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REAL-TIME SNOW SIMULATION MODEL FOR THE MONONGAHELA RIVER BASIN1 

Daniel H. Hoggan, John C. Peters, and Werner ~ o e h l e i n ~  

ABSTRACT: The Pittsburgh District, U S .  Army Corps of Engineers, 
is responsible for operating two multipurpose reservoirs in the 7384 
square mile (19198 square kilometer) Monongahela Basin. A third 
reservoir, presently under construction, will soon be operating. The 
real-time forecasting of' runoff for operational purposes requires simu- 
lation of' snow accumulation and snowmelt thoughout the Basin dur- 
ing the winter season. This article describes capabilities of' SNOSIM, 
a model being developed for performing such simulation. The applica- 
tion of this model as part of a comprehensive system of water control 
software, and some initial simulation results are presented. 
(KEY TERMS: real-time forecasting; snow simulation; snowmelt 
modeling; reservoir operation; Monongahela River.) 

BASIN AND RESERVOIR SYSTEM 
CHARACTERISTICS 

The Monongahela Basin is situated in the unglaciated Al- 
legheny Plateau and is characterized by rugged, high rolling 
hills. The Basin is long and narrow with a total length of' 
144 miles and an average width of 51 miles. Elevations 
range from about 4800 feet at the southern divide to 710 
feet at Pittsburgh (Figure 1). 

Two existing reservoirs, Tygart and Youghiogheny, and a 
reservoir presently being constructed, Stonewall Jackson, 
comprise a system for which the primary purpose is flood 
control. The reservoirs are also used to store water for 
navigation, pollution abatement, and water supply. The 
winter season flood control capacities for the Tygart, 
Youghiogheny, and Stonewall Jackson reservoirs are 278,000, 
151,000, and 38,550 acre feet, respectively. Flood control 
reservations for the summer season are somewhat less. 

A real-time data collection network for water control is 
presently based on 52 self-timed data collection platforms 
(DCP's) that report via satellite telemetry. The DCP's report 
stages and elevations measured at 33 stream and reservoir 
sites, air temperature at 11 sites, and precipitation at 28 
sites.. Precipitation data from an additional 14 sites outside 
the Basin are used fbr making estimates of subbasin-average 
precipitation. The Basin is divided into 40 subbasins for 
purposes of runoff simulation. 

COMPUTER PROGRAM SNOSIM 

The SNOSIM program simulates snow accumulation, ripen- 
ing, and melt processes to determine snowmelt contributions 
to ~unoff,  and computes rainfall attenuation and lag caused 
by snow on the ground. Rain that passes through the snow- 
pack is added to snowmelt to obtain "equivalent precipita- 
tion," which is treated as being equivalent to rainfall as an 
input to  a rainfall-runoff model (Hoggan, et a1 , 1986) 

SNOSIM is a component of an on-line software system 
that includes the capability for data acquisition and processing, 
precipitation analysis, streamflow forecasting, reservoir system 
analysis, and graphical display of data and simulation results 
(Pabst and Peters, 1983). A Data Storage System (DSS) 
provides a means for the storage and retrieval of measured 
data and simulation results. An interactive executive program 
facilitates the use of the software system. Alternative future: 
precipitation and temperature scenarios, or alternative opera- 
tional constraints, can be readily specified with this program, 

SNOSIM is unusual in at least two respects: 1) its com. 
putational time interval can be made very short (3 hours, for 
example), and 2) it is designed for shallow snowpacks. Most 
snowmelt models have been developed for relatively deep 
snowpacks in mountainous locations, and most compute at 
longer time intervals. The procedures embodied in the 
SNOSIM program are those used by the Pittsburgh District, 
Corps of Engineers, and would be most applicable to shallow 
to medium depth snowpacks. 

DATA REQUIREMENTS 

Data requirements for SNOSIM are subbasin averages of 
maximum and minimum temperatures, snow depths, and pre- 
cipitation. Aperiodic snow density data can be used for up- 
dating computed snow density. In addition to the streamflow 
and precipitation data available from the network described 
earlier, daily measurements of temperature (30 stations) and 
snow depth (50 stations) are available, and aperiodic measure- 
ments of' snow density are taken at three stations. 

