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By David T. Ford,' M. ASCE 

ABSTRACT: An ensemble of analytical tools is used to identify capacity expan- 
sion alternatives for the Delaware River dredged-material disposal system 
Characteristics of the river and riparian area are stored and analyzed with a 
geographic information system Site attractiveness maps produced with these 
data yield an array of potential expansion sites The least-costly schedule for 
acquisition of these sites is identified with branch-and-bound enumeration For 
the enumeration, the operation cost of alternative expansion plans is evaluated 
with a network-flow programming model of the disposal system 

The Delaware River navigation system, shown in Fig. 1, extends ap- 
proximately 130 miles (209 km) from naturally deep water in the Dela- 
ware Bay to the port of Trenton, NJ. The system consists of 15 developed 
port areas and two open-bay ports. One-hundred-thirty-two million short 
tons (1.2 x 1012 N) of waterborne commerce are moved annually through 
these ports. To maintain the congressionally-authorized channel depth 
of 40 ft (12.2 m) required for this navigation, approximately 11,500,000 
cu yd (8.8 x lo6  m3) of material are dredged annually from the Delaware 
River and tributary channels. The dredged material is disposed in 21 
upland sites. These upland disposal sites are natural or man-made diked 
areas into which dredged material, in slurry form, is placed. In the con- 
tainment sites, excess water drains and evaporates from the slurry, leav- 
ing solids The volume is reduced 30 to 50%, depending on material 
characteristics and site-management practices. Most man-made disposal 
sites are filled to a depth of approximately 15 ft (4.6 m); the depth of 
natural sites depends on the topography 

In 1978, the staff of the Philadelphia District, US Army Corps of En- 
gineers (USACE), conducted a study of the dredging system (USACE, 
1979). The staff concluded from a simple mass analysis with forecasted 
annual dredging volumes that existing sites will be filled by 1990 Con- 
sequently, to maintain the waterborne commerce, additional capacity must 
be made available for disposal of the dredged material. The study report 
suggests alternative methods to produce this capacity, including im- 
provement of operation to extend the useful lives of existing sites, more 
efficient allocation system-wide of the available capacity, and develop- 
ment of new disposal sites. To investigate these alternatives, an ensem- 
ble of analytical tools is used which includes a network-flow program- 
ming model of disposal system operation, a geographic information system 

'Hydr Engr , Hydrologic Engrg Ctr , US Army Corps of Engrs , 609 Second 
S t ,  Davis, CA 95616 



SCALE IN MILES 
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FIG. 1.-Delaware River Navigation System (USACE, 1984) 

with associated attractiveness-mapping software, and a capacity-expan- 
sion model. 

Analyzing the operation of an existing dredged-material disposal sys- 
tem was addressed early in the study, and a mathematical programming 
model was developed to determine the minimum cost and the associated 
operation policy for any system. This model is described in detail by 
Ford (1984). The model represents a disposal system as a network, as 
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FIG. 2.-Network Representation of Disposal System 

illustrated by Fig. 2. Dredging sites and disposal sites are represented 
by nodes. In Fig. 2, nodes 1-6 represent three disposal sites, and nodes 
7-9 represent three dredging sites The nodes are connected with arcs 
which represent transportation links through which material may be 
moved The amount of material that can be moved is constrained by the 
capacity of the physical link; for example, an arc that represents a pipe- 
line has a limitation on flow in the arc which is equal to the capacity of 
the pipeline. Also associated with each arc is a unit cost for moving 
material in that link in the disposal system. To analyze the operation of 
the system for multiple periods, a network is formed for each period, 
and these single-period networks are linked by arcs that represent stor- 
age of material in the disposal sites. A network-flow programming op- 
timization algorithm is used to determine the minimum-cost assignment 
of material to the network arcs. The operation represented by this as- 
signment is the optimal policy. 

Potential new disposal sites within the Delaware River system were 
identified by: (1) Selecting and collecting pertinent data for quantifying 
site suitability; (2) developing a computerized data base to manage the 
data; and (3) iteratively soliciting public expression of operation goals 
and constraints, computing and mapping indices of site attractiveness, 
and analyzing the maps in light of demands on the system. 

