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Executive Summary

The U.S. Army Corps of Engineers software HEC-FDA is a tool that uses Risk-based
Analysis to compute Expected Annual Damage (EAD) for flood damage reduction
studies. EAD reduction is computed as the difference between EAD with and without
alternative projects, a quantity used to aid in flood damage reduction project selection.
Depending on the time and money spent in the collection and preparation of the input
data sets, relatively lesser or greater accuracy can be achieved in EAD computation.
However, although the estimate can be improved, some parameter and model
uncertainty is unavoidable. It is important to examine the sensitivity of EAD and
EAD reduction to realistic differences in input functions and their associated
uncertainties. These results can be used to identify factors with the least and greatest
impact on the resulting EAD to make recommendations on the best investments to

improve estimates of EAD and EAD reduction.

The current study addresses the following objectives using HEC-FDA:

» Examine and compare the sensitivity of Expected Annual Damage (EAD) and
EAD reduction to variations in the three primary input functions, namely flow-
exceedance probability, stage-flow and damage-stage.

» Examine and compare the sensitivity of EAD and EAD reduction to uncertainty in
the three primary input functions.

» Identify the factors with the least and greatest uncertainty contribution to EAD.



> Use the results of the analyses to recommend the best investments in methods and
data to improve flood damage analysis.
To examine possible differences in sensitivity and uncertainty between streams with
different hydrologic, hydraulic and economic characteristics, 34 HEC-FDA data sets
from across the continental United States and Hawaii were sorted according to
drainage area and slope. Four categories were created to form a two by two matrix of
drainage area and stream slope. Based on the information contained in the data sets
according to this matrix, representative synthetic functions were created as base cases
for a typical large drainage basin with flat stream slope and a typical small basin with

steep stream slope.

For each category, the base case mean flow was taken from the middle of the sorted
data sets, its standard deviation based on an assumed coefficient of variation of 0.5,
and its skew assumed to be zero for an assumed Log Pearson Type III (LPII)
distribution of flood peaks. An appropriate stage-flow curve was generated based on a
correlation developed between mean flow and stage-flow curve average slope. A
damage-stage curve was generated based on typical curves in the sorted data sets and
curves used in previous studies (Arnell, 1989; Beard, 1990). The proportion of total
damage is used rather than total damage to put all analyses on the same economic

basis.

For the sensitivity analysis, parameters were varied in each of the primary input

functions to calculate EAD and EAD Reduction with 50, 100 and 250-year (0.02, 0.01



and 0.004 exceedance probability) levees. Mean, standard deviation and skew of the
flow-exceedance probability function, y-intercept and vertical location of the stage-
flow function, and lower and upper bounds and inflection point locations of the
damage-stage function were varied. To examine sensitivity to uncertainty, equivalent
record length and standard deviation of error about the stage-flow and damage-stage
functions were varied. To complete the uncertainty analysis, the difference between
the 0.25 and 0.75 exceedance values from the EAD distribution were extracted from
the output to measure the uncertainty contribution from each input function. Based on
the EAD calculated in each of the model runs, elasticity was calculated as the percent

difference in EAD produced per percent change in the parameter being varied.

To test the results of the numerical experiments on the synthetic data sets, sensitivity
to uncertainty was examined for two real sample data sets. A data set from a typical
large drainage basin on the Blue River, Missouri and a data set from a typical small
drainage basin on the Chippewa River, Georgia were used for comparison. The sample
data sets served to verify results obtained from the synthetic data sets and expand the

results to include damage-stage functions with different shapes.

The numerical experiments showed significant differences between the elasticity of
EAD and EAD reduction for the large and small basins. Figure A summarizes the
elasticity of EAD to parameters of its major input functions, and Figure B summarizes

the elasticity of EAD to uncertainty.



Elasticity
Range Large Basin Small Basin
20 Dam-Stage LB
Stage-Flow B
Dam-Stage UB
10 Stage-Flow B, C, Dam-Stage
LB, UB Meoan Flow Mean Flow
5
S.D. Flow Stage-Flow
25 | dL [T ﬁ ---- ﬁ Elevation
_Llsom
1.25 ﬁ ﬁ ow
0.625 ﬁ Dam-Stage A
Dam- Dam-

0.312 Stage A Stage B
0.156 Dam-Stage B
0.078
0.039 Skew

0.019 | Skv i

.005

Figure A. Sensitivity Analysis Summary

Where Mean Flow = Mean flow of the flow-exceedance probability function; S.D.
Flow = Standard deviation of flow-exceedance probability function; Skew = Skew of
the flow-exceedance probability function; Stage-Flow B = Average slope of the stage-
flow function; Stage-Flow C = Y-intercept of the stage-flow function; Dam-Stage
LB/UB = Lower Bound/Upper Bound of damage-producing stages in the damage-
stage function; Dam-Stage A/B = First and second inflection points in the damage-

stage function.



Elasticity
Range Large Basin Small Basin

1 Stage-Flow
Flow-Exc. Prob. Uncertainty plow-Exc.

0.5 Uncertainty Prob.
Uncertainty

0.25
0.125

0.0625

0.0312

Stage-Flow
0.0151 Uncertainty

0.0053

0.0026

0.0013

Figure B. Sensitivity to Uncertainty Analysis Summary

The results show that EAD and EAD reduction can be relatively sensitive to different
variables over different ranges. EAD reduction is more sensitive to changes in
function values for larger levees than for smaller levees. In general, EAD and EAD
reduction are most sensitive to stage-flow function slope (depending on the basin area,
shape of the stream channel and floodplain) and the upper and lower bounds of the
damage-stage function (depending on the location, height and types of structures in the
floodplain), and least sensitive to flow-exceedance probability skew (generally a
regional characteristic). EAD and EAD reduction are generally more sensitive to
uncertainty in flow-exceedance probability due to a limited flow record length than to

stage-flow uncertainty due to rating curve scatter or uncertainty in Manning’s n,



except for situations in a small basin with shorter flow record lengths and larger stage-
flow uncertainty. It is most important to get an accurate estimate of the variables with
the highest elasticity, such as stage-flow function shape, and least important to get an
accurate estimate of the variables with the lowest elasticity, such as flow-exceedance
probability skew. The value of additional information can be used in investment
decision-making to estimate the benefits expected from improving median input

function specification and reducing uncertainty.



Chapter 1

Introduction

The U.S. Army Corps of Engineers software HEC-FDA is a tool that uses Risk-based
Analysis to compute Expected Annual Damage (EAD) for flood damage reduction
studies. EAD reduction is computed as the difference between EAD with and without
alternative projects, a quantity used to aid in flood damage reduction project selection.
Depending on the time and money spent in the collection and preparation of the input
data sets, relatively lesser or greater accuracy can be achieved in EAD computation.
However, although the estimate can be improved, some parameter and model
uncertainty is unavoidable. It is important to examine the sensitivity of EAD and
EAD reduction to realistic variations in input functions and their associated
uncertainties. These results can be used to identify factors with the least and greatest
impact on the resulting EAD to make recommendations on the best investments for

improving estimates of EAD and EAD reduction.

1.1 Objectives

The current study addresses the following objectives using HEC-FDA:

» Examine and compare the sensitivity of Expected Annual Damages (EAD) and
EAD reduction to changes in the three primary input functions, namely flow-
exceedance probability, stage-flow and damage-stage. This will be a sensitivity
analysis as defined in (Morgan and Henrion, 1990, pg. 172), “methods for

computing the effects of changes in inputs on model predictions”.



» Examine and compare the sensitivity of EAD and EAD reduction to uncertainty in

the three primary input functions.

> Identify the factors with the least and greatest contribution to EAD uncertainty.
This will be an uncertainty analysis as defined in (Morgan and Henrion, 1990, pg.
172), “methods for comparing the importance of the input uncertainties in terms of
their relative contributions to uncertainty in the outputs”.

» Use the results of the analyses to recommend the best investments in methods and

data to improve flood damage analysis.

1.2 Study Overview
This study examines the sensitivity of HEC-FDA results to the following parameters
using a set of numerical experiments. The first three sets of experiments vary the
shape of the input functions analytically, while the second three vary the specified
uncertainty. Under each analysis, the following variables were varied directly:
1. Sensitivity to Flow Exceedance Probability Function

- Mean Flow

- Standard Deviation of Flow

- Skew
2. Sensitivity to Stage-Flow Function

- Slope of Stage-Flow Function

- Y-intercept of Stage-Flow Function

3. Sensitivity to Damage-Stage Function



- Lower bound of damage-producing stages
- Upper bound of damage-producing stages
- Location of lower inflection point in function
- Location of upper inflection point in function
4. Sensitivity to Flow Exceedance Probability Uncertainty and Uncertainty Analysis
- Equivalent Record Length
5. Sensitivity to Stage-Flow Uncertainty and Uncertainty Analysis
- Standard Deviation of Error
6. Sensitivity to Damage-Stage Uncertainty and Uncertainty Analysis

- Standard Deviation of Error

The numerical experiments listed above were conducted on synthetic base case
functions typical of two general types of damage reaches — a flat stream with large
drainage area and a steep stream with small drainage area. To test the results of the
synthetic functions, the sensitivity to uncertainty experiments were conducted on two
actual sample data sets. Sensitivity indices were developed to provide a consistent
basis for comparison. The results of these numerical experiments were used to

address the stated objectives.



