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FOREWORD

The dimensioniess curves presented in this report are intended for
use in routing the dambreak flood down a dry prismatic channel. Three
important properties of the fiood wave may be determined: Time of
arrival of the wave front, maximum flood depth, and time of maximum flood
depth. The routing curves were prepared from the results of numerical
simulation experiments which solved a dimensionless form of the St. Venant
gquations. The propagation of the flood wave tip along the dry valiey floor
was calculated, as well as propogation of the negative wave as it was
reflected from the upstream boundary of the reservoir. It was possibie
to express the results in the form of dimensionless graphs because valley
geometry was expressed as a simple, prismatic channel.

In utilizing these graphs, it is necessaryv to transform the irregular
natural cross sections into one representative prismatic section. The
important properties which must be preserved are storage and conveyance.
Three basic forms of cross section shape are permitted: rectangular,
triangular and parabolic. The equation for expressing the properties
of each of these forms, as well as other equations necessary to utilize
the dimensionless graphs, are presented in Annex I at the end of this
volume,

This report culminates a line of research that started with the
project "Numerical Technigues for Routing the Dam Break Flood on a Dry
Bed" in which Drs. Theodor Strelkoff and John Sakkas developed a computer
program for calculating the advance of a dam break flood in a dry prismatic
channal. In a subsequent research project, "Flooding from Ruptured Dans,”
the same investigators extended their work to include a solution of the
non-dimensional form of the St. Venant equation. This basic work was
extended to produce the routing curves presented in this veport. In view
of the many uncertainties involved in routing the dam break flood, the
fact that a reach of a river has to be transformed into a prismatic
section is not an overwhelming simplification.



ABSTRACT

Dams are subject to failure and the damages produced by the result-
ing flood are extensive. Alleviation or prevention of the damaging
effects requires the knowledge of the flood characteristics. These
include primarily the time of arrival of the flood-wave front, the
maximum flood level and the time at which the maximum flood level occurs
after dam failure.

Using a rational computation technique, based on the method of
characteristics, dimensionless graphs of the aforementioned flood
characteristics were prepared for a prismatic channel of general para-
bolic cross section and several values of the parameters involved. These
values were selected to cover the practical range of the field conditions
affecting the magnitude of the dam-break flood. Results were obtained
for such periods of time that the flood peak advanced adequately down-
stream and either subsided or stabilized considerably.

KEY WORDS: Dams; Floods; Graphs; Hydraulics; Rivers; Waves.
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DIMENSIONLESS GRAPHS OF FLOODS FROM RUPTURED DAMS

I. INTRODUCTION

Dams constructed to form large water-storage reservoirs are subject
to failure for several reasons. According to a survey (2) foundation
failure and spillway inadequacy count for about two-thirds of all dam
failures. Though not so frequent, failures due to acts of war and
earthquakes may cause more serious damage since they usually occur
without any previous warning.

Experience has shown that floods resulting from the sudden collapse
of a dam forming a large water-storage reservoir are catastrophic.
Damages are anticipated to be higher in the future, should such a mis-
hap occurs, This will be due to both larger sizes of dams being built
and the increase in industry and population density. Human settlements
and the industries on which they depend usually lay in the flood plain
of rivers on which dams have been constructed.

Knowledge of potential inundation areas can lead to the establish-
ment of rational real-estate zoning criteria and procedures for the
emergency evacuation of populated areas below the dam. In fact, this
is the intent of California Senate Bill 896, passed into law by the
California Legislature in 1972, This law requires the preparation of
potential flooding maps for any dam in California, the partial or total
failure of which would result in death or personal injury.

Rational and accurate methods for the preparation of such maps are,
as yet, unavailable for general use. Work done at the University of
California at Davis (3, 4, 5) Ted to the development of a rational com-
putation procedure for predicting the flood wave resulting from the
sudden and total failure of a dam in a prismatic river valley.

In this report a brief outline of the theoretical aspects of the
procedure is given. For details the interested reader should consult
the references cited above. The parameters involved and the variables
which express the practical significance of a dam-break flood are mainly
stressed. Finally, dimensionless graphs of these variables for certain
values, over the practical range, of the parameters are given. With
these graphs, a quick, approximate computation of the most important
aspects of a flood wave following the failure of a dam is possible, An
illustrative example is given.



