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USE OF INTERRELATED RECORDS TO SIMULATE STREAMFLOW
by
Leo R. Beard®, M. ASCE

SYNOPSIS

Streamflow sinmulation 1s usable in water resources design for the
purpose of extracting pertinent information from streamflows at recorder
locations and using that information to generate a.dditiona.l values for
those locations, and values for additional locations, that could as
reasonsbly occur in the future as could repetition of past events. An
electronic computer procedure is described herein that extracts e maximum
amount of pertinent information from monthly streamflow data and gene‘ra.tes
values whose statistical characteristics are consistent with those of the
observed monthly streamflows. Multiple linear regression of the data
transformed to unit normal standerd deviates is used. The transform is
accomplished by fitting each month's date (incremented slightly) to a
logarithmic Pearson Type ILII curve. A procedure is described for using
data that are not simultaneous at all recorder locations and that would
permit formulating an interrelated-streemflow generator for ungaged

locations.

3 Chief, Hydrologic Englneering Center, Corps of Engineers, Sacramento,

California .



INTRODUCTION

The writer has demonstrateda that classical methods of evaluating
storage requirements (based on the recorded sequence of streamflows) are
deficient, and that improved estimates can be mede by use of streamflow
similation procedures. The simulation model for a single location given
in the paper cited as reference 2 is expanded herein for use in simula-
tion of streamflows at any number of statlons where streamflows are
interrelated. -

The presentation herein will be limited to a description of the
streamflow simulator model and its accuracy in duplicating streamfliow
characteristics. The need for and potential uses of streamflow simulation

were discussed in reference 2.

_ THE MODEL
In ordef to minimize the random (unrelated) component of each month's
streamflow in a simulation model, multiple regression technique is employed.
An entirely separate regression equation is used to generate streamflows
for each different calendar month at each different station, using the
Monte Carlo technique. For N stations, there are 12N regression equations
derived from cbserved data and employed to generate simulated streamflows.

These are all of the form:

e Beard, Leo R., "Hydrologic Simuletion Procedures in Water Yield Analysis,"

presented at ICID-ASCE Specialty Conference, El Paso, Texas, 3 Dec 196k,
. . .
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In which,

X = correlated normal standard deviate
b = beta coefficient
R = sample multiple correlation coefficlent

xr = random normal standard deviate

x16' total for all stations of the total flow for the 6 months
preceding the antecedent month.

The first subscript is the month number, the second subscript is the
station number, and the superscript represents the independent variable
nunber. Since coefficients b are beta coefficients relating standard
deviates, no regression constant is required.

For a given calendar month, flows are generated for each station in
turn. Those for the first staﬁion require only the first two terms on
the right slde of equation 1, those for the secbnd station, the first 3,
etc. Integrity of the model is independent of the order in which stations
are arranged. Computer programs presently'availshle and results tabulated
herein are based on direct multiple regression of streamflow logarithms,
which requires simultaneous runoff record at all stations. However, a
more general procedure to accomplish the same thing is described in the

following paragraphs.



In order to assure that generated data for the model will have both
correlation and frequency distribution characteristics of observed data
without employing extremely complex transforms, the original data are
transformed to e linear system of normal standard deviates. Conversion
of streamflowe at each station for each mouth to normal standard deviates
i accomplished in the following steps:

a. Each monthly streamflow is incremented by .001 times the
normsl annual runoff volume for that station, in order to avoid the
possibility of large negative logerithms in step b. This quantity is
deducted from generated flows in order to avold blas that would otherwise
result.

b. The mean, standard deviation and skew coefficlient of loga-
rithms of the incremented flows are computed.

¢+ The mean logarithm is subtracted from each streamflow
logarithm, and the difference is divided by the standard deviation to
obtain t.

d. The quotient ¢, is then transformed to obtain X, the normal
standard deviate, besed on the computed skew coefficient and the Pearson
Type III function. The following approximate equations are used for lack
of an exact transform equation:

For t and skew coefficient (g) with like sign:

X=t - .12g ltl 175, J6g (2}

For t and skew coefficient {g) with opposite sign:

Xat -~ .22 [t] 5+ .68 (3)



If simultaneous records are available at all stations, bets coeffi=-
clents in equation 1 can be computed by standard regression procedures.
(Because equations 2 &nd 3 are approximate, regression and beta coefficients
are not necessarily identical in this computation). If not all records
are simultaneous, beta and multiple correlation coefficilents can be based
on gross (simple) correlation coefficients between each pair of variables.
These must first be checked for mutusl consistency to assure that for any
three variaebles, the correlation coefficient between any pair at least
equals the product of the correlation coefflicients between the other two
pairs. If 1nc.onsistencies appear, the low value should be increased,
because this would have least effect on results. They can then be used
a8 covariance in standard regresaion procedure. Regression coefficients
computed in this manner will be beta coefficlents, since all varisbles
are standaxd deviates. BPefore testing, the gross correlation coefficlents
should be smoothed as are mean, standard deviation and skew coefficients,
by use of_ recommended smoothing coefficients in teble 2.