Chapter 2
Background

2.1 EAD Computation by Direct Integration

Expected Annual Damage (EAD) has been calculated traditionally without explicit
incorporation of uncertainty. To compute EAD, a flow-exceedance probability
function is generated from a historical flow record, rainfall-runoff calculations or
regional information; a stage-flow relationship is approximated from field
measurements, water surface profile analysis or hydraulic routing; and a damage-stage
relationship is approximated from records and surveys. For each exceedance
probability, the corresponding flow is obtained from the flow-exceedance probability
curve. The median stage associated with that flow is obtained from the stage-flow
curve and the median damage corresponding to that stage is obtained from the
damage-stage curve. After going through this process for a range of specified flow-
exceedance probabilities, a damage-probability curve is generated. With direct
integration, the area under the damage-probability curve yields expected annual
damage. The difference in EAD between the with- and without-project conditions has
been used to estimate the benefits expected from a project to aid in project selection.

This process is illustrated in Figure 1 (USACE, 1989).
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Figure 1. EAD Computation with Direct Integration

2.2 Expected Probability Estimator

The first efforts to include uncertainty in flood frequency and flood damage analysis
resulted in the development of the expected probability estimator (Beard, 1960, 1978;
Stedinger, 1983b). The expected probability estimator was developed to produce a
better estimate of the true probability of occurrences over a broader scale (i.e.,
national) than a median estimator. For each quantile, the expected probability
estimator provides an estimate of the mean probability of exceeding a flow level. The
earliest work in developing the expected probability estimator was by Beard (1960),

and refined in Guidelines For Determining Flood Flow Frequency, Bulletin #17B of
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the Hydrology Subcommittee. The most current revised methods for computing an

expected probability for hydrologic data are detailed in TACWD, 1982).

2.3 Bayesian Inference

Bayesian inference has been advocated as a framework to incorporate uncertainty in
federal investment decisions and flood frequency analysis for almost thirty years (Al-
Futaisi and Stedinger, 1999; Bodo, 1976, Davis, 1972; Freer and Beven, 1996;
Krzysztofowicz, 1983; Kuczera, 1999; Stedinger, 1983; Wood, 1975). Bayesian
inference is a method of examining risk by considering a set of possible future
statistics rather than only the statistics of the limited sample. In general, Bayes
Theorem estimates the posterior distribution based on a prior distribution and
likelihood function. Mathematically, Bayes Theorem can be summarized as the
following:

f(6l x) = £(0)  1(xl )/ [(£(6)  1(x| 6) d6)

Where 1(x] 0) is the likelihood of observation sequence x, f(0) is the prior distribution,

and f(6l x) is the posterior distribution (Davis, 1972).

Limitations of Bayesian inference for forecasting include the informativeness of the
prior distribution and the computational effort required. As informativeness of the
prior distribution decreases, Bayesian analysis can become suboptimal unless
procedures are used to account for an uninformative prior distribution. In general, the
informativeness of the prior distribution depends on whether or not it is a

representative sample of the population of values (Krzysztofowicz, 1983).
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The likelihood function generally represents the analyst’s degree of belief that a
parameter has different values (Al-Futaisi and Stedinger, 1999). Using the prior
distribution and likelihood function, the parameters of the posterior distribution are
usually found by simulation. Posterior distribution parameters can be obtained by
sampling from the likelihood function about the prior distribution. During simulation,
the posterior distribution should become more peaked at the population value as the
number of samples becomes large. Computational methods can be set up to allow

updating of the prior distribution as information is obtained (Freer and Beven, 1996).

Krzysztofowicz (1983) demonstrates with Bayes Theorem that decision-makers that
ignore uncertainty in probabilistic forecasts always incur an opportunity loss as the
number of observations increases. Given that the amount of flow data and the number
of federal investments in flood control are expected to continue to increase, the value
of applying Bayesian Inference to flood damage analysis should increase. In light of
this need to incorporate uncertainty in flood damage analysis in a systematic fashion,

Risk-based Analysis has been under development.

2.4 Risk-Based Analysis Computation

In the evaluation of flood control projects, the variety of uncertainties makes it
difficult to determine system performance under floods of varying magnitude. The
USACE guidelines give the following operational definition of uncertainty (NRC,

1995):
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Uncertainty: Uncertain situations are those in which the probability of
potential outcomes and their results cannot be described by objectively known
probability distributions, or the outcomes themselves, or the results of those

outcomes are indeterminate.

For flood damage analysis, uncertainty cannot be described perfectly by objectively
known probability distributions. However, uncertainty can be included explicitly in
the analysis by assuming a best-fit probability density distribution to describe the
range of likely functions. The parameters of the assumed distribution can be
approximated from knowledge of the system, inferences from regional similar gaged
basins and data collection. The U.S. Army Corps of Engineers’ Risk-based Analysis

incorporates uncertainty with best-fit distributions, as detailed below.

2.41 COMPUTATIONAL METHOD

The U.S. Army Corps of Engineers has incorporated uncertainty into flood damage
analysis with the computer software HEC-FDA. HEC-FDA uses a Monte Catlo
simulation to sample the interaction among the hydrologic, hydraulic and economic
relationships and their individual uncertainties (USACE, 1996). The primary
functions are flow-exceedance probability, stage-flow and damage-stage. Each
relationship has a distribution of uncertainty about its median function, estimated from
knowledge of the system and/or data collection and analysis methods. Random
sampling from the range of likely flow-exceedance probability distributions, with the
corresponding range of likely stage-flow and damage-stage probability distributions is

repeated until the confidence limits of annual damages are not changed significantly
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when more samples are taken. This sampling process results in an expected value of
annual damage (HEC, 1998). A graphical summary of this method can be seen in
Figure 2. The probability-density distribution of uncertainty about each function is
shown with the input functions on the left, a sample iteration is shown in the middle
and the resulting sample damage-probability function on the right. The area under the
sample damage-probability curve produces one EAD sample for each iteration. The

average of all samples produces a mean, or expected value of annual damage.

ith
SAMPLE
FLOW FLOW
PROBABILITY PROBABILITY
DAMAGE
STAGE STAGE /
FLOW FLOW PROBABILITY
INTEGRATE
DAMAGE DAMAGE
EAD,
7 —— SAMPLE
STAGE STAGE

Figure 2. HEC-FDA Monte Carlo Analysis
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2.4.2 FLOW-EXCEEDANCE PROBABILITY FUNCTION

The Water Resources Council published “Bulletin 17B, Guidelines for Determining
Flood Flow Frequency” to promote a consistent approach to flood frequency analysis.
In this publication, the Council recommends the use of the Log Pearson Type III
(LPIID) distribution for flow frequency (IAWCD, 1982). Lindquist (1995) examined
the effect of choosing different distributions to describe the flow frequency
relationship and showed that the choice of distribution can have a significant effect on
EAD. The LPIII describes the flow-exceedance probability distribution with three
parameters, estimated using the method of moments. By adjusting these three
moments, the LPIIl is flexible enough to fit a wide variety of historical data sets
(Lindquist, 1995). In HEC-FDA, data sets that are not described well by LPIII can be
specified graphically (HEC, 1998). The graphical methods are commonly used for
regulated flow conditions. However, for the purposes of setting up functions that can
be altered systematically for sensitivity analysis, the LPIII distribution was used for

the present study.

2.4.3 HYDROLOGIC UNCERTAINTY

Hydrologic uncertainty is represented by the distribution of error about the flow-
exceedance probability function. The main source of hydrologic uncertainty is the
limited historical flow data available at gaging stations. Most gaged locations have
from 10 to 70 years of data, not all of which are completely reliable. Often, gages are
washed out during the highest flow events, further limiting the accuracy of flood flow

readings. In addition, there is greater uncertainty associated with the measurement of
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high flow, low frequency events and estimation of their associated exceedance
probabilities than with more frequent flows (HEC, 1998). For an LPIII distribution of
flood peaks, hydrologic uncertainty is included in flood damage analysis using a large
sample approximation to the non-central t error distribution depending on gage record
length JAWCD, 1982; HEC, 1998). The USACE gives guidelines for approximating
the equivalent record length for gaged and non-gaged locations. These guidelines are
summarized in Table 1 (USACE, 1996b).

Table 1. Equivalent Record Length Guidelines

Method of Frequency Function Estimation Equivalent Record Length1
Analytical distribution fitted with long-period gauged record available at site Systematic record length

Estimated from analytical distribution fitted for long-period gauge on the same  190% to 100% of record length of
stream, with upstream drainage area within 20% of that point of interest gauged location

Estimated from analytical distribution fitted for long-period gauge within same  |50% to 90% of record length
watershed

Estimated with regional discharge-probability function parameters Average length of record used in
regional study

Estimated with rainfall-runoff-routing model calibrated to several events 20 to 30 years
recorded at short-interval event gauge in watershed

Estimated with rainfall-runoff-routing mode! with regional model parameters 10 to 30 years
(no rainfall-runoff-routing model calibration)

Estimated with rainfall-runoff-routing model with handbook or textbook model 10 to 15 years
parameters

' Based on judgement to account for the quality of any data used in the analysis, for the degree of confidence in
models, and for previous experience with similar studies.

(USACE, 1996b)

For normal and log normal distributions, the non-central t distribution has been
recommended for its flexibility in describing the sampling error distribution
conditionally upon position along the flow-exceedance probability curve (IAWCD,
1982; Stedinger, 1983c; Tung, 1987; Chowdhury and Stedinger, 1991; Afshar, et al.,

1994; Lindquist, 1995). A study by Bao, et al. (1987) concurs with these
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recommendations and offers an extension to better incorporate skew in the uncertainty

estimate.

The effects of hydrologic uncertainty on EAD were studied by Bao, et al. (1987) for
normal, log normal, Pearson Type I (PIII), and LPII flow-exceedance probability
distributions. The results of this study show that EAD is very sensitive to hydrologic
uncertainty, particularly for record lengths of less than 60 years. Results from
Stedinger (1997) showed that damage estimates are significantly more sensitive to

hydrologic uncertainty for record lengths of less than 50 years.