'paper No. 87016 of the Water Resources BuNetin. Discussions are open until August 1, 1988. 
2~espectively, Professor, Civil and Environmental Engineering, Utah Water Research Laboratory, Utah State University, Logan, Utah 84322; 

Hydraulic Engineer, Hydrologic Engineering Center, 609 Second S t ,  Davis, California 95616; and Hydraulic Engineer, Pittsburgh District, Corps of 
Engineers, William S. Moorhead Federal Building, 1000 Liberty Ave., Pittsburgh, Pennsylvania 15222-4186. 
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Figure 1. Map of' the Monongahela Rive1 Basin. 



Real-Time Snow Simualtion Model for the Monongahela River Basin 

DATA ADJUSTMENTS COMPUTATIONAL LOGIC 

Snow depths ordinarily reach a maximum of three to  four 
feet at the highest elevations in the Basin, and all of the 
snow may melt within a few days from the influence of ab- 
normally high temperatures. The time interval of computa- 
tions, which may be selected from a range of one to several 
hours, must be relatively short (e.g., 3 hours) to effectively 
simulate these conditions. Daily maximum and minimum 
temperatures are converted to simulation time interval values 
according to a diurnal temperature distribution used by Pitts- 
burgh District. A linear approximately of temperature dis- 
tribution between maximum and minimum points is used to 
simplify computations (Figure 2). Daily snow depths are 
interpolated linearly to obtain simulation time interval values. 
Although actual changes in snow depth are not linear, par- 
ticularly during periods of freezing and thawing, the effect 
of this assumption on simulation results is minimal because 
of the small deviation that would occur during a 24-hour 
period. 

DAY (I) 

TME (HOURS) 

Figure 2. Diurnal Temperatu~e Curve. 
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TEMP 

Observed snow depths under 20 inches are adjusted up- 
ward according to  a curve (Figure 3) developed by the Pitts- 
burgh District,. For snow depths in this range, the District 
has found that observed depths based on gage readings are 
consistently low when compared with the results of snow 
surveys. 

0 2 4 6 8 10 12 14 16 18 20 

OBSERMD SNOW DEPTH (INCHES) 

Figure 3 .  Snow Depth Adjustment Cu~ve  

Precipitation is divided into rain or snow according to a 
freezing temperature index. If the average temperature in OF 

is greater than freezing temperatu~e plus 2 degrees, precipita. 
tion is computed as rain. Rain, thus obtained, is treated in 
one of three ways: 1) if there is no snow on the ground, it 
is added directly to equivalent precipitation; 2) if snowpack 
exists, but is not ripe (snow density is less than threshold 
melt density), then the rain is absorbed by the snow; and 
3) if the snow is ripe, the rain is lagged before being added 
to equivalent precipitation. 

Snow ripening and melt processes are divided into two 
stages, from the beginning of the period of simulation until 
the time of forecast, and from the time of forecast until the 
end of the period of simulation. 

First Stage oj'Sirnulation 

In the first stage, subbasin averages of observed precipita. 
tion, temperature, and snow depth and an initial value of 
snow density are used to compute a regular time series of 
water equivalent, snowmelt, and snow density values. This 
series of computations may be updated with a user assigned 
value of snow density for any time interval in the sirnula- 
tion. 

Tracking of the average snowpack density is essential in 
the simulation to determine when melt will be triggered Ir. 
the model, i t  is assumed that the average density must reach 
a threshold density to  indicate ripeness before melt will 
leave the snowpack. Density accounting is accomplished by 
additions and subtractions to  the water equivalent Precipita. 
tion, whether rain 01 snow, is added; snowmelt and evapora. 
tion/sublimation are subtracted. 

When snow density is less than the threshold melt den. 
sity and precipitation occurs, the water equivalent is equal 
to the water equivalent in the previous time interval plus 
precipitation. 

When there is no  precipitation, the water equivalent of 
the previous period is reduced by a small loss, which includes 
an evaporation/sublimation loss and any loss from melt anc! 
infilt~ation at the ground surface interface. Evaporation/ 
sublimation from the snowpack is a function of the vapor 
pressure difference between the snow smface and the air, and 
wind speed At middle latitudes during the winter and early 
spring, the evapor ation/sublimation from snow averages less 
than 0.5 inches per month (U.S. A m y  Corps of Engineers, 
1960). This would amount to about 0.02 inches per day 
Loss due to ground melt and infiltration could increase this 
rate slightly 

If the snow is ripe and the air temperature is above freez- 
ing, snowmelt is occurring, and the water equivalent from 
the previous period is reduced by the amount of melt. Al- 
though rainfall also may be occurring, the rain is in transit 
through the snowpack and does not add to the water equiva 
lent of the snow. The rain is accounted for separately and 
added to melt later in the process after adjustment for lag. 
Rain does, however, accelerate snowmelt slightly, so the melt 
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rate is increased by an amount proportional to the intensity 
of the rainfall (U.S. Army Corps of Engineers, 1960). 