II. THE MATHEMATICAL MODEL

1. The Governing Equations

Unsteady flow encountered in flood-wave movement in a prismatic
channel is described by the Saint-Venant equations (2, 6)

A 3¥-+ BV 8_ +B 3- =0 (1a)
X % ot
N4yl sgay=g (S-5¢) (1b)
ot 3% X

A bar over a var1ab1e indicates a dimensional quantity, unbarred variables
are dimensionless. 1In Eqs.1: A(y) = cross-sectional area of flow;

V(X,t) = Q/A = average velocity of flow; Q(x t) = discharge; y(x,t) =

depth of flow; B(y) = _top width_of flow; x = distance from the dam,
positive downstream, t = time; g = ratio of weight to mass; S, = channel
bottom slope and Sf = fr1ct1on slope. In this work Sf is eva?uated using
the Manning relat1on

- _Cy=2/3 _1/2

V=R s (2)
where Cy = 1.0 in the metric system and EU 1.486 in the British system
of units; n = Manning roughness coefficient; R = A/P = hydraulic radius

and P = wetted perimeter,

2. MNon-dimensionalization

. Taking characteristic quantities: for distance, T, for time,
Yo for depth and V0 for velocity, the fo?lowing dimensioniess variables
are defined
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Introducing these variables into Eqs. 1 and defining

. ﬂ' = 9 (3C d)
b4 0 /.'-—=_ ?
g Yo
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the Saint-Venant equations take the dimensionless form

AV 4 yay + 3y =0 4
B3X X 3t (42)
aV 3V 1 3 4/3

LG R L A [ - Y3 (4b)

where R, is the dimensionless hydraulic radius corresponding to depth
y=Yy or to a dimensionless depth of unity.

For simplicity Yo is taken equal to the maximum value of water depth
behind the dam. Then, for a given chapnel_geometry, bottom sTope and
roughness, Egs. 3 y1e1d the values of Vo, Lo, To and Fo,

Equations 4 are applicable to channels with non-zero bottom slope.

3. Channel Geometry

In this work a prismatic channel is assumed with breadth B related
to depth y by a formula of the type

B=C " (5)
where C and M are constants. Non-dimensionalization of Eqg. 5 yields
B =C y (6)
where
= 7 yM-1
C=CY, (7)

If B0 denotes the_breadth corresponding to depth y = Y os 1t 1s easily
seen that C = BO/YO, the relative top width of the channe] cross-section
at the dam site.

4, Solution of the Equations

For details in soclving Eqs. 4 and for the initial conditions, upstream
and downstream boundary conditions used in the solution, reference should
be made to (3, 4, 5).

In brief Eqs. 4 are transformed into characteristic form and solved
numerically over the irregular grid formed by the characteristic Tines
in the x-t plane using a predictor-corrector scheme.

The water behind the dam is assumed to be at rest prior to dam
failure and the downstream channel is dry. A generalized Ritter solution
(3, 4) is taken to represent initial conditions along a forward charac-
teristic shrunk to the point x = 0, t = 0 in the x~t plane.

3



The front of the negative wave propagating into the still water in
the reservoir defines the upstream boundary of the flow field where con-
ditions are the same as the undisturbed initial conditions. Upstream
boundary conditions are determined in this fashion until about the
negative wave front reaches the upstream reservoir end at time tp given

by
tp = 2Fy /T (8)

Shortly before that time, when a depth smaller than a prescribed depth yp
is obtained at the moving upstream boundary, a fictitious stream of the
same depth is introduced at the ultimate location of the upstream boundary
and assumed existing thereafter. The velocity is determined using the
backward characteristic relation. Typical values of Yy are: y, = 0.01
for Ky > 0.5 and y, = 0.03 for F, = 0.025.