Physical, economic, environmental, social, and political criteria must 
be applied to determine the suitability of an area for development as a 
dredged-material disposal site. To aid the Corps planning team in de- 
fining these criteria as they apply to development in the Delaware River 
basin, an advisory committee representing the port community and Fed- 
eral, state, and local agencies was formed. With the assistance of this 
committee, the planning team identified Delaware River and riparian- 
area attributes that have significant impact on selection of potential dis- 



TABLE 1 .-Attributes Included in GIs  
Attribute 

(1) 

Weight for map of Fig,. 4 
(2) 

posal sites. These attributes are listed in Col 1 of Table 1. Due to the 
varied special interests of the members of the committee, the list of at- 
tributes is lengthy and broad-in-scope. However, the common factor of 
the attributes identified is that they are spatially-oriented. 

Data Management.-Spatially-oriented data can be stored and ana- 
lyzed conveniently with a geographic information system (GIs). The GIs 
selected for this study uses a grid-cell system (USACE, 1978a). With such 
a system, a regular, rectangular grid is superimposed on the study area, 
and the critical attributes are represented for each grid cell. Any number 
of attributes can be represented, as illustrated in Fig. 3. 

Land use/land cover 
Navigational feature 
Importance as fish and wildlife habitat 
Archaelogical sensitivity 
Historical significance 
Location in groundwater recharge zone 
Existing development 
Recreational features 
Location in groundwater protection zone 
Elevation 
Distance to navigation channel 
Utilization as farmland 
Wetland significance 

LAND USE /LAND COVER (ATTRIBUTE I )  
Code I IS urban 

Code 2 1s 10'- 42 '  deep water 

1 00 
1 00 
1 00 
1 00 
1 00 
1 00 
3 00 
1.00 
3 00 
3 00 
5 00 
1 00 
1 00 

etc 

NAVIGATIONAL FEATURES (ATTRIBUTE 2) 
Code 0 IS other (no n a v ~ g a t ~ o n l  

Code I is maln channel 

etc 

IMPORTANCE AS FISH AND WILDLIFE 
HABITAT (ATTRIBUTE 3 )  

Code 0 1s other (no importance) 

Code 9 i s  trout area to be excluded 

etc 

MULTIVARIABLE FILE STRUCTURE 

2 
2 

etc 

FIG. 3.-Multiple-Variable Grid-Cell Data Bank 
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The grid-cell data base developed for the Delaware River system em- 
compasses approximately 1,200 sq miles (3,108 km2) including the river 
and a 5-mile (8-km) band on either side of the river. An 800 ft by 1,000 
ft (244 m by 305 m) grid-cell size was selected, so the entire data bank 
includes approximately 43,500 cells. For each attribute, discrete cate- 
gories are defined and assigned identifying codes, and the appropriate 
codes are stored. For example, the predominant navigational feature of 
each cell is classified as main channel (encoded as I), entrance channel 
(encoded as 2), anchorage (encoded as 3), in-water disposal site (en- 
coded as 4), or other (encoded as 0) Efficient techniques for classifying, 
encoding, and storing the data are described by USACE (1978b). 

Attractiveness Mapping.-Potential new disposal sites are identified 
by overlaying geographic data, using an analytical procedure analogous 
to the map-coloring and overlaying procedure suggested by McHarg 
(1969). The analytical procedure, referred to as site-attractiveness map- 
ping, develops an index value for each grid cell that represents the rel- 
ative attractiveness of that cell for the desired activity, based on a weighted 
combination of pertinent geographic information. For display, the index 
value for each cell is represented by a combination of overprinted char- 
acters, and an attractiveness map is produced. Fig. 4 is an example of 
such an attractiveness map. In that map, the most-attractive cells are 
printed darkest, and less attractive cells are blank. Cells that must be 