If records are not available at a location for which streamflows must
be generated, it 1s necessary to estimate the mean, standard deviation,
skew coefficlent and the necessary gross correlation coefficients for each
month from generalized reletionships that can be developed for each region.
It is not practical to devélop beta and multlple correlation coefficlents
from generalized studles except through gross correlation coefficients.
Methods of derlving generalized relationships are outside the scope of

this paper.



Normal standerd deviates, gencrated by use of equation 1 and a normal
random number generator, are converted to streamflow logarithms baving a

Pearson Type III distribution by use of the followlng epproximate equation:

X' = M+ [x + 16g(x® - 1)] s (1)

After the antilogarithm is obtained, the increment which was added to all
flows for the station before analysis is subtracted,land any negative
values are set to zero. |

Selection of antecedent‘month and preceding 6 months as independent
variables in equation 1 was besed in part on the results shown in table 1 -
and in part on consideration that there sometimes is loglcally some carry-
over influence for several months above that indicated in flows for the
antecedent month., Teble 1 demonstrates that there would be negligible
gain on the average by including alsc the second antecedent month as a
separate variable after the first antecedent month is considered. The
carry=-over influence is illustrated by the fact that raln at low elevations
is often accompanied during winter months by snow at high basin elevations
that contributes to runoff in the spring but not necessarily in the late

winter.

POPULATION UNCERTAINTIES
The three frequency statistics for each statlon and celendar month
and the gross correlation coefficlents used to derive each regression
equation are efficient estimators of corresponding "true" values that
describe the theoretical population from whieh recorded and future stream-~

flows come. Errors of estimate for the mean, variance and correlation



cocfficient are functions of length of record and of theoretlcal dis~

tribution functions as follows:

in which,

P
M

)(2

By use of

o e ) g

P[ @2152—]- » [x 2_1} (6)

o2 N
2
- (N2
P.—l-:&é-—)--? tN-2 (7)

exceedence probability

sample mean

population mean

sample unbiased standard deviatlon
population standard deviation

semple simple correlation coefficlent
Student’s t

Pearson's chi-square

random number generation and the thecretical t and chiesquare

distributions, different values of each statistic are selected each time

& nev simuwlation series i1s generated. This will yleld a more realistic

sanpling of possible future streamflow patterns than would be obtained by

use of maximum likelihood estimators only and would in fact apply the

principles of expected probability to deiterminations based on a large

number of generated series. This randomization of statistics is applied



to computed values before smoothing described in the following sectlon.
In order to account for serial correlation of sampling errors, the values
of t and chi-square for use in equations 5-7 are serially correlated in

the same manner as are streaxflow variates,

SMOOTHING OF STATISTICS

Ervatic varistion of any specific statistic from month to month
sugiests that these can be smoothed either by curve fitting or by a
moving=-average technique and'thereby improved. Examination of seasonal
variations of the statistics, particularly mean logarithm, indicates that
a simple curve of annual vé.riation would not be satisfactory. A moving-
average is therefore considered most sppropriate. It was also found that
smoothing of beta coefficients or their squsres and the correlation
coefficients or thelr squares would vitiate the multiple regressions to
the extent thail unreasonable streamflows are generated. Accordingly,
smoothing was restricted to the frequency statisties, that is, the mean,
variance and skew coefficient. However, smoothing of gross correlation
coerTicients (covariance) before using them to compute beta and multiple
correlation coefficients would be permissible.

The degree of smoothing was determined by split-record analysis.
The mean for one month (such as February) in one half of a long record
was related by multiple regression to (a) the mean for that month
(Fevruary) in the other half of the record and (b) the sum of the means
in the other half for the preceding and subsequent months (January and

March, in this example). The regression was performed separately for



esch of the & statistics and each calendar month over 42 long-record
stations in the United States, In this manner, 84 sets of data were
obtained for each correlation (by interchanging the record halves).

