

US Army Corps
of Engineers
Hydrologic Engineering Center

HECLIB
Volume 2: HECDSS Subroutines

Programmer's Manual

May 1991

Approved for Public Release. Distribution Unlimited. CPD-57

Generalized Computer Program

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instructions, searching existing data sources, gathering and maintaining the date needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 1991

3. REPORT TYPE AND DATES COVERED
Computer Program Document No. 57

4. TITLE AND SUBTITLE
HECLIB
Volume 2: HECDSS Subroutines
Programmer's Manual
6. AUTHOR(S)
CEWRC-IWR-HEC

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616-4687

8. PERFORMING ORGANIZATION
 REPORT NUMBER
CPD-57

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES
N/A
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release. Distribution of this document is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Programmer's manual for computer programmers to interface FORTRAN application programs to HEC's
Data Storage System (HECDSS or DSS). The DSS is a database system that was developed to meet
needs for data storage and retrieval for water resource studies. The system enables efficient storage and
retrieval of time series (such as precipitation hyetographs or hydrographs of stage, discharge, etc.) and
other data-types for which storage in blocks of contiguous data elements is most appropriate. The DSS
consists of a library of FORTRAN subroutines, which can be readily used with application programs to
enable retrieval and storage of information. The current application programs include the widely used
program Flood Hydrograph Package (HEC-1) and the Expected Annual Damage (EAD) program. In
addition, approximately 17 DSS utility programs have been developed. A number of these programs are
for data entry, for example from the USGS WATSTORE database, or from NWS precipitation data files.
Other utility programs include a powerful graphics program, a report generator, and a program for
performing mathematical transformations.

15. NUMBER OF PAGES
296

14. SUBJECT TERMS
HECDSS, DSS, Time-Series Data, Database

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF
ABSTRACT
UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. Z39-18
 298-102

HECLIB

Volume 2: HECDSS Subroutines

Programmer’s Manual

May 1991

US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616

(530) 756-1104
(530) 756-8250 FAX
www.hec.usace.army.mil CPD-57

HECLIB
Volume 2: HECDSS Subroutines

Software Distribution and Availability Statement

The HECLIB library and documentation are public domain software that was developed by the
Hydrologic Engineering Center for the U.S. Army Corps of Engineers. The software was
developed at the expense of the United States Federal Government, and is therefore in the public
domain. HEC cannot provide technical support for this software to non-Corps users. See our
software vendor list (www.hec.usace.army.mil) to locate organizations that provide the program,
documentation, and support services for a fee. However, we will respond to all documented
instances of program errors. Documented errors are bugs in the software due to programming
mistakes not model problems due to user-entered data.

Table of Contents

 i

Table of Contents

 Chapters

 1 Introduction
 1.1 Background .. 1-1
 1.2 DSS Contrasted with Other Database Systems............................. 1-2
 1.3 General Information ... 1-2
 1.4 A Short Description of How DSS Works... 1-4
 1.5 Programming with DSS.. 1-5
 1.5.1 Opening and Closing DSS files 1-5
 1.5.2 The IFLTAB Array.. 1-6
 1.5.3 DSS Subroutines ... 1-6
 1.5.4 Message Control ... 1-7
 1.6 Typical Order of Calling DSS Subroutines 1-7
 1.7 Machine Specifics .. 1-8
 1.7.1 HARRIS Computers .. 1-8
 1.7.2 Microcomputers Using Microsoft® FORTRAN 1-8
 1.7.3 Microcomputers Using Lahey® FORTRAN..................... 1-9
 1.7.4 UNIX Operating Systems .. 1-10

 2 General Subroutines
 2.1 ZOPEN – Open a DSS File.. 2-2
 2.2 ZCLOSE – Close a DSS File ... 2-5
 2.3 ZFNAME – Add Filename Extension and Determine if the File
 Exists... 2-6
 2.4 ZDTYPE – Determine a Record's Data Type and if it Exists.......... 2-8
 2.5 ZSET – Set DSS Parameters... 2-11
 2.6 ZINQIR – Inquire About DSS Parameters...................................... 2-17
 2.7 ZFVER – Get a DSS File's Version.. 2-20

 3 Pathname Manipulation Subroutines
 3.1 ZPATH – Construct a Pathname.. 3-2
 3.2 ZUPATH – Determine a Pathname's Part...................................... 3-4
 3.3 ZUFPN – Spilt a Pathname into Separate Parts 3-6
 3.4 ZGPNP – Get Pathname Parts .. 3-8
 3.5 ZCHKPN – Check a Pathname.. 3-12

 4 Time Series Subroutines
 4.1 ZRRTS – Retrieve Regular-Interval Time Series Data................... 4-3
 4.2 ZRRTSX - Retrieve Regular-Interval Time Series Data
 (Extended Version) ... 4-8
 4.3 ZSRTS – Store Regular-Interval Time Series Data 4-14
 4.4 ZSRTSX – Store Regular-Interval Time Series Data
 (Extended Version) ... 4-17
 4.5 ZRITS – Retrieve Irregular-Interval Time Series Data 4-22
 4.6 ZRITSX - Retrieve Irregular-Interval Time Series Data
 (Extended Version) .. 4-26
 4.7 ZSITS – Store Irregular-Interval Time Series Data 4-32

Table of Contents

ii

Table of Contents (continued)

 Chapters

 4 Time Series Subroutines (continued)
 4.8 ZSITSX - Store Irregular-Interval Time Series Data
 (Extended Version) .. 4-37
 4.9 ZGINTL – Get Time Series Interval.. 4-42
 4.10 ZOFSET – Determine the Time Offset of Time Series Data 4-44

 5 Paired Data Subroutines
 5.1 ZRPD – Retrieve Paired Data .. 5-2
 5.2 ZSPD – Store Paired Data ... 5-7

 6 Text Subroutines
 6.1 ZRTEXT – Retrieve Text Data (Into a File) 6-2
 6.2 ZRTXTA – Retrieve Text Data (Into an Array) 6-5
 6.3 ZSTEXT – Store Text Data (From a File)....................................... 6-8
 6.4 ZSTXTA – Store Text Data (From an Array) 6-11

 7 Catalog and Tag Subroutines
 7.1 ZOPNCA – Open a Catalog File .. 7-3
 7.2 ZCAT – Catalog a DSS File ... 7-6
 7.3 ZRDCAT – Read Pathnames from a Catalog File.......................... 7-10
 7.4 ZRDPAT – Read Pathnames from a Catalog File by
 Reference Number.. 7-14
 7.5 ZTAGPA – Get Pathnames from Tags... 7-17
 7.6 ZRETAG – Change of Record Tag .. 7-21
 7.7 ZSTAGS – Set the Tag Scheme for a DSS File............................. 7-22
 7.8 ZRTALL – Change All Record Tags in a DSS File......................... 7-24
 7.9 Example of Obtaining Pathnames from References on a
 Command Line... 7-25
 7.10 Example of a Catalog Display Subroutine...................................... 7-30

 8 General Read/Write Subroutines
 8.1 ZREAD – Read an Individual Record... 8-2
 8.2 ZREADX – Read an Individual Record (Extended)........................ 8-5
 8.3 ZRDBUF – Read an Individual Record in a Buffered Mode........... 8-7
 8.4 ZWRITE – Write an Individual Record ... 8-10
 8.5 ZWRITX – Write an Individual Record (Extended)......................... 8-13
 8.6 ZWRBUF – Write an Individual Record in a Buffered Mode 8-16

 9 Utility Subroutines
 9.1 ZSTFH – Stuff the User Header Array ... 9-2
 9.2 ZUSTFH – Disassemble the User Header Array 9-6
 9.3 ZCHECK – Check if a Record Exists ... 9-10
 9.4 ZRECIN – Display Information About a Record 9-12
 9.5 ZFILST – Display Information About a DSS File 9-14
 9.6 ZCOREC – Copy a Record .. 9-15
 9.7 ZCOFIL – Copy a DSS File.. 9-18

Table of Contents

 iii

Table of Contents (continued)

 Chapters

 9 Utility Subroutines (continued)
 9.8 ZRENAM – Rename a Record... 9-20
 9.9 ZDELET – Delete a Record ... 9-21
 9.10 ZUNDEL – Undelete a Record... 9-22
 9.11 ZUDALL – Undelete All Records in a DSS File.............................. 9-23
 9.12 ZDEBUG – Display Coded Information from the File or the
 IFLTAB Array .. 9-24

 10 Data Compression Subroutines
 10.1 ZSCOMP – Set Data Compression for a Record.......................... 10-3
 10.2 ZDCINF – Get Data Compression information for a Record 10-5
 10.3 ZSETCI – Set Default Data Compression for a DSS File............... 10-7
 10.4 ZPRTCI – Print the Default Data Compression for a DSS File 10-10

 11 Outdated Subroutines
 11.1 ZFPN – Form DSS Pathname.. 11-2
 11.2 ZGTDTS – Get Regular-Interval Time Series Data........................ 11-4
 11.3 ZPTDTS – Put Regular-Interval Time Series Data in a DSS File... 11-8
 11.4 ZGIRTS – Get Irregular-Interval Time Series Data 11-12
 11.5 ZPIRTS – Put Irregular-Interval Time Series Data......................... 11-17
 11.6 ZGTPFD – Get Paired Function Data .. 11-21
 11.7 ZPTPFD – Put Paired Function Data ... 11-26
 11.8 ZOPCAT – Open a Catalog File... 11-32
 11.9 ZCATLG – Catalog a DSS File .. 11-34
 11.10 ZRDPN – Read Pathnames from a Catalog File by
 Reference Number ... 11-37

 Appendices

Appendix A Example Application

Appendix B Internal Subroutines
 ZABORT – Abort Upon a Fatal Error .. B-1
 ZASSIG – Assign DSS File... B-1
 ZBDUMP – Dump Buffers... B-1
 ZBEGDT – Beginning Date... B-1
 ZBKDAT – Block Data .. B-1
 ZCAOUT – Catalog Output ... B-2
 ZCATDR – Catalog Data Reference... B-2
 ZCATFI – Catalog File .. B-2
 ZCATIT – Catalog Title ... B-2
 ZERROR – Fatal Error Processing ... B-2
 ZFSIZE – File Size.. B-2
 ZGETAD – Get Address ... B-3
 ZGETAG – Generate Tag ... B-3

Table of Contents

iv

Table of Contents (continued)

 Appendices

Appendix B Internal Subroutines (continued)
 ZGETCI – Get Compression Information.. B-3
 ZGETRW – Get Record and Word.. B-3
 ZGTAGS – Get Tag Scheme .. B-3
 ZGTREC – Get a Disk Record.. B-3
 ZHASH – Determine the Hash Code .. B-4
 ZINCBK – Increment Block ... B-4
 ZINIT – Initialize Variables .. B-4
 ZIRBEG – Irregular Beginning Date.. B-4
 ZIRDOW – Irregular Down.. B-4
 ZLAHEY – Lahey® Open Adjustment... B-4
 ZMATCA – Match Catalog Pathname Parts ... B-5
 ZMIN2R – Minutes to Real.. B-5
 ZMOVBK – Move a Data Block... B-5
 ZMULTU – Multiple User .. B-5
 ZNWBIN – New Bin .. B-5
 ZNWRIT – New Write ... B-5
 ZORDPN – Order Pathnames .. B-6
 ZOWRIT – Old Write... B-6
 ZPRTC – Print Compression... B-6
 ZPTREC – Put a Disk Record... B-6
 ZR2MIN – Real to Minutes.. B-6
 ZRDINF – Read Information Block.. B-6
 ZRREC – Read Record .. B-7
 ZRRTSB – Retrieve Regular-Interval Time Series Buffer B-7
 ZSELCA – Selective Catalog .. B-7
 ZSETCA – Set Catalog Parameters ... B-7
 ZTAGFI – Tag File .. B-7
 ZUPRTS – Update Regular-Interval Time Series B-7
 ZWREC – Write Record.. B-8

Appendix C Data Screening Use of Data Flags

Appendix D Cross Reference Listing

Appendix E Abort Error Codes

Appendix F Summary of Subroutine Calling Sequences

HECDSS Subroutines

Chapter 1 - Introduction 1-1

1 Introduction

 This manual is intended to provide programmers with information on how to interface
programs with the Hydrologic Engineering Center's Data Storage System (HECDSS or DSS),
and to provide a background on DSS and its capabilities. This document is intended to be used
both as an introduction to programming with DSS and as a reference manual.

 DSS is written in FORTRAN77 and is designed to be called by FORTRAN programs. It
is assumed that the reader has a working knowledge of FORTRAN. The DSS makes use of
several subroutines in the software library "HECLIB". The HECLIB programmer's manual is a
companion document that should be accessible when programming with DSS.

1.1 Background

 HEC developed the Data Storage System (or DSS) to meet needs for data storage and
retrieval for water resource studies. The system, which has been under development since 1979,
enables efficient storage and retrieval of time series and other data-types for which storage in
blocks of contiguous data elements is most appropriate. The DSS consists of a library of
subroutines that can be readily used with applications programs to enable retrieval and storage of
information. At present approximately twenty applications programs have been adapted in this
fashion, including the widely used program Flood Hydrograph Package (HEC-1) and the
Expected Annual Damage (EAD) program. In addition, approximately seventeen DSS utility
programs have been developed. A number of these programs are for data entry, for example
from the U.S. Geological Survey WATSTORE database, or from National Weather Service
precipitation data files. Other utility programs include a powerful graphics program, a report
generator, and a program for performing mathematical transformations. Macros, selection
screens, and other user interface features combine with DSS products to provide a set of tools
whose application is limited only by the ingenuity of the user.

 The DSS was the outgrowth of a need that emerged in the mid 1970's. During that time
most studies were performed in a step-wise fashion, passing data from one analysis program to
another in a manual mode. While this was functional, it was not very productive. Programs that
used the same type of data, or that were sequentially related, did not use a common data format.
Also, this required that each program have its own set of graphics routines, or other such
functions, to aid in the program's use.

 The Kissimmee River study performed by the HEC for the Jacksonville District
beginning in 1978 required that an orderly approach be used to properly manage the study data
and the analysis results. A large number of alternative plans and conditions were to be processed
in this project. This study gave birth to the first version of DSS. The basic design provided for
the storage of data in a standard form, independent of any particular program. The data would be
provided to the programs when it was needed, and results would be stored in the same
independent form for use by utilities and other applications programs. The early design of DSS
was conceived to support files containing many hundreds of data records, or even as many as a
few thousand. As the use of DSS expanded into real-time data storage applications, data files

HECDSS Subroutines

1-2 Chapter 1 - Introduction

were written to manage as many as 10,000 to 20,000 records. The current DSS version is now
designed for rapid storage and retrieval of files containing as few as forty to fity records, or as
many as 100,000 or more.

1.2 DSS Contrasted with Other Database Systems

 DSS is designed for the storage and retrieval of large sets, or series, of data. This
includes daily flow values, hourly precipitation measurements, rating tables, and pages of text
information. DSS is the least efficient with small sets of data, or elements, the type for which
most commercial database systems are designed. For example, such elemental data might
include employee records, accounting data, and inventory of stock.

 DSS incorporates a modified hashing algorithm and hierarchical design for database
accesses. This algorithm provides quick access to data sets and an efficient means of adding new
data sets to the database. Commercial databases usually employ a relational model. In this
model data is stored in a related manner, so that the database can be viewed essentially as a
collection of tables (composed of rows and columns). This type of system requires the
construction of a data definition file. Although a relational database requires some initial setup,
it can effectively store short data sets comprised of both characters and numbers. The structure
usually provides a advantageous method of retrieving and storing data based on the data
definition. Most of the newer systems use the ANSI ratified Structured Query Language (SQL)
to access data. (An example of SQL might be "SELECT models FROM parts WHERE
model=3210".)

 While relational databases are ideal for elemental data sets, they are not as practical for
longer series of data. DSS, however, is designed for such sets of data. A data definition file like
relational models require does not define DSS database files; thus there is no set up required by
the user. DSS data is defined by the pathname and conventions used. The type of data generally
stored in DSS does not lend itself well to a query language such as SQL (although the selective
catalog feature has some similar capabilities). Also, the DSS is made up of a set of utility
programs and application programs, whereas commercial databases are typically accessed by one
main program.

1.3 General Information

 Direct access files are used for DSS data storage. The user conventionally names these
files. Such a file cannot be directly viewed or accessed by programs that do not interface to the
DSS. A DSS file does not need to exist before the first DSS subroutine (ZOPEN) is called; it
will be created if it is not present. Nor are DSS files initialized or set up prior to use.

 Data within a database file is stored in blocks, or records, and a unique identifier called a
"pathname" identifies each record. Each time data is stored or retrieved; its pathname must be
given. Along with the data, information about the data (e.g., units of the data) is stored in an

HECDSS Subroutines

Chapter 1 - Introduction 1-3

internal "header". The DSS automatically stores the name of the program writing the data, the
number of times the data has been written, and the last write date and time.

 Through information contained in the pathname and internal header, the data is self-
documented. That is, no additional information is required to identify it. This feature of the
database allows information to be recognized and understood years after it was stored.

 Data of most any type, using a pathname of any structure (up to eighty characters), can be
stored by DSS. To facilitate the ability of application and utility programs to work with and
display data, standard record conventions were developed. These conventions define what
should be contained in a pathname, how data is stored and what additional information is stored
along with the data. For regular-interval time series data (e.g., hourly data), the conventions
specify that data are stored in blocks of a standard length, uniform for that time interval, with a
pathname that contains the date of the beginning of the block and the time interval. The
conventions identify how a pathname for that data should be constructed. Conventions have
been defined for regular and irregular interval time series data, paired (curve) data, and text
(alphanumeric) data. Conventions for other types of data have been proposed.

 A major component of the DSS conventions is the structure of the pathname. All
conventions segment the pathname into six parts. Parts are referenced by the letters A, B, C, D,
E, and F, and delimited by a slash "/", as follows:

/A/B/C/D/E/F/

An example pathname that follows the time-series convention is:

/ALLEGHENY/KINZUA/FLOW-RES IN/01JAN1972/1DAY/OBS/

 A non-standard convention may be used to store and retrieve data from a DSS database
file by applications programs for which it is defined. However DSS utility programs (DSSUTL
and DSPLAY) will have only limited to the data. Such data can be copied, tabulated, renamed,
etc. It cannot be edited or graphically displayed. The non-standard convention does not have to
have a segmented pathname as shown above, although it is recommended. A pathname that does
not follow the standard conventions might be:

/DATA SET 5-A/

Although the beginning and ending slash in this pathname is not required, it is highly
recommended because the slashes identify the string as a pathname, and allow limited use of the
record in utility programs. A preferable modification of this pathname would be:

/DATA SET 5-A//////

 In order to maximize the effectiveness of a database, several users should be able to
access the same database file at the same time. For example, a flood forecast model might need
to retrieve data from the file at the same time data elsewhere in the file is being updated. To do

HECDSS Subroutines

1-4 Chapter 1 - Introduction

this, the database must incorporate a method of handling multiple users of the same file at
virtually the same time. A DSS multiple user scheme accomplishes this by a first come - first
served approach. When a program requests to write to the file, the DSS software will queue that
request and hold it until all prior requests are completed. Typical delays take only a fraction of a
second and are not detectable by users. This feature does not require any added programming;
the DSS accomplishes multiple user access internally.

 A DSS version identifier is stored internally along with each DSS file. The version is in
the form "6-FG", where the number portion (e.g., 6) indicates the file structure, the first letter
signifies moderate software modifications or a collection of minor changes, and the last letter
connotes minor changes. DSS software is not compatible with files that were created with a
different number version (e.g., a file version of 4 is not compatible with software with a version
of five). (On HARRIS "H series" computers, DSS Version 6 software will access DSS Version 4
files.) The DSS version is printed in the ZOPEN statement and in the catalog file.

1.4 A Short Description of How DSS Works

 DSS Version 6 utilizes a modified hash algorithm based upon the pathname to store and
retrieve data. This structure allows the DSS to "jump" to the location of the data in the file based
upon a disk address determined from the pathname's hash code. The DSS does its own blocking,
providing the maximum use of disk space while allowing varying lengths for data records.

 The first portion of a DSS file is the "permanent section" of the file. This area contains
information about the DSS file, such as its size, how many records are contained in it, and the
amount of inactive space. Following the permanent section is the "hash table". When retrieving
data, the DSS computes a hash code from the pathname. This code points to a location in the
hash table, which contains the disk address of the record's "pathname bin". The pathname bin
contains pathnames that have the same hash code and the disk addresses of their data sets. If
there are more pathnames with the same hash code than that which will fit in the bin (typically
five), an "overflow bin" is used for the remainder of the pathnames. The hash code size is
usually adjusted so there is few overflow bins. This structure allows most data to be retrieved in
three or four disk accesses. These accesses are to the hash table, the pathname bin (and possibly
an overflow bin), and the data record.

 The process for storing data operates in a similar same manner. First it is determined if
the data record already exists. If it does, then the existing data area is written over with the new
data (unless the new data record size is larger). If the record does not exist, then the data is
appended to the end of the file, and the appropriate address and information are added to the
hash table and pathname bin. The address buffers are structured in such a way that if an abort
occurs (e.g., a system crash) during a write operation, only the data record being written will be
lost.

 The structure described above is for a "dynamic" hash table. It provides for a wide range
in the number of records in a DSS file while efficiently balancing disk space and record access
times. A variation in this algorithm is for "stable" files. In a stable file, a hash table is not
utilized. Instead, the pathname hash code indicates directly the location of the pathname bin

HECDSS Subroutines

Chapter 1 - Introduction 1-5

without having to access an intermediate table. In this type of file, all pathname bins are pre-
allocated when the file is first created. A stable type file saves one disk access for each record,
but it causes the DSS files to be large when they are first opened and can be less efficient with
disk space, especially when there is less than the optimum number of records in the file. This
method is intended for somewhat stable databases that do not frequently change in size (e.g., a
master database file).

 The hash code size can be adjusted for a new database to optimize storage and retrieval
of data according to the expected number of records in the file. It should be noted that any of the
sizes will operate with any number of records, but an incorrect size will not be as efficient as the
appropriate one. When a user squeezes a database file with the program DSSUTL, the size
parameter is automatically adjusted based on the number of records in the file at that time. The
possible sizes are:

Size Name

Hash Size

Ideal Number
of Records

Target Range
of Records

Tiny 8 20 1 - 50
Extra-Small 32 50 1 - 200
Small 128 200 100 - 1,000
Medium (default) 512 1,000 200 - 5,000
Large 1024 4,000 1,000 - 10,000
Extra-Large 2048 10,000 2,000 - 20,000
Huge 4096 20,000 5,000 - 50,000
Extra-Huge 8192 50,000 >25,000

 The experienced user who desires control over the optimization of database files
generally sets the table type and size. The default parameters are sufficient for most users.
These parameters may be set by a call to ZSET prior to opening a new file with ZOPEN, or by
the "SQUEEZE" or "OPEN" commands in DSSUTL.

 The DSS software has been tested with database files containing over 200,000 records on
MS-DOS and other computers. With larger files, use of the catalog becomes impracticable and
all references to records should be made with their pathnames only. (When a catalog reference
number is used, a sequential search is made through the catalog file for the pathname
corresponding to that number. This search can take a long time for large catalogs.) When a
correct table size is selected, the DSS shows little degradation in storing or retrieving records
from a very large file. However, such large files are not recommended because of general
computer limitations, such as the backup and copying of those files.

1.5 Programming with DSS

1.5.1 Opening and Closing DSS Files

 DSS was designed to be consistent with the style set by the FORTRAN77 standards.
Before data can be accessed in a DSS database file, the file must first be opened with subroutine
ZOPEN. After all transactions are completed, the file is closed with subroutine ZCLOSE. Any

HECDSS Subroutines

1-6 Chapter 1 - Introduction

calls to store or retrieve data without the file opened by ZOPEN will result in an error.
Generally, a DSS file should not be opened more than once during the execution of a program.
Never open or close a DSS file using a FORTRAN OPEN or CLOSE statement; DSS files must
only be opened by ZOPEN and closed by ZCLOSE.

 Programs can access more than one DSS file simultaneously. For example, data can be
retrieved from one DSS file and stored in another. The first file opened by DSS will be
connected to Unit 71, and then the second will be connected to Unit 72, etc. Calling ZSET prior
to ZOPEN can modify the unit number. A separate IFLTAB array is needed for each opened
DSS file.

1.5.2 The IFLTAB Array

 Programs accessing DSS must provide an array named IFLTAB for each DSS file
opened. This array holds file pointers and parameters, and it can be viewed in a similar manner
to a FORTRAN unit number. IFLTAB is an integer array that is dimensioned to 300
INTEGER*4 words or 600 INTEGER*2 words. On HARRIS "H series" computers, where DSS
Version 4 files might be accessed, the array must be dimensioned to 1200 INTEGER*3 words.
The IFLTAB array must not be altered after the DSS file has been opened. A separate IFLTAB
array is needed for each DSS file opened concurrently.

 Certain elements in IFLTAB contain key flags that are checked frequently by the DSS. If
one of these flags has changed, then memory has been overwritten and the array is corrupted.
When this occurs an error message is printed and the program is aborted. If this error occurs, it
must be corrected before further work is done (bounds checking is useful for this).

1.5.3 DSS Subroutines

 Higher-level subroutines are available to store and retrieve time series data, paired
(curve) data, and text data. Time series data is composed of two categories: regular-interval and
irregular-interval data. For regular-interval time series data, the date and time of each data value
is implied by its position within the record. For irregular-interval time series data, each data
value has its own date and time stamp associated with it. Regular interval time-series data is
stored by subroutine ZSRTS or ZSRTSX and is retrieved by ZRRTS or ZRRTSX. Irregular
interval time-series data is stored by subroutine ZSITS or ZSITSX and is retrieved by ZRITS or
ZRITSX. Paired data, which usually defines a curve or set of curves, is stored by ZSPD and is
retrieved by ZRPD. Text data may be stored by subroutine ZSTEXT or ZSTXTA and retrieved
by ZRTEXT or ZRTXTA. Data that does not meet any of the conventions established may be
stored in a DSS file by calling subroutine ZWRITE and retrieved by calling ZREAD. These
subroutines should only be used when no other subroutines are available for the type of data
being used.

 Other subroutines are available for the following tasks: to set parameters, such as the
program name (ZSET); to inquire about the value of parameters (ZINQIR); to generate a

HECDSS Subroutines

Chapter 1 - Introduction 1-7

pathname (ZPATH); to get pathname parts from a input line (ZGPNP); to break a pathname
into separate parts (ZUPATH); to determine if a record exists and what its data type is
(ZDTYPE); and to provide cataloging and other utility functions (e.g., ZCAT).

1.5.4 Message Control

 DSS messages are written to FORTRAN Unit 6. This message unit number may be set to
some other number by calling the subroutine ZSET. The amount of message output can be
controlled by setting "MLEVEL" (the message level) with ZSET. This message level can vary
from zero to fifteen. Level zero will cause information to be printed only when a sever error
occurs. Most of the higher-level subroutines, such as ZSRTS, will print an internal trace for
debugging when the message level is set to nine. Message levels higher than nine are for
installing DSS on a new computer and generally do not provide any additional information for
the programmer. The default level is four, which prints the pathname whenever a record is
retrieved or stored.

1.6 Typical Order of Calling DSS Subroutines

 A typical sequence of programming instructions used to store or retrieve data in a DSS
file is as follows:

 1) The program detects that a DSS database file is to be accessed. For several HEC

application programs a "ZR" or "ZW" record in the input triggers this.
 2) The DSS file is opened by ZOPEN. The file name is often obtained from the

execution line or from the input. If ZOPEN is called in a routine that may be called
several times, a logical flag may be set to indicate that the file has already been
opened (so the file will not be opened a second time). If data values are to be stored,
the program name is set by a call to ZSET with the 'PROGRAM' parameter.

 3) A DSS pathname for the data to be accessed is constructed from information on the
"ZR" or "ZW" record. Often the subroutine ZGPNP (Get Pathname Parts) and
ZPATH (Form Pathname) are called to produce the pathname.

 4) If data values are to be stored, they are organized sequentially into an array. The data
units and type are identified. If the data is time series, the associated times are
identified.