Although uncertainty due to a limited flow record is explicitly incorporated in HEC-
FDA, uncertainty due to other factors is more difficult to quantify. Some studies have
been completed to assess the relevance of long term climate change to flood control
project planning. Venkatesh, et al. (1999) found that climate risk is of approximately
the same importance as uncertainty in the damage-stage relationship in terms of the
penalty suffered if it is ignored for Lake Erie, a lake with a large drainage area.
However, Mendelsohn (1997) found that because basin-specific changes in runoff
from global warming are currently uncertain and much delayed, most project analyses
will be unaffected by global warming. Additional uncertainty is introduced if flood
control dams change operations in the future or have surcharge capacity that was not
included in the flood routing calculations. The amount of time flood water remains in
the flood plain and recession characteristics are also uncertain due to variable drainage

characteristics and human efforts (NRC, 1995). Although a method has not yet been
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devised to explicitly incorporate all of these uncertainties, they are important to

understand potential differences between model predictions and reality.

2.4.4 STAGE-FLOW FUNCTION

The stage-flow function is defined graphically in HEC-FDA based on field
measurements and/or hydraulic calculations. Although there can be significant scatter
in field measurements, the function is generally defined based on a single line of
increasing stage with flow (Westphal, et al., 1999). However, this approximation

becomes rougher with increasing flow, as is discussed below.

2.4.5 HYDRAULIC UNCERTAINTY

Hydraulic uncertainty is derived from the estimated relationship between flow and
stage. Turbulence characteristics create variations in stage for a given flow while
eroding the stream channel and changing the cross section (NRC, 1995). In light of
this, higher flows possess greater hydraulic variability (and thus uncertainty) than
medium and lower flows. Westphal, et al. (1999) demonstrate that the uncertainty
introduced by unsteady, high flows was significant for the 1993 flood along the
Mississippi River at St. Louis, Missouri. These results also imply a tendency towards
hysteresis for extreme conditions, or stage-discharge relationships varying between the
rising and falling hydrograph limb. However, the results of the Mississippi River
study also found that neither changes in stage nor changes in flow rate correlate with

short-term scour and fill at gauging sites (Westphal, et al., 1999).
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Additional uncertainty in the stage-flow relationship is introduced by variation in
flow-stage measurements, ice, debris, bulking, seasonal variations in Manning’s n
value, structural integrity, multiple possible failure modes, and surveying inaccuracies
of levees and water control structures (Burnham, pers. com., 2000). Settling of levees
and subsidence of flood plain lands over time also can be a factor. Simplifications
made for hydraulic calculations such as averaging flow resistance characteristics and
limiting the number of cross sections and their associated survey measurement errors
also contribute to hydraulic uncertainty (NRC, 1995). Guidelines for estimating a
standard deviation of error of the hydraulic uncertainty distribution depending on
survey methods are given in HEC (1986) as part of a detailed analysis on the sources
of stage-flow error. The study found that uncertainty in Manning’s n is the greatest
contributor to stage-flow error, although it is not apparent exactly how it affects the

variance of that error (HEC, 1986).

The best-fit distribution of stage-flow uncertainty can vary with how the relationship
was estimated. The scatter about the best-fit stage-flow curve estimated at a gaged
reach can be approximately normal or more skewed. Freeman et al. (1996) found that
the gamma distribution can represent a wide range of rating curve error distributions
from normal to highly skewed, and recommended it to describe stage uncertainty
(USACE, 1996b). Methods for approximating the uncertainty for ungaged stream
reaches based on measurable stream parameters and computed water surface profiles
are detailed in USACE (1996b). For ease of sensitivity analysis with HEC-FDA, the

normal distribution was used to approximate stage-flow uncertainty, with the range of
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standard deviations of error determined based on Manning’s n reliability (USACE,

1996b).

2.4.6 DAMAGE-STAGE FUNCTION

The damage-stage function is calculated as a graphical function based on procedures
described in the “National Economic Development Procedures Manual — Urban Flood
Damage”, March 1988, “National Economic Development Procedure Manual — Urban
Flood Damage — Volume II: Primer on Surveying Flood Damage for Residential
Structures and Contents”, October 1991, “Catalog of Residential Depth-Damage
Functions”, May 1992, and “Analysis of Non-Residential Content Value and Depth-
Damage Data for Flood Damage Reduction Studies”, April 1996 (HEC, 1998). The
general shape of the damage-stage function usually varies between a straight line and
S-shaped curve, depending on land use characteristics (Arnell, 1989). The most
common shape in the U.S. is most similar to the “logistic”, or “S” shape from Arnell
(1989), with the steepest part of the curve between the 100-year and 1,000-year stages
(Beard, 1990). Al-Futaisi and Stedinger (1999) used a quadratic equation to describe
the damages above a certain threshold. A quadratic equation was not used for this
study due to the difficulty in systematically applying changes in function shape to

represent a realistic range of conditions to be examined for the sensitivity analysis.

2.4.7 DAMAGE UNCERTAINTY

Uncertainty associated with the damage-stage relationship can be calculated based on
the individual uncertainties of its major components. Currently, HEC-FDA can

account for uncertainty in structure value, content to structure value ratio, depth-
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percent damage and surveyed elevations. These uncertainties are combined into an
estimated normal, triangular, or log normal distribution of error about the mean (HEC,
1998). The standard deviation of this error distribution is usually specified as a
percentage of the damages (Moser, 1993). However, Lindquist (1995) showed that the
distribution of damage error does not affect the calculation of EAD as long as the
mean function is specified. The distribution of uncertainty is only significant if the

distribution of EAD is under examination.

The error distribution does not account for any changes in velocity (and water surface
elevation) as the floodwater spreads onto the flood plain, or the accumulation of debris
that can affect water stage and damage at different locations. The distribution also
does not account for any differences in water stage between the surrounding flood
plain and individual structures. The way in which the duration of flooding affects
damage is also not considered (NRC, 1995). However, a study by Afshar, et al.
(1998) assumed that the effects of flooding time and volume are minor for
structure/building flood damage estimation. Additional factors that influence flood

damage are described in USACE (1996b).

Although these sources of uncertainty are difficult to quantify for inclusion in the
distribution of uncertainty, they contribute to differences between the model
approximation and reality. Although it might seem ideal to try to quantify and include
all conceivable sources of uncertainty in its distribution, it is important to realize that

increasing complexity does not necessarily yield an increase in accuracy (Pilgrim,
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1986). Therefore, it is desirable to consider a best estimate of the range of possible

distributions without breaking the distribution down into too many small pieces.

2.5 Comparison of Methods

While all methods share the goal of estimating expected annual damage to compare
flood damage reduction alternatives, Direct Integration, Expected Probability and
Risk-based Analysis differ in assumptions about the most accurate way to perform
flood damage analysis under imperfectly known conditions. More detailed discussion
on the controversial appropriate use and role of these methods has been published in
an ongoing series of papers (Beard, 1960, 1978, 1990, 1997, 1998; Thomas, 1976,
NRCTF, 1978; Stedinger, 1983; Arnell, 1989; Gunasekara and Cunnane, 1991;
Rasmussen and Rosbjerg, 1991; Stedinger, 1997; Goldman, 1997). While Direct
Integration computes the median annual damage without explicitly considering
uncertainty, Risk-based Analysis computes the mean annual damage (expected value)
with probability density distributions of likely input functions. Since the expected
probability method estimates a mean damage, the method is inherent in the risk-based
approach. The higher value of the mean relative to the median in a positively skewed
uncertainty distribution yields a generally higher EAD. A schematic of the positively

skewed hydrologic uncertainty distribution is given in Figure 3.
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Figure 3. Skewed Hydrologic Uncertainty Distribution Schematic

For Risk-based Analysis, the benefits of explicitly incorporating uncertainty in the
EAD calculation can be estimated using the concept of the expected value of including
uncertainty (EVIU). EVIU is the difference between the expected value of the optimal
decision with uncertainty considered and the expected value of the optimal decision
with uncertainty ignored (Morgan and Henrion, 1990). For flood damage analysis,
this can be defined as:

EVIU = [EADy.wo,— EADyw] — [EADy, — EADy]

where

EADuy,.wo = Expected Annual Damage including uncertainty, without project

EADuyw= Expected Annual Damage including uncertainty, with project

EADy, = Expected Annual Damage without considering uncertainty, without project

EADy, = Expected Annual Damage without considering uncertainty, with project.
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Risk-based Analysis also allows estimation of the value of additional information, the
difference between the confidence in the flood damage estimate with current
information, and the confidence in the flood damage estimate if one more unit of
information was obtained in any of the primary input functions (Morgan and Henrion,
1990). An extension of the value of additional information is the difference between
the current net benefits expected from a project and the net benefits expected if one
more unit of information was obtained. The concepts of EVIU and value of additional
information can be used along with the results of the current study in investment
decision-making. The following section presents a detailed description of the

approach used to address the current study objectives.
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Chapter 3
Analysis Approach

3.1 Base Case Functions

To examine possible differences in sensitivity and uncertainty between streams with
different hydrologic, hydraulic and economic characteristics, 34 HEC-FDA data sets
from across the continental United States and Hawaii were sorted according to
drainage area and slope. Four categories were created to form a two by two matrix of

drainage area and stream slope. The distribution of data sets within the matrix can be

seen in Table 2.

Table 2. HEC-FDA Data Set Matrix

Stream Type Small Drainage Area Large Drainage Area
(<100mi’) (>100 mi®)

Flat Stream Slope | Coulee des Cannes, LA Lafayette/Vermilion R., LA

(<3 ft/mi.) Chester Creek, PA Ocmulgee River, GA

Blue River, MO
Chattahoochee River, GA
Flint River, GA

White Oak Bayou, TX
Willamette River, OR
DesPlaines River, IL
Cumberland River, OH
Tygart River, WV
Sheyenne River, ND
Etowah, GA

Tuolumne River, CA
Missouri River, MO

Steep Stream
Slope
(>3 ft/mi.