In the region very close to the wave tip where y>0 and dy/dx + =o
the formal numerical solution is very costly to apply. Instead, the water
surface profile is determined analytically using a simplified form of Eq.
4b suggested by Whitham (7) and based on physical considerations of the
tip region. Typical values of y up to which the formal computation proceeds
are in the order of 0.04,

Solution of Eqs. 4 yield values of depth and velocity at the nodes
of the characteristics grid in the x-t plane. Data pertaining to stage
and discharge hydrographs at various locations along the channel are
obtained through linear interpolation between node values.



III. DIMENSIONLESS FLOOD GRAPHS

1. Dam-break Flood Variables

For practical purposes it is desirable and adequate that the time of
arrival of the wave front as well as the maximum flood level and the
time of its occurrence after dam rupture, be known for any given Tocation
downstream of the dam. In some cases and for preliminary investigations
a rough estimate of the above factors is sufficient. Under these condi-
tions approximate results can be drawn quickly from properly prepared
graphs representing solutions to a series of simple cases.

A simplification of the river valley geometry leads to a prismatic
channel of general parabolic cross-section as defined by Eq. 5. In this
case Eqs. 4 contain three parameters, namely Fo, M and C, besides the
dependent variables y and V and the independent variables x and t. Thus
the variables y and V are functions of five variables, that is

y

V q (X’ t’ Fo’ M’ C)

(9
r (x, t, Fo, M, C) (10)

For given values of x, F,, M and C, Egs. 9 and 10 represent the stage and
velocity hydrographs, respectively.

~ From the stage hydrograph and for practical purposes, one is mainly
interested in the maximum value of depth, Yy, occurring at time ty such
that in Eq. 9

3y =

3t 5t=tm 0 (11)
Then

yM =q (X9 tMs EO’ M, C) (]2)

Solving Eq. 11 for ty» one obtains
ty = S (x, Fos M, C) (13)

Introduction of Eq. 13 into Eq. 12 yields

0’

yM =u (xa Foa M: C) (14)

The speed of propagation of the wave front, W, is equal to the flow velocity
at the wave front. If x, and t, designate the wave-front location in the
x-t plane, then

W= 9% = v (xy, tw, Foy M, C) (15)
%,
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Integration of Eq. 15 and solution for ty yields
ty = v (xy, Fos M, C) (16)

The left-hand side of each of Eqs. 13, 14 and 16, constituting the practically
important dam-break flood variables, can be plotted versus x with C as a
parameter in one sheet of paper for given va]ues of ¥, and M., In the
triangular cross-section, defined for M = 1, C is no ?onger a parameter
because the hydraulic radius through whlch C enters Eqs. 4 is a linear
function of y and thus C is eliminated. In this case F, may be used as a
parameter to distinguish curves in the same plot.

2. Range of Parameters

For the preparation of dimensionless graphs of the dam-break flood
variables actual conditions are assumed to vary between the following
extremes:

Condition Minimum value Maximum value
Water depth behind dam, 70 10m (32.8 ft) 200m (656 ft)
Channel bottom slope, S, 0.0005 0.010
Manning roughness coefficient, n 0.015 0.150
Cross-section exponent, M p 0 1
Relative top width,_C = 1 50
Froude number Fy = Vo// a v 0.025 5

The extreme values of EO are determined from the combinations of Y, So,
n, M and C leading to extreme values of Vg,.

3. Data Acquisition

For preparing the dimensionless flood graphs, data were obtained for
the following values of the parameters Fg, M and C in the above listed
range:

.50 1 2 5
10 50

Fo

°
(=]
™
o

OO
Ot et
OO

i

C

L I 1]
—_—0 O
U= O

The wave-front location at any time is given directly by the solution.
The value of yy in each stage hydrograph is determined as the maximum of
discrete values of y obtained in the course of the solution. The latter
are close enough to insure practically insignificant deviation from the
true maximum. The time at which yy occurs is the value of ty.