 5) The DSS storage or retrieval subroutine is called (e.g., ZSRTS or ZRRTS).
 6) The status of the call is checked. If an error occurred, the appropriate action is taken.
 7) If data was retrieved, it is used as input for the program.
 8) The remaining sets of data are retrieved or stored, until all DSS accesses are

completed.
 9) When all DSS accesses are complete, the file is closed by ZCLOSE (often this is

called at the end of the program).

HECDSS Subroutines

1-8 Chapter 1 - Introduction

1.7 Machine Specifics

1.7.1 HARRIS Computers

 Access to DSS subroutines is accomplished by linking with the library HECLIB.
HECLIB is stored in the qualifier 2000SYSS. These subroutines are compiled without any
compiler options. A typical compilation and linking procedure is as follows:

 SAUF77 MYSOURCE
 VU.R MYPROG
 LIB 2000SYSS*HECLIB *LIBERY
 BEGIN

 The IFLTAB array must be dimensioned to 1200 INTEGER*3 words on the Harris, to
allow compatibility with DSS version 4 files. Unit 6 must be assigned to standard output prior to
calling DSS, unless the message unit is reset with subroutine ZSET.

 It should be noted that an old FORTRAN 66 version of HECLIB exists on some Harris
computers. This library does not contain the subroutines documented in this manual.

1.7.2 Microcomputers Using Microsoft® FORTRAN

 The DSS (and HECLIB) subroutines are compiled with Microsoft® FORTRAN using a
default word length of INTEGER*2. All integer arguments passed to DSS subroutines must be
this length, unless otherwise indicated. The Julian dates and the time interval passed to the time
series routines are some of the variables that must have a word length of INTEGER*4. The
IFLTAB array should be dimensioned to 600 INTEGER*2 words or 300 INTEGER*4 words.

 The DSS subroutines are distributed in the library \LIB\HECLIB.LIB. At the time of the
publication of this manual, the subroutines were compiled with Microsoft® FORTRAN Version
5.0. The following options were used to compile the library:

/Zl /FPi /Ols /4I2 /Gt80 /c

 The Microsoft® linker supplied with the FORTRAN compiler should be used to link
your program. The linker supplied with DOS should not be used, as it does not know about the
FORTRAN libraries (both linkers are named "LINK"). Typically, programs accessing DSS
require additional segments. The number of segments can be increased by the link option
/SE:number-of-segments. Generally 400 to 500 segments are needed. Occasionally the stack
size may also need to be increased. The instructions necessary to compile and link a program
with DSS might be the following:

 FL /FPi /4I2 /c MYPROG.FOR
 LINK MYPROG /SE:400 /ST:3000 /NOD /E
 Library: HECLIB+LLIBFORE

HECDSS Subroutines

Chapter 1 - Introduction 1-9

(The DSS utility programs are linked with the large memory FORTRAN library with math chip
emulation software.)

 Occasionally, large programs will require a larger environment size. The error "HEAP
SPACE EXCEEDED", obtained when executing the program, often indicates an insufficient
environment size. To increase the size, the /P and /E switches need to be added to the
COMMAND.COM command in your CONFIG.SYS file. An example of this is:

shell=c:\dos\command.com /p/e:512

More information about this may be found in your DOS manual under the COMMAND
command.

 DSS files generated with Microsoft® FORTRAN are binary compatible with software
compiled with different compilers for DOS and with most UNIX computers. A DSS file can be
copied (binary) to a UNIX computer, then used by DSS programs on that computer (or visa
versa). Software linked to the HECLIB produced after February 1991 contains file locking
features that allow multiple user access of DSS files on a networked system.

1.7.3 Microcomputers Using Lahey® FORTRAN

 The DSS and HECLIB subroutines have been compiled with Lahey® and Lahey®
extended memory (32 bit) FORTRAN. The library compiled with the regular Lahey® compiler
has a default integer word length of INTEGER*2. The library compiled with extended memory
Lahey® has a default integer word length of INTEGER*4. Because not all HECLIB subroutines
have been converted to Lahey®, it is preferred that the Microsoft® FORTRAN HECLIB be
used, if possible. The IFLTAB array must be dimensioned to 600 INTEGER*2 words or 300
INTEGER*4 words.

 The DSS library compiled with regular Lahey® FORTRAN is distributed in the file
\LIB\HECLIBL.LIB, and the library compiled with extended memory Lahey® is distributed in
\LIB\HECLIBL3.LIB. The following options are used in the F77L3.FIG file to compile the
library with extended memory Lahey®:

/n0/n7/B/C/D/nF/nH/I/nK/nL/nO/P/nQ1/R/nS/nT/W/nX/Z1

 Note that the /D option is needed so that DSS files (which are direct access) will not have
a Lahey® header. The subroutines compiled with the regular Lahey® compiler use the option
"/T" to default integer word lengths to INTEGER*2.

 DSS files generated with either Lahey® compiler are binary compatible with DSS files
created with the Microsoft compiler and with most UNIX computers. However, the Lahey®
ZOPEN may adjust the DSS file size if it has been opened by program compiled by Microsoft®.

HECDSS Subroutines

1-10 Chapter 1 - Introduction

1.7.4 UNIX Operating Systems

 The DSS and HECLIB subroutines have been compiled in several UNIX operating
systems. (Contact HEC for a current list of which UNIX computers for which DSS is available.)
 The library is compiled with a default integer word length of INTEGER*4. The IFLTAB array
should be dimensioned to 300 INTEGER*4 words.

 Generally, the library is compiled using the default compiler options. The library is
distributed in the file:

/usr/hec/lib/heclib.a

 DSS files are generally compatible across UNIX and DOS computers. However, DSS
files created by a library not converted by HEC may be incompatible with other computers.

 HECDSS Subroutines

Chapter 2 - General Subroutines 2-1

2 General Subroutines

 This chapter describes general DSS subroutines, including ZOPEN and ZCLOSE, both of
which must be called by all programs accessing DSS. ZOPEN opens (or connects) a DSS file
before any data transactions can occur. ZCLOSE closes (or disconnects) a DSS file after all
accesses to that file are complete. ZOPEN and ZCLOSE should be called once for each DSS file
accessed.

 ZFNAME adds any default extensions to a DSS file name (e.g., ".dss") and determines if
that file exists. ZFVER will determine the DSS version number of a file before it is opened with
ZOPEN.

 ZDTYPE determines if a record exists and, if it does, returns its data type (e.g., whether it
is regular-interval time series, paired data, etc.).

 ZSET provides a means of setting several DSS parameters during execution. Items, such
as the program name, and the message level (trace) may be set. ZINQIR provides a means of
determining what parameters are set to. This includes items such as the message level, the DSS
version, and the number of records in a file.

ZOPEN HECDSS Subroutines

2-2 Chapter 2 - General Subroutines

2.1 ZOPEN - Open a DSS File

Purpose:

 ZOPEN is used to open (or connect) a DSS file. If the file does not exist, ZOPEN will
create it with public access. Except for the subroutines ZFNAME, ZFVER and ZSET, ZOPEN
must be called prior to any other DSS subroutine.

 ZOPEN must be called once (and only once unless the file is closed) for each DSS file to
be accessed. DSS files cannot be opened or connected by any other means.

Calling Sequence:

CALL ZOPEN (IFLTAB, CNAME, IOSTAT)

Declarations:

 INTEGER IFLTAB(600), IOSTAT
 CHARACTER CNAME*(*)

Argument Description:

 IFLTAB Input/ IFLTAB is an array used by the DSS software to manage the
 Output file. After the DSS file has been opened, that file is referred to

in DSS subroutines by IFLTAB. Each DSS file opened must
have its own IFLTAB array, and that array must not be altered.
See Remarks section concerning the required length of
IFLTAB.

 CNAME Input/ The name of the DSS file to be opened. If the computer uses
 Output file name extensions (e.g., "db.dss"), ZOPEN will append the

default extension (".dss") to the name if it has none.

 IOSTAT Output A status parameter indicating the success of the operation. If

IOSTAT is returned with zero, then the file was opened
successfully. If IOSTAT is returned non-zero, then a fatal
error occurred, and the file was not opened. Do not attempt to
retrieve or store data if IOSTAT is non-zero. The possible
values are:

 IOSTAT Description
 0 Successful open.
 -1 Unable to create the DSS file.
 -2 Unable to connect to the file.
 -3 Incompatible DSS versions.
 -10 No filename was provided.

HECDSS Subroutines ZOPEN

Chapter 2 - General Subroutines 2-3

 IOSTAT Description
 >0 Unable to OPEN the file. See the IOSTAT

parameter for the OPEN statement of your
FORTRAN manual.

Remarks:

 For DSS Version 6, IFLTAB must have a length of 300 long integer words, or 600 short
integer words. On HARRIS computers, its length must be 1200 (short) integer words for
compatibility with version 4 of DSS. Hereafter, its length will be shown as 600 (short) integer
words.

 ZOPEN will create the DSS file if it does not exist. Subroutine ZFNAME can be called
prior to ZOPEN to determine if the file exists.

 ZOPEN must be called once per DSS file used. ZCLOSE must be called when all
references to that file are complete. After ZOPEN, a DSS file is referred to by use of the
IFLTAB array. By default, the first DSS file opened will be connected to Unit 71, the second to
Unit 72, etc. This parameter may be changed by a call to ZSET.

 Do not attempt to open a DSS file with an OPEN statement, or ASSIGN or ATTACH a
DSS file, as ZOPEN will accomplish this. To do so may destroy the DSS file (IBM mainframes
are an exception).

 The DSS version of a file (e.g., 5-BD or 6-FA) can be determined prior to calling ZOPEN
with subroutine ZFVER. Once the file has been opened, a call to ZINQIR will obtain the
version.

Example:

 INTEGER IFLTAB(600)
 CHARACTER CNAME*64, CNNAME*64
 LOGICAL LEXIST
 C
 C Connect unit 6 to the standard output via ATTACH.
 CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CNAME, ISTAT)
 C Get the name of the DSS file from the execution line via ATTACH.
 CALL ATTACH (IDUM, 'DSSFILE', ' ', 'NOP', CNAME, ISTAT)
 CALL ATTEND
 C
 C Because data is to be retrieved, make sure the DSS file exists
 C before calling ZOPEN (as ZOPEN would create it).
 CALL ZFNAME (CNAME, CNNAME, NNAME, LEXIST)
 IF (.NOT.LEXIST) THEN
 WRITE (6,10) CNNAME
 10 FORMAT (' ** The DSS File does not exist: ',A)

ZOPEN HECDSS Subroutines

2-4 Chapter 2 - General Subroutines

 GO TO 900
 ENDIF
 C
 CALL ZOPEN (IFLTAB, CNAME, IOSTAT)
 IF (IOSTAT.NE.0) THEN
 WRITE (6,20) IOSTAT, CNAME
 20 FORMAT (' *** Error in opening DSS file, status:',I5,
 * ', Name: ',A)
 GO TO 900
 ENDIF

HECDSS Subroutines ZCLOSE

Chapter 2 - General Subroutines 2-5

2.2 ZCLOSE - Close a DSS File

Purpose:

 ZCLOSE is used to close (or disconnect) a DSS file after all DSS transactions with that
file have been completed. ZCLOSE must be called once (and only once) for each DSS file
opened.

Calling Sequence:

CALL ZCLOSE (IFLTAB)

Declarations:

 INTEGER IFLTAB(600)

Argument Description:

 IFLTAB Input/ The workspace used by DSS to manage the file. This is the
 Output same array that is used in the ZOPEN call and most other DSS

subroutines.

Remarks:

 ZCLOSE "zeros" the IFLTAB array so that another DSS file can be opened with it
afterwards. Once a file is closed, it must be reopened before it can be accessed again.
Information about the file size and number of records is written to standard output by ZCLOSE.

ZFNAME HECDSS Subroutines

2-6 Chapter 2 - General Subroutines

2.3 ZFNAME - Add Filename Extension and Determine if the File Exists

Purpose:

 On computers where file name extensions are used, ZFNAME will add the default
extensions to a DSS file name (unless the file name already has an extension) and determine if
that file exists. File name extensions include ".DSS" on MS-DOS computers and ".dss" on Unix
machines. ZFNAME is an optional subroutine, as ZOPEN will automatically add extensions to
the name.

Calling Sequence:

CALL ZFNAME (CNAMIN, CNAME, NNAME, LEXIST)

Declarations:

 CHARACTER CNAMIN*(*), CNAME*64
 INTEGER NNAME
 LOGICAL LEXIST

Argument Description:

 CNAMIN Input The DSS filename. This is generally the name a user enters.

The name may or may not have extensions.

 CNAME Output The DSS filename with the default extensions added to it. If

the file name already has an extension, or the computer does
not use extensions, no extension will be added.

 NNAME Output The number of non-blank characters in CNAME (i.e., its

length).

 LEXIST Output A logical variable set to .TRUE. if the file exists, or .FALSE. if

it does not.

Remarks:

 An extension in the name is defined as a period and any characters that follow it. On
MS-DOS computers the default extension is ".DSS". However, a DSS file does not necessarily
have to have that extension (although DSS utility programs will not "highlight" files that do not
have the ".DSS" extension). Any extension or no extensions are legal for a DSS file name, as
long as a period appears in the name. For example, "MYDB.DAT", and "MYDB." are allowable
names, whereas "MYDB" (with no period) will have ".DSS" automatically added to it. The
default extension of the catalog file is ".DSC".

HECDSS Subroutines ZFNAME

Chapter 2 - General Subroutines 2-7

 Similarly, UNIX computers use a default extension of ".dss", and the catalog has an
extension of ".dssc". No extension will be added if the file name contains a period within it. On
computers where extensions are not commonly used (e.g., HARRIS), ZFNAME will not change
the name (CNAME will equal CNAMIN), and will only determine if the file exists.

Example:

 C Open a DSS file for retrieving data.
 C
 CHARACTER CNAMIN*64, CNAME*64
 LOGICAL LEXIST
 C
 CALL ATTACH (0, 'DSS', ' ', 'NOP', CNAMIN, ISTAT)
 . . .
 C
 IF (CNAMIN(1:1).EQ.' ') THEN
 WRITE (6,*)'No DSS file name provided!'
 GO TO 900
 ENDIF
 C
 CALL ZFNAME (CNAMIN, CNAME, NNAME, LEXIST)
 C
 IF (.NOT.LEXIST) THEN
 WRITE (6,20) CNAME(1:NNAME)
 20 FORMAT (' The DSS File ',A,' Does Not Exist!',/
 * ' The DSS file must exist in order to retrieve data.')
 GO TO 900
 ENDIF
 C
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)
 C

ZDTYPE HECDSS Subroutines

2-8 Chapter 2 - General Subroutines

2.4 ZDTYPE - Determine a Record's Data Type and if it Exists

Purpose:

 ZDTYPE determines if a record exists and, if it does, returns its data type (e.g., whether it
is regular-interval time series, paired data, etc.). If the record does not exist, ZDTYPE will
examine the pathname in an attempt to determine if it follows the time-series conventions.

Calling Sequence:

CALL ZDTYPE (IFLTAB, CPATH, NSIZE, LEXIST, CDTYPE, IDTYPE)

Declarations:

 INTEGER IFLTAB(600), NSIZE, IDTYPE
 CHARACTER CPATH*80, CDTYPE*3
 LOGICAL LEXIST

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the record to examine. The length of CPATH

is implicit (e.g., CPATH(1:NPATH)).

 NSIZE Output The size of the data portion of the record, given relative to

floating point values (i.e., if the record consisted of real
numbers). If the record does not exist, NSIZE is returned as
zero.

 LEXIST Output logical variable set to .TRUE. if the record exists.

 CDTYPE Output The character representation of the data type. This variable

corresponds to the data type displayed in the catalog file and as
shown below.

 IDTYPE Output An integer flag indicating the data type. The currently defined

data types are as follows:

 IDTYPE CDTYPE Data Type
 0 UND Undefined
 100 RTS Regular-Interval Time Series Data
 110 ITS Irregular-Interval Time Series Data
 200 PD Paired Data
 300 TXT Text Data

HECDSS Subroutines ZDTYPE

Chapter 2 - General Subroutines 2-9

Remarks:

 ZDTYPE replaces the function of subroutine ZCHECK. The data type is stored by the
standard storage routines (e.g., ZSRTS), while ZWRITE sets the data type to 0 (undefined).
Data types cannot be changed or set externally.

Example:

 C Tabulate different types of data in a DSS file.
 C
 NTEGER IFLTAB(600)
 CHARACTER CPATH*80, CDTYPE*3
 LOGICAL LEXIST
 C . . .
 C
 C Open the DSS file.
 CALL ZOPEN (IFLTAB, ...
 C
 C Get the pathname.
 WRITE (6,*) 'Enter DSS Pathname'
 READ (5, 20, END=800, ERR=900) CPATH
 20 FORMAT (A)
 C
 C Determine if the record exists, and its data type.
 CALL ZDTYPE (IFLTAB, CPATH, NSIZE, LEXIST, CDTYPE, IDTYPE)
 C
 C Print a message if the record does not exist, and it
 C is not time series. (If the data is time series with a time
 C window, the "D" (date) part is not required; thus the record
 C may exist with another D part.)
 IF ((.NOT.LEXIST).AND.(CDTYPE(2:3).NE.'TS')) THEN
 WRITE (6,40) CPATH
 40 FORMAT (' Record Does Not Exist: ',A)
 GO TO 200
 ENDIF
 C
 IF (IDTYPE.EQ.100) THEN
 CALL ZRRTS (...
 C
 ELSE IF (IDTYPE.EQ.110) THEN
 CALL ZRITS (...
 C
 ELSE IF (IDTYPE.EQ.200) THEN
 CALL ZRPD (...
 C
 ELSE IF (IDTYPE.EQ.300) THEN
 CALL ZRTEXT (...

ZDTYPE HECDSS Subroutines

2-10 Chapter 2 - General Subroutines

 C
 ELSE
 CALL ZREAD (...
 C
 ENDIF

HECDSS Subroutines ZSET

Chapter 2 - General Subroutines 2-11

2.5 ZSET - Set DSS Parameters

Purpose:

 ZSET provides a means of resetting several default parameters used by DSS. This
includes items such as the name of the program storing data, the DSS file unit number to use, etc.
ZSET may be called at any time (before or after ZOPEN).

Calling Sequence:

CALL ZSET (CITEM, CSTR, INUMB)

Declarations:

 INTEGER INUMB
 CHARACTER CITEM*4, CSTR*6

Argument Description:

 CITEM Input The item to be set. Items may be abbreviated to the first four

characters of the name. A list of the available items follows
(see Summary Table, page 2-12).

 CSTR Input A character string containing the value to be set. If the

parameter to be set is an integer number, this argument is
ignored (and can be ' ').

 INUMB Input The integer number containing the value to be set. If the

parameter to be set is a character string, this argument is
ignored.

Remarks:

 The precision and tolerance parameters are completely independent of each other, as are
the size and table type parameters. The size parameter is set more frequently than the table type.
The message unit (MUNIT) must be connected to a terminal or console to set the catalog status
or squeeze status. If a file has system read only permission, READONLY is set to ON
automatically by ZOPEN. The exclusive use mode may not be available on all computers. The
exclusive write lock mode should be set sparingly.

ZSET HECDSS Subroutines

2-12 Chapter 2 - General Subroutines

Summary Table:

 Default
CITEM Description CSTR INUM

'PROGRAM' Sets the name of the program to store with
the data.

'Undefi'

'UNIT' Sets the unit number of the next DSS file to
be opened (via ZOPEN).

71

'MLEVEL' Sets the message level (trace) for MUNIT. 4
'MUNIT' Sets the unit number of the message output

(standard out).

6
'80COL' Abbreviates the size of messages to fit within

80 columns.

'OFF'
'TAG' Sets the tag of the next record to be written.
'PRECISION' Sets the precision of the data for use by utility

programs.

0
'TOLERANCE' Sets the tolerance of regular-interval times

series data to prevent overwriting unchanged
data.

0
'PROTECT' Protects existing records from being written

over.

'OFF'
'READONLY' Places the file in a "read only" mode. 'OFF'
'EXCLUSIVE' Places the file in an "exclusive use" mode. 'OFF
'WLOCK' Places the file in an "exclusive write lock"

mode.

'OFF'
'SIZE' Sets the internal hash table size for a new file. 'MEDIUM' 1000
'TABLE' Indicates whether a dynamic or stable hash

table should be used for a new file.

'DYNAMIC'
'COMP' Re-compresses regular-interval time series

data when ZCOFIL is called.

'OFF'
'CAST' Catalog Status - Causes a status line to be

displayed during a catalog.

'OFF'
'SQST' Squeeze Status - Causes a status line to be

displayed during a file copy.

'OFF'
'MAP' Causes a catalog map to be created when a

new catalog is generated.

'OFF'
'MAPUNIT' Sets the unit number to use for the catalog

map file.

Parameters

 PROGRAM This sets the name of the program, which is stored with the data. The

name can be up to six characters long. This call should be made prior to
calling any DSS storage subroutines. The default value is 'Undefi'.

HECDSS Subroutines ZSET

Chapter 2 - General Subroutines 2-13

 UNIT This sets the unit number of the next DSS file to open. In order to use
this parameter, ZSET must be called prior to ZOPEN for that file (you
cannot change the unit number once the file has been opened). This
setting will not change the unit number of other DSS files to be opened.
The default unit number of the first DSS file opened is 71, the second is
72, and for subsequent files the unit number is incremented by one.

 MLEVEL This sets the level of messages to be written to the output unit (MUNIT).

The level ranges from "abort" only messages to internal trace messages.
Level 4 is the default. Levels greater than five provide debugging
messages for some DSS subroutines (see documentation on the specific
subroutine for debug levels). Level ten and above are used for first time
installation of DSS on a new computer (and will generate several pages
of cryptic trace for one write). A higher level incorporates all lower
level messages.

 Level Type of Messages
 0 Messages from an abort only.
 1 ZOPEN and ZCLOSE statements.
 2 Error and warning messages.
 3 ZWRITE messages.
 4 ZREAD messages (default).
 7 Beginning level of debugging messages.
 8 Intermediate level of debugging messages.
 9 Maximum level of debugging messages.
 >10 Internal DSS trace (don't use unless you know what you

are doing).

 MUNIT This sets the unit number for messages (the standard output). The

default is Unit 6. The unit must be opened prior to calling ZSET.

 80COL When CSTR is 'ON', DSS output messages (e.g., ZWRITE and ZREAD

messages) are abbreviated so that they will (usually) fit within eighty
columns. If pathnames are long, the eighty-column size may be
exceeded.

 TAG This causes CSTR to be the tag for the next new record written (or

multiple records for a single call to store time-series data). The tag can
be up to eight characters long. It must begin with a non-numeric
character and cannot have embedded blanks or commas. See Chapter 7
for more information on tags. Default tags will be used for subsequent
writes (ZSET must be called prior to every write where a tag is to be
set).

 PRECISION This stores a precision value to be used by utility programs when

tabulating the record. The precision is a number between one and seven
that represents the minimum number of places to the right of the decimal

ZSET HECDSS Subroutines

2-14 Chapter 2 - General Subroutines

 that must be displayed. If the precision is two (2), the data will be
displayed to the nearest hundredth; three (3) indicates to the nearest
thousandth. A zero indicates no precision value is set. The precision is
set only for the next record written (i.e., call ZSET just prior to each
write). Subsequent writes will not store a precision value unless ZSET
is called again.

 TOLERANCE When storing regular-interval time series data (ZSRTS), this setting

provides a means of preventing existing data from being overwritten
with the same data but at a possibly lesser precision. This is designed to
preserve the precision of unchanged data during editing. The tolerance
is a number between zero and seven that indicates the accuracy of data
by the number of places to the right of the decimal. For example, if a
tolerance of two is set, a data value that was within a hundredth of the
value currently stored would not replace that value (138.76 would not
replace 138.7574, but 138.77 would). The tolerance is set only for the
next record written (i.e., call ZSET just prior to each ZSRTS). No
tolerance is checked for subsequent writes (unless ZSET is called again).
This setting is ignored for new records.

 PROTECT When CSTR is 'ON', this prevents the next record to be written from

writing over an existing record (with the same pathname). The
protection is only for the next record written (i.e., call ZSET just prior to
each write). Existing records for subsequent writes are not protected
(unless ZSET is called again).

 READONLY When CSTR is 'ON' prior to the call to ZOPEN, this will cause the next

file opened to be placed in a "read only" mode. Nothing can be written
to the file in this mode. This setting does not prevent other programs
from writing to the file. This flag applies only to the next file opened;
subsequent files opened will be in a read/write mode unless ZSET is
called again.

 EXCLUSIVE When CSTR is 'ON' prior to a call to ZOPEN, this will cause the next

file opened to be placed in a "exclusive use" mode. No other programs
can access the file in this mode. This flag applies only to the next file
opened; subsequent files opened will be opened normally unless ZSET
is called again.

 WLOCK When CSTR is 'ON' prior to the call to ZOPEN, this will cause the next

file opened to be placed in a "exclusive write lock" mode. In this mode
the file is placed in an exclusive use mode, and portions of the main
address tables are kept in memory, causing writing to be slightly faster.
If the file is not correctly closed (a system crash or power failure), the
file will have to be squeezed by DSSUTL prior to being used. No other
programs can access the file in this mode. This flag applies only to the

HECDSS Subroutines ZSET

Chapter 2 - General Subroutines 2-15

 next file opened; subsequent files will be opened normally unless ZSET
is called again.

 SIZE This parameter sets the size of the internal hash-address table (according

to the expected number of records) for new files. The expected number
of records should be passed as INUMB. Alternatively, the size name, as
describe in the DSSUTL open command documentation, can be passed
in CSTR instead of INUMB. This call is ignored for existing files.

 TABLE This parameter sets the internal hash-address table type for new files.

CSTR can be either 'DYNAMIC' or 'STABLE'. A stable table is
primarily intended for databases that do not change in size frequently. A
dynamic table is intended where the file size may vary considerably or
where the ultimate file size is not known. A stable table reserves a large
portion of space at the beginning of the file for the table (which is
incrementally added in a dynamic table). This call is ignored for
existing files.

 COMP When set to 'ON', prior to a call to ZCOFIL, this will cause regular-

interval time series data to be "re-compressed" as it is copied. The
compression method used will be that which matches pathname parts set
in the file's compression header. If the file does not have a compression
header, then all the data will be "un-compressed".

 CAST When set to 'ON', prior to a call to ZCAT, this will cause a status line to

be written to MUNIT during cataloging. The status line is updated every
ten records. MUNIT must be connected to a terminal or console (not a
file) during the catalog.

 SQST When set to 'ON', prior to a call to ZCOFIL, this will cause a status line

to be written to MUNIT during copying. The status line is updated
during the copy. MUNIT must be connected to a terminal or console
(not a file) during the copy.

 MAP When set to 'ON', a map output is written to unit MAPUNT when a new

catalog is created. See the ZCAT subroutine documentation for more
information. Before setting MAP to 'ON', call ZSET setting MAPUNT
to a valid unit number. MAP is set to 'OFF' by default.

 MAPUNIT This sets the unit number for the MAP output when MAP is 'ON' and a

new catalog is created. The unit must have been previously opened. See
the ZCAT subroutine documentation for further information.

ZSET HECDSS Subroutines

2-16 Chapter 2 - General Subroutines

Example:

 C If this is a new file, set the hash size.
 CALL ZFNAME (CN, CNAME, NNAME, LEXIST)
 C
 IF (.NOT.LEXIST) THEN
 CALL ZSET ('SIZE', ' ', 5000)
 ENDIF
 C
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C Set the program name and output to 80 columns.
 CALL ZSET ('PROG', 'DATSTR', IDUM)
 CALL ZSET ('80COL', 'ON', IDUM)
 C
 C . . .
 C
 C Store regular-interval time series data.
 C Set the tag and the precision.
 MAXPRE = 0
 NVALS = 0
 100 CONTINUE
 READ (9,120,END=200) CLINE
 120 FORMAT (A)
 C Parse the line.
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 C
 DO 140 I=1,NFIELD
 NVALS = NVALS + 1
 VALUES(NVALS) = XREAL (CLINE, IBF(I), ILF(I), IERR)
 IF (IERR.NE.0) GO TO 910
 N = INDEX (CLINE(IBF(I):IEF(I), '.')
 IF (N.GT.0) THEN
 J = ILF(I) - N
 IF (N.GT.MAXPRE) MAXPRE = N
 ENDIF
 140 CONTINUE
 C
 C Go back and read the next value.
 GO TO 100
 C
 C All the data has been read; store it.
 CALL ZSET ('TAG', 'NF-FLOW', IDUM)
 CALL ZSET ('PREC', ' ', MAXPRE)
 IF (LDEBUG) CALL ZSET ('MLEVEL', ' ', 9)
 CALL ZSITS (IFLTAB, . . .