Harmon Canal, GA
Wailupe, HI

Perry Creek, 1A
Strong Ranch Slough, CA
Deer Creek, MN
Anacostia River, VA
NW Anacostia, VA
Lower Mission Cr, CA
Antelope Cr, NE
Beargrass Cr, KY

Rio De Flag, AZ

Warm Springs, CA

Pecan Bayou, TX

Tres Rios/Gila River, AZ
Murrieta Creek, CA
Scranton/Lackawanna R, PA
Greens Bayou, LA

White River, IN
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Small and large drainage areas were divided at 100 square miles, and steep and flat
stream slopes were divided at 3 feet/mile. Since most of the data sets fell into one of
two categories (large drainage area/flat slope or small drainage area/steep slope),
representative synthetic functions were created as base cases for these two categories.
Examination of cases in the other two categories can be included in further study. The

following procedures were used to generate representative base case functions.

3.1.1 FLOW-EXCEEDANCE PROBABILITY FUNCTION

Within each category, the flow-exceedance probability function for each data set was
plotted. The range of mean flows typical to the two categories of interest can be seen

in Tables 3a and 3b.

Table 3a. Flow-Exceedance Probability Function of Known Large/Flat

Data Sets
Large/Flat Data Set Mean Flow (cfs)
Hlinois River, IL 430
Lafayette/Vermilion, LA 952
Sheyenne River, ND 1,200
DesPlaines R, IL 2,555
Tuolumne R, CA 5,000
Etowah R, GA 8,283
Blue River, MO 10,170
White Oak Bayou, TX 12,271
Chattahoochee R, GA 21,702
Ocmulgee River, GA 26,448
Tygart River, WV 26,696
Flint River, GA 31,623
Cumberland River, OH 96,694
Willamette River, OR 136,994
Missouri River, MO 214,042

27



Table 3b. Flow-Exceedance Probability Function of Known Small/Steep

Data Sets
Small/Steep Data Set Mean Flow (cfs)
Rio De Flag, AZ 19
Warm Springs, CA 70
Beargrass Cr, KY 401
Lower Mission Cr, CA 500
Deer Creek, MN 534
Harmon/Chippewa, GA 707
Strong Slough, CA 788
Wailupe, HI 949
Antelope Cr, NE 1,900
Perry Creek, IA 2,180
NW Anacostia R, VA 4,410
Anacostia R, VA 5,154

For consistency with Bulletin 17B recommendations and ease of sensitivity analysis,
base case functions were created as Log Pearson Type IIl with zero skew, or Log
Normal (IAWCD, 1982). The mean flow for each base case was chosen from the
middle of the known data sets in its respective category. For the large drainage
area/flat stream, a mean flow of 25,000 cfs was used. For the small drainage
area/steep stream, a mean flow of 700 cfs was used. The coefficient of variation
(COV) is the ratio of the standard deviation to the mean of a distribution. Linsley
(1986) reports a typical range of 0.3 — 0.8 for the COV of floods in the United States
in real space, while Al Futaisi and Stedinger (1999) and Landwehr (1978) report a
typical range of 0.5 — 1.0. Assuming the range stated by Al Futaisi and Stedinger
(1999) and Landwehr (1978), the COV is between 0.05 and 0.13 in log space. In
general, arid regions tend to have a higher COV, whereas wetter regions tend to have a
lower COV (Landwehr, 1978). A COV of 0.05 was assumed for each base case in log
space to represent a climate with less flow variability. A COV of 0.05 yields a

standard deviation of 0.22 for the large/flat case and 0.14 for the small/steep case. The
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resulting base case functions are shown in Figure 4. To minimize uncertainty, the

equivalent record length was assumed to be 200 years.
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Figure 4. Base Case Flow-Exceedance Probability Functions

3.1.2 STAGE-FLOW FUNCTION

To create base case stage-flow functions consistent with the flow-exceedance

probability functions, the stage-flow functions from the known data sets were plotted.

A quadratic function was fitted to the data points for flows greater than zero. The

function is connected via a straight line to (0,0). The average slopes of each function

were plotted against the mean flow from the corresponding flow-exceedance

probability function to approximate a correlation.

Based on the plot scatter for the small/steep case, the corresponding rating curve can

have an approximate slope of 0.002 to 0.006. Based on the plot scatter for the

large/flat case, the corresponding rating curve can have an approximate slope of

0.0001 to 0.0005. The correlations can be seen in Figures 5a and 5b. Based on the
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range of y-intercept values for the appropriate case functions, the y-intercept (“C”
value) can vary between 0 and 5 for the small/steep case and between 5 and 10 for the
large/flat case. The range of flows covered by the stage-flow function must meet or
exceed the range of flows in the flow exceedance probability function. To minimize
uncertainty in the base cases, the standard deviation of error was set to 0.01 feet. The
resulting base case stage-flow functions are (See Figure 6):

Small/Steep:

Y =-6E-7X* + 0.004X + 1.55

Large/Flat:

Y = -5E-10X> + 0.0002X + 7.89

where Y = Stage (ft) and X = Flow (cf5s).

For flows higher than the apex of the curve, a linear approximation was used with a

slope equal to the slope of the 500 cfs prior to the apex.
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Figure 5a. Mean Flow — Stage-Flow Curve Average Slope Correlation:
Steep Stream, Small Drainage Area
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Figure 6. Base Case Stage-Flow Functions

3.1.3 DAMAGE-STAGE FUNCTION

Like the first two functions, the damage-stage functions were created by first plotting
the damage-stage functions of the known data sets. Based on the typical shapes of the
known functions and studies by Arnell (1989) and Beard (1990), a piecewise linear
function was created to allow the functions to be more easily and systematically
adjusted during the set of runs necessary for sensitivity analysis. The piecewise linear
shape is most closely related to the “logistic” shape in Arnell (1989), and
recommended by Beard (1990) as the most common curve shape for floodplains in the
U.S. Assuming damage begins at the mean stage associated with the 2-year event

(exceedance probability = 0.5) and maximizes at the mean stage associated with the
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500-year event (exceedance probability = 0.002), the following typical function was
derived:

Between X=0 and X=LB, Y=0

At X=1/3(UB-LB) + LB, Y=0.1

At X=2/3(UB-LB) + LB, Y=0.9

At X=UB, Y=1

where Y = Proportion of Total Damage (between 0 and 1); X = Stage (ft)

LB = Lower Bound Stage of Damage Function; UB = Upper Bound Stage of Damage

Function.

The proportion of total damage is used rather than total damage to put all analyses on
the same economic basis. To minimize uncertainty for the base case, the standard
deviation of error was set to 0.01 feet. The base case damage-stage functions can be

seen in Figure 7.
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Figure 7. Base Case Damage-Stage Functions
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3.2 Sensitivity Analysis

3.2.1 FLOW-EXCEEDANCE PROBABILITY FUNCTION

To examine the effects of changing the shape of the most likely flow-exceedance
probability function on EAD and EAD reduction, the three parameters of the Log
Pearson Type III function were varied independently. Table 4 summarizes the
variation introduced to the flow-exceedance probability function to examine the
sensitivity of EAD and EAD reduction to flow-exceedance probability function
parameters.

Table 4. Flow-Exceedance Probability Function Sensitivity Analysis

Base Case | Variable Base Lower Upper Increment
Value Limit Limit
Large/Flat Mean 25,000 cfs | 12,500 cfs | 25,000 cfs 500 cfs
Small/Steep | Mean 700 cfs 350 cfs 700 cfs 50 cfs
Large/Flat SD (log) 0.22 0.22 0.57 0.1
Small/Steep | SD (log) 0.14 0.14 0.37 0.1
Large/Flat Skew (log) | 0 -0.7 0.4 0.1
Small/Steep | Skew (log) | 0 -0.7 0.4 0.1

The range in mean values was chosen to keep a reasonable coefficient of variation
according to Landwehr (1978) without having to change the standard deviation.
Accordingly, the range in standard deviation values was chosen to yield a reasonable
range in coefficient of variation. The range of skew values was based on the USGS
map of Generalized Skew Coefficients of Logarithms of Annual Maximum

Streamflow by One Degree Quadrangles IACWD, 1982).

3.2.2 STAGE-FLOW FUNCTION

The base case stage-flow function was created as a quadratic equation so its

coefficients could be varied systematically. The function is of the form:
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S=aQ’+bQ+c

where S = Stage (ft) and Q = Flow (cf5s).

[1P%2)

To vary the function slope, “b” was varied. To vary the function vertically, “c” was
varied. Table 5 shows the method used to examine the sensitivity of EAD and EAD

reduction to variation in the stage-flow function.

Table 5. Stage-Flow Function Sensitivity Analysis

Base Case | Variable | Base Lower Limit | Upper Limit | Increment
Value

Large/Flat b/Slope 0.0002 | 0.0001 0.0005 0.0001

Small/Steep | b/Slope | 0.0048 | 0.002 0.006 0.001

Large/Flat c/Y-Int. 7.89 5 10 1

Small/Steep | ¢/Y-Int. 1.55 0 5 1

It is important to note that the function type assumed does not account for reverse flow
conditions. Such conditions can result from a combination of backwater effects (from
tides or larger order streams), intense precipitation and high flows. Reverse flow
conditions are generally rare except in flat streams. For example, this situation occurs
along the Vermilion River in Louisiana (USACE, 1995). In this case, it is important
to have the rating curve reflect a probability weighted average condition useful for

transforming the flow-exceedance probability curve to a stage-exceedance probability

curve (Goldman, pers. comm., 2000).