The solution progressed in time until values of yy and ty were
obtained for a cross-section at a distance at Teast mY, below the dam.
Minimum value of m is 1000, If xp designates the absc1ssa of a flood
peak, then
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max {;M }>m Vo 7
or
max { xy}>m S, (18)

For given values of Fy, M and C, Eq. 18 must be satisfied for all possible
values of S in the respective range. Hence Eq. 18 is rewritten as

max { xi } >m - max { Sy } (So < 0.010) (19)
In this case one obtains from Egs. 3¢, d

- , NF Y,
So = § (~°)2-4})3 (20)
€b  Ro

For any fixed value of Y, maximum value of S, results whep n attains its
maximum permissible value of 0.150. For such value of n, Yo is varied over
its range and the maximum value of Sg is found. If the latter is less
than 0.010, it is inserted into Eq. 19. Otherwise max { Sy }= 0.010.

4, Arrangement of the Graphs

The dimensionless flood graphs are arranged in three sets, one for
each of the dam-break flood variables, namely ty,, yy and ty. For easier
identification and use each set is included in a separate Appendix. In
Appendix A the dimensionless graphs for the time of arrival of the wave
front, ty, are given, Figs. Al to A15. Appendix B contains the dimension-
less graphs for the maximum flood level, ypm, Figs. Bl to B15. Finally
in Appendix C the diemsnionless graphs for the time of occurrence of the
maximum flood level, tp, are found, Figs. C1 to Cl15.

In each Appendix there are three subsets, one for each value of the
cross-section exponent M, that is M = 0, 0.50 and 1. In each subset
individual sheets are arranged in ascending values of Fg.

5. Example of Using the Graphs

An approximately prismatic river valley is 400 ft and 600 ft wide
at distances, respectively, 20 ft and 86 ft from the valley floor.
The roughness of the valley is estimated at n = 0.070 and the slope is
approximately Sy = 0.001. Water is impounded behind a dam at 86 ft
depth. It is required to determine the flood characteristics in case
the dam instaneously and completely collapses.



Solution. Fitting a curve of the form of EqO 5°§hrough the boundary
of the valley one finds M = 0.278 and C = 175 ftU+72Z (dimensions of C
are ft to the (1-M) power). Taking Y, = 86 ft, one finds by Eq, 7 C = 7
and by Egs. 3 : L0 = 86,000 ft or 16.3 mi., V5 = 10.54 ft/sec, Ty = 2.265
hr and Fj = 0,20,

Using the graphs in Figs. A2, A3 values of ty at the desired locations
are obtained for Fo= 0.10 and Fy = 0.50, respectively, and M= 0, C = 7.
In a similar way, from Figs. A8, A9 values of tw are found for Fo = 0.70
and Fo = 0.50, respectively, and M = 0,50, C = 7. Linear interpolation
yields the values of ty for Fo = 0.20 and each value of M, Finally, a
second interpolation between the latter yields values of t, for F, = 0.20
and M = 0.278. An arrangement of data in table form, as shown in Table 1,
makes the task easier.

A completely analogous procedure using the appropriate graphs in
Appendices B and C yields the values of ym and ty as shown in Tables 2
and 3.



TABLE 1

Time of arrival of the wave front

Distance =70 B M= 0.50 VM=10.27¢8
§ X 5‘-O EO &-n = 0;20
miles 0.10 | 0.50 0.20 0,10 1 6.50 § 0.20 Ty tw, hr

6.00 } 0.368 | 0.25 | 0,375 | 0.281 | 0.22 | 0.28 | 0.235 | 0.255 | 0.58
8.15 | 0.5 0.40 | 0.50 0.425 | 0.36 | 0.40 | 0.370 | 0.395 | 0.90
16.30 | 1.0 1.02 | 1.20 1.065 | 0,95 | 1.00 | 0.962 | 1.008 | 2.28
24,45 | 1.5 1.80 | 1.90 1.825 | 1,65 | 1.75 | 1.675 | 1,742 | 3.94
32.60 | 2.0 2.65 | 2.85 2,700 | 2.43 | 2.60 | 2.472 | 2.573 | 5.83
48.90 | 3.0 4.5 14.875 | 4.706 | 4,12 | 4,30 | 4.165 { 4.405 | 9.98