HECDSS Subroutines ZINQIR

Chapter 2 - General Subroutines 2-17

2.6 ZINQIR - Inquire About DSS Parameters

Purpose:

 ZINQIR provides a means of determining what parameters or flags are set to. This
includes items such as the message level, a record's last written date and time, and the number of
records in the file.

Calling Sequence:

CALL ZINQIR (IFLTAB, CITEM, CSTR, INUMB)

Declarations:

 INTEGER IFLTAB(600), INUMB
 CHARACTER CITEM*4, CSTR*(*)

On MS-DOS microcomputers, INUMB must be INTEGER*4: INTEGER*4 INUMB

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CITEM Input The item to inquire about. Items may be abbreviated to four

characters. A list of available items follows.

 CSTR Output If the item inquired about is returned as a character string, it is

returned in this variable.

 INUMB Output If the item inquired about is returned as an integer number, it is

returned in this variable.

Remarks:

 ZINQIR will either return a character string, or an integer number; the other variable will
be unchanged. Several items refer to the last record read (e.g., record version). If no records
have been accessed, the variables will be undefined. The information returned is current to the
time the file was last accessed by your program. If someone else is writing to the file at the same
time, and you have not accessed the file for some time, some of the information returned may not
be current (e.g., the number of records in the file).

ZINQIR HECDSS Subroutines

2-18 Chapter 2 - General Subroutines

Summary Table:

CITEM Description Variable
'80COL' Returns 'ON' if the abbreviate messages to eighty

column flag is set.

CSTR
'DEAD' Returns the percentage of dead space in this file. INUMB
'FDATE' Returns the creation date of the DSS file. CSTR
'FVERS' Returns the DSS version of the file when it was created. CSTR
'HSIZE' Returns the hash table size. INUMB
'MLEVEL' Returns the message level. INUMB
'MUNIT' Returns the unit number used for message output. INUMB
'NAME' Returns the name of DSS file. CSTR
'NREC' Returns the number of records in the file. INUMB
'PRECISION' Returns the precision setting of the last record read. INUMB
'PROGRAM' Returns the name of the program for the last record read. CSTR
'FLAGS' Returns the data flag for the last record read. INUMB
'RDATE' Returns the last write date of the last record read. CSTR
'READONLY' Returns 'ON' if the file is in a read only mode. CSTR
'RTIME' Returns the last write time of the last record read. CSTR
'RVERS' Returns the version number of the last record read. INUMB
'SIZE' Returns the size of the DSS file in kilobytes. INUMB
'TABLR' Returns the hash table type of the file. CSTR
'TAG' Returns the tag of the last record read. CSTR
'UNIT' Returns the unit number of the DSS file. INUMB
'VERSION' Returns the DSS software version. CSTR

Parameters

 80COL This returns 'ON' in CSTR if the abbreviate message output to eighty

columns flag is set. If the flag is not set, 'OFF' is returned.

 DEAD This returns in INUMB the percentage of inactive space in the file,

rounded to the nearest integer.

 FDATE This returns in CSTR the creation date of the DSS file, as recorded in the

file header. The date is in a seven-character military style form (e.g.,
20MAR84).

 FVERS This returns in CSTR the DSS version of the file when it was created, or

last squeezed. The version is returned in a form similar to "6-FC".

 HSIZE This returns in INUMB the hash table size as a number of one through

eight. The eight sizes correspond to the sizes discussed in the DSSUTL
open command, where one represents 'tiny', and eight 'extra-huge'.

HECDSS Subroutines ZINQIR

Chapter 2 - General Subroutines 2-19

 MLEVEL This returns in INUMB the current message level. See the MLEVEL
documentation in ZSET for information on the different levels.

 MUNIT This returns in INUMB the unit number for writing messages.

 NAME This returns in CSTR the name of the DSS file.

 NREC This returns in INUMB the number of records in the file, according to

the last access (if someone else is writing to the file at the same time, the
actual number may be different).

 PRECISION This returns in INUMB the precision setting of the last record read. If

INUMB is zero, no precision has been set for that record. See ZSET for
more information.

 PROGRAM This returns in CSTR the name of the program that stored data in the last

record read.

 FLAGS This returns in INUMB the data flag of the last record read. INUMB

will be one if data flags are used, otherwise it will be returned as zero.

 RDATE This returns in CSTR the last write date of the last record read. The date

is returned in a military style (e.g., 20MAR78).

 READONLY This returns 'ON' in CSTR if the file mode is set to read only.

 RTIME This returns in CSTR the last write time of the last record accessed. The

time is given in twenty-four hour clock time (e.g., 1630 for 4:30 p.m.).

 RVERS This returns in INUMB the version number of the last record accessed.

The version number corresponds to the number of times that record has
been written to.

 SIZE This returns in INUMB the size of the DSS file in kilobytes (according

to the last access).

 TABLE This returns in CSTR 'DYNAMIC' if the hash table is dynamic, or

'STABLE' if the table type is stable.

 TAG This returns in CSTR the tag of the last record read.

 UNIT This returns in INUMB the unit number of the DSS file.

 VERSION This returns in CSTR the current DSS software version. Versions are in

a form such as "6-EA".

ZFVER HECDSS Subroutines

2-20 Chapter 2 - General Subroutines

2.7 ZFVER - Get a DSS File's Version

Purpose:

 ZFVER determines the software version for an un-opened DSS file. This routine is used
primarily in environments where older (incompatible) DSS version files may exist (for example
both DSS Versions 5 and 6 exist on MS-DOS computers). The software version for an opened
DSS file may be obtained by the subroutine ZINQIR.

Calling Sequence:

CALL ZFVER (CNAME, CVER, IVER)

Declarations:

 CHARACTER CNAME*64, CVER*4
 INTEGER IVER

Argument Description:

 CNAME Input The name of the DSS file. The default file name extension will

be used if no extension is passed (and the computer system
uses extensions). The file must be un-opened.

 CVER Output The four-character DSS version identifier (e.g., "6-FC"). If the

file is not a DSS file, CVER will be returned blank filled.

 IVER Output The DSS file version number, or status parameter if the file is

not a DSS file. The possible values returned are:

 IVER Description
 -3 The file is not a DSS file.
 -2 Unable to access the file (but it exists).
 -1 The file does not exist.
 4 Version 4 file
 5 Version 5 file
 6 Version 6 file

Remarks:

 ZFVER calls ZFNAME to determine if the file exists. If it does, it is temporarily opened,
and key file identifiers are read and examined. ZFVER can also be used to determine if a file is
a DSS file before calling ZOPEN.

HECDSS Subroutines ZFVER

Chapter 2 - General Subroutines 2-21

Example:

 C Open a DSS file. It is ok to open a new DSS file, but
 C don't open a non-DSS file, or an older version file.
 C
 CHARACTER CNAME*64, CVER*4
 C
 CALL ATTACH (0, 'DSS', ' ', 'NOP', CNAME, ISTAT)
 . . .
 C
 CALL ZFVER (CNAME, CVER, IVER)
 C
 IF (IVER.EQ.-3) THEN
 WRITE (6,20) CNAME
 20 FORMAT (' File ',A,' is not a DSS file!')
 GO TO 900
 ENDIF
 C
 IF (IVER.EQ.-2) THEN
 WRITE (6,40) CNAME
 40 FORMAT (' Unable to Access File ',A)
 GO TO 900
 ENDIF
 C
 C A IVER of -1 is ok (the file does not exist).
 C
 IF (IVER.NE.6) THEN
 WRITE (6,60) CNAME, CVER
 60 FORMAT (' The file ',A,' is a version ',A,' file',/
 * ' This program can only access DSS version 6 files.')
 GO TO 900
 ENDIF
 C
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)

 HECDSS Subroutines

Chapter 3 - Pathname Manipulation Subroutines 3-1

3 Pathname Manipulation Subroutines

 DSS records are referenced by their pathnames. A pathname consists of up to eighty
characters and is, by convention, separated into six parts. The parts are referred to by the
characters A, B, C, D, E, and F, and are delimited by a slash "/", as follows:

/A/B/C/D/E/F/

 Each pathname part may contain up to thirty-two characters, with the total length of the
pathname not exceeding eighty characters. Pathname parts may have embedded blanks (e.g.,
"RED RIVER" for the A part), but blanks prior to and following each part are removed (so that a
blank will never be adjacent to a slash).

 Valid pathname characters are the set of upper case characters, digits, the space character
and the following characters: ! $ % & () * + - . : ; < > ? [] { } \ | ~. The characters @ # = can
also be used, but are discouraged because they conflict with other uses. Invalid pathname
characters are the set of lower case characters, control characters (including the null character),
the following characters: , ' " ` ^ and the "delete" character. Any lower case characters used in a
pathname are translated to upper case by the DSS software. The forward slash (/) can only be
used as a part separator.

 Refer to the data conventions portion of the Overview section in the "HECDSS User's
Guide and Utility Program Manuals" as to what each of the parts should contain.

 Subroutine ZPATH constructs a pathname from the six-pathname parts. ZUPATH
determines the beginning and ending position and length of each part of a pathname. ZUFPN
(un-form pathname) returns each part of a pathname in a character variable. ZGPNP (get
pathname parts) obtains pathname parts from a line where the parts are identified by the part
letter and an equal sign (e.g., A=SCIOTO, B=SOUTH BEND). An example of using ZPATH,
ZUFPN, and ZGPNP is provided in the ZGPNP documentation.

 ZCHKPN examines a pathname to determine if it meets the requirements for a pathname.
This includes determining if the pathname contains seven slashes, is equal to or less than eighty
characters in length, and contains invalid characters (e.g., control codes).

ZPATH HECDSS Subroutines

3-2 Chapter 3 - Pathname Manipulation Subroutines

3.1 ZPATH - Construct a Pathname

Purpose:

 ZPATH constructs a DSS pathname from the six-pathname parts. ZPATH removes
leading and trailing blanks from each part, and inserts a slash (/) between each part and at the
beginning and end of the pathname.

Calling Sequence:

CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)

Declarations:

 CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32, CPATH*80
 INTEGER NPATH

Argument Description:

 CA Input A character string containing the A part of the pathname. The

part may be up to thirty-two characters in length. The part may
have blanks before and after the part, which will be removed
by ZPATH. Embedded blanks (e.g., "RED RIVER") are not
removed. A null part should be specified by setting the part to
all blanks (e.g., CA = ' ').

 CB Input The B part of the pathname.

 CC Input The C part of the pathname.

 CD Input The D part of the pathname.

 CE Input The E part of the pathname.

 CF Input The F part of the pathname.

 CPATH Output The completed pathname.

 NPATH Output The number of characters in the pathname.

Remarks:

 ZPATH replaces the functionality of subroutine ZFPN. Each pathname part may contain
up to thirty-two characters, and the pathname may be up to eighty characters in length (including
slashes). If the sum of the parts and slashes is greater than eighty characters, the last part(s) will
be truncated so that the pathname is eighty characters.

HECDSS Subroutines ZPATH

Chapter 3 - Pathname Manipulation Subroutines 3-3

 An empty or null pathname part is specified by passing a blank string (' '). Parts should
be blanked prior to calling ZPATH so that null characters (CHAR(0)) do not become
accidentally imbedded in the pathname.

Example:

 CHARACTER CPATH*80, CA*32, CB*32, CF*32
 C
 WRITE (6,*)'Enter Basin Name'
 READ (5,10,END=100,ERR=900) CA
 10 FORMAT (A)
 WRITE (6,*)'Enter Location Name'
 READ (5,10,END=100,ERR=900) CB
 C
 CF = 'COMPUTED'
 C
 CALL ZPATH (CA, CB, 'STAGE-DAMAGE', ' ', ' ', CF,
 * CPATH, NPATH)
 C
 WRITE (6,20) CPATH(1:NPATH)
 20 FORMAT (' Pathname: ',A)

ZUPATH HECDSS Subroutines

3-4 Chapter 3 - Pathname Manipulation Subroutines

3.2 ZUPATH - Determine a Pathname's Part

Purpose:

 ZUPATH determines the beginning and ending position, and length of each part of a
pathname. This information is returned in three six-element integer arrays. The subroutine
ZUFPN may be called instead of ZUPATH to return the pathname parts.

Calling Sequence:

CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)

Declarations:

 CHARACTER CPATH*80
 INTEGER IBPART(6), IEPART(6), ILPART(6), ISTAT

Argument Description:

 CPATH Input The pathname to process.

 IBPART Output A six-element integer array returned with the beginning

positions (in CPATH) of each of the pathname parts.
IBPART(1) is the beginning position of the A part, IBPART(2)
is the beginning position of the B part, etc.. The starting
positions do not include slashes.

 IEPART Output A six-element integer array returned with the ending position

of each of the pathname parts. The ending position is the last
character in each part, and does not include the slash.

 ILPART Output A six-element integer array returned with the length of each of

the pathname parts (excluding slashes). A null part is returned
with a length of zero.

 ISTAT Output A status parameter that is set to zero if there were no errors. If

CPATH is not a valid pathname, ISTAT is returned as -1.

Remarks:

 If a pathname part is null (ILPART() = 0), the beginning position and the ending position
are both set to the position of the slash following the null part. A program should not attempt to
use these positions when a part is null.

HECDSS Subroutines ZUPATH

Chapter 3 - Pathname Manipulation Subroutines 3-5

Example:

 C If a pathname meets the time series conventions,
 C print the D part and the time interval (in minutes).
 CHARACTER CPATH*80, CC
 INTEGER IBPART(6), IEPART(6), ILPART(6)
 C
 READ (9,20,END=200,ERR=900) CPATH
 20 FORMAT (A)
 C
 CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
 C
 IF (ISTAT.NE.0) THEN
 WRITE (6,30) CPATH
 30 FORMAT (' Error: Invalid Pathname Entered: ',A)
 GO TO 900
 ENDIF
 C
 C Get the "C" part of the pathname and move into CC.
 C Be sure we do not have a null part.
 IF (ILPART(3).GT.0) THEN
 CC = CPATH(IBPART(3):IEPART(3))
 ELSE
 C This is a null part. Blank fill.
 CC = ' '
 GO TO 200
 ENDIF
 C
 C Get the time interval and date if it is time-series.
 IF ((ILPART(4).GT.0).AND.(ILPART(5).GT.0)) THEN
 JSTAT = 1
 CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), NVALS, JSTAT)
 IF (JSTAT.GE.0) THEN
 WRITE (6,40) CC, CPATH(IBPART(4):IEPART(4)), INTL
 40 FORMAT (1X, A, ' data is available for ',A,/,
 * ' with a time interval of ',I5,' minutes.')
 ENDIF
 ENDIF

ZUFPN HECDSS Subroutines

3-6 Chapter 3 - Pathname Manipulation Subroutines

3.3 ZUFPN - Spilt a Pathname into Separate Parts

Purpose:

 ZUFPN takes a standard pathname and segments it into six parts. Each part is returned as
a separate character variable.

Calling Sequence:

 CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
 * CF, NF, CPATH, NPATH, ISTAT)

Declarations:

 CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32, CPATH*80
 INTEGER NA, NB, NC, ND, NE, NF, NPATH, ISTAT

Argument Description:

 CA Output A character string containing the A part of the pathname. The

part will be left justified, blank filled in CA. If the part is null,
CA will be returned with all blanks.

 NA Output The number of characters in the A part. NA will be set to zero

if the part is null (CA is all blanks).

 CB Output The B part of the pathname.

 NB Output The number of characters in the B part.

 CC Output The C part of the pathname.

 NC Output The number of characters in the C part.

 CD Output The D part of the pathname.

 ND Output The number of characters in the D part.

 CE Output The E part of the pathname.

 NE Output The number of characters in the E part.

 CF Output The F part of the pathname.

 NF Output The number of characters in the F part.

 CPATH Input The pathname, which is to be segmented.

HECDSS Subroutines ZUFPN

Chapter 3 - Pathname Manipulation Subroutines 3-7

 NPATH Input The number of characters in the pathname.

 ISTAT Output A status parameter that is set to zero if there were no errors. If

CPATH is not a valid pathname, ISTAT is returned as -1.

Remarks:

 If only one or two parts of the pathname are needed, use subroutine ZUPATH, which
returns the part positions within the pathname. The pathname must follow the standard
conventions (six parts, each part separated by a slash). Each part may contain up to thirty-two
characters, and the pathname may contain up to eighty characters (including slashes). If a part is
longer than the length of the corresponding character variable passed, the part will be truncated
to fit the character variable.

Example:

 C Break apart a pathname and print its parts.
 CHARACTER CPATH*80, CA*32, CB*32, CC*32, CD*32, CE*32, CF*32
 C
 C Get the pathname.
 READ (5,10) CPATH
 10 FORMAT (A)
 C
 C Get the position of the last non-blank character.
 CALL CHRLNB (CPATH, NPATH)
 CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
 * CF, NF, CPATH, NPATH, ISTAT)
 C
 IF (ISTAT.NE.0) THEN
 IF (NPATH.EQ.0) NPATH = 1
 WRITE (6,10) CPATH(1:NPATH)
 10 FORMAT (' Illegal Pathname: ',A)
 GO TO 900
 ENDIF
 C
 WRITE (6,20) CA, CB, CC, CD, CE, CF
 20 FORMAT (' Part A: ',A,/,' Part B: ',A,/,
 * ' Part C: ',A,/,' Part D: ',A,/,
 * ' Part E: ',A,/,' Part F: ',A)
 C

ZGPNP HECDSS Subroutines

3-8 Chapter 3 - Pathname Manipulation Subroutines

3.4 ZGPNP - Get Pathname Parts

Purpose:

 ZGPNP takes a character string (usually read from input) and searches for parts of a
pathname. Pathname parts are identified by a part identifier (A, B, C, D, E, or F), followed by an
equal sign, then the part. Each part must be delimited by either a comma and/or a blank.
Imbedded blanks may be included in a part, but commas, equal signs, and invalid pathname
characters cannot be. The line may contain extraneous information (e.g., a "ZR" identifier), as
long as the parts are identifiable. An example line that might be processed by ZGPNP is:

ZR=IN A=SCIOTO, B=SOUTH BEND F=OBS,C=FLOW D=

Calling Sequence:

CALL ZGPNP (CLINE, CA, CB, CC, CD, CE, CF, NPARTS)

Declarations:

 CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32
 CHARACTER CLINE*(*)
 INTEGER NPARTS(6)

Argument Description:

 CLINE Input The character string from which to extract the pathname parts.

The string may contain information other than the pathname
parts, as long as it can be distinguished. For example:

 ZR, XXX B=SOUTH FORK, XXX F=OBS
 (the parts are distinguishable)
 ZR B=SOUTH FORK XXX F=OBS
 (XXX cannot be distinguished from the "B" part).

 CA Output The A part, if found. If the part is not found, CA is not altered

(a previously set A part may be passed without alteration).

 CB Output The B part, if found.

 CC Output The C part, if found.

 CD Output The D part, if found.

 CE Output The E part, if found.

 CF Output The F part, if found.

HECDSS Subroutines ZGPNP

Chapter 3 - Pathname Manipulation Subroutines 3-9

 NPARTS Input/ A six-element array that returns the lengths of the parts found.
 Output The first element of NPARTS corresponds to the A part, the

second element corresponds to the B part, etc. NPARTS may
also be used so that specific parts will not be searched for. To
not search for a part, set the corresponding NPARTS to -2. On
return, if a part was not found, the corresponding NPARTS will
be set to -1. If no parts were found, NPARTS(1) will be set to
-10.

Remarks:

 ZGPNP is meant to update parts of a pathname, and is often used along with ZUFPN and
ZPATH. Unless a part is found, it will not be altered. ZGPNP searches for a part letter followed
by an equal sign, so other information may be on the input line, as long as it is distinguishable.
If a part is longer than the character variable passed, the part will be truncated to fit within the
length of that variable.

 Null parts may be specified by the part letter followed by an equal sign then a comma (if
it is at the end of CLINE, the comma is not necessary). A null part variable is returned blank
filled.

Example 1:

 For the following code:
 NPARTS(4) = -2
 CALL ZGPNP (CLINE(1:80), CA, CB, CC, CD, CE, CF(1:10), NPARTS)

 If CLINE contains:
 ZR=IN ZA=HI, B=SOUTH BEND, XX C=, D=01JAN1960 F=PLAN 2B-COMPUTED

 ZGPNP returns:
 NPARTS(1) = -1, CA =
 NPARTS(2) = 10, CB = SOUTH BEND
 NPARTS(3) = 0, CC =
 NPARTS(4) = -2, CD =
 NPARTS(5) = -1, CE =
 NPARTS(6) = 10, CF = PLAN 2B-CO

 Note that ZA is not a valid part identifier, so no "A" part was returned. The B part is
terminated by a comma, so the "XX" was ignored. The C part was set to 0, since a comma
immediately followed the equal sign. No D part was returned because NPARTS(4) was preset to
-2. The F part was truncated, because CF was limited to a length of ten characters (1:10).

ZGPNP HECDSS Subroutines

3-10 Chapter 3 - Pathname Manipulation Subroutines

Example 2:

 The following example illustrates the use of subroutines ZPATH, ZUFPN, and ZGPNP.
This code reads a line, determines if it is a pathname or pathname parts. Pathname parts are
extracted via ZUFPN or ZGPNP; then a new pathname is constructed. This code may be used in
a loop, allowing the user to specify a completely new pathname or just change certain parts.

 CHARACTER CLINE*80, CPATH*80
 CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32
 INTEGER NPARTS(6)
 C
 DATA CA, CB, CC, CD, CE, CF /6*' '/
 C
 C Get the pathname or parts.
 WRITE (6,*) 'Enter pathname, or pathname parts, or FINISH'
 READ (5,20) CLINE
 20 FORMAT (A)
 C
 C Is this a FINISH command?
 IF (CLINE(1:3).EQ.'FIN') GO TO 800
 C
 C Is this a pathname?
 IF (CLINE(1:1).EQ.'/') THEN
 C
 C Yes it is.
 CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
 * CF, NF, CLINE, 80, ISTAT)
 IF (ISTAT.NE.0) GO TO 910
 C
 ELSE IF (INDEX(CLINE(1:20),'=')) THEN
 C
 C The line appears to contain pathname parts.
 CALL ZGPNP (CLINE, CA, CB, CC, CD, CE, CF, NPARTS)
 C
 IF (NPARTS(1).EQ.-10) THEN
 WRITE (6,*)'Invalid Pathname Line.'
 GO TO 800
 ENDIF
 C
 ELSE
 C
 WRITE (6,*)'Invalid Pathname Line.'
 GO TO 800
 C
 ENDIF
 C

HECDSS Subroutines ZGPNP

Chapter 3 - Pathname Manipulation Subroutines 3-11

 C Now that the pathname is in parts, (re)construct the pathname.
 CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)
 C
 WRITE (6,40) CPATH(1:NPATH)
 40 FORMAT (' Pathname: ', A)

ZCHKPN HECDSS Subroutines

3-12 Chapter 3 - Pathname Manipulation Subroutines

3.5 ZCHKPN - Check a Pathname

Purpose:

 ZCHKPN examines a pathname to determine if it meets the requirements for a pathname.
This includes determining if the pathname contains seven slashes, is equal or less than eighty
characters in length, and contains any invalid characters (e.g., control codes). If any "null
characters" are found, they are changed to blanks.

Calling Sequence:

CALL ZCHKPN (CPATH, NPATH, ISTAT)

Declarations:

 CHARACTER CPATH*80
 INTEGER NPATH, ISTAT

Argument Description:

 CPATH Input/ The pathname to be checked.
 Output

 NPATH Input The number of characters in CPATH

 ISTAT Output A status parameter indicating the validity of the pathname.

ISTAT is returned as zero if CPATH is a valid pathname. If
ISTAT is less than zero, the pathname is invalid and should not
be used. The possible status codes are:

 ISTAT Description
 0 The pathname is valid
 +6 One or more null characters were detected and

converted to blank characters.
 -1 The first character in the pathname is not a slash (/).
 -2 The last character in the pathname is not a slash (/).
 -3 The number of slashes within the pathname is not

seven. (There must be exactly seven slashes.)
 -4 There are fewer than seven characters in the

pathname.
 -5 There are more than eighty characters in the

pathname.
 -6 Illegal characters were found in the pathname.

(They were not modified.)

HECDSS Subroutines ZCHKPN

Chapter 3 - Pathname Manipulation Subroutines 3-13

Remarks:

 ZCHKPN will print an error message to unit MUNIT if any errors are detected and the
message level is three or greater. The pathname will be modified only if it contains null
characters (which can usually be avoided by initializing all pathname parts to blanks in a data
statement).

 HECDSS Subroutines

Chapter 4 - Time Series Subroutines 4-1

4 Time Series Subroutines

 The following chapter describes the subroutines used to store and retrieve regular-interval
and irregular-interval time series data.

 Regular-interval time series data is data that occurs at a standard time interval. The date
and time of each value is implied by its position within the data block. As described in
"HECDSS User's Guide and Utility Program Manuals", Overview section, the A part of the
pathname contains the group identifier, the B part provides the location, the C part carries the
parameter, the D part is the block start date, the E part holds the time interval and the F part is an
optional descriptor. The E part must be one of the following time intervals:

Valid Time Intervals
(E Parts)

Block Length

1MIN, 2MIN, 3MIN, 4MIN, 5MIN
10MIN, 15MIN, 20MIN, 30MIN

One Day

1HOUR, 2HOUR, 3HOUR, 4HOUR,
6 HOUR, 8HOUR, 12HOUR

One Month

1DAY One Year
1WEEK, 1MON One Decade
1YEAR One Century

 Regular-interval time series data may be retrieved with either subroutine ZRRTS or
ZRRTSX. ZRRTSX is the extended form of ZRRTS, and will obtain data flags, the user header
array, and data compression information. Regular-interval time series data may be stored with
either ZSRTS or ZSRTSX, where ZSRTSX is the extended version of ZSRTS. ZSRTSX can
store the user header array and data flags, whereas ZSRTS cannot. Data compression parameters
may also be specified with ZSRTSX. (Data compression cannot be applied when data flags are
stored.) Missing values within a record are flagged by values of -901.0, and values for missing
records are flagged with -902.0.

 Irregular-interval time series data has an explicit date and time stored with each value.
This data is retrieved with either subroutine ZRITS or ZRITSX. ZRITSX is the extended form
of ZRITS, and will return data flags and the user header in addition to the data. Irregular-interval
time series data may be stored in a DSS file with either ZSITS or ZSITSX. ZSITSX can store
the user header array and data flags, whereas ZSITS cannot.

 Most of the DSS time series routines use Julian dates, in days since 31DEC1899 (not
days since the beginning of the year). This form of date provides an exact and relative easy
means of dealing with time date information. For example, to increment the date by one day,
one is added to the Julian date, whereas a more complex algorithm would be required for a
military style date such as 28FEB1972. Julian dates can be negative, allowing for handling data
in the 1800's. A Julian date can be converted to another style date (of which many forms are
available) using the HECLIB subroutine JULDAT. Conversely, different styles of dates can be
converted to Julian using the subroutine DATJUL. See the HECLIB documentation for more
information on these subroutines.

HECDSS Subroutines

4-2 Chapter 4 - Time Series Subroutines

 Several subroutines pass time information in minutes past midnight. The time in minutes
can be converted to a twenty-four hour military style time (e.g., 1430 is 2:30 p.m.) by the
HECLIB subroutine M2IHM, and back to minutes with subroutine IHM2M. The time interval of
the data is also given in minutes, regardless of the length of the interval.

 A utility subroutine, ZGINTL, is used to convert a time interval (in minutes) to the E part
of the pathname, and vice-versa. Subroutine ZOFSET will determine the time offset of regular-
interval data. The time offset is defined as the length of time between the standard time for that
interval and the actual time. For example, the time offset for daily data measured at 8:00 a.m. is
480 minutes (eight hours).