3.2.3 DAMAGE-STAGE FUNCTION

The base case damage-stage function was created as a piecewise linear function to
allow systematic variation. Fitting polynomial functions to data points as was done
for the stage-flow function proved inadequate to properly describe the damage-stage

function shapes while coefficients were varied. For the piecewise linear function,
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inflection points in the function were specified according to the following general
function:

Between X=0 and X=LB, Y=0

AtX=A(UB-LB) + LB, Y=0.1

At X =B(UB-LB) + LB, Y=0.9

AtX=UB, Y=1

where Y = Proportion of Total Damage (between 0 and 1)

X = Stage (ft)

A = Location of first inflection point (as fraction of total range of damage-producing
stages)

B = Location of the second inflection point

LB = Lower Bound Stage of Damage Function

UB = Upper Bound Stage of Damage Function.

For the base case, A=1/3 and B=2/3 for the flat/large and steep/small cases. For
sensitivity analysis, the lower bound stage, upper bound stage, A and B were varied to
examine the sensitivity to overall slope of the function and slopes of three main
sections of the function. Table 6 summarizes the method used to examine the

sensitivity of EAD and EAD reduction to differences in the damage-stage function.
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Table 6. Damage-Stage Function Sensitivity Analysis

Base Case | Variable | Base Value | Lower Upper Increment
Limit Limit

Large/Flat LB 12.6 8.6 16.6 1

UB 23.6 19.6 27.6 1

A 1/3 1/6 3/6 1/6

B 2/3 3/6 5/6 1/6
Small/Steep | LB 4.2 2.2 4.2 1

UB 8.2 6.2 8.2 1

A 1/3 1/6 3/6 1/6

B 2/3 3/6 5/6 1/6

LB = Lower bound of damage-producing stages, UB = Upper bound of damage-
producing stages, A = Location of first inflection point (as fraction of total range of

damage-producing stages), B = Location of second inflection point

3.3 Sensitivity to Uncertainty

In addition to examining the sensitivity of EAD and EAD reduction to differences in
the shape of the input functions, its sensitivity to differences in uncertainty was
examined. In HEC-FDA, uncertainty can be specified in each of the three primary
input functions. Flow-exceedance probability uncertainty is estimated as a function of
the sampling error in the mean and standard deviation. The uncertainty in the mean is
known to be described by a normal distribution and the standard deviation by a chi-
squared distribution (Goldman, pers. comm., 2000). Stage-flow uncertainty and
damage-stage uncertainty are assumed to be described by a normal distribution. To
examine sensitivity to parameter uncertainty, the base case functions were used with
minimal uncertainty. Uncertainty was estimated and introduced in increments for

each function.
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3.3.1 FLOW-EXCEEDANCE PROBABILITY UNCERTAINTY

To examine the sensitivity of EAD and EAD reduction to flow-exceedance probability
uncertainty, the equivalent record length was varied between 10 years and 200 years
for each base case. As equivalent record length increased, uncertainty and the
standard deviation of error decreased. For a given equivalent record length, the
amount of uncertainty increases with flow. Therefore, the flat/large case possessed

greater uncertainty than the steep/small case for the same equivalent record length.

As is discussed in the previous section, the sampling error in estimates of the mean
and standard deviation is used to describe parameter uncertainty (Stedinger, 1983b).
When skew is included in the flow-exceedance probability distribution, the calculation
extension provided by Bao, et al. (1987) is needed to provide a better estimate of

parameter uncertainty.

Sources of error other than a limited historical record length can be considered in
estimating uncertainty in the flow-exceedance probability distribution. Kuczera
(1996) presents the results of rating curve error on flood frequency inference. If the
flood flow-exceedance probability distribution is back calculated from stage
measurements and a rating curve, the flow-exceedance probability distribution
contains some error in addition to the error introduced by a limited record length. The
error introduced by flood frequency inference can be incorporated into estimation of
equivalent record length as described by USACE (1996b). Other methods of

estimating flow frequency such as hydrologic modeling or estimation from other gages
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within the watershed also can be incorporated into the equivalent record length

(USACE, 1996).

3.3.2 STAGE-FLOW UNCERTAINTY

To examine the sensitivity of EAD and EAD reduction to stage-flow uncertainty, the
standard deviation of error about the mean function was varied. The standard
deviation of error was assumed to increase linearly with flow, with zero uncertainty at
(0,0). The error was assumed to remain constant above the 0.01 exceedance
probability (100-year) event. EAD and EAD reduction were calculated for standard
deviation of error equal to 0.3, 0.6, 1.5 and 3.0 feet to represent varying accuracy in
data. These standard deviations account for likely ranges of error introduced by
survey technology limitations, selected accuracy, Manning’s roughness coefficient,

and stream hydraulic properties for steady flow (HEC, 1986).

The effects of unsteady flow characteristics become more important at higher flows.
Westphal, et al. (1999) demonstrate that the uncertainty introduced by unsteady, high
flows was significant for the 1993 flood along the Mississippi River at St. Louis,
Missouri. These results also imply a tendency towards hysteresis for extreme
conditions. Unsteady flow effects were not considered in the current study since
neither of the typical cases developed had high enough flows to magnify unsteady
flow effects to the degree demonstrated by the Mississippi River study (Westphal, et

al., 1999).
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3.3.3 DAMAGE-STAGE UNCERTAINTY

Sensitivity to damage-stage uncertainty was examined in a similar manner to stage-
flow uncertainty. A normal distribution was assumed to describe the uncertainty, with
the standard deviation of error about the mean variable. The standard deviation of
error was assumed to increase linearly with stage, with zero uncertainty at (0,0). Due
to the intense data requirements of doing a rigorous derivation of the damage-stage
function, the effect of large variances in damages were examined as recommended by
Lindquist (1995). EAD and EAD reduction were calculated for standard deviation of

error equal to 5%, 10% and 20% of the mean damage value.

Venkatesh and Hobbs (1999) assumed a uniform uncertainty distribution for a study to
compare the effects of climate uncertainty with damage uncertainty at Lake Erie. The
uniform distribution had 1/3 probability that the damage-stage curve will be 50%
lower than its expected value, 1/3 probability that the damage-stage curve will be 50%
higher than its expected value, and 1/3 probability that the damage-stage curve will be
equal to its expected value. This assumption is different than for the present study in
that the present study assumes that enough knowledge is present that the best estimate

is known to be more likely than surrounding values.

3.4 Uncertainty Analysis
An uncertainty analysis was performed to compare the relative contributions of
uncertainty in each of the primary input functions to uncertainty in the resulting EAD

without a levee and with 50, 100 and 250-year (0.02, 0.01 and 0.004 exceedance
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probability) levees. Uncertainty was varied in each input function according to the
ranges defined in the Sensitivity to Uncertainty section. Uncertainty in the output was
defined as the difference between the 0.25 exceedance probability and the 0.75

exceedance probability EAD (Goldman, pers. comm., 2000).

3.5 EAD Reduction

To examine the sensitivities of EAD reduction, with-project conditions were created.
EAD reduction was examined for levees built to the 50-year, 100-year, and 250-year
(0.02, 0.01 and 0.004 exceedance probability) levels. The same set of runs was done
for the with-project conditions as for the without-project condition. The without-
project EAD values were subtracted from the with-project EAD values to get EAD

reduction, an estimate of benefits expected from the levee project.

3.6 Sensitivity Index

To analyze the sensitivity of EAD, EAD reduction, and their associated uncertainties
to the above-described parameters on a consistent basis, a sensitivity index must be
calculated. Simple sensitivity can be used as a first measure of uncertainty
importance. Mathematically, simple sensitivity is defined as:

Us(x,y) = [8y/8X]xo

(Morgan and Henrion, 1990)

In terms of flood damage analysis, simple sensitivity can be written as:

Sx1(X1,X2,X3,y) = [Oy/0X1]X10,X20,X30
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where S = Simple Sensitivity of EAD to x;

x1 = Hydrologic Function; x, = Hydraulic Function; x3 = Economic Function; y =
EAD;

X10 = Hydrologic Function at Base Case

X20 = Hydraulic Function at Base Case

X3, = Economic Function at Base Case.

This definition works well for parameters on the same scale. Simple sensitivity can be
used to examine changes in input function sensitivity over a range of values.
However, since the three primary relationships in flood damage analysis are on
different scales, a normalized sensitivity must be used to compare the sensitivities
between functions. The normalized sensitivity is also known as elasticity, which is
essentially the percent change in output with the percent change in the uncertain
parameter or input, defined as:

Uz(x,y) = [8y/8K]x0 (Xo/Yo)

(Morgan and Henrion, 1990)

In terms of flood damage analysis, this can be rewritten as:

Ex1(x1,%2,X3,y) = [8y/8%1]X10,X20,X30 (X10/Yo)

where E = Elasticity of EAD to x;

X1 = Hydrologic Function; x, = Hydraulic Function; x3 = Economic Function; y =
EAD;

X10 = Hydrologic Function at Base Case
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X320 = Hydraulic Function at Base Case

X3, = Economic Function at Base Case; y, = EAD at Base Case.

Simple sensitivity can be plotted for comparison of function parameter sensitivity over
the range of values examined. Elasticity can be plotted for comparison of EAD
sensitivity to each function. The same plots can be created for EAD reduction and the

variance of EAD.