FIG. 4.-Attractiveness Map with Weights Emphasizing Economic Criteria (USACE, 
1984) 



excluded from consideration as expansion sites are printed lightest,. 
The attractiveness index for each grid cell of the data bank is com- 

puted as 
N A T B  

INDEX(1,J) = 2 WT(K)*FKIATB(I,J, K ) ] .  . . . . . . , , . . . . . . . . . . . . , , ,, (1) 

in which INDEX(1,J) = attractiveness index of grid cell in row I, column 
I ;  K = index of attributes; NATB = total number of attributes stored for 
each grid cell; WT(K) = weight assigned for attribute K in the ranking 
of attributes (may be zero if attribute is not considered); ATB(I,J, K) = 
coded value of attribute K for grid cell in row I, column J; and F K (  ) = 

a transformation function for attribute K. This transformation function 
converts the assigned code for values of attribute K to a numerical score 
between 0 and 10. If certain attribute values should preclude consider- 
ation of an area as a disposal site, a negative score is assigned, and the 
cell is excluded. No character is printed for that cell on the attractiveness 
maps. For example, when identifying new disposal sites with emphasis 
on economic criteria, the transformation function shown in Table 2 was 
selected for the navigation features: The negative values indicate that 
any cell that represents area in the main channel, in an entrance chan- 
nel, or in an anchorage is not considered for development as a disposal 
site,. Grid cells representing existing in-water disposal sites or those which 
fall into the "other" category are assigned a score of 10.. This score is 
weighted and added to other scores for that cell to produce a weighted 
score. 

Public Involvement.-Public expression of system operation goals and 
constraints on site location was solicited and compromise solutions were 
developed in a series of meetings with the advisory committee. In these 
meetings, the transformation functions and weights used to define the 
attractiveness index were varied according to the goals of the various 
interest groups, and the attractiveness model was executed to produce 
maps indicating potential new disposal sites in the study area For ex- 
ample, Fig. 4 shows the relative attractiveness for developing new dis- 
posal sites from an economic point of view. The weights assigned in 
this case are shown in Col. 2 of Table 1 

The additional capacity available with new sites identified from var- 
ious points of view is estimated by simple techniques and compared 
with the forecasted additional capacity required to maintain waterborne 
commerce at the desired level. Through this process, the shortfall, if 
any, associated with constraints imposed by each interest group may be 

TABLE 2.-Navigation Feature Transformation Function 

Feature 
(1 

Main channel 
Entrance channel 
Anchorage 
In-water disposal 
Other 

Code 
(2) 

1 
2 
3 
4 
0 

Function value 
(3) 

-1 
-1 
-1 
10 
10 



quantified. Iterative application of the model, coupled with field inves- 
tigation and engineering analysis eventually led to identification of a set 
of potential new sites which represent a compromise of goals and con- 
straints on development. 

Applying the site-attractiveness model to the GIs allows new sites which 
satisfy forecasted disposal needs to be identified. However, the analysis 
performed does not address site-acquisition scheduling. To address that 
problem, a capacity-expansion model was developed, This model sys- 
tematically searches the set of alternative acquisition plans, evaluates the 
total cost of each, and identifies the optimal plan by comparing the al- 
ternatives. 

Optimality Criteria.-The optimal capacity-expansion plan is defined 
here as the plan which satisfies all present and forecasted material-dis- 
posal requirements with minimum total cost. The total cost is the sum 
of the present value of: (1) The cost of new-site acquisition; (2) the cost 
that is a function of the allocation of dredged material to the available 
disposal sites (variable operation cost); and (3) the fixed cost of operat- 
ing, maintaining, and repairing the disposal system (OMR cost). 

Alternative Capacity-Expansion Models considered.-  he problem 
of determining the least-costly capacity-expansion plan for engineering 
systems has been solved with a cornucopia of systems analysis tools. 
Akileswaran, Morin, and Meier (1979) list 89 references to jo'urnal arti- 
cles, reports, theses, and books in which the problem is analyzed and 
solutions are proposed.. These solutions include applying heuristic de- 
cision rules, dynamic programming, integer programming, and enu- 
meration techniques. 

Heuristic decision rules are "seat-of-the-pants" methods for determin- 
ing near-optimal solutions to well-defined optimization problems. With 
heuristic rules, any technique can be used for evaluating total cost of a 
capacity-expansion scheme. Bickel (1978) cites several such rules for ca- 
pacity expansion, and Akileswaran, et al. (1979) examine the applica- 
bility of the heuristic approaches, list reasons for employing such ap- 
proaches, and describe a number of heuristic rules for solving capacity- 
expansion problems,. 