 On MS DOS computers, the Julian dates, time interval, and time offset must always be
declared as INTEGER*4.

HECDSS Subroutines ZRRTS

Chapter 4 - Time Series Subroutines 4-3

4.1 ZRRTS - Retrieve Regular-Interval Time Series Data

Purpose:

 ZRRTS is a short call to retrieve regular-interval time series data from a DSS file. The
data retrieved may be based on a time window and can cross record boundaries (that is, it can
read several records with different dates to retrieve the data specified), or it can read all the data
in one record according to the pathname (with no time window). When reading data based on a
time window, the D part is ignored, as ZRRTS forms pathnames with a D part determined by
that time window. The time window is specified by variables CDATE, CTIME, and NVALS. If
data flags, compression information, or the user header needs to be retrieved, use subroutine
ZRRSTX, the extended version of this subroutine.

Calling Sequence:

 CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * CUNITS, CTYPE, IOFSET, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NVALS, IOFSET, ISTAT
 REAL VALUES(NVALS)
 CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8

 On MS DOS microcomputers, the time offset must be INTEGER*4: INTEGER*4 IOFSET

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to read. The pathname must meet the

regular-interval time series conventions (including a correct "E
part"). With a time window specified, the "D part" (date part)
will be ignored; as ZRRTS will form it internally (there may be
several D parts, depending on the time window). If no time
window is given, the D part must be provided. The length of
CPATH is implicit (e.g., CPATH(1:NPATH)).

 CDATE Input The beginning date of the time window. This can be in any

one of the styles accepted by the HECLIB subroutine DATJUL
(see the HECLIB documentation for the different date styles).
If the data is to be retrieved based upon the date in the
pathname (that is, no time window), CDATE should be blank
(i.e., ' ').

ZRRTS HECDSS Subroutines

4-4 Chapter 4 - Time Series Subroutines

 CTIME Input The beginning time of the time window. This must be a
standard twenty-four hour clock time (e.g., '1630'). If no time
window is set (CDATE is blank), this argument is ignored.

 NVALS Input/ The number of data values to retrieve. This defines the end of
 Output the time window. If no time window is given, NVALS must

contain the dimension limit of array VALUES on input, and is
returned with the number of data values actually read by
ZRRTS (and must be a variable).

 VALUES Output The data retrieved. This will be in a sequential order, with the

first value having a date and time of CDATE and CTIME
(unless no time window is given, whereas the first value will
correspond to the date and time of the beginning of the record).

 CUNITS Output The units of the data (e.g., 'FEET').

 CTYPE Output The type of the data (e.g., 'PER-AVER').

 IOFSET Output The time offset of the data in minutes. (If hourly data is

recorded at fifteen minutes past the hour, the offset would be
fifteen minutes.) If there is no offset, IOFSET will be returned
as zero. Refer to the subroutine ZOFSET (at the end of this
chapter) for more information about time offsets. The offset
must be INTEGER*4 on MS DOS microcomputers.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned as zero, then the data was successfully read.
If ISTAT is returned with a value between one and three, then
data was retrieved, but some missing values were detected. If
ISTAT is greater than ten, a fatal error occurred, and no data
was returned. The possible values are:

 ISTAT Description
 0 All data retrieved.
 1 Some missing data was detected (-901.0).
 2 Missing record(s) (-902.0), but some data was

found.
 3 Missing record(s) and missing data in the data set,

however some data was found.
 4 There was no data for this time window, but a

record was read.
 5 No records were found (the data is returned as all -

902's).
 >10 A "fatal" error occurred:
 11 The number of values requested was less

than one.

HECDSS Subroutines ZRRTS

Chapter 4 - Time Series Subroutines 4-5

 12 A non-standard time interval was provided
in the "E" part of the pathname.

 15 The starting date or time was not
recognized.

 20 The data was not recognized as regular-
interval time series.

 24 The pathname given does not meet the
regular-interval time series conventions.

 53 The data could not be un-compressed.

Remarks:

 CUNITS and CTYPE will contain the units and type for the last record read when
reading several records. If no records were found (ISTAT=5), or a fatal error occurred, CUNITS
and CTYPE will be unchanged.

 If data flags or the user header needs to be retrieved, or compression information is
required, use ZRRTSX, the extended version of this subroutine.

 A debug trace will be printed when the message level (MLEVEL) is set to 8 via
subroutine ZSET. This trace will print the pathname, dates, times, and other information used by
the subroutine.

Example 1:

 C Retrieve 200 values starting from December 13, 1982,
 C then print them out.
 INTEGER IFLTAB(600), IBPART(6), IEPART(6), ILPART(6)
 INTEGER*4 JULS, JULE, INTL, IOFSET
 CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
 REAL VALUES(200)
 C
 C Open the DSS file and get the pathname.
 CALL ZOPEN (...
 C
 C Retrieve the data.
 NVALS = 200
 CALL ZRRTS (IFLTAB, CPATH, '13DEC82', '2400', NVALS,
 * VALUES, CUNITS, CTYPE, IOFSET, ISTAT)
 IF (ISTAT.GE.10) GO TO 900
 IF (ISTAT.GE.4) GO TO 100
 C
 C Get the time interval from the pathname.
 CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
 IF (ISTAT.NE.0) GO TO 910
 JSTAT = 1
 CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), N, JSTAT)

ZRRTS HECDSS Subroutines

4-6 Chapter 4 - Time Series Subroutines

 IF (JSTAT.NE.0) GO TO 920
 C
 C Convert 13DEC82 to julian.
 CALL DATJUL ('13DEC82', JULS, IERR)
 ISTIME = 1440
 C Adjust for any time offset.
 CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)
 C
 C Print the values, along with the date and time of each one.
 DO 80 I=1,200
 IDUM = INCTIM (INTL, 0, I-1, JULS, ISTIME, JULE, IETIME)
 CALL JULDAT (JULE, 0, CDATE, NDATE)
 IDUM = M2IHM (IETIME, CTIME)
 WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)
 40 FORMAT (1X,A,2X,A,F10.3)
 80 CONTINUE

Example 2:

 C Retrieve and print the last 60 values from the current time.
 C
 INTEGER IFLTAB(600), IBPART(6), IEPART(6), ILPART(6)
 INTEGER*4 JULS, JULE, INTL, IOFSET
 CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
 REAL VALUES(60)
 C
 C
 C Open the DSS file and get the pathname.
 CALL ZOPEN (...
 C
 C Get the time interval from the pathname.
 CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
 IF (ISTAT.NE.0) GO TO 910
 JSTAT = 1
 CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), N, JSTAT)
 IF (JSTAT.NE.0) GO TO 920
 C
 C Get the current date and time, in Julian days.
 CALL CURTIM (JULE, IETIME)
 C Decrement it by 59 periods (60 values).
 IDUM = INCTIM (INTL, 0, -59, JULE, IETIME, JULS, ISTIME)
 C Date style 104 is used here, but any style would be ok.
 CALL JULDAT (JULS, 104, CDATE, NDATE)
 IDUM = M2IHM (ISTIME, CTIME)
 C
 C Now retrieve the data.

HECDSS Subroutines ZRRTS

Chapter 4 - Time Series Subroutines 4-7

 NVALS = 60
 CALL ZRRTS (IFLTAB, CPATH, CDATE(1:NDATE), CTIME,
 * NVALS, VALUES, CUNITS, CTYPE, IOFSET, ISTAT)
 IF (ISTAT.GE.10) GO TO 900
 IF (ISTAT.GE.4) GO TO 100
 C
 C Adjust for any time offset.
 CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)
 C
 C Print the values, along with the date and time of each one.
 DO 80 I=1,60
 IDUM = INCTIM (INTL, 0, I-1, JULS, ISTIME, JULE, IETIME)
 CALL JULDAT (JULE, 0, CDATE, NDATE)
 IDUM = M2IHM (IETIME, CTIME)
 WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)
 40 FORMAT (1X,A,2X,A,F10.3)
 80 CONTINUE

ZRRTSX HECDSS Subroutines

4-8 Chapter 4 - Time Series Subroutines

4.2 ZRRTSX - Retrieve Regular-Interval Time Series Data (Extended
Version)

Purpose:

 ZRRTSX is the extended call to retrieve regular-interval time series data from a DSS file.
This subroutine will return data flags, the user header, and compression information (if available)
along with data. If this additional information is not needed, use ZRRTS, the short form of this
subroutine.

 The data retrieved may be based on a time window and can cross record boundaries (that
is, it can read several records with different dates to retrieve the data specified), or it can read all
the data in one record according to the pathname (with no time window). When reading data
based on a time window, the D part is ignored, as ZRRTSX forms pathnames with a D part
determined by that time window. The time window is specified by variables CDATE, CTIME,
and NVALS.

Calling Sequence:

 CALL ZRRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * FLAGS, LFLAGS, LFREAD, CUNITS, CTYPE, HEADU, KHEADU, NHEADU,
 * IOFSET, ICOMP, ISTAT)

Declarations:

 INTEGER IFLTAB(600)
 INTEGER NVALS, KHEADU, NHEADU, ICOMP, IOFSET, ISTAT
 REAL VALUES(NVALS), HEADU(KHEADU), FLAGS(NVALS)
 LOGICAL LFLAGS, LFREAD
 CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8

 On MS DOS microcomputers, the time offset must be INTEGER*4: INTEGER*4 IOFSET

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to read. The pathname must meet the

regular-interval time series conventions. With a time window
specified, the D part (date part) will be ignored, as ZRRTSX
will form it internally (there may be several D parts, depending
on the time window). If no time window is given, the D part
must be provided. The length of CPATH is implicit (e.g.,
CPATH(1:NPATH)).

HECDSS Subroutines ZRRTSX

Chapter 4 - Time Series Subroutines 4-9

 CDATE Input The beginning date of the time window. This can be in any
one of the styles accepted by the HECLIB subroutine DATJUL
(see the HECLIB documentation for the different date styles).
If the data is to be retrieved based upon the date in the
pathname (that is, no time window), CDATE should be blank
(i.e., ' ').

 CTIME Input The beginning time of the time window. This must be a

standard twenty-four hour clock time (e.g., '1630'). If no time
window is set (CDATE is blank), this argument is ignored.

 NVALS Input/ The number of data values to retrieve. This defines the end of
 Output the time window. If no time window is specified, NVALS

must contain the dimension limit of array VALUES on input,
and is returned with the number of data values actually read by
ZRRTSX (and must be a variable).

 VALUES Output The data retrieved. This will be in a sequential order, with the

first value having a date and time of CDATE and CTIME
(unless no time window is given, whereas the first value will
correspond to the date and time of the beginning of the record).

 FLAGS Output The thirty-two bit data flags retrieved. See the appendix to

interpret the bit settings. If data flags are not to be retrieved,
set LFLAGS to .FALSE. and FLAGS may be a dummy
argument.

 LFLAGS Input A logical flag indicating whether data flags should be retrieved,

if available. Set this to .TRUE. if flags are to be retrieved,
.FALSE. if flags are not to be retrieved.

 LFREAD Output A logical flag indicating whether data flags were retrieved. If

the data did not have flags, or LFLAGS was set to .FALSE.,
this variable will be returned as .FALSE. (and FLAGS will be
unchanged). If flags were retrieved, this variable will be set to
.TRUE.

 CUNITS Output The units of the data (e.g., 'FEET').

 CTYPE Output The type of the data (e.g., 'PER-AVER').

 HEADU Output The optional user header array. This array usually may be

decoded by subroutine ZUSTFH.

 KHEADU Input The dimension of array HEADU. No more than KHEADU

elements of the user header array will be retrieved. If you do
not want to retrieve the user header, set this to zero.

ZRRTSX HECDSS Subroutines

4-10 Chapter 4 - Time Series Subroutines

 NHEADU Output The number of elements in the user header actually retrieved.
NHEADU will always be equal to or less than KHEADU.

 IOFSET Output The time offset of the data in minutes. (If hourly data is

recorded at fifteen minutes past the hour, the offset would be
fifteen minutes.) If there is no offset, IOFSET will be returned
as zero. Refer to the subroutine ZOFSET (at the end of this
chapter) for more information about time offsets. The offset
must be INTEGER*4 on MS DOS microcomputers.

 ICOMP Output The data compression method used if this data was com-

pressed. If the data was not compressed, ICOMP will be
returned as zero. If ICOMP is greater than zero, more data
compression information can be obtained by calling subroutine
ZDCINF.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then all the data was successfully
read. If ISTAT is returned with a value between one and three,
then data was retrieved, but some missing values were
detected. If ISTAT is greater than ten, a fatal error occurred,
and no data was returned. The possible values are:

 ISTAT Description
 0 All data retrieved.
 1 Some missing data was detected (-901.0).
 2 Missing record(s) (-902.0), but some data was

found.
 3 Missing record(s) and missing data in the data set,

however some data was found.
 4 There was no data for this time window, but a

record was read.
 5 No records were found (no data is returned).
 >10 A "fatal" error occurred:
 11 The number of values requested was less

than one.
 12 A non-standard time interval was provided

in the "E" part of the pathname.
 15 The starting date or time was not

recognized.
 20 The data was not recognized as regular-

interval time series.
 24 The pathname given does not meet the

regular-interval time series conventions.
 53 The data could not be un-compressed.

HECDSS Subroutines ZRRTSX

Chapter 4 - Time Series Subroutines 4-11

Remarks:

 CUNITS and CTYPE will contain the units and type for the last record read when
reading several records. If no records were found (ISTAT=5), or a fatal error occurred, CUNITS
and CTYPE will be unchanged.

 If the data was stored with data flags, no data compression method will be returned,
because data cannot be compressed when flags are used.

 A debug trace will be printed when the message level (MLEVEL) is set to eight via
subroutine ZSET. This trace will print the pathname, dates, times, and other information used by
the subroutine.

Example:

(Note: This is a more "comprehensive" example of retrieving time series data. For a simpler
example, see the ZRRTS documentation.)

 C
 C Retrieve database on a user's time window, then print
 C the data and information about the data.
 C
 PARAMETER (KHEADU=100, KDATA=1000)
 REAL VALUES(KDATA), HEADU(KHEADU), FLAGS(KDATA)
 INTEGER IFLTAB(600)
 INTEGER IBPART(6), IEPART(6), ILPART(6)
 INTEGER*4 JULS, JULE, INTL, IOFSET
 CHARACTER CLINE*80, CPATH*80, CDATE*20, CTIME*4
 CHARACTER CUNITS*8, CTYPE*8, CINFO*24, CLABEL*20, CITEM*20
 LOGICAL LFREAD, LBASEV
 C
 C Open the DSS file.
 CALL ZOPEN (IFLTAB, ...
 C
 C Get the pathname and its length.
 WRITE (6,*)'Enter the pathname'
 READ (5,10) CPATH
 10 FORMAT (A)
 C
 C Get the time window.
 WRITE (6,*)'Enter the time window'
 READ (5,10) CLINE
 CALL GETIME (CLINE, 1, 80, JULS, ISTIME, JULE, IETIME, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Get the time interval from the pathname.
 CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)

ZRRTSX HECDSS Subroutines

4-12 Chapter 4 - Time Series Subroutines

 IF (ISTAT.NE.0) GO TO 910
 JSTAT = 1
 CALL ZGINTL (INTL, CPATH(IBPART(5):IEPART(5)), N, JSTAT)
 IF (JSTAT.NE.0) GO TO 920
 C
 C Compute the number of data values asked for.
 NVALS = NOPERS (INTL, 0, JULS, ISTIME, JULE, IETIME)
 IF (NVALS.LE.0) GO TO 930
 IF (NVALS.GT.KDATA) GO TO 940
 C
 C Convert the date and time to character.
 CALL JULDAT (JULS, 104, CDATE, NDATE)
 I = M2IHM (ISTIME, CTIME)
 C Retrieve the data.
 CALL ZRRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS,
 * VALUES, FLAGS, .TRUE., LFREAD, CUNITS, CTYPE, HEADU,
 * KHEADU, NHEADU, IOFSET, ICOMP, ISTAT)
 C
 C "Fatal" error?
 IF (ISTAT.GE.10) GO TO 950
 C No data?
 IF (ISTAT.GE.4) GO TO 960
 C
 C Write pathname, units.
 CALL CHRLNB (CPATH, NPATH)
 WRITE (6,40) CPATH(1:NPATH), CUNITS, CTYPE
 40 FORMAT (' Pathname: ',A,/,' Units: ',A,T20,'Type: ',A)
 C
 C Get more compression information (if used).
 IF (ICOMP.GT.0) THEN
 CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, ISTAT)
 WRITE (6,60) ICOMP, LBASEV, BASEV, ISIZE, IPREC
 60 FORMAT (' Compression Method:',I3,' User Base:',L2,
 * ' Base: ',F6.1,/,' Size Allocated:',I2,' Precision:',I3)
 ELSE
 WRITE (6,80)
 80 FORMAT (' No Compression Used.')
 ENDIF
 C
 C Print the user header (if any).
 IF (NHEADU.GT.0) THEN
 NITEM = 0
 IPOS = 0
 WRITE (6,*)'Header:'
 100 CONTINUE
 CALL ZUSTFH (CLABEL, CITEM, NITEM, IPOS, HEADU, NHEADU,
 * ISTAT)

HECDSS Subroutines ZRRTSX

Chapter 4 - Time Series Subroutines 4-13

 IF (ISTAT.NE.0) THEN
 WRITE (6,*)'Invalid User header.'
 GO TO 140
 ENDIF
 WRITE (6,120) CLABEL, CITEM
 120 FORMAT (1X,A,1X,A)
 IF (IPOS.GE.0) GO TO 100
 ENDIF
 C
 C Adjust for any time offset.
 140 CONTINUE
 CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)
 C Print the values, along with the date and time of each one,
 C and any information from the header.
 DO 200 I=1,NVALS
 IDUM = INCTIM (INTL, 0, I-1, JULS, ISTIME, JULE, IETIME)
 CALL JULDAT (JULE, 0, CDATE, NDATE)
 IDUM = M2IHM (IETIME, CTIME)
 C
 C Do we need to print data flag information?
 IF (LFREAD) THEN
 CALL GETBIT (FLAGS(I), 1, ISCRN)
 CALL GETBIT (FLAGS(I), 8, IMOD)
 C
 IF (ISCRN.EQ.1) THEN
 IF (IMOD.EQ.1) THEN
 CINFO = 'Screened and Modified'
 ELSE
 CINFO = 'Screened'
 ENDIF
 ELSE
 CINFO = ' '
 ENDIF
 C
 ELSE
 CINFO = ' '
 ENDIF
 C
 WRITE (6,160) CDATE(1:NDATE), CTIME, VALUES(I), CINFO
 160 FORMAT (1X,A,' at ',A,'; ',F10.3,2X,A)
 200 CONTINUE

ZSRTS HECDSS Subroutines

4-14 Chapter 4 - Time Series Subroutines

4.3 ZSRTS - Store Regular-Interval Time Series Data

Purpose:

 ZSRTS is a short call to store regular-interval time series data in a DSS file. The data to be
stored is based on a time window, which can cross record boundaries (that is, it can write several
records with different D parts). Because the time window is specified by variables CDATE,
CTIME, and NVALS, the D part of the pathname is ignored.

 If data flags or a user header is to be stored along with the data, use ZSRTSX, the extended
version of this subroutine. ZSRTSX also provides a means of specifying a data compression
method and optional compression parameters. However, data may be compressed by ZSRTS if
subroutine ZSCOMP is called just prior to ZSRTS, or if a file compression method is set and the
required pathname parts match, or if the record already exists and is compressed.

Calling Sequence:

 CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * CUNITS, CTYPE, IOFSET, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NVALS, IOFSET, ISTAT
 REAL VALUES(NVALS)
 CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. The pathname must meet the

regular-interval time series conventions. The D part (date part)
is ignored, as ZSRTS will form it internally from the time
window. The length of CPATH is implicit (e.g.,
CPATH(1:NPATH)).

 CDATE Input The beginning date of the time window (the date of the first

value). This can be in any one of the styles accepted by the
HECLIB subroutine DATJUL (see the HECLIB documentation
for the different date styles).

 CTIME Input The beginning time of the time window in twenty-four hour

clock time (e.g., '1630'). Any time offset is implied by the date
and time specified (for example, if daily data is measured at 8:00

 a.m., then setting CTIME to '0800' implies an offset of eight
hours or 480 minutes).

HECDSS Subroutines ZSRTS

Chapter 4 - Time Series Subroutines 4-15

 NVALS Input/ The number of values to store. This defines the end of the time
window.

 VALUES Input The data to store. This must be in a sequential order, with the

first value data having a date and time of CDATE and CTIME.

 CUNITS Input The units of the data (e.g., 'FEET').

 CTYPE Input The type of the data (e.g., 'PER-AVER').

 IPLAN Input An argument to indicate whether to write over existing data or

not. If IPLAN is set to zero, the data provided will always
replace any existing data (with the same pathname at the same
times).

 IPLAN Description
 0 Always write over existing data.
 1 Only replace missing data flags in the record (-901).
 4 If an input value is missing (-901), do not allow it to

replace a non-missing value.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then all the data was successfully
stored. The possible values are:

 ISTAT Description
 0 The data was successfully stored.
 4 All of the input data provided were missing data

flags (-901).
 >10 A "fatal" error occurred:
 11 The number of values to store (NVALS) is

less than one.
 12 Unrecognized time interval (E part).
 15 The starting date or time is invalid.
 24 The pathname given does not meet the

regular-interval time series conventions.
 51 Unrecognized data compression scheme

(when ZSCOMP is called prior to ZSRTS).
Valid schemes are zero to five.

 53 Invalid precision exponent specified for the
delta data compression method (when
ZSCOMP is called prior to ZSRTS). The
precision exponent range is -6 to 6.

Remarks:

 Missing data in the array VALUES should be flagged by setting those values to -901.0.

ZSRTS HECDSS Subroutines

4-16 Chapter 4 - Time Series Subroutines

 To set a data compression method to be used by ZSRTS, call subroutine ZSCOMP just
prior to ZSRTS, or use subroutine ZSRTSX, in which compression information is passed is as
arguments. A file compression method may also be set to compress data.

 If data without data flags is merged with (or replaces) data with flags, then data flags (set to
zero) will be added to the new data.

 If the record exists and has a user header stored with it, ZSRTS will not change or delete
that header.

 A debug trace may be turned on by setting the message level (MLEVEL) to seven, eight, or
nine via subroutine ZSET. Level 7 gives information regarding the arguments being passed. The
higher levels provide information about the steps taking place inside ZSRTS.

Example:

 C A program has computed 86 time series data values.
 C Store them in a DSS file.
 C
 INTEGER IFLTAB(600)
 CHARACTER CPATH*80, CDATE*20, CTIME*4
 REAL VALUES(86)
 C
 C Open the DSS file and get the pathname.
 CALL ZOPEN (...
 C
 C Assuming the time interval is in minutes,
 C convert it to a valid "E part".
 ISTAT = 2
 CALL ZGINTL (INTL, CE, IDUM, ISTAT)
 CALL ZPATH (...
 C
 C Convert the date from integer 12/24/83
 C to a character date.
 CALL YMDDAT (IYR, IMON, IDAY, 0, CDATE, NDATE, IERR)
 IF (IERR.NE.0) GO TO 900
 C Convert the time from minutes to 24 hour clock time.
 IDUM = M2IHM (ITIME, CTIME)
 C
 C Now store the data.
 CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, 86, VALUES,
 * 'FEET', 'PER-AVER', 0, ISTAT)
 IF (ISTAT.GT.0) GO TO 900

HECDSS Subroutines ZSRTSX

Chapter 4 - Time Series Subroutines 4-17

4.4 ZSRTSX - Store Regular-Interval Time Series Data (Extended Version)

Purpose:

 ZSRTSX is the extended call to store regular-interval time series data in a DSS file.
ZSRTSX will store data flags and a user header along with the data. In addition, a data
compression method and related parameters may be set with ZSRTSX. If data flags or a user
header is not to be stored or data compression is not used, call ZSRTS, the short form of this
subroutine.

 Data is stored based on a time window, which can cross record boundaries (that is, it can
write several records with different D parts). Because the time window is specified by variables
CDATE, CTIME, and NVALS, the D part of the pathname is ignored.

Calling Sequence:

 CALL ZSRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU, IPLAN,
 * ICOMP, BASEV, LBASEV, LHIGH, IPREC, ISTAT)

Declarations:

 INTEGER IFLTAB(600)
 INTEGER NVALS, NHEADU, ICOMP, IPREC, IPLAN, ISTAT
 REAL VALUES(NVALS), FLAGS(NVALS), HEADU(NHEADU), BASEV
 CHARACTER CPATH*80, CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
 LOGICAL LFLAGS, LBASEV, LHIGH

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. The pathname must meet the

regular-interval time series conventions. The D part (date part)
is ignored, as ZSRTSX will form it internally from the time
window. The length of CPATH is implicit (e.g.,
CPATH(1:NPATH)).

 CDATE Input The beginning date of the time window (the date of the first

value). This can be in any one of the styles accepted by the
HECLIB subroutine DATJUL (see the HECLIB documentation
for the different date styles).

 CTIME Input The beginning time of the time window. This must be a

standard twenty-four hour clock time (e.g., '1630'). Any time

ZSRTSX HECDSS Subroutines

4-18 Chapter 4 - Time Series Subroutines

 offset is implied by the date and time specified (for example, if
daily data is measured at 8:00 a.m., then setting CTIME to '0800'
implies an offset of eight hours or 480 minutes).

 NVALS Input/ The number of values to store. This defines the end of the time

window.

 VALUES Input The data to store. This must be in a sequential order, with the

first value having a date and time of CDATE and CTIME.

 FLAGS Input An array containing thirty-two bit data flags. If flags are not to

be stored then set LFLAGS to .FALSE. and FLAGS may be a
dummy argument.

 LFLAGS Input A logical flag indicating whether data flags are to be stored or

not. To store the FLAGS array, set LFLAGS to .TRUE. If data
flags are not to be stored, set this to .FALSE.

 CUNITS Input The units of the data (e.g., 'FEET').

 CTYPE Input The type of the data (e.g., 'PER-AVER').

 HEADU Input The optional user header array. Information should be placed in

this array by subroutine ZSTFH. If no user header is to be
stored, this may be a dummy argument and NHEADU should be
set to zero.

 NHEADU Input The number of elements in the user header array HEADU. If no

user header information is to be stored, set this to zero. To have
ZSRTSX not change an existing record's user header, set this to
-1. For new records, a -1 (as well as zero) will store no user
header.

 IPLAN Input An argument to indicate whether to write over existing data or

not. If IPLAN is set to zero, the data provided will always
replace any existing data (with the same pathname at the same
times).

 IPLAN Description
 0 Always write over existing data.
 1 Only replace missing data flags in the record (-901).
 4 If an input value is missing (-901), do not allow it to

replace a non-missing value.

 ICOMP Input The data compression method to use. To use the default file

method, set this to zero. To disallow compression for this data,
set ICOMP to -1. The compression methods are described in
Chapter 10. If data flags are stored the data will not be
compressed.

HECDSS Subroutines ZSRTSX

Chapter 4 - Time Series Subroutines 4-19

 BASEV Input When the delta data compression method is used, the base value

may be specified by setting this argument to the base value and
LBASEV to .TRUE. If the delta method is not used, this
argument is ignored.

 LBASEV Input A logical flag indicating if the argument BASEV has been set.

To let the compression software select a base value, set this
argument to .FALSE.

 LHIGH Input When the delta data compression method is used, setting

LHIGH to .TRUE. will pre-allocate two bytes of storage per
data value. If LHIGH is set to .FALSE., the compression
software will select the storage size based on the data. If the
delta method is not used, this argument is ignored.

 IPREC Input When the delta data compression method is used; this defines

the precision exponent of the data (required). The precision
exponent may range from -6 to +6. If the delta method is not
used, this argument is ignored.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then all the data was successfully
stored. The possible values are:

 ISTAT Description
 0 The data was successfully stored.
 4 All of the input data provided were missing data

flags (-901).
 >10 A "fatal" error occurred:
 11 The number of values to store (NVALS) is

less than one.
 12 Unrecognized time interval (E part).
 15 The starting date or time is invalid.
 24 The pathname given does not meet the

regular-interval time series conventions.
 51 Unrecognized data compression scheme.