3.7 Case Studies

To test the results of the numerical experiments on the synthetic data sets, sensitivity
to uncertainty was examined for two sample data sets. A data set from a typical large
drainage basin on the Blue River, Missouri and a data set from a typical small
drainage basin on the Chippewa River, Georgia were used for comparison. Both data
sets had flow-exceedance probability curves that were well defined by an LPIII

distribution and previously defined stage-flow and damage-stage curves.
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Chapter 4

Results

The following graphs summarize the results of the Sensitivity and Uncertainty

Analyses, as described in the Approach section. Elasticity (percent change in EAD or

EAD Reduction divided by percent change in parameter value) was plotted against

parameter value so the sensitivities could be compared on a unitless basis. All

numerical results are included in Appendix A. A vertical line was drawn on each

graph to delineate the base case value against which elasticity was measured. The

sensitivity analysis results are presented according to function in the following order:

1.

2.

Flow-Exceedance Probability Mean - Figures 8 - 11

Flow-Exceedance Probability Standard Deviation - Figures 12 - 14
Flow-Exceedance Probability Skew — Figures 15 - 17

Stage-Flow Function Average Slope, “B” — Figures 18 - 21

Stage-Flow Function Y-Intercept, “C” — Figures 22 and 23

Damage-Stage Function Lower Bound of Damage-Producing Stages — Figures 24
and 25

Damage-Stage Function Upper Bound of Damage-Producing Stages — Figures 26-
28

Damage-Stage Function Inflection Points, A and B — Figure 29 - 32
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4.1 Flow-Exceedance Probability Sensitivity Analysis

The sensitivity of EAD and EAD reduction to the three moments of the flow-
exceedance probability function was examined by computing elasticity relative to the
large and small base cases. The elasticity of EAD and EAD reduction to mean flow
for the large basin was the highest for the first few thousand cubic feet per second
below the base case, and declined as the flow decreased. The small basin showed a
steadier decline in elasticity as flow decreased. The elasticity of EAD and EAD
reduction to mean flow was higher for the small basin than for the large basin over
nearly the entire flow range examined. For both basins, EAD reduction with a 50-year
(0.02 exceedance probability) levee was more sensitive to mean flow than EAD
reduction with the larger levees. As the levee size increases, the elasticity of EAD
reduction approaches that of EAD without a levee. As levee size increases, the

damage prevented approaches the total damage expected without a project.

While the elasticity of EAD and EAD reduction with a 50-year (0.02 exceedance
probability) levee increased steadily with mean flow, the elasticity of EAD reduction
with 100 and 250-year (0.01 and 0.004 exceedance probability) levees decreased
temporarily at a mean flow of around 24,000 cfs. This occurs because the average
steepness of the damage-producing part of the stage-damage curve decreases when
mean flow reaches 24,000 cfs with a 100 or 250-year (0.01 or 0.004 exceedance
probability) levee. As the mean flow is increased to 24,500 cfs, the average steepness

of the damage-producing part of the stage-damage curve does not change compared to
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what it was at a mean of 24,000 cfs, so the elasticity increases again due to the

increase in flow. The results are summarized in Figures 8 and 9.
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Figure 8. Elasticity of EAD and EAD Reduction with Mean Flow, Large
Basin

Elasticity of EAD to Mean Flow - Small Basin

4.50
4.00
350
3.00
= E
% 250
2
#1200 1
1.50
Base Value —>
1.00 ——EAD
== "EAD Reduction With 50Yr Levee
050 1 —&—EAD Reduction With 100Yr Levee
—— EAD Reduction With 250Yr Levee
0.00 . . y . : : : :
300 350 400 450 500 550 600 650 700 750 800

Mean Flow {cfs)

Figure 9. Elasticity of EAD and EAD Reduction with Mean Flow, Small
Basin
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The change in mean flow is typically propagated through the EAD calculation through
a series of steps. If new data were obtained that decreased the best estimate of the
mean flow, the entire flow-exceedance probability curve would be lowered, thus
changing the flow range required for the stage-flow curve to be integrated with the
flow-exceedance probability curve. To isolate the mean for sensitivity analysis, only
the range of the stage-flow curve was changed to match the range of flows for each
mean flow. However, examination of data sets from across the United States showed
that mean flow can be correlated with the average slope of the rating curve, as shown
in Figures 5a and 5b. Changing the average slope of the rating curve according to this
correlation with mean flow changes the behavior of EAD, EAD reduction and

elasticity.

The mean flow — stage-flow curve slope correlation shows that streams with lower
mean flows tend to have steeper rating curves. A steeper rating curve tends to
increase EAD, while a lower mean flow will tend to decrease EAD. A set of model
runs was completed to demonstrate the interaction of these tendencies. The resulting
elasticity changes can be seen in Figures 10 and 11. When the rating curve becomes
steep enough, the effect of steepening the curve dominates the EAD elasticity. When
the steepness of the rating curve dominates EAD elasticity, the elasticity can decrease.
This is most evident in the small basin (Figures 9 and 11). When the rating curve is
flat enough the mean flow dominates the EAD elasticity, increasing its values at the

higher flows. This is most evident in the large basin (Figures 8 and 10).
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Figure 10. Elasticity of EAD and EAD Reduction to Mean Flow with
Adjusted Rating Curve, Large Basin
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Figure 11. Elasticity of EAD and EAD Reduction to Mean Flow with
Adjusted Rating Curve, Small Basin
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The elasticity of EAD and EAD reduction with standard deviation of flow was the
highest for the first few cubic feet per second above the base case, and decreased
steadily for both the large and small basins. EAD and EAD reduction for all levee
sizes were more elastic for changes in standard deviation of the flow-exceedance
probability function than for the mean of the flow exceedance probability function
over the ranges examined. As with the mean flow, EAD and EAD reduction were
more elastic for the large basin than for the small basin. Also, the trend of decreasing
elasticity with increasing levee size was opposite of the previous results. These results

are summarized in Figures 12 and 13.
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Figure 12. Elasticity of EAD and EAD Reduction with Standard Deviation
of Flow, Large Basin
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of Flow, Small Basin
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The elasticity of EAD and EAD reduction with the flow-exceedance probability skew
follows the same behavior for the large basin as for the small basin. Positive skew
values increase the magnitude of the highest probability and lowest probability flows,
while decreasing the magnitude of the middle probability flows to a lesser degree.
Negative skew values decrease both of these magnitudes, while increasing the
magnitude of the middle probability flows to a lesser degree. These trends can be seen

in Figure 15.

The Effects of Skew on the Flow-Exceedance Probability Function
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Figure 15. The Effects of Skew on the Flow-Exceedance Probability
Function
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Compared to the mean and standard deviation of the flow-exceedance probability
function, elasticity decreases very slowly with increasing skew for the small basin, and
even more slowly for the large basin. For skew, elasticity was measured against a
base value of 0.1 because elasticity cannot be computed against a value of zero. There
are ranges of negative skew over which the elasticities of EAD and EAD reduction
remain approximately constant or increase very slightly. This occurs when increasing
the higher flows can no longer affect EAD because there is already 100% damage. In
this case, EAD is affected slightly by the change in the middle probability flows in the
opposite direction. When the skew coefficient was small enough to shift the flow-
exceedance probability curve below the 100-year (0.01 exceedance probability) and
250-year (0.004 exceedance probability) levee heights that were sized at zero skew the
EAD became approximately zero. Since this is unrealistic, the flow-exceedance
probability curve is not extended beyond the 0.001 exceedance probability. Over all
skew ranges examined, both the large and small basins were significantly less
sensitive to skew than to mean or standard deviation of the flow-exceedance

probability function. The results are summarized in Figures 16 and 17.
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4.2 Stage-Flow Sensitivity Analysis

The average slope of the stage-flow function is defined by the “b” parameter in the
general quadratic equation used to define the stage-flow curve, as discussed in Chapter
3:

S =aQ’+bQ + ¢ where S = Stage (ft) and Q = Flow (cfs).

The elasticity of EAD and EAD reduction with the average slope of the stage-flow
function is greatest for steeper functions. It follows that the elasticity is greatest for
smaller basins. In general, as the average slope increases, EAD increases quickly. As
the slope of the stage-flow function increases, higher stages become associated with
the same flows, and thus higher damages until damages reach a maximum limit. The
elasticity of EAD increases initially as slope increases above the base case, then
decreases as EAD approaches total damage. The elasticity of EAD reduction
decreases steadily with increasing slope above the base case. As the average slope
becomes flatter than the base case, elasticity of EAD reduction quickly approaches
that of EAD. The results are summarized in Figures 18 and 19. The range in stage-

flow function slopes examined can be seen in Figures 20 and 21.
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Figure 18. Elasticity of EAD and EAD Reduction with Stage-Flow

Function Average Slope, Large Basin
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The “C” parameter in the synthetic stage-flow functions represents the y-intercept of
the curve as given in the general quadratic equation:

S =aQ”?+bQ + ¢ where S = Stage (ft) and Q = Flow (cfs).