Butcher, et al. (1969), Kuiper and Ortolano (1973), Morin (1975), and 
the Texas Water Development Board (1975) propose dynamic program- 
ming (DP) formulations which disaggregate the capacity expansion 
problem into a set of linked stages at which decisions must be made. 
At each stage, all possible expansion alternatives are evaluated explic- 
itly. A state vector represents the status of each capacity expansion site 
at each stage. For the Delaware River system, four or five expansion 
sites typically are considered, with each site available in any of 50 years 
of operation. A DP formulation, in this case, will include 50 stages, and 
the state vector will include four or five state variables at each stage. 
Solution of a DP problem with a state vector of this dimension is diffi- 
cult, at best. 

Most integer programming (IP) formulations of the capacity expansion 
problem include a binary (0-1) decision variable for each potential site 



for each period during which that site can be acquired. For the optimal 
period of acquisition, this variable equals one, and it equals zero oth- 
erwise. Thus the contribution of a site to the total cost of a plan is the 
product of the acquisition cost and the binary variable. O'Laoghaire and 
Himmelblau (1972) propose such an IP formulation, and a similar for- 
mulation is used in the Texas Department of Water Resources program, 
CAPEX (1970). To represent a typical 50-yr analysis with four or five 
expansion sites for the Delaware River system, an IP formulation re- 
quires 200 to 250 binary decision variables. The computational require- 
ments of a problem of this scale are reasonable. However, due to the 
interaction of the disposal sites, the total cost of an expansion plan for 
the Delaware River system is not a simple sum of site acquisition costs. 
Instead, the operation cost must be determined with each expansion plan 
and included as a component of the total cost. This computation neces- 
sitates use of a mixed integer programming (MIP) formulation that in- 
cludes the binary decision variables plus all decision variables of a sys- 
tem operation model. Efficient solution of such a large-scale MIP problem 
is possible with only the most sophisticated computer hardware and 
software, and then only at great expense. 

Branch-and-bound enumeration is a subset of IP that employs a struc- 
tured, formalized procedure to search systematically for the optimal ca- 
pacity-expansion plan. In the extreme, the technique enumerates all ex- 
pansion schemes. The goal, however, is to eliminate sets of inferior 
expansion plans using bounds determined from a limited enumeration 
The general properties of branch-and-bound techniques are described by 
Garfinkel and Nemhauser (1972), Lawler and Wood (1966), and Mitten 
(1970). Marks and Liebman (1970), Brill and Nakamura (1978), Naka- 
mura and Brill (1979), Ball, Bialas, and Loucks (1978), Efroymson and 
Ray (1966), and Morin (1970) propose branch-and-bound methods for 
selection of the optimal combination of discrete capacity-expansion al- 
ternatives. 

The procedure selected for capacity expansion of the Delaware River 
system employs a branch-and-bound algorithm with embedded heuristic 
rules, as suggested by Bickel (1978) and by Lesso, et al. (1975) This 
procedure was selected because: (1) It could be implemented within the 
budgetary and time constraints of the study; (2) it can be implemented 
with available computer hardware (Harris 500 minicomputer); (3) it does 
not require use of proprietary software; (4) it guarantees identification 
of the optimal solution regardless of the efficacy of the heuristic rule 
used; (5) it simplifies "changing of horses in the middle of the stream" 
as experience is gained in solving the expansion problem and better heu- 
ristic rules are discovered; and (6) most important, it permits direct ap- 
plication of the previously-developed network model for evaluation of 
variable operation cost. 

Branch-and-Bound Procedure.-The branch-and-bound procedure 
identifies the least-costly dredged-material disposal system capacity-ex- 
pansion plan by dividing the universe of alternative expansion plans 
into successively smaller, mutually-exclusive subsets (separating), choosing 
one of the subsets for further consideration (branching), estimating the 
minimum cost possible for the plans included in the subset (bounding), 
and comparing this cost with the cost of the best plan identified thus 



FIG. 5.-Subdivision of Expansion Plans 

far. Inferior subsets are eliminated in the comparison. Non-inferior sub- 
sets are further divided, and the process continues until all plans are 
evaluated explicitly or eliminated by implicit comparison. 