Combining the rain-melt equation with that for other melt 
yields an equation for melt during time interval I. 

where: 

Mi = snow melt in inches, 

I = simulation time interval in minutes, 

CM = coefficient of' snowmelt (degree-day factor) in 
inches of melt per mean daily degree (OF) above 
freezing, 

= observed rainfall in inches, 

Ti = air temperature in OF, and 

TF = freezing temperature in OF. 

Otherwise, if there is no rainfall, the equation is basically the 
same except that the rain melt factor is eliminated.. 

After snowmelt has been computed for a time interval, 
the water equivalent is computed. 

Second Stage of  Simulation 

In the second stage of simulation, which occurs after the 
time of' forecast, predictions of precipitation and temperature 
are used, and the computations are essentially the same as 
in the preceding stage except that no snow depths are avail- 
able. Snow depths are computed in fbur different ways de- 
pending on temperature and snow density conditions. 

In the first case, when the snow density is equal to or 
above the threshold melt density and the air temperature is 
greater than freezing, melt is occurring and the density can be 
expected to remain fairly constant. Snow depth under these 
conditions is computed by dividing the water equivalent in 
the current time interval by the density in the preceding 
time interval. 

where: 

Si = computed snow depth in inbhes, 

Wi = water equivalent of' snowpack in inches of water, 
and 

Di-l = percent snow density expressed as a decimal. 

This approach produces a reasonable approximation of' snow 
depth because the density is relatively stable while melt is 
occurring. 

In the second case, when snow density is less than melt 
density and the air temperature is greater than freezing, the 
snow depth is reduced slightly by consolidation. Although 
no melt is occurrig in the usual sense of wate~  bavhg the 
sriowpack, liquid water from melt occurriag at the snow sur- 
face is moving to  lower levels and increasing snowpack density 
(Corps of Engineers, 1956). For shallow snowpacks, the re- 
duction in the snow depth under these conditions is directly 
proportional to the amount of' melt occurring at the surfice 
based on air temperature and inversely proportional to the 
average density of the snowpack. 

In the third case, when the air temperature is below freez- 
ing and the snow depth is greater than zero, the snow depth 
in the current period is equal to snow depth in the previous 
period reduced by sublimation and increased by snowfall, if' 
any has occurred. The average density of' new snow in the 
United States has been found to be approximately 10 percent 
(Osborn, et al., 1982), and this value is adopted for com- 
puting the depth of' new snow. 

where : 

Cs = sublimation/evaporation loss in inches per day, 
and 

Oi = observed snow f'dl in inches of water. 

In the fourth case, when the air temperature is less than 
freezing and there is no snow on the ground for the previous 
period, the snow depth is equal to any new snowfall that 
occurs during the period divided by the density of new snow 
(0.10). The snow density for each time interval during the 
forecast period is computed by dividing the water equivalent 
by the snow depth. 

The lag of liquid water in transit through the snowpack 
is computed with a lag factor that has the effect of' imposing 
minutes of lag per inch of snow depth.. A study by the 
U.S. Army Corps of Engineers (1960) indicates 3 to 4 hours 
of lag fbr moderate depths of snow. The Pittsburgh District 
has used 4 to 6 hours of lag for depths ranging up to 2 or 
3 feet. Based on this infbrmation, 30 minutes of lag pei 
inch of depth is probably reasonable for vertical drainage. 
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Since most snowmelt originates at the snow surface and 
travels down through the snowpack, snowmelt as well as rain 
are adjusted for lag. 

In regions of mild to flat slopes, the delay to runoff 
caused by snowpack may be much longer than for vertical 
transit of water through the snowpack alone (U.S. Army 
Co;ps of Engineels, 1950). Thus, a !arge lag factoi may be 
needed to simulate runoff in areas of low relief. Although a 
single (i.e., global) coefficient of lag may be set for all sub- 
basins in the model with program input, larger or smaller lag 
coefficients for selected subbasins also may be specified. 