In effect, this study of smoothing determines what relative weight
to give the statistic for the month and the corresponding statistics for
the preceding and subsequent months in order to obtain the best estimate
of what will occur in the future. Results are shown in teble 2. These
are average indications for the United States. In selecting adopted
values, care was taken not to blas the mean or variance (thelr coefficients
add to 1.00)., However, considerable reduction of the skew coefficient
(its smoothing coefficients add to .60) is considered warranted, in view
of its unreliebility and the indication in table 1 that it averages zero
nationally.

Thus, means for a given calendar month for generation purposes are
obtained by multiplying the computed mean by .84 and adding .08 times
the computed means of the preceding and following months. Corresponding
smoothing coefflcients for the variance are .50 and .25 and for the skew
coefficient are .30 and .15. There is no average reduction in mean and

variance but 40 percent average reduction in skew coefficient.

TEST OF THE MODEL
The advantage of using a particular model in streamflow simulation
can ve demonstirated reliably only through split-record tests such as
shown in referencé 2. However, a test of a multi-gtation simulation model
can be made by comparing all eassential statistics of the obgerved datsa
with corresponding statistics of the generated data, for a large number of

9



operations, in relation to sampling errors of those statisties. OSuch
éomparison of frequency statistics and gross correlation coefficients for
all essential pairs of variables was made for many of the 42 long records
used in deriving the model. These all showed satisfactory comparisons.

A typical split-record comparison is illustrated in table 3.

Inasmuch as variables used in the model might not encompass all
essential statistics, split-record comperison of series-maximum and
minimum streamflows for each calendar month end fof various durations
vwere also made for some of the 42 stations, These are considered to
support the over=-all model adequately. A typical test result is {llus~-

trated in table k.

APPLICATION

Simulation of streamflows 1s proposed herein for the purpose of
reducing some deficienclies in waler resources planuing, design and opera-~
tion studies. Its application, unfortunately, adds considerably to the
apount of computation involved in such studies. Where electronic com-
puter procedures are slready employed, this might not constitute serious
additional cost.

Standard methods used in these studies usually include analysis of
project operation under recurrence of historical streamflows as modified
by "pre-project" changes. Since simultaneous records at all locations
considered in a study are usually not complete, some must be estimated
from empirical relationships. Usual procedures employed for these
estimates ignore many of the complex interrelationships considered in
the simulation model. They are consequently not hest estimates and are

10



possibly misleading. Also, the record period is usually shorter than
desired for project studies.

Missing records for any location would best be estimated by use of
a simulation model such as described herein, using regression equations
based on all available data to compute specified monthly streamflows,
each of which would be based on all pertinent available data for that and
preceding months. These would not be used alone as & basis for project
studies, but would only be used for making a check on determinations
based on simdated streamflows. A computer program for estimating missing
monthly streamflows is in preparation in the Hydrologlic Engineering Center.

The principal use of monthly streamflow simulation would be to produce
& number of properly correlated serles of streamflows of length desired
for study purposes. These would each be used tc make project evaluations.
The evaluations could be averaged to obtaln a single index of project
adequacy, as well as used individually to demonstrate the potential
variebility of project accomplishments. Compared to over=all study costs
for a major investigation, the cost of generating stireamflows on a high-
speed computer 1s small. Principal costs would be incurred in employing
the values for detalled study. From the findings expressed in reference 2
that storage requirement based on 25 to 50 years of record can easily be
in error by a factor of 2 or more, 1t might be Judged that the additional
expense would often prove small in comparison to improvement in functional

design or operation.



COKCLUSIONS
The model presented herein is believed to satisfactorily acconyliso
the followling:

a. Ubtalin from a number of streamgage records by regressior
‘analysls virtually all pertinent information that bears on the process
of monthly streamflow generation at those stations. It 1s not necessary
that records used be limited to simultaneous values é.t all stations.

b. Generate any number of correlated simultaneous monthly
streamflow series of any specified length for any number of stations.
These generated series can as llkely occur in the future as could a
recurrence of historical streamflows. Thelr use in water resources
Planning, design and operation studies would permit (1) examination of
various representative ways that streamflows can ¢ecur in the future and
(2) mathematical determination of "expected benefits" of a contemplated
project or operation.

The generated series of monthly streamflows are properly interrelated,

regardless of the order in which stations are used in the procedure.
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