Fig. 5 illustrates conceptually how the branch-and-bound procedure 
separates, branches, compares, and eliminates alternatives in the search 
for the least-costly expansion plan. In this example, a single expansion 
site can be added to a system at the beginning of any of five periods. 
Thus, five alternative plans exist, as shown in Fig. 5(a). With the branch- 
and-bound procedure, a period is selected for separation of the plans 
into two mutually-exclusive subsets. The period is selected with a heu- 
ristic rule. Any rule can be used, for as Lesso, et al. (1975) point out, 
the ability of the branch-and-bound procedure to identify the optimal 
solution is not altered by the efficacy of the rules selected. The rules 
effect only the speed of solution. As shown in Fig. 5(b), the plans are 
separated at period 4. One subset includes plans in which the site is 
acquired between periods 1 and 3; the other subset includes plans in 
which the site is acquired between periods 4 and 5. The first subset is 
selected with a heuristic rule for further consideration, and the analysis 
branches to that subset. A lower bound on cost is estimated for the plans 
in that subset. This bound is computed in such a manner that it is guar- 
anteed to be less than or equal the true cost of any plan in the subset. 

As illustrated by Fig. 5(c), the procedure continues in the same fashion 
to separate further the subset with acquisition between periods 1 and 3. 
The separation is made at period 3, yielding two mutually-exclusive sub- 
sets: plans for acquisition between periods 1 and 2, and a plan for ac- 
quisition in period 3. The latter is selected and a lower bound is esti- 
mated for this subset. In the case of a subset that includes only one plan, 
this bound is, in fact, the true cost of expansion. For the example, this 
is the current minimum-cost plan, so it is defined as a trial optimal so- 
lution. The trial optimum is used subsequently for eliminating inferior 
plans. 

When a subset cannot be separated further, or if a subset is eliminated 
through comparison with the trial optimum, the procedure is to back- 
track to the most recently defined, but not yet evaluated, subset. If no 
such subset exists, the enumeration is complete, and the trial optimum 
is the solution. In Fig. 5 ,  backtracking from the period 3 acquisition plan 
leads to the subset which includes acquisition in period 1 or 2. The lower 



bound on cost of these plans is evaluated. If this lower bound exceeds 
the trial optimum cost, both plans must be inferior to the trial optimum. 
This is so, and the subset is eliminated. Backtracking now leads to the 
subset including acquisition in period 4 or 5. The lower bound is esti- 
mated, the comparison is made, and, if necessary, the procedure con- 
tinues as before. 

Heuristic Separating and Branching Rules.-For the dredged-material 
disposal system application, the subsets of capacity-expansion plans are 
divided using heuristic rules that focus on the cost reduction possible if 
acquisition is delayed or accelerated. The rules identify a time period 
and, if multiple expansion sites are proposed, an expansion site which 
will serve as the basis for the separation. 

For each expansion site J in a subset of plans, the unused volume per 
unit cost, VC( J), is computed as follows: 

IPERB(1) 

VC(J) = C SMAX(J) - S(J, T) 
. . . . . . . . . . . . . . . .  

I = I ~ E R , ~ ( ~ )  ACQCST(J) * PWF (R, T - IPERI ) 

in which lPERA(J) = earliest period for acquisition of site J for any plan 
in the subset; lPERB(J) = last period for acquisition of site J for any 
plan in the subset; SMAX(J) = capacity of disposal site J; S(J, T) = vol- 
ume of material stored in site J at end of period T, as determined by the 
network model of system operation; ACQCST(J) = acquisition cost of 
site J; PWF (R, T - IPERZ) = present-worth factor, by which a cost at 
period T is converted with interest rate R to equivalent cost at period 
IPER1; and lPERl = base period of analysis. The site with the maximum 
value of VC(J) is selected as the basis for dividing the subset of plans. 
A low-cost site that is used extensively has a larger value of VC(J), as 
does a high-cost site that is used little. In the first case, accelerating site 
acquisition is likely to reduce system cost, so the subset of plans is di- 
vided for that site, and earlier plans are considered. In the second case, 
postponing the acquisition is likely to reduce system cost, so the subset 
of plans is subdivided for that site, and later acquisition plans are con- 
sidered. 

