. Q Time (hr:min) 

12 MAY 44 0315 

25 AUG 44 1045 

16 JUL 45 2045 

9 JUN 49 0030 

20 SEP 50 01 15 

1 JUL 51 2045 
I 

10 JUL51 0815 

14 JUL 52 0400 

7 JUN 53 1815 

22 MAY 54 231 5 

27 MAY 54 0330 

15 JUN57 1730 

29 AUG 57 0045 

3 JUL 59 2130 

27 MAR 60 1645 

15 MAY 60 2230 

Next day. 
Previous day 

I 16 flood events in 29 years I 
I Number of events threshold discharge (200 cfs) was exceeded: 45 I I Reliability = 16145 x 100 = 36% I 



1 illustrates results for a threshold dischage of 200 cfs at W8. The first three columns 
pertain to the flood event at W11; the last three columns refer to the exceedance of the 
thresholddischarge at W8. In this illustration, the threshold discharge was exceeded 
during all 16 flood events. The potential warning time associated with the events is shown 
in the last column. For two of the events, the time is negative. 

As noted at the bottom of Table 1, the threshold discharge was exceeded 45 times 
during the 29 years of record, which means that a false warning would have been gener- 
ated 29 times. The realiability of the warning mechanism, that is, the percent of true 
warnings to total warnings, is 16/45 x 100, or 36 percent. As may be noted from the table, 
a warning time 2 1 hour would have been provided for 10 of the 16, or 63 percent of the 
flood events. A warning time 2 30 minutes would have been provided for 69 percent of 
the events. The analysis illustrated in Table 1 was also applied with threshold discharges 
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Figure 4. Beaver Creek Watershed 

at W8 of 100, 300 and 400 cfs. Figure 4b shows forecast reliability and occurrence of at 
least a 30-minute warning time, both as a function of threshold discharge at W8. Figure 4c 
shows results for W3. 

The inverse relationship between warning reliability and warning occurrence is readily 
apparent in Figures 4b and 4c. Suppose that it were desired to have a warning reliability 
of 70 percent, meaning that 7 out of 10 warnings would be for actual flood events. From 
Figure 4b, the corresponding threshold discharge at W8 is about 350 cfs and the percent 



of flood events for which a warning time 2 30 minutes is provided is 53 percent. That is, a 
warning time 2 30 minutes would be provided for only about half the flood events, and 3 out 
of 10 warnings would be erroneous. These are not very impressive figures, and such a 
warning system would obviously be far less than adequate. 

By comparison, Figure 4c indicates that a 70 percent reliability could be achieved with a 
threshold discharge of 400 cfs at W3, for which a warning time 2 30 minutes would be 
provided for only 31 percent of the flood events. For this level of reliability, index location W8 
is the better of the two locations. 

Estimation of Flood Warning Time 

Flood-threat recognition essentially involves real-time sampling of characteristics of a 
storm event and forecasting the probable near-term runoff response. The more variability 
associated with the event being sampled, the more difficulty there is in obtaining an ade- 
quate sample and the more uncertain the forecast. 

Key variables upon which warning time depends include: (1) spatial variability of precipi- 
tation, (2) temporal variability of precipitation, (3) rainfall-runoff response characteristics of 
the watershed and (4) antecedent soil moisture conditions. Storm rainfall, and consequently 
warning time, typically exhibit substantial variability. To properly evaluate the potential 
warning time for a watershed, a set of storms should be analyzed that reflects such variabil- 
ity. Warning time can then be defined in terms of a median value and a standard deviation 
or some other measure of variability. 

Warning time for a specific historical storm event can be estimated using a rainfall-,runoff 
forecast model such as HEC-IF (Peters, 1985). The model accounts for precipitation and 
streamflow that has occurred up to the specified time.-of-forecast and simulates streamflow 
into the future. Successive times-of-forecast can be evaluated until the simulated future 
runoff exceeds flood stage. The time between the time-of-forecast and the time when 
flooding begins represents an estimate of the gross warning time for the event being ana- 
lyzed. An estimated time for collecting and analyzing real-time data during an actual storm 
would need to be estimated and subtracted from the gross warning time. If climatological 
forecasts had indicated a significant probability of future rainfall, such rainfall could be 
incorporated in the forecast and a longer warning time achieved. However, quantitative 
estimates of future precipitation are notoriously uncertain. 

Ideally the analysis as described would be made for a number of historical events, and 
the median value and variability of warning determined. If there were no historical precipita- 
tion data for the basin, it would be reasonable to transpose rainfall information from within a 
hydrometeorologically homogeneous region. If no concurrent precipitation and streamflow 
data were available for a basin, there would, of course, be additional uncertainty associated 
with lack of data with which to calibrate the rainfall-runoff model. 
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