Valid schemes are zero to five.
 53 Invalid precision exponent specified for the

delta data compression method. The
precision exponent range is -6 to 6.

Remarks:

 Missing data in the array VALUES should be flagged by setting those values to -901.0.

 If data with data flags is merged with (or replaces) data without data flags, then data flags
(set to zero) will be added to the old data before the merge. If data without data flags is merged

ZSRTSX HECDSS Subroutines

4-20 Chapter 4 - Time Series Subroutines

with (or replaces) data with flags, then data flags (set to zero) will be added to the new data. If data
flags are used, data compression is disabled.

 If ICOMP is set to -1, the data will not be compressed no matter what the default file data
compression settings are. If ICOMP is -1, and the record already exists and is compressed, the
entire record will be un-compressed (and stored un-compressed).

 A debug trace may be turned on by setting the message level (MLEVEL) to seven, eight, or
nine via subroutine ZSET. Level 7 gives information regarding the arguments being passed. The
higher levels provide information about the steps taking place inside ZSRTSX.

Example:

 C Store hourly elevation values that are provided
 C on a daily report (24 values per report).
 C Assume the daily report has been opened as unit 9,
 C and the report appears somewhat like the following:
 C
 C SOUTH BASIN, MARTIN LAKE REPORT, 5/20/90
 C 1123.44 1123.48 1124.21 1124.56 1124.99
 C 1125.08 1125.12 1125.18 ...
 C END
 C
 C
 INTEGER IFLTAB(600)
 INTEGER IBF(2), IEF(20), ILF(20)
 CHARACTER CPATH*80, CDATE*12
 CHARACTER CBASIN*32, CLOC*32, CLINE*80
 LOGICAL LBASEV, LHIGH
 REAL VALUES(100), BASEV, HEADU, FLAGS
 C
 C Open the dss file.
 CALL ZOPEN (IFLTAB, ...
 C
 C Read the basin, location name, and the date of the first
 C value from the report.
 READ (9, 20, ERR=900, END=990) CBASIN, CLOC, CDATE
 C
 C Construct the pathname (no date part is needed).
 CALL ZPATH (CBASIN, CLOC, 'ELEV', ' ', '1HOUR', 'OBS',
 * CPATH, NPATH)
 C
 C Read the data.
 NVALS = 0
 30 CONTINUE
 READ (9, 40, ERR=910, END=800) CLINE
 40 FORMAT (A)

HECDSS Subroutines ZSRTSX

Chapter 4 - Time Series Subroutines 4-21

 C Have we reached the end of the data?
 IF (INDEX(CLINE,'END').GT.0) GO TO 100
 C Parse the line.
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 DO 50 I=1,NFIELD
 NVALS = NVALS + 1
 C Convert the character number to a real number.
 VALUES(NVALS) = XREAL(CLINE, IBF(I), ILF(I), IERR)
 IF (IERR.NE.0) VALUES(NVALS) = -901.0
 50 CONTINUE
 GO TO 30

 100 CONTINUE
 C This data is to be compressed.
 C Elevation data is normally compressed using the delta method.
 C Because this data is updated daily, we should set a base
 C value which would be a reasonable minimum elevation that might
 C be recorded (say middle of conservation). This value is
 C needed only for the first time the month/block is written to.
 ICOMP = 2 ! (Delta compression method)
 BASEV = 1023.0 ! (base value, probably obtained from
 LBASEV = .TRUE. ! an external table)
 LHIGH = .TRUE. ! (allocate 2 bytes of space for elevation)
 IPREC = -2 ! (store to the nearest hundredth of a foot)
 C
 C Now store the data.
 CALL ZSRTSX (IFLTAB, CPATH, CDATE, '0100', NVALS,
 * VALUES, FLAGS, .FALSE., 'FEET', 'INST-VAL', HEADU, 0,
 * 0, ICOMP, BASEV, LBASEV, LHIGH, IPREC, ISTAT)
 C
 IF (ISTAT.GT.0) GO TO 940

ZRITS HECDSS Subroutines

4-22 Chapter 4 - Time Series Subroutines

4.5 ZRITS - Retrieve Irregular-Interval Time Series Data

Purpose:

 ZRITS is a short call to retrieve irregular-interval time series data from a DSS file. The
data retrieved may be based on a time window and can cross record boundaries (that is, it can read
several records with different dates to retrieve the data specified), or it can read all the data in one
record according to the pathname (with no time window). When reading data based on a time
window, the D part is ignored, as ZRITS forms pathnames with a D part determined by the time
window.

 If data flags or the user header needs to be retrieved, use subroutine ZRITSX, the extended
version of this subroutine. ZRITSX also has the capability to retrieve the value previous to the
time window and the value subsequent to the time window.

Calling Sequence:

 CALL ZRITS (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME,
 * ITIMES, VALUES, KVALS, NVALS, JBDATE, CUNITS, CTYPE, ISTAT)

Declarations:

 INTEGER IFLTAB(600), KVALS, NVALS, ISTAT
 INTEGER JULS, ISTIME, JULE, IETIME, JBDATE, ITIMES(KVALS)
 REAL VALUES(KVALS)
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8

 On MS DOS microcomputers, the time offset must be INTEGER*4:

INTEGER*4 JULS, JULE, JBDATE, ITIMES(KVALS)

 On HARISS computers, the time offset must be INTEGER*6:

INTEGER*6 ITIMES(KVALS)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to read. The pathname must meet the

irregular-interval time series conventions (including a correct E
part). With a time window specified, the D part (date part) will
be ignored, as ZRITS will form it internally (there may be
several D parts, depending on the time window). If no time
window is given, the D part must be provided. The length of
CPATH is implicit (e.g., CPATH(1:NPATH)).

HECDSS Subroutines ZRITS

Chapter 4 - Time Series Subroutines 4-23

 JULS Input The Julian date of the start of the time window. This is days
since December 31, 1899, not since the beginning of the current
year. If no time window is specified, this argument is ignored
(see ISTIME).

 ISTIME Input The starting time of the time window, in minutes past midnight

(for midnight ISTIME would be 1440, not zero). To read the
entire record (with no time window set), set ISTIME to -2. The
D part of the pathname will be used to define the time window.

 JULE Input/ The Julian date of the end of the time window in days since

December 31, 1899. If no time window is set, this argument is
ignored.

 IETIME Input The ending time of the time window in minutes past midnight.

If no time window is set, this argument is ignored.

 ITIMES Output An array containing the relative date/times of the data values, in

a one-to-one correspondence. The times are given in minutes
since the base date (JBDATE), and can be converted into Julian
dates and times using the procedure described in the remarks
section.

 VALUES Output The values retrieved. The date/time of each value is provided in

array ITIMES. Both arrays VALUES and ITIMES must be
dimensioned to KVALS.

 KVALS Input The dimension of arrays VALUES and ITIMES, or (if desired)

the maximum number of data values to retrieve. No more than
KVALS values will be retrieved. If the message level
(MLEVEL set via ZSET) is five or greater, a warning message
will be printed when the KVALS limit has been reached.

 NVALS Output The number of values retrieved. Arrays ITIMES and VALUES

will contain NVALS elements.

 JBDATE Output The Julian base date (in days since Dec. 31, 1899), usually

equivalent to the D part of the first pathname. This date, in
conjunction with the ITIMES array, gives the date/time of each
data value.

 CUNITS Output The units of the data (e.g., 'FEET').

 CTYPE Output The type of the data (e.g., 'PER-AVER').

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully

ZRITS HECDSS Subroutines

4-24 Chapter 4 - Time Series Subroutines

 read. If ISTAT is greater than ten, a fatal error occurred. The
possible values are:

 ISTAT Description
 0 The data was successfully stored.
 1 The number of data values requested (according to

the time window) exceeds KVALS. The ITIMES
and VALUES arrays will contain KVALS values.

 4 No data found (pathname not found). The output
arguments are undefined.

 >10 A "fatal" error occurred:
 20 The data was not recognized as irregular-

interval time series.
 21 An internal buffer array is not large enough

to read the record. (This will seldom occur as
the same array is used to store the data, and
the error would be detected at that time.)

 24 The pathname does not meet the irregular-
interval time series conventions.

Remarks:

 The base date combined with the ITIMES array provide the date and time of each data
value. The ITIMES array is returned with minutes from JBDATE for each value. This can be
converted to a Julian date and time with the subroutine DATCLL. An example use of DATCLL is:

 INTEGER*4 JUL(KVALS), ITIMES(KVALS), JBDATE
 INTEGER MINS(KVALS)
 . . .
 CALL ZRITS (. . .
 C
 DO 20 I=1,NVALS
 CALL DATCLL (JBDATE, ITIMES(I), JUL(I), MINS(I))
 20 CONTINUE
 . . .

 Earlier versions of DSS stored fractions of a day instead of minutes for the time array. This
caused precision difficulties on thirty-two bit machines. A minimum of a thirty-two bit word size
for the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

 CUNITS and CTYPE will contain the units and type for the last record read (when reading
several records). If no data was found (ISTAT=4), or a fatal error occurred, CUNITS and CTYPE
will be unchanged.

 If data flags or the user header needs to be retrieved, or the previous or next data value
(relative to the time window) is needed, use ZRITSX, the extended version of this subroutine.

HECDSS Subroutines ZRITS

Chapter 4 - Time Series Subroutines 4-25

 A debug trace may be turned on by setting the message level (MLEVEL) to seven, eight, or
nine via subroutine ZSET. Level 7 gives information regarding the arguments being passed,
whereas the higher levels provide information about the steps taking place inside ZRITS.

Example:

 C Retrieve the past 60 days of data values and print their dates,
 C times and values.
 C
 PARAMETER (KVALS=1000)
 REAL VALUES(KVALS)
 INTEGER*4 ITIMES(KVALS), JULS, JULE, JUL, JBDATE
 INTEGER IFLTAB(600)
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8, CDATE*20, CTIME*4
 C
 C Open the DSS file and get the pathname.
 CALL ZOPEN (IFLTAB, . . .
 C
 C Get the current julian date and time.
 CALL CURTIM (JULE, IETIME)
 C Decrement it by 60 days.
 IDUM = INCTIM (1440, 0, -60, JULE, IETIME, JULS, ISTIME)
 ISTIME = 1440
 C
 C Retrieve the data.
 CALL ZRITS (IFLTAB, CPATH, JULS, ISTIME, JULE,
 * IETIME, ITIMES, VALUES, KVALS, NVALS, JBDATE, CUNITS,
 * CTYPE, ISTAT)
 C
 C Check for errors.
 IF (ISTAT.GE.10) GO TO 900
 IF (ISTAT.EQ.4) GO TO 100
 C
 C Print out the data.
 CALL CHRLNB (CPATH, NPATH)
 WRITE (6,20) CPATH(1:NPATH), CUNITS, CTYPE
 20 FORMAT (. . .
 DO 60 I=1, NVALS
 C Convert the times array into a regular date and time.
 CALL DATCLL (JBDATE, ITIMES(I), JUL, IMIN)
 CALL JULDAT (JUL, 0, CDATE, NDATE)
 IDUM = M2IHM (IMIN, CTIME)
 WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)
 40 FORMAT (1X,A,', ',A,'; ',F8.2)
 60 CONTINUE

ZRITSX HECDSS Subroutines

4-26 Chapter 4 - Time Series Subroutines

4.6 ZRITSX - Retrieve Irregular-Interval Time Series Data (Extended
Version

Purpose:

 ZRITSX is the extended call to retrieve irregular-interval time series data from a DSS file.
This subroutine will return data flags and the user header along with the data. In addition, ZRITSX
will, if desired, return the value preceding and/or following the time window. If this additional
information is not needed, use ZRITS, the short form of this subroutine.

 The data retrieved by ZRITSX may be based on a time window and can cross record
boundaries (that is, it can read several records with different dates), or it can read all the data in one
record with no time window. When reading data based on a time window, the "D part" is ignored,
as ZRITSX forms pathnames with a D part determined by the time window.

Calling Sequence:

 CALL ZRITSX (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME,
 * ITIMES, VALUES, KVALS, NVALS, JBDATE, FLAGS, LFLAGS, LFREAD,
 * CUNITS, CTYPE, HEADU, KHEADU, NHEADU, INFLAG, ISTAT)

Declarations:

 INTEGER IFLTAB(600), KVALS, NVALS, ISTAT
 INTEGER JULS, ISTIME, JULE, IETIME, JBDATE
 INTEGER ITIMES(KVALS), KHEADU, NHEADU, INFLAG
 REAL VALUES(KVALS), FLAGS(KVALS), HEADU(KHEADU)
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8
 LOGICAL LFLAGS, LFREAD

 On MS-DOS microcomputers, the Julian dates and the time array must be INTEGER*4:

INTEGER*4 JULS, JULE, JBDATE, ITIMES(KVALS)

 On HARRIS computers, the time array must be INTEGER*6:

INTEGER*6 ITIMES(KVALS)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to read. The pathname must meet the

irregular-interval time series conventions (including a correct "E
part"). With a time window specified, the D part (date part) will
be ignored, as ZRITSX will form it internally. If no time

HECDSS Subroutines ZRITSX

Chapter 4 - Time Series Subroutines 4-27

 window is given, the D part must be provided. The length of
CPATH is implicit (e.g., CPATH(1:NPATH)).

 JULS Input The Julian date of the start of the time window. This is days

since December 31, 1899 (not since the beginning of the current
year). If no time window is specified, this argument is ignored
(see ISTIME).

 ISTIME Input The starting time of the time window, in minutes past midnight

(for midnight ISTIME would be 1440, not zero). To use no time
window and read the entire record, set ISTIME to -2. The D
part of the pathname will be used to define the time window.

 JULE Input The Julian date of the end of the time window in days since

December 31, 1899. If no time window is set, this argument is
ignored.

 IETIME Input The ending time of the time window in minutes past midnight.

If no time window is set, this argument is ignored.

 ITIMES Output An array containing the relative date/times of the data values, in

a one-to-one correspondence. The times are given in minutes
since the base date (JBDATE), and can be converted into Julian
dates and minutes since midnight as discussed in the remarks
section.

 VALUES Output The values retrieved. The date/time of each value is provided in

array ITIMES. Both arrays VALUES and ITIMES must be
dimensioned to KVALS.

 KVALS Input The dimension of arrays VALUES and ITIMES, or (if desired)

the maximum number of data values to retrieve. No more than
KVALS values will be retrieved. If the message level is five
(MLEVEL) or greater, a warning message will be printed when
the KVALS limit has been reached.

 NVALS Output The number of values retrieved. Arrays ITIMES and VALUES

will contain NVALS elements.

 JBDATE Output The Julian base date (in days since Dec. 31, 1899), usually

equivalent to the D part of the pathname. This date, in
conjunction with the ITIMES array, gives the date/time of each
data value.

 FLAGS Output The thirty-two bit data flags retrieved. This must be

dimensioned to KVALS. See the appendix to interpret the bit

ZRITSX HECDSS Subroutines

4-28 Chapter 4 - Time Series Subroutines

 settings. If data flags are not to be retrieved, set LFLAGS to
.FALSE. and FLAGS may be a dummy argument.

 LFLAGS Input A logical flag indicating whether data flags should be retrieved,

if available. Set this to .TRUE. if flags are to be retrieved,
.FALSE. if flags are not to be retrieved.

 LFREAD Output A logical flag indicating whether data flags were retrieved. If

the data did not have flags, or LFLAGS was set to .FALSE., this
variable will be returned as .FALSE. (and FLAGS will be
unchanged). If flags were retrieved, this variable will be set to
.TRUE.

 CUNITS Output The units of the data (e.g., 'FEET').

 CTYPE Output The type of the data (e.g., 'PER-AVER').

 HEADU Output The optional user header array. This array usually may be

decoded by subroutine ZUSTFH.

 KHEADU Input The dimension of array HEADU. No more than KHEADU

elements of the user header array will be retrieved. If you do not
want to retrieve the user header, set KHEADU to zero.

 NHEADU Output The number of elements in the user header actually retrieved.

NHEADU will always be equal to or less than KHEADU.

 INFLAG Input A flag indicating if the value preceding and/or following the

time window should be retrieved. This is valid only when a time
window is provided (i.e., ISTIME is not set to -2). Valid
INFLAG values are:

 INFLAG Description
 0 Normal - retrieve data based on the time window.
 1 Retrieve the value (and its date/time) preceding

the time window in addition to the data within
the time window.

 2 Retrieve the value (and its date/time) following
the time window in addition to the data within the
time window.

 3 Retrieve both values (and their date/time)
preceding and following the time window in
addition to the data within the time window.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
read. If ISTAT is greater than ten, a fatal error occurred. The
possible values are:

HECDSS Subroutines ZRITSX

Chapter 4 - Time Series Subroutines 4-29

 ISTAT Description
 0 The data was successfully stored.
 1 The number of values requested (according to the

time window) exceeds KVALS. The ITIMES and
VALUES arrays will contain KVALS values.

 4 No data found (pathname not found). The output
arguments are undefined.

 >10 A "fatal" error occurred:
 20 The data was not recognized as irregular-

interval time series.
 21 An internal buffer array is not large enough

to read the record. (This will seldom occur as
the same array is used to store the data, and
the error would be detected at that time.)

 24 The pathname does not meet the irregular-
interval time series conventions.

Remarks:

 The base date combined with the ITIMES array provide the date and time of each data
value. The ITIMES array is returned with minutes from JBDATE for each value. This can be
converted to a Julian date and time with the subroutine DATCLL. An example use of DATCLL is:

 INTEGER*4 JUL(KVALS), ITIMES(KVALS), JBDATE
 INTEGER MINS(KVALS)
 . . .
 CALL ZRITSX (. . .
 C
 DO 20 I=1,NVALS
 CALL DATCLL (JBDATE, ITIMES(I), JUL(I), MINS(I))
 20 CONTINUE
 . . .

 Earlier versions of DSS stored fractions of a day instead of minutes for the time array. This
caused precision difficulties on thirty-two bit machines. A minimum of a thirty-two bit word size
for the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

 When a preceding or subsequent value to the time window is requested via INFLAG,
ZRITSX will search up to one record preceding or following the records within the data block. If
no value is found, that point is not returned (i.e., a missing data flag is not returned).

 CUNITS and CTYPE will contain the units and type for the last record read (when reading
several records). If no data was found (ISTAT=4), or a fatal error occurred, CUNITS and CTYPE
will be unchanged.

ZRITSX HECDSS Subroutines

4-30 Chapter 4 - Time Series Subroutines

 A debug trace may be turned on by setting the message level (MLEVEL) to seven, eight, or
nine via subroutine ZSET. Level 7 gives information regarding the arguments being passed,
whereas the higher levels provide information about the steps taking place inside ZRITSX.

Example:

 C Retrieve cumulative precipitation data from January 5, 1990
 C until January 25, 1990, then convert and print incremental
 C precipitation for those times.
 C
 PARAMETER (KVALS=1000)
 REAL VALUES(KVALS), FLAGS(KVALS)
 INTEGER*4 ITIMES(KVALS), JULS, JULE, JUL, JBDATE
 INTEGER IFLTAB(600)
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8
 CHARACTER CDATE1*20, CTIME1*4, CDATE2*20, CTIME2*4
 LOGICAL LFREAD
 C
 C Open the DSS file and get the pathname.
 CALL ZOPEN (IFLTAB, . . .
 C

 C Convert Jan 5 '90 and Jan 25 '90 to julian.
 CALL DATJUL ('JAN 5, 1990', JULS, IERR)
 IF (IERR.NE.0) GO TO 900
 CALL DATJUL ('JAN 25, 1990', JULE, IERR)
 IF (IERR.NE.0) GO TO 900
 ISTIME = 0001
 IETIME = 1400
 C
 C Retrieve the previous and following data values.
 INFLAG = 3
 C
 C Retrieve the data.
 CALL ZRITSX (IFLTAB, CPATH, JULS, ISTIME, JULE,
 * IETIME, ITIMES, VALUES, KVALS, NVALS, JBDATE, FLAGS, .TRUE.,
 * LFREAD, CUNITS, CTYPE, IDUM, 0, NDUM, INFLAG, ISTAT)
 C
 C Check for errors.
 IF (ISTAT.GE.10) GO TO 900
 IF (ISTAT.EQ.4) GO TO 100
 C
 C Convert and print the data.
 CALL CHRLNB (CPATH, NPATH)
 WRITE (6,20) CPATH(1:NPATH), CUNITS, CTYPE
 20 FORMAT (. . .
 C

HECDSS Subroutines ZRITSX

Chapter 4 - Time Series Subroutines 4-31

 DO 60 I=1, NVALS-1
 C Check for invalid precipitation data.
 IF ((VALUES(I).LT.0).OR.(VALUES(I+1).LT.0)) GO TO 60
 C
 C Compute incremental from cumulative.
 PREINC = VALUES(I+1) - VALUES(I)
 C
 C Convert the times of both into regular dates and times.
 CALL DATCLL (JBDATE, ITIMES(I), JUL, IMIN)
 CALL JULDAT (JUL, 0, CDATE1, NDATE1)
 IDUM = M2IHM (IMIN, CTIME1)
 CALL DATCLL (JBDATE, ITIMES(I+1), JUL, IMIN)
 CALL JULDAT (JUL, 0, CDATE2, NDATE2)
 IDUM = M2IHM (IMIN, CTIME2)
 C
 WRITE (6,40) CDATE1(1:NDATE1), CTIME1, CDATE2(1:NDATE2),
 * CTIME2, PREINC
 40 FORMAT (' From ',A,' at ',A,' through ',A,' at ',A,' ;',F6.2)
 C
 IF (LFREAD) THEN
 CALL GETBIT (FLAGS(I), 8, IEST)
 CALL GETBIT (FLAGS(I+1), 8, JEST)
 IF ((IEST.GT.0).OR.(JEST.GT.0)) WRITE (6,*) '(Estimated)'
 ENDIF
 60 CONTINUE

ZSITS HECDSS Subroutines

4-32 Chapter 4 - Time Series Subroutines

4.7 ZSITS - Store Irregular-Interval Time Series Data

Purpose:

 ZSITS is a short call to store irregular-interval time series data in a DSS file. The data to
be stored is based on an implied time window which can cross record boundaries (that is, ZSITS
can write several records with different D parts). The time window is implied by the date and time
of the first and last data values (which is to be provided in the ITIMES array).

 Irregular-interval time series data is stored with times to the nearest minute. Data for times of
less than a minute cannot be stored with this convention. The times of the data must be in
ascending order, and no value may have the same exact time as another (you cannot have two data
points for the same time in a record).

 If data flags or a user header is to be stored with the data, use ZSITSX, the extended
version of this subroutine.

Calling Sequence:

 CALL ZSITS (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
 * CUNITS, CTYPE, INFLAG, ISTAT)

Declarations:

 INTEGER IFLTAB(600), ITIMES(NVALS), NVALS, JBDATE, INFLAG, ISTAT
 REAL VALUES(NVALS)
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8

 On MS DOS microcomputers, the base date and the time array must be INTEGER*4:

INTEGER*4 JBDATE, ITIMES(KVALS)

 On HARRIS computers, the time array must be INTEGER*6:

INTEGER*6 ITIMES(KVALS)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. The pathname must meet the

irregular-interval time series conventions. The D part (date part)
is ignored, as ZSITS will form it internally. The length of
CPATH is implicit (e.g., CPATH(1:NPATH)).

 ITIMES Input The array containing the relative date/times of the data values, in

a one-to-one correspondence to the data. These values are to be

HECDSS Subroutines ZSITS

Chapter 4 - Time Series Subroutines 4-33

 in minutes from the base date (JBDATE), and can be generated
from standard dates and times by the methods discussed in
remarks (following). The times must be in ascending order, and
no two times can be the same.

 VALUES Input The values to store. The date/time of each value must be

defined in array ITIMES.

 NVALS Input The number of values to store. Arrays ITIMES and VALUES

must contain NVALS elements.

 JBDATE Input The Julian base date (in days since Dec. 31, 1899), which when

combined with each element of ITIMES will give the Julian date
and time for that value. All numbers in ITIMES must be relative
to this value.

 CUNITS Input The units of the data (e.g., 'FEET').

 CTYPE Output The type of the data (e.g., 'PER-AVER').

 INFLAG Input INFLAG is a flag to indicate whether the data should be

replaced or merged with existing data. Replace will replace all
the data between the implied time window (time of first and last
data). Merge will combine the data with the data already stored.
(Merging data replaces data occurring at the same time and
inserts data at new times.)

 INFLAG = 0 to merge data.
 INFLAG = 1 to replace data.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then all the data was successfully
stored. If ISTAT is greater than ten, a fatal error occurred. The
possible values are:

 ISTAT Description
 0 The data was successfully stored.
 4 No data was given to store (NVALS was zero).
 >10 A "fatal" error occurred:
 21 An internal buffer array is not large enough

to store this number of data values. If this
error occurs, the time-block identified by in
the "E part" of the pathname spans too long
of a time, and holds more data values than the
internal buffers can accommodate. The time-
block should be changed to the next lower
size (e.g., from "IR-MONTH" to "IR-DAY").

 24 The pathname does not meet the irregular-
interval time series conventions.

ZSITS HECDSS Subroutines

4-34 Chapter 4 - Time Series Subroutines

 ISTAT Description
 30 The times of the data values are not in an

ascending order, or two values occur at the
same time.

Remarks:

 Generally the base date (JBDATE) is the Julian date of the first value (although it does not
have to be as long as ITIMES will produce the correct date). The ITIMES array can be computed
from the Julian date (JUL) and time (IMIN) of the data values by the following procedure (where
JBDATE has been determined earlier):

 INTEGER*4 JBDATE, JUL, ITIMES(NVALS)
 INTEGER IMIN

 ITIMES(I) = ((JUL - JBDATE) * 1440) + IMIN

Note that this math must usually be done in large integers (INTEGER*4 or INTEGER*6).

 Earlier versions of DSS stored fractions of a day instead of minutes for the time array. This
caused precision difficulties on thirty-two bit machines. A minimum of a thirty-two bit word size
for the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

 With reference to INFLAG and data already present in the DSS file, replace will replace all
the data within the implied time window, while merge will combine the two data sets, only
replacing those values that occur at exactly the same time (within one minute of significance).
INFLAG has no meaning for a new record. Usually the replace mode is used for editing data, and
the merge mode is used for adding new data to the record.

 If you are updating data where the first or last value might be deleted (for example an
editing process where the first data might be removed), an explicit time window may be specified
by setting the beginning time of the time window in the first element of ITIMES, and setting the
corresponding data value to -902.0. The end of the time window is indicated in a similar manner,
by setting the ending time in the last element in ITIMES and the corresponding value to -902.0.
ZSITS will ignore the -902.0, but use the times to delete any data between that time and the next
(or preceding) value in the array. (This cannot be used to delete an entire record, just data within a
record.)

 If data without data flags is merged with (or replaces) data with flags, then data flags (set to
zero) will be added to the new data.

 A debug trace may be turned on by setting the message level (MLEVEL) to nine via
subroutine ZSET.

HECDSS Subroutines ZSITS

Chapter 4 - Time Series Subroutines 4-35

Example:

 C Read Irregular-interval time series data from an ASCII file, then
 C store it in DSS. The input file might appear like the following:
 C 3/12/90, 0800, 32.25
 C 3/13/90, 1200, 33.14
 C END
 C Set a data precision (used by DSSUTL) by counting the number of
 C digits to the right of the decimal point.
 C
 PARAMETER (KVALS=1000)
 INTEGER*4 ITIMES(KVALS), JBDATE, JUL
 INTEGER IFLTAB(600), IBF(20), IEF(20), ILF(20)
 REAL VALUES(KVALS)
 CHARACTER CLINE*80, CPATH*80, CUNITS*8, CTYPE*8
 C
 C Open DSS file and get the pathname.
 CALL ZOPEN (IFLTAB, ...
 C
 20 CONTINUE
 READ (9,40,END=200) CPATH, CUNITS, CTYPE
 40 FORMAT (...
 C
 NVALS = 0
 MAXPRE = 0
 60 CONTINUE
 C Read a line from the input.
 READ (9,80,END=200) CLINE
 80 FORMAT (A)
 C Did we reach the end of the data yet?
 IF (INDEX(CLINE,'END').GT.0) GO TO 100
 C
 C Parse the line.
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 IF (NFIELD.NE.3) GO TO 900
 C
 C Get the date and time from this line.
 CALL DATJUL (CLINE(IBF(1):IEF(1)), JUL, IERR)
 IF (IERR.NE.0) GO TO 900
 IMIN = IHM2M (CLINE(IBF(2):IEF(2)))
 IF (IMIN.LT.0) GO TO 900
 C Compute the relative time of this value.
 NVALS = NVALS + 1
 IF (NVALS.EQ.1) JBDATE = JUL
 ITIMES(NVALS) = ((JUL - JBDATE) * 1440) + IMIN
 C
 C Get the data value.