Bounding.-A lower bound on total cost of plans in a subset is esti- ., 
mated by formulating a network model in which the fixed acquisition, 
and OMR costs plus operating costs are approximated as unit operating 
costs. These unit costs are assigned to the arcs which represent storage 
in the expansion site. Solution of the resulting network-flow-program- 
ming problem yields a cost for each period that is a fraction of the true 
acquisition and OMR costs. If the expansion site is filled in a period, the 
fraction is one, and the cost for the period is the actual acquisition, OMR, 
and operation cost. Otherwise, the fraction is less than one, and the cost 
in that period is less than the true cost. Furthermore, Lesso, et al. (1975) 
prove that the lower bound thus estimated for plans in a subset always 
equals or exceeds the true cost of the individual plans in the subset. 
Thus in the example from Fig. 5 ,  the bound on the set which includes 
plans with expansion in period 1, 2, or 3 equals or exceeds the bound 
on the set of all five plans. Furthermore, the lower bound of the subset 
which includes acquisition in period 3 exceeds ali of these. 



Eliminating Subsets.-The important result of the characteristics of 
the lower bound estimate is that an entire subset may be eliminated if 
the lower bound exceeds the cost of a known feasible solution. The branch- 
and-bound procedure thus is able to eliminate, without explicit evalu- 
ation, subsets of plans that are clearly inferior. For example, in Fig. 5,  
if the lower bound of the subset that includes acquisition in period 1 or 
2 exceeds the cost of acquisition in period 3, all the plans in that subset 
can be eliminated. The cost of expansion in period 1 or of expansion in 
period 2 exceeds the lower bound of the 1-2 subset, so these plans have 
been evaluated implicitly and can be eliminated from further consider- 
ation. 

Example Application.-Fig. 6 illustrates a subsystem of the Delaware 
River system to which the branch-and-bound algorithm is applied to 
identify the least-costly capacity-expansion plan. The subsystem in- 
cludes two dredging sites, two existing disposal sites, and three disposal 
sites which will be added to the system in the year 2000. The Wilming- 
ton Harbor South site may be acquired in any year between 1981 and 
2000, if such acquisition is economically justified. Annual operation for 
1981 to 2030 is analyzed. (Any other time step could be selected if data 
are available.) 

Fig. 7 is a reproduction of a portion of the output from a computer 
program which implements the branch-and-bound algorithm and the 
network-flow programming model of the disposal system operation 
(USACE, 1984). The earliest and latest periods of the plans in each sub- 
set are shown for each iteration in the columns beneath the heading 
SITE ACQ. PERIOD. The cost shown in the column headed TOTAL NET 
COST is the cost computed with the network model using the unit-cost 
approximation of acquisition cost. 

In iteration 1, a lower bound is estimated for the set of expansions 
plans in which the Wilmington Harbor South site is acquired between 
1981 and 2000. This is accomplished by formulating a network model in 
which the site is included in the system, with unit cost approximations 
of the acquisition and OMR cost assigned to the arcs. The network model 
has approximately 700 nodes and 1,200 arcs. The conclusion from so- 
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lution of the network is that acquiring the site between 1981 and 2000 
and operating it until 2030 will cost at least $23,364,387. 

For iteration 2, the set of plans is separated into two mutually-exclu- 
sive subsets, using the heuristic rule to determine how the division is 
to be made. In this case, the first subset includes all capacity-expansion 
plans in which the site is acquired between 1981 and 1996, inclusive, 
and the second subset includes all plans in which the site is acquired 
between 1997 and 2000, inclusive. Using the heuristic branching rule, 
the 1997-2000 subset is selected for evaluation. The network model is 
formulated with the acquisition and OMR cost approximation. Solution 
indicates that all plans in the subset are infeasible: system capacity is 
insufficient if the site is acquired between 1997 and 2000. Thus all ca- 
pacity-expansion plans in this subset are eliminated from further con- 
sideration. 

When a subset of plans is eliminated, the procedure is to backtrack. 
So in iteration 3, 1981-1996 acquisition is evaluated. The network model 
is formulated and solved to evaluate approximately the cost for plans in 
this subset, and a lower bound of $23,500,275 is computed. 