The lag diminishes with decreasing snow depth; however, 
for shallow snowpacks that may entirely disappear during the 
course of a snowmelt event, a counteracting effect may tend 
to increase the lag of snowmelt as depth decreases. In a 
subbasin with moderate to high relief, typical of subbasins in 
the Monongahela River Basin, snow cover recession generally 
will begin at the mouth of the subbasin and move upstream 
toward higher and more distant areas Thus, as the effective 
center of snowpack mass moves farther away from the mouth, 
the average travel time for the snowmelt to reach the mouth 
increases. To compensate to some extent for this effect, the 
lag for snowmelt, established at the depth when the pack 
first becomes ripe, is retained until the snow depth diminishes 
to zero. Rainfall lag, on the other hand, is not affected in 
this manner and decreases with diminishing depth. 

As a final step, after rain and snowmelt are adjusted for 
lag, lagged amounts of each occurring in the same time interval 
are added and combined with any other rainfall (which may 
occur in the case of snow-free time intervals) to produce an 
equivalent precipitation hyetograph for the entire period of 
simulation. When there is no snow on the ground, the 
equivalent precipitation is set equal to the observed rainfall. 

INPUT AND OUTPUT 

Much of the input required, aside from the climatological 
data to be processed, is ordinarily generated with the inter- 
active executive program that links SNOSIM with data stor- 
age and other software. However, the input can alternatively 
be entered with a card image input file. The forecast data 
and time, the starting and ending times of simulation, and 
the computational time interval are set. Zone-specified future 
precipitation and maximum and minimum temperature de- 
partures from normal may be entered. Five simulation 
parameters may be set: 1) the coefficient of lag (COEFLG); 
2) the freezing temperature (FRZTP); 3) the threshold melt 
density (RMLTDN); 4) the snowmelt coefficient (SMCOEF); 
and 5) the sublimation factor (SUBFAC). Snow density 
data for updating can be specified either zonally or for in- 
dividual subbasins and by a specified amount or percentage 
change to existing values. 

Since the model has the capability to assign temperature, 
snow density, and precipitation values by zones, a basin zone 
file is required, which assigns subbasins to common zones. 

Departures from normal daily temperatures are used in fore- 
casting, and normal daily temperatures are used to fill in 
missing data, so a file of normal daily temperatures for each 
subbasin also is required. This file can be generated from 
daily normal temperature data for stations with the program 
PRECIP (U.S. Army Corps of' Engineers, 1986), which com- 
putes subbasin averages f1,orn station data. 

Output from the model consists of two tables: a sub- 
basin output table for each subbasin, which lists observed and 
computed values of key variables for all time intervals in the 
simulation; and a summary table, which presents totals and 
other comparative data for all subbasins. 

PROCEDTJRE FOR REAL TIME FORECASTING 

The following sequence of operations is performed in a 
real-time application of SNOSIM. 

The computer program PRECIP is used to develop sub- 
basin-average values of precipitation with a 3-hour interval, 
and of maximum and minimum air temperature, and snow 
depth, with a daily interval. PRECIP is designed to search 
for the nearest reporting gages so that missing data does not 
have to be filled in prior to developing the estimates with 
spatial and other weighting factors. 

SNOSIM is then executed to determine the equivalent 
precipitation. The information required by the pr ogram is 
automatically retrieved from various files. Such information 
includes: 

a. time parameters that define the starting and ending 
times for the simulation and the time of forecast; 

b. subbasin-average values for precipitation, maximum and 
minimum daily temperature and snow depth; 

c. future precipitation amounts, and future maximum and 
minimum daily temperatures (in terms of departures from 
normal); 

d. normal daily maximum and minimum temperatures; and 
e. snow density data, if available. 

The computer program HEC-1F (U.S. Army Corps of 
Engineers, 1986) is used to calculate discharge hydrographs 
for each subbask. Hydrographs are routed and combined 
throughout the basin to provide forecasted hydrographs of 
inflow to reservoirs and hydrographs at downstream control 
points. Observed streamflow data are used wherever it is 
available in the process of tracking flood wave movement 
through the stream network. The capability also exists to 
optimize runoff parameters for gaged headwater subbasins 
(Peters and Ely, 1985). 