ZSITS HECDSS Subroutines

4-36 Chapter 4 - Time Series Subroutines

 VALUES(NVALS) = XREAL (CLINE, IBF(3), ILF(3), IERR)
 IF (IERR.NE.0) GO TO 900
 C
 C Determine the data precision.
 N = INDEX (CLINE(IBF(3):IEF(3)), '.')
 IF (N.GT.0) THEN
 J = ILF(3) - N
 IF (J.GT.MAXPRE) MAXPRE = J
 ENDIF
 C
 C Go back and read the next value.
 GO TO 60
 C
 C All the data has been read; store it.
 100 CONTINUE
 IF (NVALS.LE.0) GO TO 800
 C
 C Set the data precision.
 CALL ZSET ('PREC', ' ', MAXPRE)
 C
 CALL ZSITS (IFLTAB, CPATH, ITIMES, VALUES, NVALS,
 * JBDATE, CUNITS, CTYPE, 0, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 GO TO 20

HECDSS Subroutines ZSITSX

Chapter 4 - Time Series Subroutines 4-37

4.8 ZSITSX - Store Irregular-Interval Time Series Data (Extended
Version)

Purpose:

 ZSITSX is the extended call to store irregular-interval time series data in a DSS file. This
subroutine will store data flags and a user header along with the data. If flags or the user header
will not be stored, use ZSITS, the short form of this subroutine.

 The data stored by ZSITSX is based on implied time window which can cross record
boundaries (that is ZSITSX can write several records with different D parts). The time window is
implied by the date and time of the first and last data values (which is to be provided in the
ITIMES array).

 Irregular-interval time series data is stored with times to the nearest minute. Data for times
of less than a minute cannot be stored with this convention. The times of the data must be in an
ascending order, and no value may have the same exact time as another (you cannot have two data
points for the same time in a record).

Calling Sequence:

 CALL ZSITSX (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
 * FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU, INFLAG, ISTAT)

Declarations:

 INTEGER IFLTAB(600), ITIMES(NVALS), NVALS, JBDATE
 INTEGER NHEADU, INFLAG, ISTAT
 REAL VALUES(NVALS), FLAGS(NVALS), HEADU(NHEADU)
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8
 LOGICAL LFLAGS

 On MS DOS microcomputers, the base date and the time array must be INTEGER*4:

INTEGER*4 JBDATE, ITIMES(KVALS)

 On HARRIS computers, the time array must be INTEGER*6:

INTEGER*6 ITIMES(KVALS)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. The pathname must meet the

irregular-interval time series conventions. The D part (date

ZSITSX HECDSS Subroutines

4-38 Chapter 4 - Time Series Subroutines

 part) is ignored, as ZSITSX will form it internally. The length
of CPATH is implicit (e.g., CPATH(1:NPATH)).

 ITIMES Input The array containing the relative date/times of the data values, in

a one-to-one correspondence to the data. These values are to be
in minutes from the base date (JBDATE), and can be generated
from standard dates and times by the methods discussed in
remarks (following). The times must be in ascending order, and
no two times can be the same.

 VALUES Input The values to store. The date/time of each value must be

defined in array ITIMES.

 NVALS Input The number of values to store. Arrays ITIMES and VALUES

must contain NVALS elements.

 JBDATE Input The Julian base date (in days since Dec. 31, 1899), which when

combined with each element of ITIMES will give that data
values total Julian date and time. All values in ITIMES must be
relative to this value.

 FLAGS Input An array containing thirty-two bit data flags. If flags are not to

be stored then set LFLAGS to .FALSE. and FLAGS may be a
dummy argument.

 LFLAGS Input A logical flag indicating whether data flags are to be stored or

not. To store the FLAGS array, set LFLAGS to .TRUE. If flags
are not to be stored, set this to .FALSE.

 CUNITS Input The units of the data (e.g., 'FEET').

 CTYPE Input The type of the data (e.g., 'PER-AVER').

 HEADU Input The optional user header array. Information should be placed in

this array by subroutine ZSTFH. If no user header is to be
stored, this may be a dummy argument and NHEADU should be
set to zero.

 NHEADU Input The number of elements in the user header array HEADU. If no

header information is to be stored, set this to zero. If the record
exists and is stored with a user header, that header may be
retained by setting this to the negative of the dimension of
HEADU. Up to the absolute value of that dimension number of
header elements will be retained (and also retrieved in HEADU).
If the record does not exist, then no header will be stored when
NHEAU is less than zero.

HECDSS Subroutines ZSITSX

Chapter 4 - Time Series Subroutines 4-39

 INFLAG Input INFLAG is a flag to indicate whether the data should be
replaced or merged with existing data. Replace will replace all
the data between the implied time window (time of first and last
data). Merge will combine the data with the data already stored.
(Merging data replaces data occurring at the same time, while
inserting data that are for new times.)

 INFLAG = 0 to merge data.
 INFLAG = 1 to replace data.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then all the data was successfully
stored. If ISTAT is greater than ten, a fatal error occurred. The
possible values are:

 ISTAT Description
 0 The data was successfully stored.
 4 No data was given to store (NVALS was zero).
 >10 A "fatal" error occurred:
 21 An internal buffer array is not large enough

to store this number of data values. If this
error occurs, the time-block identified by in
the "E part" of the pathname spans too long
of a time, and holds more data values than the
internal buffers can accommodate. The time-
block should be changed to the next lower
size (e.g., from "IR-MONTH" to "IR-DAY").

 24 The pathname does not meet the irregular-
interval time series conventions.

 30 The times of the data values are not in an
ascending order, or two values occur at the
same time.

Remarks:

 Generally the base date (JBDATE) is the Julian date of the first value (although it does not
have to be as long as ITIMES will produce the correct date). The ITIMES array can be computed
from the Julian date (JUL) and time (IMIN) of the data values by the following procedure (where
JBDATE has been determined earlier):

 INTEGER*4 JBDATE, JUL, ITIMES(NVALS)
 INTEGER IMIN

 ITIMES(I) = ((JUL - JBDATE) * 1440) + IMIN

Note that this math must usually be done in large integers (INTEGER*4 or INTEGER*6).

ZSITSX HECDSS Subroutines

4-40 Chapter 4 - Time Series Subroutines

 Earlier versions of DSS stored fractions of a day instead of minutes for the time array. This
caused precision difficulties on thirty-two bit machines. A minimum of a thirty-two bit word size
for the ITIMES array will allow a relative time range of up to 4085 years (231 minutes).

 With reference to INFLAG and data already present in the DSS file, replace will replace all
the data within the implied time window, while merge will combine the two data sets, only
replacing those values that occur at exactly the same time (within one minute of significance).
INFLAG has no meaning for a new record. Usually the replace mode is used for editing data, and
the merge mode is used for adding new data to the record.

 If you are updating data where the first or last value might be deleted (for example an
editing process where the first data might be removed), an explicit time window may be specified
by setting the beginning time of the time window in the first element of ITIMES, and setting the
corresponding data value to -902.0. The end of the time window is indicated in a similar manner,
by setting the ending time in the last element in ITIMES and the corresponding value to -902.0.
ZSITSX will ignore the -902.0, but use the times to delete any data between that time and the next
(or preceding) value in the array. (This cannot be used to delete an entire record, just data within a
record.)

 If data with data flags is merged with (or replaces) data without data flags, then data flags
(set to zero) will be added to the old data before the merge. If data without data flags is merged
with (or replaces) data with flags, then data flags (set to zero) will be added to the new data.

 A debug trace may be turned on by setting the message level (MLEVEL) to nine via
subroutine ZSET.

Example:

 C Do a range check on data stored in a DSS file.
 C Read the pathnames, and the time window from an external file.
 C
 PARAMETER (KVALS=4000, KHEADU=500)
 INTEGER*4 ITIMES(KVALS), JULS, JULE, JBDATE
 INTEGER IFLTAB(600)
 REAL VALUES(KVALS), HEADU(KHEADU), FLAGS(KVALS)
 CHARACTER CLINE*80, CPATH*80, CUNITS*8, CTYPE*8
 LOGICAL LFREAD
 C
 C Open the DSS file.
 CALL ZOPEN (IFLTAB, ...
 C
 C Read the time window.
 READ (5, 20) CLINE
 20 FORMAT (A)
 CALL GETIME (CLINE, 1, 80, JULS, ISTIME, JULE, IETIME, IST)
 IF (IST.NE.0) GO TO 900
 C

HECDSS Subroutines ZSITSX

Chapter 4 - Time Series Subroutines 4-41

 C Read irregular-interval time series pathnames.
 100 CONTINUE
 READ (5, 20, END=800) CPATH
 C
 C Retrieve the data.
 CALL ZRITSX (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME, ITIMES,
 * VALUES, KVALS, NVALS, JBDATE, FLAGS, .TRUE., LFREAD, CUNITS,
 * CTYPE, HEADU, KHEADU, NHEADU, 0, ISTAT)
 IF (ISTAT.NE.0) GO TO 100

 C Now do a range check.
 C If the value is less than zero, reject it.
 C If it is greater than 30, mark it questionable, greater than 50
 C reject it. (Bit 2 is ok, 4 is questionable, bit 5 is rejected.)
 C
 DO 120 I=1,NVALS
 C If we did not read flags, zero out the flag.
 C (Note that on some computers, a zero may set some bits on,
 C and FLAGS must be zeroed by equivalencing to an integer.)
 IF (.NOT.LFREAD) FLAGS(I) = 0.0
 C Does it fail to be a positive value?
 IF (VALUES(I).LT.0.0) THEN
 CALL SETBIT (FLAGS(I), 5)
 C Is it greater than 30?
 ELSE IF (VALUES(I).GT.30.0) THEN
 C Is it greater than 50?
 IF (VALUES(I).GT.50.0) THEN
 CALL SETBIT (FLAGS(I), 5)
 ELSE
 C Data is questionable.
 CALL SETBIT (FLAGS(I), 4)
 ENDIF
 ELSE
 C Passes the range check, mark ok.
 CALL SETBIT (FLAGS(I), 2)
 ENDIF
 120 CONTINUE
 C
 C Test complete. Re-store the data.
 CALL ZSITSX (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
 * FLAGS, TRUE., CUNITS, CTYPE, HEADU, NHEADU, 0, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Get the next set of data.
 GO TO 100

ZGINTL HECDSS Subroutines

4-42 Chapter 4 - Time Series Subroutines

4.9 ZGINTL - Get Time Series Interval

Purpose:

 Given the E part from a regular-interval time series pathname, ZGINTL will compute the
time interval in minutes and the maximum number of data values contained in a block.
Conversely, given a time interval in minutes, ZGINTL will generate a standard E part. If the E
part meets the irregular-interval time series conventions, a status parameter will be returned
indicating so (although no time interval will be returned).

Calling Sequence:

CALL ZGINTL (INTL, CE, NVALS, ISTAT)

Declarations:

 INTEGER INTL, NVALS, ISTAT
 CHARACTER CE*32

 MS DOS microcomputers, the time interval INTL must be declared as INTEGER*4.

INTEGER*4 INTL

Argument Description:

 INTL Input/ The time interval in minutes. When generating the E part, this
 Output will be input. When computing the interval from the E part, this

will be output.

 CE Input/ The E part. When generating the E part, this will be output.
 Output When computing the interval from the E part, this will be input.

 NVALS Output The number of data values in a regular-interval time series block

for this interval.

 ISTAT Input/ ISTAT is used both as a flag for input, and a status parameter for
 Output output. For input, ISTAT indicates whether to convert INTL to

an E part, or convert the E part to INTL.

 As Input:
 ISTAT Description
 1 Get the integer interval (INTL) from the character E

part (CE).
 2 Get the character E part (CE) from the integer

interval (INTL) in minutes.

HECDSS Subroutines ZGINTL

Chapter 4 - Time Series Subroutines 4-43

 As Output:
 ISTAT Description
 0 E part or INTL meets the regular-interval time series

conventions.
 1 E part meets the irregular-interval time series

conventions (no interval returned).
 -1 The E part is not recognized as time series.

Remarks:

 ZGINTL can be used to help determine the type of data from the pathname. Because
ISTAT is used both as an input and an output parameter, make sure that it is a variable that is set
properly before calling ZGINTL.

Example:

 C Get the time interval from a pathname.
 C
 CALL ZUFPN (..., CE, NE, ...
 or, alternatively
 CALL ZGPNP (..., CE, ...
 C
 C Get the time interval in minutes from the E part.
 ISTAT = 1
 CALL ZGINTL (INTL, CE, ND, ISTAT)
 C
 C If ISTAT is returned as -1, the pathname is not time series.
 IF (ISTAT.EQ.-1) GO TO 900
 C Is the record irregular-interval time series?
 IF (ISTAT.EQ.1) GO TO 100
 C Regular-interval time series data.

ZOFSET HECDSS Subroutines

4-44 Chapter 4 - Time Series Subroutines

4.10 ZOFSET - Determine the Time Offset of Time Series Data

Purpose:

 ZOFSET will compute the interval offset from the standard interval time for regular-
interval time series data. For example, the standard times for daily data are at 2400 hours
(midnight), but data that is recorded at 0800 has an offset of 480 minutes (eight hours). ZOFSET
can also change the Julian date and time to the standard time for that interval. Another capability
of ZOFSET is to adjust the date and time according to the offset given.

Calling Sequence:

CALL ZOFSET (JUL, ITIME, INTL, IFLAG, IOFSET)

Declarations:

 INTEGER JUL, ITIME, INTL, IFLAG, IOFSET

 On MS DOS microcomputers, the Julian date, time interval and time offset must be

INTEGER*4:
INTEGER*4 JUL, INTL, IOFSET

Argument Description:

 JUL Input/ The Julian date, in days from 31DEC1899.
 Output

 ITIME Input/ The time, in minutes past midnight.
 Output

 INTL Input The time interval, in minutes. This must correspond to the

standard regular-interval time series conventions.

 IFLAG Input A flag indicating whether the date and time should be changed

to a standard time:
 IFLAG Description
 0 Only compute the offset (don't change JUL or

ITIME).
 1 Compute the offset and change the date and time to

the standard date and time for that interval.
 2 Adjust JUL and ITIME according to the offset

provided (JUL and ITIME will be changed to a
standard date and time first, then adjusted).

 IOFSET Input/ The computed time offset, in minutes. The offset is the number
 Output of minutes between the standard time and the given time (JUL,

HECDSS Subroutines ZOFSET

Chapter 4 - Time Series Subroutines 4-45

 ITIME). If IFLAG is 2, then this argument must contain the
offset to adjust JUL and ITIME with.

Remarks:

 If the date/time is changed to a standard date/time, it is adjusted up. For example, a daily
data value must occur between 0001 hours, and 2400 hours (1440 minutes). If ZOFSET changes
the date and time to standard, it will become 2400 hours (1440 minutes).

Example 1 :

 C Check for a time offset of a date and time.
 CALL ZOFSET (JUL, ITIME, INTL, 0, IOFSET)
 C
 C Now call an interpolation routine to compute data
 C for the standard time interval.
 IF (IOFSET.GT.0) THEN
 RATIO = REAL(IOFSET)/REAL(INTL)
 CALL INTERP (...

 In the above example, if:

 INTL = 1440 (1 day)
 JUL = 29348 (May 8, 1980)
 ITIME = 420 (7 a.m.)

 then IOFSET would be returned:

 IOFSET = 420

 if IFLAG were set to 1 (adjust date/time), then the following variables would be returned:

 JUL = 29348 (May 8, 1980)
 ITIME = 2400 (midnight.)
 INTL = 420

Example 2 :

 C Adjust the date and time for data returned by ZRRTS
 C according to the offset, so that values are printed
 C with the correct time.
 C
 CALL ZRRTS (..., IOFSET, ...)
 C
 C Print the values and their date and time.
 DO 80 I=1,NVALS
 IDUM = INCTIM (INTL, 0, I-1, JULS, ISTIME, JULE, IETIME)

ZOFSET HECDSS Subroutines

4-46 Chapter 4 - Time Series Subroutines

 C Adjust the date and time according to the offset.
 CALL ZOFSET (JULE, IETIME, INTL, 2, IOFSET)
 CALL JULDAT (JULE, 0, CDATE, NDATE)
 IDUM = M2IHM (IETIME, CTIME)
 WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)
 40 FORMAT (1X,A,2X,A,F10.3)
 80 CONTINUE

 HECDSS Subroutines

Chapter 5 - Paired Data Subroutines 5-1

5 Paired Data Subroutines

 Paired data is a group of data that represents a two variable relationship. Typical
examples are data that make up a curve (e.g., a rating table or a flow-frequency curve). Several
sets of data may be stored in the same record if one of the variables is the same. For example,
several elevation-damage curves may be stored in the same record, where the curves may be
residential, commercial, etc. However, a stage-damage curve and a stage-flow curve should not
be stored in the same record. A scale associated with the data set may be one of three types:
linear, logarithmic, or probability.

 Paired data is exchanged between a program and DSS in a singly dimensioned array.
This usually requires that data be transferred from a doubly dimensioned array (with X and Y
ordinates) into a singly dimensioned array. Examples of such a procedure are provided.

 A label may be given to each data set. Labels are typically used to differentiate between
curves within the same record. For example, an elevation-damage record may contain three
curves whose labels might be "RESIDENTIAL", "AGRICULTURAL", and "COMMERCIAL".

 Paired data is retrieved by subroutine ZRPD and stored with subroutine ZSPD. Prior to
February 1987, paired data was stored and retrieved with subroutines ZWRITE and ZREAD,
respectively. Because DSS version 6 uses an internal header to store information about the data,
ZWRITE and ZREAD can no longer be used. The older subroutines ZGTPFD and ZPTPFD
may still be used, although they maybe somewhat more cumbersome than ZRPD and ZSPD.

 Further paired data conventions may be found in the Overview section of the "HECDSS
User's Guide and Utility Program Manuals".

ZRPD HECDSS Subroutines

5-2 Chapter 5 - Paired Data Subroutines

5.1 ZRPD - Retrieve Paired Data

Purpose:

 ZRPD retrieves paired (curve) data from a DSS file. The curve's labels and the user
header may be retrieved in addition to the data.

Calling Sequence:

 CALL ZRPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C1TYPE, C2UNIT, C2TYPE, VALUES, KVALS, NVALS,
 * CLABEL, KLABEL, LABEL, HEADU, KHEADU, NHEADU, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ, KVALS, NVALS
 INTEGER KLABEL, KHEADU, NHEADU, ISTAT
 REAL VALUES(KVALS), HEADU(KHEADU)
 CHARACTER CPATH*80, CLABEL(KLABEL)*12
 CHARACTER C1UNIT*8, C1TYPE*8, C2UNIT*8, C2TYPE*8
 LOGICAL LABEL

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to read. The pathname must meet the

paired function data conventions.

 NORD Output The number of ordinates (number of points per curve) read.

Each curve within a single record will have the same number
of ordinates.

 NCURVE Output The number of curves retrieved in this record.

 IHORIZ Output The variable number to appear on the horizontal axis for

plotting (one for first variable, two for second).

 C1UNIT Output The units of the first variable (e.g., 'FEET', 'PERCENT').

 C1TYPE Output The type of data for the first variable. The following types are

recognized by DSS utility programs:
 UNT Untransformed
 LOG Logarithmic - data expressed as logarithms.
 PROB Probability - data expressed in percent.

HECDSS Subroutines ZRPD

Chapter 5 - Paired Data Subroutines 5-3

 C2UNIT Output The units of the second variable.

 C2TYPE Output The type of data for the second variable.

 VALUES Output The data values retrieved. The first NORD elements in

VALUES correspond to the first variable (i.e., the X axis
values of the data points). The data for the second variable (the
Y axis values) begins at element NORD+1. Y axis values for a
second curve would begin at (NORD * 2) + 1.

 KVALS Input The dimension of array VALUES. VALUES must be

dimensioned to at least:
 KVALS = (NCURVE + 1) * NORD

 NVALS Output The number of values retrieved.

 CLABEL Output The labels for each curve. For example, if an

ELEVATION-DAMAGE function is retrieved containing
residential, agricultural and commercial damage, then
CLABEL might be returned as:

 CLABEL(1) = 'RESIDENTIAL '
 CLABEL(2) = 'AGRICULTURAL'
 CLABEL (3) = 'COMMERCIAL '
 For this example, NCURVE would be returned with three, and

CLABEL should be dimensioned to at least three.

 KLABEL Input The dimension of CLABEL. No more than KLABEL labels

will be placed into CLABEL. If you do not wish to retrieve
any labels, set KLABEL to zero.

 LABEL Output A logical variable indicating if labels were returned. LABEL

will be set to .TRUE. if labels were retrieved (there will be
NCURVE labels), otherwise it will be as .FALSE.

 HEADU Output The optional user header array. This array usually may be

decoded by subroutine ZUSTFH.

 KHEADU Input The dimension of array HEADU. No more than KHEADU

elements of the user header array will be retrieved. If you do
not want to retrieve the user header, set this to zero.

 NHEADU Output The number of elements in the user header actually retrieved.

NHEADU will always be equal to or less than KHEADU.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
read. The possible values are:

ZRPD HECDSS Subroutines

5-4 Chapter 5 - Paired Data Subroutines

 ISTAT Description
 0 All data retrieved.
 -1 The record does not exist.
 1 The dimension of VALUES (KVALS) was not

large enough to retrieve all the data. Only KVALS
values returned; the curves are incomplete.

 20 The record is not paired data.

Remarks:

 Up to fifty curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also fifty. Either all curves will have a label, or no curves will have labels. If
the VALUES array is dimensioned smaller than the number of data values in the record, only the
first KVALS values will be retrieved.

 A debug trace will be printed when the message level (MLEVEL) is set to seven (or
above) via subroutine ZSET.

 Points can be located within a singly dimension array by the following example:

 C To print the data (as X, Y1, Y2, Y3, ...):
 DO 20 I=1,NORD
 WRITE (6,10) (VALUES(J),J=I,NVALS,NORD)
 10 FORMAT (' X:',F8.2,', Y(s):',50(2X,F8.2))
 20 CONTINUE

 C To transform the data into a doubly dimensioned array:
 IPOS = 0
 DO 20 I=1,NCURVE+1
 DO 20 J=1,NORD
 IPOS = IPOS + 1
 CURVE(J,I) = VALUES(IPOS)
 20 CONTINUE

Example:

 C Retrieve Paired Data from a DSS file, then print it in the form:
 C 1, X, Y1, Y2, ...
 C
 PARAMETER (KVALS=1000, KLABEL=50)
 INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ, NVALS
 INTEGER NHEADU, ISTAT
 REAL VALUES(KVALS)
 CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, C1TYPE*8, C2TYPE*8
 CHARACTER CLABEL(KLABEL)*12, CNAME*64
 LOGICAL LABEL

HECDSS Subroutines ZRPD

Chapter 5 - Paired Data Subroutines 5-5

 C
 C Open the DSS file.
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Get the pathname.
 CALL ZPATH (. . .
 C
 C Retrieve the data.
 CALL ZRPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C1TYPE, C2UNIT, C2TYPE, VALUES, KVALS, NVALS,
 * CLABEL, KLABEL, LABEL, DUM, 0, NHEADU, ISTAT)
 IF (ISTAT.NE.0) GO TO 910
 C
 C Write the record's pathname.
 CALL CHRLNB (CPATH, NPATH)
 WRITE (6,20) CPATH(1:NPATH)
 20 FORMAT (' Record Pathname: ',A)
 C
 C Write the label information (if there are labels).
 IF ((LABEL).AND.(NCURVE.LE.KLABEL)) THEN
 WRITE (6,30)
 30 FORMAT (' Curve Labels:')
 DO 50 I=1,NCURVE
 WRITE (6,40) I, CLABEL(I)
 40 FORMAT (' Curve',I3,' Label: ',A)
 50 CONTINUE
 ENDIF
 C
 C Write the data (as point, X, Y1, Y2, Y3, ...).
 DO 80 I=1,NORD
 WRITE (6,60) I, (VALUES(J),J=I,NVALS,NORD)
 60 FORMAT (' Point',I4,'; X:',F8.2,', Y(s):',50(2X,F8.2))
 80 CONTINUE
 C

 Example results for an ELEVATION-DAMAGE function having two damage categories
and eighteen ordinates:

 Input:

 CPATH = /JAMES RIVER/DR1/ELEVATION-DAMAGE//1980/PLAN B/
 NPATH = 48
 KLABEL = 10
 KVALS = 1000

ZRPD HECDSS Subroutines

5-6 Chapter 5 - Paired Data Subroutines

 Output:

 NORD = 18
 NCURVE = 2
 IHORIZ = 2
 C1UNIT = 'FEET'
 C1TYPE = 'UNT'
 C2UNIT = '$1000'
 C2TYPE = 'UNT'
 NVALS = 54
 LABEL = .TRUE.
 CLABEL(1) = 'S.F. RES'
 CLABEL(2) = 'COMMERCIAL'
 ISTAT = 0

 The VALUES array contains all of the data:

 VALUES(1) through VALUES(18) contain the ELEVATION data.
 VALUES(19) through VALUES(36) contain DAMAGE data for "S.F. RES".
 VALUES(37) through VALUES(54) contain DAMAGE data for "COMMERCIAL".

HECDSS Subroutines ZSPD

Chapter 5 - Paired Data Subroutines 5-7

5.2 ZSPD - Store Paired Data

Purpose:

 ZSPD stores paired (curve) data in a DSS file. Curve labels and the user header may be
stored in addition to the data.

Calling Sequence:

 CALL ZSPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C1TYPE, C2UNIT, C2TYPE, VALUES,
 * CLABEL, LABEL, HEADU, NHEADU, IPLAN, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ
 INTEGER KVALS, KLABEL, NHEADU, IPLAN, ISTAT
 REAL VALUES(KVALS), HEADU(NHEADU)
 CHARACTER CPATH*80, CLABEL(KLABEL)*12
 CHARACTER C1UNIT*8, C1TYPE*8, C2UNIT*8, C2TYPE*8
 LOGICAL LABEL

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. The pathname must meet

the paired function data conventions.

 NORD Input The number of ordinates (number of points per curve). Each

curve to be stored in a single record must have the same
number of ordinates.

 NCURVE Input The number of curves to store in this record.

 IHORIZ Input The variable number to appear on the horizontal axis for

plotting (one for first variable, two for second).

 C1UNIT Input The units of the first variable (e.g., 'FEET', 'PERCENT').

 C1TYPE Input The type of data for the first variable. The following types are

recognized by DSS utility programs:
 UNT Untransformed
 LOG Logarithmic - data expressed as logarithms.
 PROB Probability - data expressed in percent.

ZSPD HECDSS Subroutines

5-8 Chapter 5 - Paired Data Subroutines

 C2UNIT Input The units of the second variable.

 C2TYPE Input The type of data for the second variable.

 VALUES Input The data values to store. The first NORD elements in

VALUES correspond to the first variable (the X axis). The
data for the second variable must begin at element NORD+1
(the Y axis). Y axis values for a second curve would begin at
(NORD * 2) + 1.

 CLABEL Input A optional character array with labels corresponding to each

curve. For example, if an ELEVATION-DAMAGE function is
to be stored containing residential, agricultural and commercial
damage, then CLABEL might be as follows:

 CLABEL(1) = 'RESIDENTIAL '
 CLABEL(2) = 'AGRICULTURAL'
 CLABEL(3) = 'COMMERCIAL '
 For this example, NCURVE would be returned with three, and

CLABEL should be dimensioned to at least three.