By following the heuristic rules, the 1981-1996 subset is divided into 



a 1981-1989 subset and a 1990-1996 subset The 1990-1996 subset is 
selected for further investigation in iteration 4, and system operation is 
analyzed with the network model for plans in this subset. The lower 
bound on cost is $23,515,395. 

For iteration 5, the 1990-1996 subset is divided into a 1990-1993 sub- 
set and a 1994-1996 subset, and the 1994-1996 subset is selected for 
evaluation. Execution of the network model indicates that plans in the 
1994-1996 subset are not feasible, so all are eliminated from further con- 
sideration. The analysis backtracks, and the 1990-1993 subset is evalu- 
ated in iteration 6. The estimated lower bound is $23,661,624. 

After several iterations, the set of plans is separated into 1990-1990 
and 1991-1991 subsets. These subsets include only a single capacity-ex- 
pansion plan. The 1991 acquisition plan is evaluated and is found to be 
infeasible. The 1990 plan is feasible, and the lower bound of the subset 
is $23,786,139. This plan is now a trial optimal plan. If the lower bound 
of any subset subsequently evaluated exceeds the cost of this trial op- 
timum, all plans in that subset are eliminated from consideration. This 
the case in iteration 11; the lower bound on 1981-1989 capacity expan- 
sion plans, $23,909,040, exceeds the trial optimum. Thus all expansion 
plans in that subset are eliminated, leaving the plan identified in itera- 
tion 10 as the optimal plan. 

Systems analysis tools can play an important role in water resources 
planning when those tools are used as a source of information for the 
planning professionals. The models developed for and used in this study 
are viewed as filling that role. The attractiveness maps are not consid- 
ered as the source of all wisdom; alternative sites, identified from ex- 
perience, are considered along with those identified with those maps. 
The geographic information system and the attractiveness maps serve 
only to systematize the discovery of sites that might otherwise have been 
ignored. Likewise, the results of the analytical optimization models are 
not treated as a result of divine revelation. All professionals involved in 
the planning realize that, by necessity, the mathematical representation 
of the disposal system is a simplification of the real-world system. Con- 
sequently, the "optimal" decisions identified by the models are viewed 
as guidelines for those decisions that must ultimately be made for op- 
eration and expansion of the Delaware River dredged-material disposal 
system. 

An ensemble of analytical tools is used to identify feasible capacity 
expansion plans for the Delaware River dredged-material disposal sys- 
tem. Critical spatially-oriented attributes of the river and adjacent area 
are stored with a geographic information system. Attractiveness maps 
produced with these attributes help to identify a set of potential expan- 
sion sites. The least-costly combination of these potential sites and the 
best sequence for acquisition is identified with a branch-and-bound enu- 
meration procedure. This simple, systematic procedure permits direct 
use of a network-flow programming model for cost evaluation. 



The capacity-expansion a n d  network models described herein were 
developed by the  writer, Darryl Davis, and Shelle Barkin a t  the  Hy- 
drologic Engineering Center, USACE, wi th  assistance from Brian Hev- 
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Frank Schaeffer of the  Philadelphia District provided details of the  site- 
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USACE, reviewed ' this  paper  a n d  suggested improvements.  
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The following symbols are used in this paper: 

ACQCST(J) 
ATB ( I ,  I ,  K )  

F K (  
I 

INDEX ( I ,  J )  

IPERl 
IPERA ( J )  

IPERB ( J )  

K 
NATB 

PWF (R,  T - IPERl ) 

acquisition cost of site J; 
coded value of attribute K for grid cell in row 
I ,  column J ;  
a transformation function for attribute K; 
index of row in grid-cell data base; 
attractiveness index of grid cell in row I, col- 
umn J;  
base period for economic analysis; 
initial period for acquisition of site J for any 
plan in the subset; 
last period for acquisition of site J for any plan 
in the subset; 
index of column in grid-cell data base, also in- 
dex of disposal site; 
index of attribute; 
total number of attributes stored for each grid 
cell; 
present-worth factor, by which cost at period 
T is converted with interest rate R to equiva- 
lent initial cost in period IPERl; 
volume of material stored in site J at end of 
period T; 
capacity of disposal site J ;  
unused volume per unit cost for site J; and 
weight assigned for attribute K in the ranking 
of attributes (may be zero if attribute is not 
considered). 
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