Maximum flood level

TABLE 2

Distance M= M=0.50 M= 0,278

% N | Fo Fo Fo = 0.20
miles 0.10 ] 0.50 }0.20 10.10 {0.50 |0.20 | ¥y [¥m, ft
6.00 | 0.368 | 0.433 | 0.395 | 0.424 [0.524 10.488 |0.515 |0.475 | 40.8
8.15 | 0.5 | 0.408 | 0.378 | 0.400 |0.500 |0.470 |{0.492 |0.451 | 38.8
16.30 | 1.0 ] 0.344 | 0.325 | 0.339 [0.440 |0.423 |0.436 |0.393 | 33.8
24.45 | 1.5 1 0.305 | 0.295 | 0.302 1{0.405 [0.392 |0.402 |0.358 | 30.8
32.60 | 2.0 | 0.279 | 0.269 | 0.276 [0.378 [0.369 10.376 |0.332 | 28.6
48.90 | 3.0 | 0.235 [ 0,230 | 0.234 |0.340 ]0.333 |0.338 |0.292 | 25.1
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TABLE 3

Time of occurrence of maximum flood level

Distance =0 T=0.50 W= 0.278
X X fo Fo Fo =‘9.20

miles 0.10 | 0.50 | 0.20 | 0.10 | 0.50 | 0.20 tM ty, hr
6.00 | 0.368| 0.58 | 0.75 | 0.622 | 0.54 | 0.70 | 0.580 | 0.599 | 1.36

8.15 | 0.5 0.78 | 0.90 | 0.810 | 0.75 | 0.90 | 0.788 | 0.798 | 1.81
16.30 | 1.0 1.60 | 1.80 | 1.650 | 1.53 | 1.70 | 1.572 | 1.607 | 3.64
24.45 | 1.5 2.45 | 2.65 | 2,500 | 2.35 | 2.50 | 2.388 | 2.438 | 5.52
32.60 | 2.0 3.40 | 3.60 | 3.450 | 3.22 | 3.40 | 3.265 | 3.347 | 7.58
48.90 | 3.0 5.45 | 5.65 | 5.500 | 5.05 | 5.20 | 5.088 | 5.271 |11.93
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APPERNDIX A
GRAPHS FOR THE TIME OF ARRIVAL OF THE WAVE FRONT
(Figs. Al to Al5)
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APPENDIX B
GRAPHS FOR THE MAXIMUM FLOOD LEVEL
(Figs. Bl to B15)
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APPENDIX C

GRAPHS FOR
THE TIME OF OCCURRENCE OF MAXIMUM FLOOD LEVEL

(Figs. C1 to C15)
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ANNEX I

Suggested Procedure for Developina a “Representative" Prismatic Channel

1-1, Introduction

Routing the dam break flood with these non-dimensional granhs is a
three step process. The procedure in the main body of this renart is the
final step. It requires two nrevious steps as follows:

The irregular natural topogranhy must be transformed into

a "representative” nrismatic channel

and
The coefficients that are required tn exnress the

resulting cross section shape, flow velocity, and flow

depth must be non-dimensionalized,

The following nrocedure is a suggestion for accomnlishing these two
steps. Tt is designed to preserve the notential enerqy slope, the head
on the dam at failure, the reservoir volume, and the distance from the
dam to the point of interest. Notation is the same as that used in the

main body of the report,

[-2. _Representative Stream Slope

Plot a stream bed profile from the upstream and of the reservoir to
the downstream point of interest., Fit a single, straight line through
the plotted nrofile in such a manner that the avaraqe potential enerqy

gradient is maintained. This represents SO as illustrated in Fig. 1-1,

I-3.  Renresantative Reserynir Lenath

Mark the location of the dam baing analyzed on the stream bed nrofile
and plot the reservoir elevation for conditions at the time of failure.
Measure the head, ?Q, from the ponl alavation to the channel bed slevation.
Plot this head above the S, profile.
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Calculate L by dividing the head, ?Q, by bottom slope, S,. This

distance represents the length of the reservoir.

T-4,  Calculating the Renresentative Prismatic Cross Section

By idealizing the shane of the reserveir as approximating that of a

pyramid, the volume may be calculated with the following squation.