 LABEL Input A logical variable indicating if labels are to be stored. LABEL

must be set to .TRUE. to store labels, otherwise it should be set
to .FALSE.

 HEADU Input The optional user header array. Information should be placed

in this array by subroutine ZSTFH. If no additional user
information is to be stored, this may be a dummy argument and
NHEADU should be set to zero.

 NHEADU Input The number of elements in the user header array HEADU. If

no header information is to be stored, set this to zero.

 IPLAN Input A flag indicating whether to write over existing data or not:
 IPLAN Description
 0 Always write the record to the file.
 1 Only write the record if it is new (i.e., no record

previously existed in that file under that pathname).
 2 Only write the data if the record already existed in

the file.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
stored, otherwise an error occurred. The possible values are:

 ISTAT Description
 0 The data was successfully stored.
 -1 The IPLAN specified requested the record be

written only if it was new, but the file already
contained a record with the pathname supplied.

HECDSS Subroutines ZSPD

Chapter 5 - Paired Data Subroutines 5-9

 -2 The IPLAN specified requested the record be
written only if it already existed, but the pathname
supplied was not found.

 -3 The pathname does not meet the paired data
conventions.

 -4 The number of ordinates is less than one.
 -5 NCURVE is less than one or greater than fifty.

Remarks:

 Up to fifty curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also fifty. Either all curves will have a label, or no curves will have labels.

 A debug trace will be printed if the message level (MLEVEL) is set to 7 (or above) via
subroutine ZSET.

 Unless the number of data points for the curve(s) is known prior to obtaining them (for
example, if you are reading them from an external file), the data usually must be read into a
buffer, then reorganized into a singly dimensioned array before storing with ZSPD. Points can
be converted from a doubly dimensioned array into a singly dimension array by the following
example:

 C
 C The data has been read into array CURVE as X, Y1, Y2, Y3, ...
 IPOS = 0
 DO 20 I=1,NCURVE+1
 DO 20 J=1,NORD
 IPOS = IPOS + 1
 VALUES(IPOS) = CURVE(J,I)
 20 CONTINUE

Example:

 C Read (a) Curve(s) from an external file, then store it in DSS.
 C Up to 10 curves (in one record) can be stored by this routine.
 C The external file contains data in the form:
 C X, Y1, Y2, . . .
 C X, Y1, Y2, . . .
 C END
 C
 PARAMETER (KVALS=1000, KLABEL=10)
 INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ
 INTEGER ISTAT, IBF(20), IEF(20), ILF(20)
 REAL VALUES(KVALS), CURVES(300,11)
 CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, C1TYPE*8, C2TYPE*8
 CHARACTER CLABEL(KLABEL)*12, CNAME*64, CLINE*80

ZSPD HECDSS Subroutines

5-10 Chapter 5 - Paired Data Subroutines

 C
 C Open the DSS file.
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Get the pathname.
 CALL ZPATH (. . .
 C
 C Get the number of Curves, IHORIZ.
 READ (5,*) NCURVE, IHORIZ
 C
 C Get the data units and type.
 READ (5,20) C1UNIT, C1TYPE, C2UNIT, C2TYPE
 20 FORMAT (...
 C
 C Read the label information.
 DO 40 I=1,NCURVE
 READ (5,30) CLABEL(I)
 30 FORMAT (...
 40 CONTINUE
 C
 C Read the data (as X, Y1, Y2, Y3, ...).
 NORD = 0
 50 CONTINUE
 READ (5,60,END=200) CLINE
 60 FORMAT (A)
 C
 C Did we reach the end of the data yet?
 IF (INDEX(CLINE,'END').GT.0) GO TO 100
 C
 C Parse the line.
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 IF (NFIELD.NE.NCURVE+1) GO TO 900
 C

 C Place the data in the curves array.
 NORD = NORD + 1
 DO 80 I=1,NFIELD
 CURVES(NORD,I) = XREAL (CLINE, IBF(I), ILF(I), IERR)
 IF (IERR.NE.0) GO TO 900
 80 CONTINUE
 C
 C Go back and read the next value.
 GO TO 50
 C
 C
 100 CONTINUE

HECDSS Subroutines ZSPD

Chapter 5 - Paired Data Subroutines 5-11

 C All the data has been read. Transfer the data into
 C a singly dimensioned array.
 IPOS = 0
 DO 120 I=1,NCURVE+1
 DO 120 J=1,NORD
 IPOS = IPOS + 1
 VALUES(IPOS) = CURVES(J,I)
 120 CONTINUE
 C
 C Store the data.
 CALL ZSPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C1TYPE, C2UNIT, C2TYPE, VALUES, CLABEL, .TRUE.,
 * HEADU, 0, 0, ISTAT)
 IF (ISTAT.NE.0) GO TO 910
 C
 C . . .

 Example results for storing an ELEVATION-DAMAGE function having two damage
categories ("S.F. RES" and "COMMERCIAL") and five ordinates:

ELEVATION

S.F. RES
DAMAGE

COMMERCIAL
DAMAGE

500.0 0.0 0.0
502.0 25.8 0.0
504.0 51.2 323.4
506.0 93.8 655.7
508.0 137.9 809.1

 Input:

 CPATH = /JAMES RIVER/DR1/ELEVATION-DAMAGE//1980/PLAN B/
 NORD = 5
 NCURVE = 2
 IHORIZ = 2
 C1UNIT = 'FEET'
 C1TYPE = 'UNT'
 C2UNIT = '$1000'
 C2TYPE = 'UNT'
 LABEL = .TRUE.
 CLABEL(1) = 'S.F. RES'
 CLABEL(2) = 'COMMERCIAL'
 NHEADU = 0
 IPLAN = 0

 The VALUES array contains all of the data:

ZSPD HECDSS Subroutines

5-12 Chapter 5 - Paired Data Subroutines

 VALUES(1) through VALUES(18) contain the ELEVATION data.
 VALUES(19) through VALUES(36) contain DAMAGE data for "S.F. RES".
 VALUES(37) through VALUES(54) contain DAMAGE data for "COMMERCIAL".

 For example:

 VALUES(1) = 500.0
 VALUES(2) = 502.0
 ...
 VALUES(5) = 508.0
 VALUES(6) = 0.0
 VALUES(7) = 25.8
 ...
 VALUES(10) = 137.9
 VALUES(11) = 0.0
 VALUES(12) = 0.0
 ...
 VALUES(15) = 809.1

 HECDSS Subroutines

Chapter 6 - Text Subroutines 6-1

6 Text Subroutines

 Text data is defined as generic alpha-numeric lines of text, where each line is preceded by
a line feed character and ends with a carriage return character. It does not, at this time,
accommodate other types of characters, such as those that would be used to create a graphical
display. There are no definitive size limitations for a DSS text record, but it is recommended
that a record contain no more than about 200 lines of text. There are no conventions set for the
structure of a text record's pathname. However, it is recommended that the pathname parts be
labeled in a descending order of importance, and that the pathname imply that the record
contains text data and not one of the other types of data.

 The maximum possible length of a line in a DSS text record is 160 characters. A
reasonable maximum length is 132 characters. Text data is stored with trailing blanks (blanks to
the right of the last character in a line) removed. A line feed character is stored at the beginning
of each line, and a carriage return character is stored at the end. A blank line consists of a line
feed, a single blank, and a carriage return. Generally, text is stored without carriage control (e.g.,
a blank in column 1), although this is up to the programmer, as DSS does not check for this.

 The maximum number of bytes that can be stored in a text record is 9600 on DOS
machines, and 16,000 on most other machines (including the line feed and carriage return). The
number of lines that can be stored is dependent on the average length of the lines. If the average
length is about forty characters, the maximum number of lines would be about 200 for DOS and
about 350 for other computers. Generally, an appropriate number of lines to store in a single
record is from two to 150 lines. If one desired to store a large amount of text, for example an
entire book, the text could be divided into sections consisting of one to three pages. A sequence
number (or page number) could be converted into character form (using subroutine INTGRC),
and used as part of the pathname.

 Subroutines ZRTEXT and ZRTXTA retrieve text records from a DSS file, and
subroutines ZSTEXT and ZSTXTA store text data. ZRTEXT places the retrieved text in a file
(or writes it on the screen), while ZRTXTA puts it into a character array. Conversely, ZSTEXT
stores text read from an ASCII file, while ZSTXTA stores text from a character array.

ZRTEXT HECDSS Subroutines

6-2 Chapter 6 - Text Subroutines

6.1 ZRTEXT - Retrieve Text Data (Into a File)

Purpose:

 Subroutine ZRTEXT retrieves text data from a DSS file, and places it into an ASCII file
or writes it to the screen. The file or screen is identified by a unit number, which must have been
opened by the calling program. An alternative subroutine, ZRTXTA, will retrieve text data and
place the text into a character array.

Calling Sequence:

 CALL ZRTEXT (IFLTAB, CPATH, IUNIT, HEADU, KHEADU, NHEADU,
 * LCCNTL, NLINES, ISTAT)

Declarations:

 INTEGER IFLTAB(600), IUNIT, NLINES, ISTAT
 INTEGER KHEADU, NHEADU
 REAL HEADU(KHEADU)
 CHARACTER CPATH*80
 LOGICAL LCCNTL

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the text record to retrieve.

 IUNIT Input The unit number (connected to a file or the screen) of where to

write the text data. The unit must be opened prior to calling
ZRTEXT.

 HEADU Output The optional user header array. This array usually may be

decoded by subroutine ZUSTFH.

 KHEADU Input The dimension of array HEADU. No more than KHEADU

elements of the user header array will be retrieved. If you do
not want to retrieve the user header, set this to zero.

 NHEADU Output The number of elements in the user header actually retrieved.

NHEADU will always be equal to or less than KHEADU.

 LCCNTL Input A logical flag indicating whether a FORTRAN carriage control

character (a blank space) should be placed at the beginning of
each text line. If LCCNTL is set to .TRUE., a blank character
will be inserted.

HECDSS Subroutines ZRTEXT

Chapter 6 - Text Subroutines 6-3

 NLINES Output The number of lines in the text record.

 ISTAT Output A status parameter indicating the success of the retrieval. If

ISTAT is returned with zero, then the data was successfully
retrieved. If ISTAT is any other value, no data was retrieved.
The possible values are:

 ISTAT Description
 0 The record was successfully retrieved.
 -1 The record was not found.
 -2 The record specified is not a text record.
 -3 An internal buffer was not large enough to retrieve

the record.
 -4 An error occurred while writing the text data to

IUNIT. The FORTRAN error code is printed in an
error message.

Remarks:

 ZRTEXT does not page the text (if the text is written to the screen, it will be displayed all
at once). If an unknown amount of text is to be displayed on the screen, it is usually preferable
that it first be written to a scratch file, then copied to the screen a page at a time.

 Generally, text data is stored without carriage control characters (although DSS does not
check for this). ZRTEXT uses FORTRAN to write each line of test to IUNIT. FORTRAN
requires that the first character in a formatted write be used for carriage control. By setting
LCCNTL to .TRUE. a blank space is inserted a the beginning of each line to account for this.
Generally, when writing text data to the screen LCCNTL is set to .TRUE., and when writing to a
file LCCNTL is set to .FALSE.

 If an error occurs, an error message will be written to the output (MUNIT) if the message
level (MLEVEL) is one or greater. The messages contain the pathname, and information about
the error. A debug trace may be activated by setting the message level to seven (or above) with
subroutine ZSET.

Example:

 C Read a text record from a DSS file. If the output is to
 C the screen, display the text one page at a time.
 C
 INTEGER IFLTAB(600)
 CHARACTER CPATH*80, CLINE*132, CNAME*64
 LOGICAL LSCREEN
 C
 CALL ATTACH (5, 'INPUT', 'STDIN', 'S=O', CLINE, NSTAT)
 CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CLINE, ISTAT)
 CALL ATTACH (7, 'TEXT', 'STDOUT', ' ', CLINE, ISTAT)

ZRTEXT HECDSS Subroutines

6-4 Chapter 6 - Text Subroutines

 CALL ATTACH (8, 'SCRATCH', 'SCRATCH1', ' ', CLINE, ISTAT)
 CALL ATTEND
 C
 CALL ZOPEN (IFLTAB, ...
 WRITE (6,*)'Enter Pathname'
 READ (5,20,END=800) CPATH
 20 FORMAT (A)
 C
 C Is the text to be written to the screen or a file?
 INQUIRE (UNIT=7, NAME=CNAME)
 IF (CNAME(1:3).EQ.'CON') THEN
 C Text is to be written to the screen. First write it to
 C a scratch file so that it can be paged to the screen.
 LSCREEN = .TRUE.
 IUNIT = 8
 ELSE
 C Text is to be written to a file. No paging.
 LSCREEN = .FALSE.
 IUNIT = 7
 ENDIF
 C
 CALL ZRTEXT (IFLTAB, CPATH, IUNIT, HEADU, 0, NHEADU,
 * .FALSE., NLINES, ISTAT)
 IF (ISTAT.NE.0) GO TO 800
 C
 IF (LSCREEN) THEN
 C Page text from the scratch file to the screen.
 REWIND (UNIT=IUNIT)
 40 CONTINUE
 C
 C Write 24 lines of text to the screen.
 DO 80 I=1,24
 READ (IUNIT, 20, END=800) CLINE
 CALL CHRLNB (CLINE, N)
 IF (N.EQ.0) N = 1
 WRITE (7, 60) CLINE(1:N)
 60 FORMAT (1X,A)
 80 CONTINUE
 C
 C Pause by waiting for a carriage return.
 READ (5,20) CLINE(1:1)
 GO TO 40
 ENDIF
 C
 800 CONTINUE
 CLOSE (UNIT=8)
 CLOSE (UNIT=9)

HECDSS Subroutines ZRTXTA

Chapter 6 - Text Subroutines 6-5

6.2 ZRTXTA - Retrieve Text Data (Into an Array)

Purpose:

 Subroutine ZRTXTA retrieves text data from a DSS file and places it into a character
array. ZRTXTA is usually called when the text is to be processed by the calling program, or the
amount of text retrieved is small enough that it conveniently fits into a character array. An
alternative subroutine, ZRTEXT, retrieves text data and places it into a file.

Calling Sequence:

 CALL ZRTXTA (IFLTAB, CPATH, CARRAY, KLINES, NLINES,
 * HEADU, KHEADU, NHEADU, ISTAT)

Declarations:

 INTEGER IFLTAB(600), KLINES, NLINES, ISTAT
 INTEGER KHEADU, NHEADU
 REAL HEADU(KHEADU)
 CHARACTER CPATH*80, CARRAY(KLINES)*(*)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the text record to retrieve.

 CARRAY Input A character array that will contain the text data. The first

element of CARRAY (i.e., CARRAY(1)) will contain the first
line of text.

 KLINES Input The dimension (number of elements) of CARRAY. No more

than KLINES lines of text will be placed into CARRAY. The
length of CARRAY is implied by FORTRAN (e.g.,
CARRAY(KLINES)*80).

 NLINES Output The number of lines retrieved and placed into CARRAY.

 HEADU Output The optional user header array. This array usually may be

decoded by subroutine ZUSTFH.

 KHEADU Input The dimension of array HEADU. No more than KHEADU

elements of the user header array will be retrieved. If you do
not want to retrieve the user header, set this to zero.

ZRTXTA HECDSS Subroutines

6-6 Chapter 6 - Text Subroutines

 NHEADU Input The number of elements in the user header actually retrieved.
NHEADU will always be equal to or less than KHEADU.

 ISTAT Output A status parameter indicating the success of the retrieval. If

ISTAT is returned with zero, then the data was successfully
retrieved. If ISTAT is negative, no data was retrieved. The
possible values are:

 ISTAT Description
 0 The record was successfully retrieved.
 1 CARRAY was not large enough (the dimension

KLINES) to hold all the text lines in the record.
CARRAY will contain KLINES lines of text. No
error message will be printed.

 -1 The record was not found.
 -2 The record specified is not a text record.
 -3 An internal buffer was not large enough to retrieve

the record.

Remarks:

 Generally, ZRTXTA is called when the type of text to retrieve (its approximate length
and number of lines) is known. Each element (line) in CARRAY is pre-blanked. A blank line in
the text will show up as an element in CARRY containing all blanks. If a text line is longer than
the length of CARRAY, it will be truncated to the length of CARRAY. (ISTAT will not reflect
truncation; therefore CARRAY should be declared as long as necessary.) Elements in
CARRAY greater than NLINES are undefined.

 If an error occurs, an error message will be written to the output (MUNIT) if the message
level (MLEVEL) is one or greater. The messages contain the pathname, and information about
the error. No error message is printed if CARRAY is not large enough to hold all the lines of
text in the record (ISTAT = 1). A debug trace may be activated by setting the message level to
seven (or above) with subroutine ZSET.

Example:

 C Retrieve text data from a DSS file and write it to
 C a file connected to unit 9. If the word "Location:"
 C is found in the text, pass the location name to the
 C subroutine PROCES.
 C
 PARAMETER (KLINES=500)
 INTEGER IFLTAB(600)
 CHARACTER CPATH*80, CLOC*40, CARRAY(KLINES)*132
 C
 C
 CALL ZOPEN (IFLTAB, ...

HECDSS Subroutines ZRTXTA

Chapter 6 - Text Subroutines 6-7

 C
 WRITE (6,*)'Enter Pathname'
 READ (5,20,END=800) CPATH
 20 FORMAT (A)
 C
 C
 C Retrieve the text data for this record.
 CALL ZRTXTA (IFLTAB, CPATH, CARRAY, KLINES, NLINES,
 * HEADU, 0, NHEADU, ISTAT)
 IF (ISTAT.LT.0) GO TO 800
 C
 C Was the array large enough to hold the entire record?
 IF (ISTAT.EQ.1) THEN
 WRITE (6,*)'Caution: Text record terminated at ',NLINES,' lines'
 ENDIF
 C
 C Process the text, one line at a time.
 DO 60 I=1,NLINES
 CALL CHRLNB (CARRAY(I), NLEN)
 C Is this a blank line? If so set its length to 1 for writing.
 IF (NLEN.EQ.0) NLEN = 1
 C
 C Write the text line to unit 9.
 WRITE (9,40,ERR=900) CARRAY(I)(1:NLEN)
 40 FORMAT (A)
 C
 C Scan for "Location:". If found, process this location.
 J = INDEX (CARRAY(I)(1:NLEN), 'Location:')
 IF (J.GT.0) THEN
 CLOC = CARRAY(I)(J+9:)
 CALL PROCES (CLOC)
 ENDIF
 C
 60 CONTINUE
 C

ZSTEXT HECDSS Subroutines

6-8 Chapter 6 - Text Subroutines

6.3 ZSTEXT - Store Text Data (From a File)

Purpose:

 ZSTEXT reads text from an ASCII file and stores it in a DSS text record. A unit number
passed as an argument identifies the file. An alternative subroutine, ZSTXTA, will store text
data from a character array.

Calling Sequence:

 CALL ZSTEXT (IFLTAB, CPATH, IUNIT, HEADU, NHEADU,
 * NLINES, ISTAT)

Declarations:

 INTEGER IFLTAB(600), IUNIT, NLINES, ISTAT, NHEADU
 REAL HEADU(NHEADU)
 CHARACTER CPATH*80

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the text record to store.

 IUNIT Input The unit number of the file containing the text to store. The

file must be opened (and rewound) prior to calling ZSTEXT.

 HEADU Input The optional user header array. Information should be placed

in this array by subroutine ZSTFH. If no user header is to be
stored, this may be a dummy argument and NHEADU should
be set to zero.

 NHEADU Input The number of elements in the user header array HEADU. If

no header information is to be stored, set this to zero.

 NLINES Output The number of lines read from the file and stored in the text

record.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
stored. If ISTAT is any other value, no data was stored. The
possible values are:

 ISTAT Description
 0 The record was successfully stored.

HECDSS Subroutines ZSTEXT

Chapter 6 - Text Subroutines 6-9

 ISTAT Description
 -3 An internal buffer was not large enough to store the

record.
 -4 An error occurred while reading the text data from

the file. The FORTRAN error code will be printed.

Remarks:

 ZSTEXT does not rewind the unit before reading. ZSTEXT can read from the keyboard
(if IUNIT is connected to the keyboard).

 ZSTEXT uses a FORTRAN read to read from IUNIT until the end-of-file is reached, or,
alternatively, an end-of-file marker is found. The end-of-file condition (defined by an "END="
statement in a FORTRAN read) is typically used. The alternative end-of-file marker on Harris
computers is a $EOF at the beginning of a new line, or a CNTRL Z at the beginning of a line for
DOS and UNIX machines. Because these characters must be read by FORTRAN, a carriage
return must follow. If IUNIT is connected to a keyboard, reading can only be terminated when
an end-of-file marker is typed (the user must enter a CNTRL Z or $EOF, then a carriage return).

 If an error occurs (ISTAT is not zero), an error message will be written to the output
(MUNIT) if the message level (MLEVEL) is one or greater. The messages contain the
pathname, and information about the error. A debug trace may be activated by setting the
message level to seven (or above) with subroutine ZSET.

Example:

 C This program is initiated when a NWS weather summary is
 C received. It calls a routine to retrieve the summary and
 C place it into a temporary scratch file. ZSTEXT is then called
 C to store the summary in a DSS file.
 C
 INTEGER IFLTAB(600)
 CHARACTER CTEMP*64, CNAME*64, CPATH*80
 CHARACTER CLOC*32, CDATE*8, CTIME*8
 C
 C
 CALL ATTACH (5, 'INPUT', 'STDIN', 'S=O', CTEMP, ISTAT)
 CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CTEMP, ISTAT)
 CALL ATTACH (0, 'DSSFILE', ' ', 'NOP', CNAME, ISTAT)
 CALL ATTACH (8, 'SCRATCH', 'SCRATCH2', ' ', CTEMP, ISTAT)
 CALL ATTEND
 C
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)
 IF (ISTAT.NE.0) STOP
 C
 C LOADSM will retrieve the latest summary received from the NWS,
 C and place it in the file connected to unit 8. The location,

ZSTEXT HECDSS Subroutines

6-10 Chapter 6 - Text Subroutines

 C date, and time, of the summary will also be returned.
 CALL LOADSM (8, CLOC, CDATE, CTIME, IERR)
 IF (IERR.NE.0) GO TO 900
 C
 CALL ZPATH ('NWS', CLOC, 'SUMMARY', CDATE, CTIME, ' ', CPATH,
 * NPATH)
 C
 REWIND (UNIT=8)
 CALL ZSTEXT (IFLTAB, CPATH, 8, HEADU, 0, NLINES, ISTAT)
 IF (ISTAT.NE.0) GO TO 910

HECDSS Subroutines ZSTXTA

Chapter 6 - Text Subroutines 6-11

6.4 ZSTXTA - Store Text Data (From an Array)

Purpose:

 Subroutine ZSTXTA stores ASCII text from a character array into a DSS text record. An
alternative subroutine, ZSTEXT, stores text data from a file.

Calling Sequence:

 CALL ZSTXTA (IFLTAB, CPATH, CARRAY, NLINES, HEADU, NHEADU,
 * ISTAT)

Declarations:

 INTEGER IFLTAB(600), NLINES, ISTAT, NHEADU
 REAL HEADU(NHEADU)
 CHARACTER CPATH*80, CARRAY(NLINES)*(*)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the text record to store.

 CARRAY Input A character array containing the text data to store. The array

must be padded with blanks (i.e., characters to the right of the
end of each line must be blanks). Trailing blanks are not
stored. The length of CARRAY is implied by FORTRAN
(e.g., CARRAY(NLINES)*132).

 NLINES Input The number of lines in CARRAY to store.

 HEADU Input The optional user header array. Information should be placed

in this array by subroutine ZSTFH. If no user header is to be
stored, this may be a dummy argument and NHEADU should
be set to zero.

 NHEADU Input The number of elements in the user header array HEADU. If

no header information is to be stored, set this to zero.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
stored. If ISTAT is any other value, no data was stored. The
possible values are:

ZSTXTA HECDSS Subroutines

6-12 Chapter 6 - Text Subroutines

 ISTAT Description
 0 The record was successfully stored.
 -3 An internal buffer was not large enough to store the

record.

Remarks:

 If an error occurs (ISTAT is not zero), an error message will be written to the output
(MUNIT) if the message level (MLEVEL) is one or greater. The messages contain the
pathname, and information about the error. A debug trace may be activated by setting the
message level to seven (or above) with subroutine ZSET.

Example:

 C A flood forecast has been made. Read notes typed in by the
 C forecaster and store in a text record.
 C
 INTEGER IFLTAB(600), IBF(2), IEF(2), ILF(2)
 CHARACTER CPATH*80, CBASIN*32, CDATE*9, CTIME*4, CLINE*80
 PARAMETER (KLINES=600)
 CHARACTER CARRAY(KLINES)*132
 C
 CALL ZOPEN (IFLTAB, ...
 C
 WRITE (6, *) 'Enter Forecast Basin Name'
 READ (5,20) CBASIN
 20 FORMAT (A)
 C
 WRITE (6,*)'Enter Forecast Date and Time'
 READ (5,20) CLINE
 CALL PARSLI (CLINE, 2, NFIELD, IBF, IEF, ILF)
 IF (NFIELD.NE.2) GO TO 900
 CDATE = CLINE(IBF(1):IEF(1))
 CTIME = CLINE(IBF(2):IEF(2))
 C
 WRITE (6,*)'Enter Forecast Notes.'
 WRITE (6,*)'Enter END at the beginning of the line when done.'
 C
 C Read text from the forecaster. Write data to DSS when "END" is
 C entered, or the number of lines reaches the dimension limit.
 NLINES = 0
 40 CONTINUE
 NLINES = NLINES + 1
 IF (NLINES.GT.KLINES) GO TO 100
 READ (5,20) CARRAY(NLINES)
 IF (CARRAY(NLINES)(1:3).EQ.'END') GO TO 100
 GO TO 40

HECDSS Subroutines ZSTXTA

Chapter 6 - Text Subroutines 6-13

 C
 100 CONTINUE
 CALL ZPATH (CBASIN, 'FORECAST NOTES', CDATE, CTIME, ' ', ' ',
 * CPATH, NPATH)
 C
 C Don't store the entry "END".
 NLINES = NLINES - 1
 CALL ZSTXTA (IFLTAB, CPATH, CARRAY, NLINES, HEADU, 0, ISTAT)
 IF (ISTAT.NE.0) GO TO 900

 HECDSS Subroutines

Chapter 7 - Catalog and Tag Subroutines 7-1

7 Catalog and Tag Subroutines

 The following chapter describes the subroutines that are used to access or generate the
catalog and condensed catalog, and the subroutines that utilize record tags.

 The catalog file is a list of the record pathnames in a DSS file, along with their last
written date and time and the name of the program that wrote that record. The catalog is usually
sorted alphabetically by pathname parts. Each pathname has a record tag and a reference
number, either of which may be used in place of the pathname in several of the utility programs.
On most computers, the name given to the catalog file is the DSS file's name with a "C"
appended to it (e.g., On UNIX "file.dssc"). On MS-DOS computers, the catalog file has an
extension of ".DSC".

 A catalog reference number is the sequential number of a pathname in the catalog file.
These numbers are provided for quick interactive reference to a record from a utility program.
When a number is given, the utility program sequentially searches the catalog file until it finds
that number, and then returns the associated pathname. Reference numbers are temporary; they
may change each time the catalog is updated.

 A record tag is a one to eight character semi-permanent record identifier that is not
necessarily unique. It must begin with a non-numeric valid tag character. Valid tag characters
are the set of upper case characters, numbers, and the following characters: ! $ % & () * + - . : ;
< > ? [] { } \ | ~. The characters @ # can also be used, but are discouraged because they conflict
with other uses. Invalid tag characters are the set of lower case characters, the space character,
control characters (including the null character), the following characters: , ' " ` ^ / = and the
"delete" character.

 Tags can be set by the user, or can be set according to a scheme based on the parts of the
pathname. For example, a scheme might cause a data record of observed flow with a B part of
NATP to have a tag of NATP-OF. The default tag is the letter "T" followed by the "sequence
number" of the record (the number of new records written to the file). Tag(s) may be used in
place of pathnames in several DSS programs. If more than one pathname has the same tag, only
the first one found will be used.