Increasing “C” increases EAD and EAD reduction. For the large basin, elasticity
increased with increasing “C”. For the small basin, elasticity increased with
increasing “C”, but began to decrease as the maximum damage was approached. In
general, the elasticity of EAD and EAD reduction to the “C” parameter was similar for
each basin size. The results are shown in Figures 22 and 23. The change in “C” value
is propagated the same way as the change in function slope. Increasing “C” increases
the stage for each flow, thereby increasing the damages until a maximum limit is

reached.
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4.3 Damage-Stage Sensitivity Analysis

Elasticity was calculated for a range of lower bounds of the damage-producing stages.
The lower bound is the stage at which damage begins. As the lower bound of damage-
producing stages was increased, EAD and EAD reduction decreased. Elasticity also
decreased steadily with an increasing lower bound for both the large and small basins.
As the lower bound increased, the levees prevented a greater proportion of damages
from occurring. The elasticity of EAD and EAD reduction was more than twice as
high for the small basin as for the large basin for the values examined. Increasing the
lower bound effectively eliminates damage from the most common events, while
changing the less common events relatively little. The results are summarized in

Figures 24 and 25.
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Figure 24. Elasticity of EAD and EAD Reduction with Damage-Stage
Function Lower Bound of Damages, Large Basin
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Figure 25. Elasticity of EAD and EAD Reduction with Damage-Stage
Function Lower Bound of Damages, Small Basin
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Elasticity was calculated for each basin with different upper bound stages. The upper
bound stage is the stage above which maximum damage occurs. As the upper bound
was increased, EAD and EAD reduction decreased. Elasticity also decreased steadily
for the large basin, but at different rates depending on how high the levee was for the
small basin (See Figures 27 and 28). Considering that damage is assumed to only
occur above the top of levee stage, the average relative steepness of the damage-
producing part of the curve varies with different levee stages (See Figure 26). For
instance, without a levee the curve for the upper bound equal to 6.2 is steeper than the
curve with 7.2. However, when a 50-year (0.02 exceedance probability) levee is
added, the damage-producing part of the curve for the upper bound equal to 6.2
becomes flatter than the curve with 7.2. When a 100-year (0.01 exceedance
probability) levee is added, the curve with 6.2 remains flatter, but when a 250-year
(0.004 exceedance probability) levee is added it becomes steeper again. These

changes are mirrored in the elasticity curve for the small basin (Figure 28).

63



Graphical Damage-Stage Function
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Figure 26. Variation of Damage-Stage Curve Upper Bound
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Elasticity of EAD to Upper Bound of Damage Stage Function
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Figure 27. Elasticity of EAD and EAD Reduction with Damage-Stage
Function Upper Bound of Damage, Large Basin
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Figure 28. Elasticity of EAD and EAD Reduction with Damage-Stage
Function Upper Bound of Damage, Small Basin
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Elasticity was calculated for variation in each inflection point of the damage-stage
function independently. Since only three values were examined for the first (lower)
and second (higher) inflection points apiece, the elasticity values were graphed as a
maximum and minimum value. In general, as the first inflection point “A” increased,
EAD decreased for both the large and small basins. As the second inflection point
“B” increased, EAD decreased for both the large and small basins. EAD had a higher
maximum elasticity for the small basin than for the large basin for both inflection

points, but a lower minimum elasticity for both inflection points.

EAD and EAD reduction had a higher elasticity in both basins to the first inflection
point than to the second. The propagation of changing an inflection point in the stage
damage function is similar to changing the lower bound of damage-producing stage.
In general, the larger levee scenarios had a lower maximum elasticity of EAD

reduction, but a higher minimum elasticity. This can be seen in Figures 29 —32.
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Elasticity
Range Large Basin Small Basin
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Figure 29. Elasticity of EAD with Damage-Stage Function Inflection Point
Locations for Large and Small Basins
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Figure 30. Elasticity of 50-yr Levee EAD Reduction with Damage-Stage
Function Inflection Point Locations for Large and Small Basins
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Elasticity
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Figure 31. Elasticity of 100-yr Levee EAD Reduction with Damage-Stage
Function Inflection Point Locations for Large and Small Basins
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Figure 32. Elasticity of 250-yr Levee EAD Reduction with Damage-Stage
Function Inflection Point Locations for Large and Small Basins
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4.4 Sensitivity to Uncertainty

Based on the results of HEC-FDA for a range of equivalent record lengths, elasticity
was calculated for each record length to compare results on a unitless basis. Each
individual model run output is included in Appendix A. Elasticity values are
summarized in Figure 33 for the small/steep and large/flat basins. Likewise, elasticity
was calculated for each standard deviation of error about the flow-stage curve, with
each individual model run output included in Appendix A. Elasticity values for flow-
stage uncertainty are summarized in Figure 34. Since the mean EAD is not sensitive
to stage-damage uncertainty (Lindquist, 1995), no plot was produced for its elasticity:
However, model runs were still completed to verify this result and are included in

Appendix A.
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Elasticity Versus Equivalent Record Length
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Figure 33. EAD Elasticity to Equivalent Record Length
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Figure 34. EAD Elasticity to Stage-Flow Error
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Over the range of values examined, EAD had the highest elasticity with flow record
length. This was always the case for the large basin, and usually the case for the small
basin. EAD had the highest elasticity with stage-flow standard deviation of error for
the small basin when the record length was long and the standard deviation of stage-

flow error was large.

The maximum and minimum elasticity of EAD to each function uncertainty was
calculated from the range of results. These values can be compared for the large and

small basins in Figures 35.

Elasticity
Range Large Basin Small Basin

1 Stage-Flow
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Figure 35. Uncertainty Elasticity Comparison —EAD
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Based on the results from varying record length with 50, 100 and 250-year (0.02, 0.01
and 0.004 exceedance probability) levees, elasticity to equivalent record length was
calculated for EAD reduction, the difference between EAD without and with each
levee. Elasticity of EAD reduction to equivalent record length was plotted for each
levee in each synthetic basin in Figure 36. Elasticity was also computed for the
standard deviation of error of the stage-flow function, and plotted in Figure 37. The
elasticity of EAD reduction generally decreases with increasing record length, but
increases slightly in some cases depending on the slope of the damage-stage curve.

The changing of the average slope of the damage-stage curve can be seen in Figure 26.
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Elasticity of EAD Reduction Versus Record Length for
50, 100, and 250-yr Levees
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Figure 36. EAD Reduction Elasticity to Equivalent Record Length
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Figure 37. EAD Reduction Elasticity to Flow-Stage Standard Deviation of
Error
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The behavior of the elasticity of EAD reduction was similar to that of EAD, but on a
smaller scale. EAD reduction had the largest elasticity with respect to equivalent
record length over the entire range for the large basin, and over most of the range for
the small basin. However, for long record lengths and large standard deviations of
error for the flow stage function, EAD reduction was more elastic with respect to
stage-flow function uncertainty. The ranges of elasticity of EAD reduction for the 50,
100 and 250-year (0.02, 0.01 and 0.004 exceedance probability) levees are

summarized in Figures 38 through 40.

Elasticity
Range Large Basin Small Basin
1
0.5
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Flow-Exc.
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Stage-Flow | || [ T4
0.0151 Uncertainty
0.0053
0.0026
0.0013 v

Figure 38. Uncertainty Elasticity Comparison —EAD Reduction with 50-
Year (0.02 Exceedance Probability) Levee
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Elasticity

Range Large Basin Small Basin
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Figure 39. Uncertainty Elasticity Comparison -EAD Reduction with 100-
Year (0.01 Exceedance Probability) Levee
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Elasticity
Range Large Basin Small Basin
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Figure 40. Uncertainty Elasticity Comparison —-EAD Reduction with 250-
Year (0.004 Exceedance Probability) Levee
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4.5 Uncertainty Analysis

An uncertainty analysis was completed to examine the contribution of uncertainty in
each primary function to uncertainty in EAD for no levee and with 50, 100 and 250-
year (0.02, 0.01 and 0.004 exceedance probability) levees. To provide a basis for
comparison, uncertainty in EAD was defined as the difference between the 0.25
exceedance and 0.75 exceedance quantiles in the output distribution. The numerical
results are included in Appendix A and graphed in Figures 41, 42, and 43 for the flow-

exceedance probability, stage-flow and damage-stage functions, respectively.
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Figure 41. Flow-Exceedance Probability Uncertainty Analysis
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Difference Between 25% and 75% Exceedance Values

Difference Between 25% Exceedance and 75% Exceedance Values of EAD With Standard
Deviation of Stage Flow Error
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Figure 42. Stage-Flow Uncertainty Analysis
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Figure 43.

Damage-Stage Uncertainty Analysis
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The relative contribution of uncertainty in each primary function to uncertainty in
EAD depends upon in which ranges the individual uncertainties lie. The relative
contribution of uncertainty increases as record length decreases or the standard
deviation of error of the stage-flow function or damage-stage function increases. In
general, the uncertainty contribution for the small basin is larger than the uncertainty
contribution for the large basin with the same input uncertainty. This difference is
smaller for the flow-exceedance probability and damage-stage functions and more
pronounced for the stage-flow function. The contribution of each function to
uncertainty in EAD decreases with increasing levee size. The uncertainty contribution
from the flow-exceedance probability function begins to level off for record lengths
greater than about 60 years without a levee, and greater than about 50 years with a
levee. The uncertainty contribution from the stage-flow function increases more
steadily with standard deviation of error, as does the contribution from the damage-

stage function.

Over most of the ranges examined, stage-flow uncertainty appears to have the greatest
contribution to uncertainty in EAD for the small basin, whereas flow-exceedance
probability uncertainty appears to have the greatest contribution to uncertainty in EAD
for the large basin. While the relative strength of each contribution can be inferred by
isolating uncertainties in this manner, the interaction between uncertainties is not as

easily defined.
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4.6 Case Study Results

The results of the Chippewa River and Blue River case studies verified the results of
the sensitivity to uncertainty experiments conducted on the synthetic basins. Slight
differences in elasticity can be attributed mainly to the different shape of the damage-
stage curves in the case studies. The synthetic basin experiments showed that EAD is
sensitive to the location of the upper and lower bounds of the damage-stage functions.
In general, the case studies verified that the large basin is more sensitive to flow-
exceedance probability uncertainty due to record length than to stage-flow uncertainty.
The small basin is usually more sensitive to flow-exceedance probability uncertainty,
except for situations of long record length and high stage-flow uncertainty. The large
basin is always more sensitive to record length than the small basin, and the small
basin is always more sensitive to stage-flow uncertainty than the large basin for the
ranges of values examined. The case study results can be seen in Figures 44 and 45,

and compared to the results of the synthetic basins in Figures 33 and 34.