Vol = (1/3) « A « L

o,
fromnl
§
—)
et

-
]

Cross sectional area at dam for depth Y
L = Reservoir length for denth Y at the dam

It is necessary to axpress cross sectional area in terms of tha

coefficients utilized in the main body of this report. Starting with

equation (5), page 3, and integrating leads to the following
- F oM
A= g VP (1-2)

volume equation may be written as
C o2 (

A I 3 D S

This equation has one independent term, Y, and one denendent term,
VYol. The slope parameter, Sg, is known, and the two coefficients C and
Mand the unknowns. By curve fitting through 2 points, two equations may

be developad as follows.

A

Hoad, Y

Ynlume

63



at point 1,

- G = M4?

o= Ty Yy (1-4)
: 4]
at point 2;

_ c =MD

Voly = #— TR}, Y, (1-5)
Solving aquations {I-4) and (I-5) yields

Y = {3@§(v@32;v911)z10g(§2;§3}) -2 (1-6)
C=voly « 3+ (m1) - s v, (1-7)

Since M is dimensionless, any units mav be used for Vol and for Y in
aquation (I1-6). Fquation (I-7) reauires consistent units between Vol and
Y, however. The following example illustrates the use of equations (1-6)
and (1-7).

Actually, any two arbitrary points may be selected for calculating c
and M. However, in keeping with the ohjective of approximating the reservoir
volume, the head on the dam at the time of failure is selected as one of the
points and %~Qf that head is used for the other. These are converted tn
elevations and reservoir storages read from the elevation capacity curve
as follows.,

Table I~-1. Data for Calculating Coafficients for the Prismatic Section

Head Channel Ponl Reserynir Volume
Point (Ft) Elevation Elevation ac_ft 106 cy ft
1 86 1323 1409 26577 1157.476
2 38 1323 1361 4134 180.077

Substituting these data into equations(1-6) and (1-7)

M = (Log(4134/26572)/Log(38/86)) - 2.0

M = 0.278

C = 180.077(106) - 3 . 1,278 - 0.001/38% %7®
C = 173.92 ft
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I-5, Calculating the Non-Dimensional Coefficients

The coefficient, gg is non-dimensionalized by using the head on the

dam at the time of failurs, §n“

RS n
C=C oY (1-8)
= 173,92 . 86?78 -]
¢ =6.99

The Froude number, F0§ is already non-dimensional. However, it must
be calculated for conditions at the moment of failure. This requires the

following equations,

E; =V N3 Y, {1-9)

. 1.486 = 2/3 . 1/2 i
Yy = =2 R Y s (1-10)

Calculating the hydraulic radius term in equation {I-10) §s difficult
since wetted perimeter is not known. The following interpolation scheme
is proposed. When M = 0, the section is rectangular; when M = 1, it is
a triangular section. Using the value calculated above for 53 calculate

the hydraulic radii for M = 0 and for M = 1. Then internolate, based on

the true value of M, to obtain 50 as follows,
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Interpolate to obtain R, for any M between 0 and 1

EA = (R;/E;) + M (KL/E;) - (K;/E;) )
M=0 M=1 M=0

Example: M = 0.278

M= 0: M=1.0
Ko = 60086 A, = %9'86
P, = 600 + 2°86 P = 2+ /(600/2¢ + 862
Ro = 66.84 Ro = 42.93

R, = 66.84 + 0.278+ (42.93 - 66.84)

Ro 60.19

]
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With the hydraulic radius now determined, the dimensional velocity
may be calculated from equation (I1-10).

In this problem, S_ is equal to 0.001.

0

oo 1486 . 2/3 1/2
Vy = = 60777 L 0,007

= 10.5 fps

g

The Froude number is calculated with equation (1-9),

Fy = 10,5889
F = 0.20

o

i}

it

The required dimensionless parametors are completely determined and

summarized below

Moo= 0,278
E; = 1.20
C =7

The length term, Lag used to nondimensionalize distance is calculated as

LO = YGJSQ (1-11)

o

LO = 86/0.007 = 86,000 ft
The time used to calculate dimensional time from the nondimensional

routing curves is

= 86,000/10.5
= 2.28
Tables 1, 2, and 3 in the main body of the report show the uyse of
these dimensionaless parameters for routing a dam hreak flood., The
calculated depth should he referred to the actual bed profile for expressing

results in terms of elevation.
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