Both the discharge hydrographs that are calculated with 
HEC-1F and the reservoir storages are input to the computer 
program HEC-5 (U.S. Army Corps of' Engineers, 1986) for 
simulation of the reservoir system and determination of 
reservoir releases. Releases are determined in accordance 
with constraints at downstream control points while keeping 
the system "in balance." A wide variety of' factors that 
affect release decisions can be accommodated, including 
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channel capacities at downstream control points, emergency 
conditions requiring prereleases, minimum-flow requirements, 
etc. Output such as hydrographs of discharge, reservoir 
stage, and storage are written to the Data Storage System so 
that they can be readily displayed and analyzed. 

Iterations of the above sequence can be made as required 
to enable the evahation of alteiiiatiiie ftttii~e plecipitatioiil 
temperature conditions or operations constraints. 

TEST APPLICATION 

A snowmelt flood event in February 1985 was used for 
testing SNOSlM. A build up of snowpack in mid-February 
was completely melted by high temperatures in the period 
of a week, producing high runoff. 

The model was first applied to the 15 headwater subbasins 
in the Monongahela River Basin No special weighting fac- 
tors for temperatures or snow depths were used in the com- 
putation of subbasin averages from gage data. The program 
PRECIP has the capability for introducing normalized weights, 
such as normal maximum and minimum tempratures and 
normal snow depths. Elevation differences may also be used 
for weighting temperature data. The purpose of the weighting 
is to adjust point (gage) values for local variations. 

The real-time rainfall-runoff model HECl-F was run follow- 
ing SNOSIM, using equivalent precipitation computed by 
SNOSIM as an input to compute hydrographs for all sub- 
basins. A comparison of the computed and the observed 
hydrographs revealed that the fit was quite good in some 
subbasins; for example, subbasin MAKP (Figure 4), but the 
timing of peak discharge was not good in others; for example, 
subbasin BKNW (Figure 5). Through the introduction of 
snow depth weighting based upon elevation differences and 
adjustment of lag factors, a satisfactory fit of hydrographs 
could be achieved for all subbasins (note the improvement 
in fit for subbasin BKNW in Figure 6). 

Figwe 4. Observed and Computed Flow for Subbasin MAKP. 
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Figure 6 .  Observed and Computed (with weighting and 
lag adjustment) Flows fbr Subbasin BKNW. 

One of the key computations in SNOSlM is for the snow 
depth after the time of forecast, when no observed values 
are available. Comparison of computed with observed snow 
depths indicated that the model produced a reasonably good 
approximation. See the results for subbasin MAKP shown 
in Figure 7. Because of the lack of significant rainfall in the 
test event, verification of the rain-on-snow melt simulation 
in the model was not possible. 

CONCLUSIONS 

Although snow accumulation and melt processes are high- 
ly complex and are influenced by a large number of variables, 
an attempt was made to keep the level of model sophistica- 
tion consistent with data availability and operational require- 
ments.. Thus, data inputs have been limited to temperature, 
snow depth, precipitation, and snow density. However, 
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Testing of the model with data from the February 1985 
flood event indiceted that obtaining the correct timing of 
runoff from subbasins is probably the most significant prob- 
lem to be anticipated Since different factors or combina- 
tions of factors can be employed to influence the timing, the 
question arises as to what strategy to use. For example, all 
of the following factors affect timing, so any or all could 
be ~or~sidered for adjustment: 1) initial snow density; 2) thres- 
hold melt density; 3) freezing temperature (air); 4) snowmelt 
coefficient; 5) coefficient of lag; 6 )  temperature weighting 
factors used in subbasin averaging by program PRECIP; 
7) snow depth weighting factors used in subbasin averaging 
by program PRECIP; and 8) loss rates used by program 
HEC 1 -F. 

The factors that produce the greatest effect on timing 
are the weighting factors used in subbasin averaging and the 
lag factor. In testing the model, lag factors were used al- 
most exclusively to correct timing problems; however, future 
operation of the model may indicate that more emphasis 
needs to be given to weighting in the subbasin averaging 
process. Good spatial averaging of snow depth data measured 
at stations is particularly difficult to achieve, and further 
research in this area is needed. Testing of the model with 
this one event obviously is just a start in the process of 
developing an effective ope~ational system. Refinement of 
the model based on experience and data from future events is 
anticipated. 
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