Elasticity of EAD Versus Record Length - Biue River and Chippewa River Case Studies
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Figure 44. Elasticity of EAD Versus Record Length — Case Studies
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Elasticity of EAD Versus Stage-Flow Uncertainty
Blue River and Chippewa River Case Studies
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Figure 45. Elasticity of EAD Versus Stage-Flow Uncertainty — Case
Studies
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The sensitivity of EAD reduction to uncertainty for the case studies followed generally
the same trends as for the synthetic basins, with differences due to the shape of the
damage-stage function. The trends of EAD elasticity differed some from the trends of
EAD, depending on the height of the levee. While both synthetic damage-stage
functions were piecewise linear approximations to an S-shaped curve that started and
ended at the same frequencies as one another, the case studies had different shapes and
started and ended at different frequencies. The case study damage-stage curves are

shown in Figures 46 and 47.
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Figure 46. Chippewa River Case Study Damage-Stage Curve
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Blue River Damage-Stage Function
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Figure 47. Blue River Case Study Damage-Stage Curve

While the synthetic damage-stage functions both begin at the mean stage associated
with the 2-year (0.5 exceedance probability) event and maximize at the 500-year
(0.002 exceedance probability) event, the case study functions cover different ranges.
The Chippewa River damage-stage function begins at the mean stage associated with
the 1.4-year (0.7 exceedance probability) event and maximizes at the mean stage
associated with the 500-year event (0.002 exceedance probability). The Blue River
damage-stage function begins at the mean stage associated approximately with the 1-
year event (0.999 exceedance probability) and maximizes at the mean stage associated
with the 500-year (0.002 exceedance probability) event. These different beginning
and ending points of the damage-stage curves affect EAD, EAD reduction and their
elasticity as discussed in the sensitivity analysis on the lower and upper bounds of the

synthetic damage-stage functions. The combined effects of different shapes and
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ranges of the damage-stage curves are the main causes of the irregularities and
differences in the elasticity trends, as shown in Figures 48 through 51. Case study
results in Figures 48 through 51 can be compared with the synthetic case results in

Figures 36 and 37.
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Elasticity of EAD Versus Record Length for 50, 100, and 250-yr Levees
Chippewa River Case Study
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Figure 48. Elasticity of EAD Reduction Versus Record Length, Chippewa
River (Small Basin)

Elasticity of EAD Reduction Versus Stage-Flow Uncertainty for 50, 100, and 250-yr Levees
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Figure 49. Elasticity of EAD Reduction Versus Stage-Flow Uncertainty,
Chippewa River (Small Basin)
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Elasticity of EAD Versus Record Length for 50, 100, and 250-yr Levees
Biue River Case Study
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Figure 50. Elasticity of EAD Reduction Versus Record Length — Blue
River (Large Basin)

Elasticity of EAD Reduction Versus Stage-Flow Uncertainty for 50, 100, and 250-yr Levees
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Figure 51. Elasticity of EAD Reduction Versus Stage-Flow Uncertainty —
Blue River (Large Basin)
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Chapter 5

Conclusions

The results of the numerical experiments showed the relative effect of each variable on
EAD and EAD reduction, with some differences between the large basin and the small
basin. In summary, EAD and EAD reduction were sensitive to the following variables

in the order of increasing importance given in Tables 7 and 8.

Table 7. Large Basin Order of Elasticity

EAD EAD Reduction

1. Flow-Exceedance Probability Skew Flow-Exceedance Probability Skew
2. Damage-Stage Inflection Pt “B” Damage-Stage Inflection Pt “B”

3. Damage-Stage Inflection Pt “A” Damage-Stage Inflection Pt “A”

4. Flow-Exceedance Probability S. Dev. | Flow-Exceedance Probability Mean

5. Flow-Exceedance Probability Mean Flow-Exceedance Probability S. Dev.

6. Stage-Flow Function “C” Parameter Stage-Flow Function “C” Parameter
7. Damage-Stage Upper Bound Damage-Stage Upper Bound

8. Damage-Stage Lower Bound Damage-Stage Lower Bound

9. Stage-Flow Function Slope, “B” Stage-Flow Function Slope, “B”
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Table 8. Small Basin Order of Elasticity

EAD EAD Reduction
1. Flow-Exceedance Probability Skew Flow-Exceedance Probability Skew

2. Damage-Stage Inflection Pt “B” Damage-Stage Inflection Pt “B”

3. Flow-Exceedance Probability Mean Flow-Exceedance Probability Mean

4. Damage-Stage Inflection Pt “A” Damage-Stage Inflection Pt “A”

5. Flow-Exceedance Probability S. Dev. | Flow-Exceedance Probability S. Dev.

6. Stage-Flow Function “C” Parameter Stage-Flow Function “C” Parameter
7. Damage-Stage Upper Bound Stage-Flow Function Slope, “B”

8. Stage-Flow Function Slope, “B” Damage-Stage Upper Bound

9. Damage-Stage Lower Bound Damage-Stage Lower Bound

The range of EAD elasticity calculated for the sensitivity analysis can be seen in

Figure 52 and for sensitivity to uncertainty in Figure 53.
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Figure 52. Sensitivity Analysis Summary
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Figure 53. Sensitivity to Uncertainty Analysis Summary
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As for the first set of numerical experiments, the sensitivity of EAD and EAD
reduction to each type of uncertainty depended on the size of the basin and initial
value of uncertainty. In general, EAD and EAD reduction are most sensitive to flow-
exceedance probability uncertainty, followed by stage-flow uncertainty and damage-
stage uncertainty. However, EAD and EAD reduction become more sensitive to
stage-flow uncertainty for a small basin with a record length of less than about 55
years, and a standard deviation of stage-flow error of greater than about 1.5 feet (See
Figures 39, 40, 42 and 43). These results are consistent with the uncertainty analysis
results, which show that stage-flow uncertainty has the greatest contribution to
uncertainty in EAD for the small basin, whereas the flow-exceedance probability
uncertainty has the greatest contribution to uncertainty in EAD for the large basin

under these conditions (See Figures 47 through 49).

In general, the case studies verified relative sensitivities to uncertainty for sample data
sets. However, the case studies also showed that the relative sensitivities change for
different shaped damage-stage curves. In the case studies used, EAD for the small
basin (Chippewa River) was more sensitive to flow-exceedance probability
uncertainty over a larger range of record lengths than EAD for the synthetic small
basin. As with the synthetic basins, EAD for the large basin (Blue River) was more
sensitive than the small basin (Chippewa River) to flow-exceedance probability
uncertainty, and EAD for the small basin was more sensitive than EAD for the large

basin to stage-flow uncertainty.
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Based on the results summarized above, several trends emerged that could be useful in
federal investment decision-making. Variables with the highest elasticity are those
that have the most potential to improve estimates of EAD and EAD reduction. It may
be worth the extra expenditure to refine the best estimate of a particular function or to

reduce the uncertainty if the cost is small compared to the benefits received.

5.1 Recommendations for Investment

The results of the sensitivity analyses can be used to help make investment decisions
to improve estimates of EAD and EAD reduction. For instance, if there is a small data
set (i.e., less than 10-year record) and funding to improve the estimate of EAD
reduction, it may be wise to wait another year or more to reduce the hydrologic
uncertainty. The expected benefits of waiting a year would be affected by a
combination of the reduction in hydrologic uncertainty and a slight change in the flow-
exceedance probability function parameters (Davis, et. al., 1972). The benefits could
be estimated as the difference between the EAD with the current data minus the EAD
with one more year of data. The expected costs of waiting another year are a
combination of any damage suffered during that year minus the annualized cost

avoided by deferring construction for one year (Davis, et. al., 1972).

Along the same lines, it might be wiser to refine the estimate of the stage-flow curve
or the damage-stage relationship by reducing the uncertainty and refining the most
likely curves. The benefits of improving the estimate of EAD in this manner can be

assessed using the value of additional information, as described in Chapter 2. The
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sensitivity analyses demonstrate over which range of function values the investor
would get the greatest improvement in EAD and EAD reduction values, and hence the
most benefit. It is most important to get an accurate estimate of the variables with the
highest elasticity, such as stage-flow function shape, and least important to get an
accurate estimate of the variables with the lowest elasticity, such as flow-exceedance

probability skew.

5.2 Regional Differences

Regional differences in EAD and EAD reduction sensitivity to primary input function
parameters occur, especially if the LPIII distribution fits regional flow data poorly.
Graphical flow-exceedance probability curves or curves better defined by distributions
other than the LPIIl may affect the elasticity of EAD and EAD reduction differently,
and affect the recommendations for investment. Reservoir regulation and flow

augmentations are some factors that can contribute to these differences.

Regional differences in EAD and EAD reduction sensitivity to primary input function
parameters also occur due to differences in the shape of the stage-flow curve. For
instance, water in a narrow channel and floodplain will tend to rise faster than in a
wide channel and floodplain with the same flow capacity. Whether streamflow is
generated by short, strong bursts of rainfall or gradual melting of snowpack can affect
the shape of the channel and stage-flow curve significantly. Likewise, regional
development patterns and land use characteristics are the main contributors to

differences in stage-damage curves and the sensitivity of EAD to changes in the curve.
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5.3 Further Study

In continuation of the work completed for this study, additional numerical experiments
are recommended to further develop Risk-based Analysis. Similar tests could be
completed on smaller and larger basins, different shaped (or differently defined)
damage curves, or different flow-exceedance probability distributions. Further testing
is also recommended to test the sensitivity of levee reliability measures in HEC-FDA.

The study could be extended to include uncertainty with flow regulation.
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