 A special catalog, called a "condensed catalog", is useful primarily for time series data.
In this type of catalog, pathname parts are listed in columns, and pathnames for time series data,
which differ only by the date (D part), are referenced with just one line. Repeating parts are
replaced by dashes for easier reading. On most computers, the name given to the condensed
catalog file is the name of the DSS file with the letter "D" appended to it (e.g., On UNIX
"file.dssd"). On MS-DOS computers, the condensed catalog file has an extension of ".DSD".

 Subroutine ZOPNCA opens the catalog file, and determines if a valid catalog exists in
that file. ZCAT generates a new catalog (and the optional condensed catalog), and can also
obtain pathnames from a current catalog based on selective pathname parts (e.g., all pathnames
with a "C" part of "FLOW"). A program may read pathnames from the catalog file with
subroutine ZRDCAT, or read pathnames based on their reference number with ZRDPAT.

 HECDSS Subroutines

7-2 Chapter 7 - Catalog and Tag Subroutines

 If a record's tag is known, ZTAGPA will retrieve its pathname using internal DSS tables,
usually quicker than reading it from the catalog file. Subroutine ZSTAGS will set the tagging
scheme to be used for new records stored in a DSS file. A single record tag may be changed by
ZRETAG. All tags within a DSS file may be changed according the tagging scheme by
subroutine ZRTALL.

 Only utility programs usually use these subroutines. Two extensive examples of these
subroutines are provided at the end of this section.

HECDSS Subroutines ZOPNCA

Chapter 7 - Catalog and Tag Subroutines 7-3

7.1 ZOPNCA - Open a Catalog File

Purpose:

 ZOPNCA opens a DSS file's catalog file. If the catalog file does not exist, ZOPNCA can
create it. If the file does exist, ZOPNCA returns the number of records in the catalog. ZOPNCA
will also open the condensed catalog file, if desired.

Calling Sequence:

 CALL ZOPNCA (CDSSFI, ICUNIT, LGENCA, LOPNCA, LCATLG,
 * ICDUNT, LGENCD, LOPNCD, LCATCD, NRECS)

Declarations:

 CHARACTER CDSSFI*64
 INTEGER ICUNIT, ICDUNT, NRECS
 LOGICAL LGENCA, LOPNCA, LCATLG, LGENCD, LOPNCD, LCATCD)

 On MS-DOS microcomputers, NRECS must be INTEGER*4: INTEGER*4 NRECS

Argument Description:

 CDSSFI Input The name of the DSS file whose catalog file is to be opened.

 ICUNIT Input The unit number to open the catalog file with. (Most DSS

utility programs use Unit 12 for the catalog file).

 LGENCA Input A logical flag indicating whether the catalog file should be

created if it does not exist. When set to .TRUE., the file will be
created.

 LOPNCA Output A logical variable indicating the status of the open. LOPNCA

will be .TRUE. if the catalog file was successfully opened. If
the file could not be opened, LOPNCA will be set to .FALSE.

 LCATLG Output A logical variable returned as .TRUE. if the file contains a

valid catalog. If LCATLG is .FALSE., ZCAT should be called
to generate a new catalog of the DSS file.

 ICDUNT Input The unit number to open the condensed catalog file with.

(Most DSS utility programs use unit 13 for this file).

 LGENCD Input A logical flag indicating whether the condensed catalog file

should be created if it does not exist. When set to .TRUE., the
file will be created.

ZOPNCA HECDSS Subroutines

7-4 Chapter 7 - Catalog and Tag Subroutines

 LOPNCD Output A logical variable indicating the status of the condensed
catalog open. LOPNCD will be .TRUE. if the condensed
catalog file was successfully opened. If the file could not be
opened, LOPNCD will be set to .FALSE.

 LCATCD Output A logical variable returned as .TRUE. if the condensed catalog

file contains a valid (condensed) catalog.

 NRECS Output The number of records in the (regular) catalog file. This is the

number shown in the catalog header.

Remarks:

 Pathnames may be obtained from the catalog file with subroutine ZRDCAT, which is a
general catalog reading routine, or by subroutine ZRDPAT, which obtains pathnames based on
their reference number. If the tag of the pathname desired is known, subroutine ZTAGPA
should be called to obtain the pathname.

 The condensed catalog is designed primarily for DSS files with time series data (although
it may be used with any type of record). It does not need to be accessed, but should be opened if
it exists. If it does exist, it is typically updated whenever a new complete catalog is made (it
does not require much additional computer time). The condensed catalog is for display purposes
only; pathnames cannot be read from it.

 A comprehensive example of ZOPNCA is provided at the end of this section.

Example:

 CHARACTER CDSSFI*64
 LOGICAL LOPNCA, LCATLG, LGENCD, LOPNCD, LCATCD
 INTEGER*4 NRECS
 C
 C Open DSS file, etc.
 C
 C Assume COPT contains command options. IF COPT contains
 C a "C" (e.g., CA.C), get the condensed catalog.
 IF (INDEX(COPT,'C').GT.0) THEN
 LGENCD = .TRUE.
 ELSE
 LGENCD = .FALSE.
 ENDIF
 C
 C Don't open the catalog if it is already opened (unless we
 C want a condensed catalog, and it is not yet opened).

HECDSS Subroutines ZOPNCA

Chapter 7 - Catalog and Tag Subroutines 7-5

 IF ((.NOT.LOPNCA).OR.(LGENCD.AND.(.NOT.LOPNCD))) THEN
 CALL ZOPNCA (CDSSFI, 12, .TRUE., LOPNCA, LCATLG, 13,
 * LGENCD, LOPNCD, LCATCD, NRECS)
 ENDIF
 C
 IF (.NOT.LOPNCA) GO TO 900
 IF (.NOT.LCATLG) CALL ZCAT (...

ZCAT HECDSS Subroutines

7-6 Chapter 7 - Catalog and Tag Subroutines

7.2 ZCAT - Catalog a DSS File

Purpose:

 ZCAT generates a catalog (or listing) of the record pathnames in a DSS file. The catalog
may be sorted by pathname parts. ZCAT can create a selective catalog by matching pathname
parts. The selective catalog can be created from a current catalog (which is much more efficient
than generating a new catalog), or directly from the DSS file. ZCAT can also produce an
optional condensed catalog when generating a new catalog. The catalog files must be opened
externally to ZCAT by subroutine ZOPNCA.

Calling Sequence:

 CALL ZCAT (IFLTAB, ICUNIT, ICDUNT, INUNIT, CINSTR,
 * LABREV, LSORT, LCDCAT, NRECS)

Declarations:

 INTEGER IFLTAB(600), ICUNIT, ICDUNT, INUNIT, NRECS
 CHARACTER CINSTR*(*)
 LOGICAL LABREV, LSORT, LCDCAT

 On MS-DOS microcomputers, NRECS must be INTEGER*4: INTEGER*4 NRECS

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 ICUNIT Input The unit number of file where the catalog is to be written. If a

new catalog is to be made, this should be the unit number of
the catalog file. If a selective catalog is to be produced from an
existing catalog, this unit should probably be attached to a
scratch file.

 ICDUNT Input The unit number of the condensed catalog file. If ICDUNT is

set to zero, ZCAT will not generate a condensed catalog.

 INUNIT Input The input catalog unit number. If a new catalog is to be

made, this must be set to zero. If a selective catalog is to be
produced from an existing catalog, this is the unit number of
the existing catalog. If INUNIT is non-zero, the DSS file will
not be cataloged.

 CINSTR Input A character string containing any instructions for generating

the catalog, such as the sort order or selective pathname parts.

HECDSS Subroutines ZCAT

Chapter 7 - Catalog and Tag Subroutines 7-7

 For example, if CINSTR is 'O=FB, C=FLOW', the catalog will
be sorted in the pathname part order of FBACED, and only
those pathnames with a C part of "FLOW" will be cataloged.
CINSTR is usually a portion of the input line of the program.
If no special instructions are given, set this to blank (' ').

 LABREV Input A logical flag indicating whether an abbreviated catalog should

be produced. If set to .TRUE., an abbreviated catalog will be
generated, otherwise the standard catalog will be produced.

 LSORT Input A logical flag indicating whether the pathnames should be

sorted. When LSORT is set to .TRUE., the pathnames are
sorted (this takes longer than an unsorted catalog).

 LCDCAT Output A logical flag returned with .TRUE. if a condensed catalog was

produced.

 NRECS Output The number of records cataloged. This number will be the

same as the reference number for the last pathname in the
catalog file.

Remarks:

 A description of the catalog and condensed catalog may be found in the "HECDSS User's
Guide and Utility Program Manuals", Overview section. Additional information may also be
found in the DSSUTL documentation, located in the same publication. Information about the
selective catalog is located in Chapter 5 of the DSSUTL documentation.

 The fastest catalog that can be generated is an unsorted abbreviated catalog. In this
procedure, pathnames are just copied from the internal DSS address tables to the catalog. In a
regular extended catalog, each record must be accessed to obtain the program name, date and
time, etc.

 After the catalog (or condensed catalog) has been generated, it may be displayed on the
screen by reading directly from the catalog. ZCAT should not be used to display the catalog on
the screen (do not set ICUNIT to standard output).

 Pathnames may be read from the catalog file with subroutine ZRDCAT, which is a
general catalog reading routine, or by subroutine ZRDPAT, which obtains pathnames based on
their reference number. If you desire to display an abbreviated catalog and a regular catalog
already exists, use subroutine ZRDPAT to read the pathnames from the catalog (see the example
at the end of this section). The condensed catalog is for display purposes only; pathnames
cannot be read from it.

 DSS uses the computer's native sorting algorithm (not its own). On MS-DOS computers,
the size of a file that can be sorted by the DOS sort function is 64,000 bytes. Thus, larger files
will not be able to be sorted. (The typical limit for sorting is between 1,000 and 2,000 records.)

ZCAT HECDSS Subroutines

7-8 Chapter 7 - Catalog and Tag Subroutines

DOS also requires additional RAM for sorting. If this RAM is not available (a large program or
other memory resident programs are present), the catalog will not be sorted.

 Units 66, 67, 68, and 69 are used for sorting. On Harris computers, work files W2, W3,
U1, and U2 are used for sorting (and their contents destroyed). On other computers the files
dsssort.in, dsssort.out, and dsssort.tmp are used then deleted.

 The condensed catalog is an optional catalog designed primarily for time series data
(although it may be used with any record type). Generally, if the condensed catalog already
exists, it should be updated when a complete sorted catalog is produced. A condensed catalog
can only be made when the default sort order is used. (An abbreviated or complete catalog can
be used, and selective pathname parts may be specified).

 A status line with the percent complete can be displayed on the screen by setting 'CAST'
to 'ON' with ZSET before calling ZCAT. The message unit (MUNIT) must be connected to the
screen to display a status line.

 A "catalog map" may be generated by ZCAT when creating a new catalog. A catalog
map is a listing of the pathnames only (no title or reference numbers), which is useful for
creating a input file of pathnames for some programs. This option is initiated by setting the map
options in subroutine ZSET. The map file must be opened and its unit number passed to ZSET
through the 'MAPUNT' parameter, then the ZSET 'MAP' parameter must be set to 'ON'. The
catalog map is only created when a new catalog is generated. Be sure to call ZSET with 'MAP'
set to 'OFF' after the map has been made.

 A comprehensive example of ZCAT is provided at the end of this section.

Example 1:

 INTEGER IFLTAB(600)
 LOGICAL LCDCAT
 INTEGER*4 NRECS
 C
 C Open the DSS file, etc.
 C
 C Open the catalog file.
 CALL ZOPNCA (...
 IF (.NOT.LOPNCA) GO TO 900
 C
 C If a condensed catalog may be made, set the unit number.
 IF (LOPNCD) THEN
 ICDUNT = 13
 ELSE
 ICDUNT = 0
 ENDIF
 C

HECDSS Subroutines ZCAT

Chapter 7 - Catalog and Tag Subroutines 7-9

 C Generate a new catalog.
 CALL ZCAT (IFLTAB, 12, ICDUNT, 0, ' ', .FALSE., .TRUE.,
 * LCDCAT, NRECS)
 IF (NRECS.EQ.0) GO TO 900

Example 2:

 C Search the DSS file for all pathnames
 C with a "B" part of "SOUTH BRIDGE".
 CHARACTER CPATH*80, CTAG*8
 INTEGER*4 NRECS
 LOGICAL LDUM
 C
 C Open the DSS file.
 CALL ZOPEN (...
 C
 C Use a scratch file for this catalog.
 OPEN (UNIT=12, STATUS='SCRATCH', ERR=900)
 C
 C Call ZCAT to obtain a scratch catalog of pathnames
 C with a "B" part of "SOUTH BRIDGE". Make the catalog
 C abbreviated and unsorted to get the pathnames quickly.
 CALL ZCAT (IFLTAB, 12, 0, 0, 'B=SOUTH BRIDGE', .TRUE.,
 * .FALSE., LDUM, NRECS)
 IF (NRECS.EQ.0) GO TO 920
 C
 Now process these pathnames.
 REWIND (UNIT=12)
 20 CONTINUE
 C Read a pathname.
 CALL ZRDCAT (12, .TRUE., 0, CTAG, IDUM, CPATH, NPATH, NFOUND)
 C Have we read all the pathnames?
 IF (NFOUND.EQ.0) GO TO 800
 C
 C Process the pathname.
 CALL PROCES (CPATH)
 C Get the next one.
 GO TO 20

ZRDCAT HECDSS Subroutines

7-10 Chapter 7 - Catalog and Tag Subroutines

7.3 ZRDCAT - Read Pathnames from a Catalog File

Purpose:

 ZRDCAT reads pathnames from a catalog file. All the pathnames in the catalog may be
read, or pathnames may be obtained based on their record tags. ZRDCAT can return multiple
pathnames in a single call, if desired.

 Programs to obtain pathnames for computation or utility purposes frequently use this
routine. If the pathnames are to be displayed on the screen, subroutine ZRDPAT is preferable.
If the tag of a record is known, subroutine ZTAGPA will usually obtain its pathname faster than
ZRDCAT can.

Calling Sequence:

 CALL ZRDCAT (ICUNIT, LALL, IOUNIT, CTAGS, NDIM,
 * CPATHS, NPATHS, NFOUND)

Declarations:

 INTEGER ICUNIT, IOUNIT, NDIM, NPATHS(NDIM), NFOUND
 CHARACTER CTAGS(NDIM)*8, CPATHS(NDIM)*80
 LOGICAL LALL

Argument Description:

 ICUNIT Input The unit number of the catalog file (from ZOPNCA).

 LALL Input A logical variable that, when set to .TRUE., indicates all of the

pathnames should be read from the catalog file. Under this
condition, one pathname at a time is returned. NFOUND will
be set to one until the end of the catalog is reached, at which
point it will be set to zero. If LALL is .FALSE., then
ZRDCAT will search for pathnames according to the tags
given in CTAGS.

 IOUNIT Input If desired, the pathnames can be written to a file instead of

returned in the CPATHS array, when LALL is set to .FALSE..
IOUNIT is the unit number of this file (which must be opened
prior to calling ZRDCAT). If the pathnames are to be returned
in the variable CPATHS, set this to zero.

 CTAGS Input/ If LALL is set to .TRUE., then CTAGS will be returned with
 Output the tag corresponding to the pathname read. If LALL is

.FALSE., then CTAGS should be a character array (or a single
character variable) containing the tags of the pathnames to
read.

HECDSS Subroutines ZRDCAT

Chapter 7 - Catalog and Tag Subroutines 7-11

 NDIM Input If LALL is .FALSE., this is the number of tags in CTAGS to
search for, and must also be the dimension of CTAGS,
CPATHS, and NPATHS. If LALL is set to .TRUE., this
argument is ignored (only one pathname will be returned at a
time).

 CPATHS Output The pathname(s) retrieved. If LALL is .TRUE., this will

contain the single pathname read from the catalog. If LALL is
.FALSE., the first element of CPATHS will contain the
pathname corresponding to the tag in the first element of
CTAGS. If a pathname was not found for the corresponding
tag, then that element of CPATHS will be blank filled. If
IOUNIT is greater than zero, nothing will be returned in this
argument.

 NPATHS Output The length of the pathname(s) retrieved in CPATHS. If the

pathname for the tag specified could not be found, then the
corresponding element will be zero. NPATHS must be
dimensioned to NDIM, regardless if IOUNIT is greater than
zero or not, as it is used for internal bookkeeping. If LALL is
.TRUE., NPATHS can be a single integer variable.

 NFOUND Output The number of pathnames obtained. If LALL is .FALSE., then

this is the number of pathnames returned in the array CPATHS.
If LALL is .TRUE., then NFOUND will be set to one until the
end of the catalog file is reached (and then it will be set to
zero).

Remarks:

 ZRDCAT is usually used when a program needs to read pathnames from the catalog file
for processing. If pathnames are to be displayed on the screen, where reference numbers are
used, subroutine ZRDPAT should be called instead. Although ZRDCAT will obtain pathnames
based on their tags, subroutine ZTAGPA will obtain a pathname from a tag more efficiently than
ZRDCAT can.

 If several pathnames are to be searched for based on their tags, it is much more efficient
to pass all the tags to ZRDCAT in the CTAGS array, than to call ZRDCAT once for each tag. If
duplicate tags exist (for different pathnames), the pathname corresponding to the first matching
tag is returned.

 When IOUNIT is set greater than zero, ZRDCAT will write a sequence number (not the
catalog reference number), the record tag, and the pathname. The format (I6,2X,A8,4X,A80) is
used.

ZRDCAT HECDSS Subroutines

7-12 Chapter 7 - Catalog and Tag Subroutines

 ZRDCAT rewinds the catalog before accessing it except for subsequent calls when LALL
is .TRUE.. However, if LALL is .TRUE. and ZRDCAT does not reach the end of the catalog,
the catalog file must be rewound before calling ZRDCAT again. (Call ZRDCAT until
NFOUND returns 0, or rewind the catalog before using it the next time.)

Example 1:

 C Search the catalog file for pathnames
 C with a "B" part of "SOUTH BRIDGE".
 CHARACTER CPATH*80, CTAG*8
 INTEGER IBPART(6), IEPART(6), ILPART(6)
 C
 C Open the DSS file, catalog file, etc.
 C
 20 CONTINUE
 C Read a pathname.
 CALL ZRDCAT (12, .TRUE., 0, CTAG, IDUM, CPATH, NPATH, NFOUND)
 C Have we read all the pathnames from the catalog?
 IF (NFOUND.EQ.0) GO TO 800
 C Break it apart to get the B part.
 CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C Check the B part.
 IF (CPATH(IBPART(2):IEPART(2)).EQ.'SOUTH BRIDGE') THEN
 CALL PROCES (CPATH)
 ENDIF
 GO TO 20

Example 2:

 C We have 3 tags. Obtain their pathnames from the catalog.
 CHARACTER CTAGS(3)*8, CPATHS(3)*80
 INTEGER NPATHS(3)
 C
 C Open DSS file, catalog file, etc.
 C
 C Set the CTAGS array.
 CTAGS(1) = 'T312'
 CTAGS(2) = 'SB-FLOW'
 CTAGS(3) = 'SB-PREC'
 C
 C Read the pathnames.
 CALL ZRDCAT (12, .FALSE., 0, CTAGS, 3, CPATHS, NPATHS, NFOUND)
 C
 C Print the pathnames.
 IF (NFOUND.EQ.0) THEN
 WRITE (6,*) 'No pathnames found matching the tags given.'

HECDSS Subroutines ZRDCAT

Chapter 7 - Catalog and Tag Subroutines 7-13

 ELSE
 DO 40 I=1,3
 IF (NPATHS(I).GT.0) WRITE (6,20)CTAGS(I),CPATHS(I)(1:NPATHS(I))
 20 FORMAT (' Tag: ',A,'; Pathname: ',A)
 40 CONTINUE
 ENDIF

Example 3:

 C Get tags from a command line, then obtain their pathnames from
 C the catalog and place them in a scratch file for later processing.
 CHARACTER CTAGS(20)*8, CDUM*1, CLINE*80
 INTEGER NPATHS(20), IBF(20), IEF(20), ILF(20)
 C
 C Open DSS file, catalog file, etc.
 C
 C Get the tags.
 WRITE (6,*)'Enter Record Tags'
 READ (5,20) CLINE
 20 FORMAT (A)
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 DO 40 I=1,NFIELD
 CTAGS(I) = CLINE(IBF(I):IEF(I))
 40 CONTINUE
 C
 C Open a scratch file.
 OPEN (UNIT=15, STATUS='SCRATCH', ERR=900)
 C
 C Read the pathnames.
 CALL ZRDCAT (12, .FALSE., 15, CTAGS, NFIELD, CDUM, NPATHS,
 * NFOUND)
 C
 . . .

 C At some later point, get the pathnames and process.
 CHARACTER CTAG*8, CPATH*80
 C
 REWIND (UNIT=15)
 DO 120 I=1,NFOUND
 READ (15, 110, END=800) J, CTAG, CPATH
 110 FORMAT (I6,2X,A8,4X,A)
 CALL PROCES (CTAG, CPATH)
 120 CONTINUE

ZRDPAT HECDSS Subroutines

7-14 Chapter 7 - Catalog and Tag Subroutines

7.4 ZRDPAT - Read a Pathname from a Catalog File by Reference
Number

Purpose:

 ZRDPAT searches for a pathname from a catalog file according to the pathname's
reference number. ZRDPAT may be used in a loop to obtain a set of pathnames, or used to read
a single pathname. If reference numbers are not used, subroutine ZRDCAT should be called
instead. If the record tag is known, call subroutine ZTAGPA.

Calling Sequence:

 CALL ZRDPAT (ICUNIT, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)

Declarations:

 INTEGER ICUNIT, IPOS, INUMB, NPATH
 CHARACTER CPATH*80, CTAG*8
 LOGICAL LEND

 On MS-DOS microcomputers, the position variables must be INTEGER*4:

INTEGER*4 IPOS, INUMB

Argument Description:

 ICUNIT Input The catalog unit number (from ZOPNCA).

 IPOS Input/ A file position indicator used by ZRDPAT. When first reading
 Output from the catalog, ICUNIT should be rewound and IPOS set to

zero. (The calling program must always set IPOS to zero when
the catalog is rewound.)

 INUMB Input/ The catalog reference number of the pathname to read. When
 Output the end of the catalog file is reached, INUMB will be returned

with the reference number of the last pathname in the catalog.
If INUMB is less than or equal to IPOS on input, ZRDPAT
will return the next pathname and its reference number from
the catalog.

 CTAG Output The record tag of the pathname read.

 CPATH Output The pathname corresponding to the reference number INUMB.

 NPATH Output The number of characters in the pathname retrieved.

HECDSS Subroutines ZRDPAT

Chapter 7 - Catalog and Tag Subroutines 7-15

 LEND Output A logical flag set to .TRUE. when the end of the catalog file
has been reached. No pathname will be returned when LEND
is .TRUE. (CPATH will be unchanged).

Remarks:

 The catalog file must be rewound and IPOS set to zero before calling ZRDPAT to
retrieve a (or set of) pathname(s). ZRDPAT only can search for pathnames in a forward
direction; INUMB must always be greater than IPOS. Thus, if a sequence of reference numbers
for pathnames to be retrieved is "12, 18, 9, 20", then the catalog has to be rewound and IPOS set
to zero after reading pathname eighteen before pathname nine will be found. It is more efficient
to sort the reference numbers in ascending order prior to calling ZRDPAT.

 If INUMB is less than or equal to IPOS on input, ZRDPAT will read the next pathname
in the catalog and return its reference number as INUMB. Thus, the entire catalog file can be
read by rewinding the file, setting IPOS and INUMB both to zero, then calling ZRDPAT until
LEND is .TRUE.. In this case INUMB does not need to be reset by the program each time
ZRDPAT is called.

Example 1:

 C Obtain the pathname that has the reference number 24.
 C
 CHARACTER CTAG*8, CPATH*80
 INTEGER*4 IPOS, INUMB
 LOGICAL LEND
 C
 CALL ZOPNCA (...
 C
 REWIND 12
 IPOS = 0
 INUMB = 24
 CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)
 C If LEND is .TRUE., or INUMB is not 24, the pathname
 C was not found.
 IF ((LEND).OR.(INUMB.NE.24) GO TO 900

Example 2:

 C Read all the pathnames from the catalog.
 C
 REWIND 12
 IPOS = 0
 INUMB = 0
 10 CONTINUE
 CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)
 IF (LEND) GO TO 900

ZRDPAT HECDSS Subroutines

7-16 Chapter 7 - Catalog and Tag Subroutines

 WRITE (6,20) INUMB, CTAG, CPATH(1:NPATH)
 20 FORMAT (1X,I6,2X,A,2X,A)
 GO TO 10

Example 3:

 C Read the set of pathnames with the reference numbers of
 C 10 through 60.
 C
 REWIND 12
 IPOS = 0
 INUMB = 9
 10 CONTINUE
 INUMB = INUMB + 1
 CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)
 IF (LEND) GO TO 900
 WRITE (6,20) INUMB, CTAG, CPATH(1:NPATH)
 20 FORMAT (1X,I6,2X,A,2X,A)
 IF (INUMB.LT.60) GO TO 10

Example 4:

 C Read the set of pathnames whose reference numbers are
 C contained in the array NUMBS (e.g., 8, 12, 15, 9, 20, 13).
 C
 REWIND 12
 IPOS = 0
 DO 20 I=1,JNUMBS
 INUMB = NUMBS(I)
 C Are the numbers in ascending order?
 C If not, rewind the catalog and reset IPOS.
 IF (INUMB.LE.IPOS) THEN
 REWIND 12
 IPOS = 0
 ENDIF
 CALL ZRDPAT (12, IPOS, INUMB, CTAG, CPATH, NPATH, LEND)
 IF (LEND) GO TO 900
 WRITE (6,10) INUMB, CTAG, CPATH(1:NPATH)
 10 FORMAT (1X,I6,2X,A,2X,A)
 20 CONTINUE

HECDSS Subroutines ZTAGPA

Chapter 7 - Catalog and Tag Subroutines 7-17

7.5 ZTAGPA - Get Pathnames from Tags

Purpose:

 Given a record tag, or an array of tags, subroutine ZTAGPA obtains the corresponding
pathname(s). ZTAGPA searches through tables in the DSS file, not the catalog file, to find the
pathnames. ZTAGPA provides the fastest means of obtaining pathnames from tags.

Calling Sequence:

 CALL ZTAGPA (IFLTAB, IOUNIT, CTAGS, NDIM, CPATHS, NPATHS
 * NFOUND)

Declarations:

 INTEGER IFLTAB(600), IOUNIT, NDIM, NPATHS(NDIM), NFOUND
 CHARACTER CTAGS(NDIM)*8, CPATHS(NDIM)*80

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 IOUNIT Input If desired, the pathnames could be written to a file instead of

returned in the CPATHS array. IOUNIT is the unit number of
this file (which must be opened prior to calling ZTAGPA). If
the pathname(s) are to be returned in variable CPATHS, set
this to zero.

 CTAGS Input A character variable or array containing the tag(s) of the

pathnames to search for.

 NDIM Input The number of tags in CTAGS to search for. CPATHS and

NPATHS must have a minimum dimension of NDIM.

 CPATHS Output The pathname(s) retrieved. If more than one tag is specified,

then the first element of CPATHS will contain the pathname
corresponding to the tag in the first element of CTAGS. If a
pathname was not found for a tag, that element of CPATHS
will be blank filled. If IOUNIT is greater than zero, this
argument is ignored.

 NPATHS Output The length of the pathname(s) retrieved in CPATHS. If the

pathname for the tag specified could not be found, then this
element will be zero. NPATHS must be dimensioned to

ZTAGPA HECDSS Subroutines

7-18 Chapter 7 - Catalog and Tag Subroutines

 NDIM, regardless if IOUNIT is greater than zero or not (it is
used for internal bookkeeping).

 NFOUND Output The number of pathnames retrieved. If a pathname is not

found, this will be returned as zero.

Remarks:

 If duplicate tags exist (the same tag is used for more than one pathname), the pathname
for that the first matching tag found is returned. ZTAGPA has no capability of returning more
than one pathname with an identical tag.

 ZTAGPA first searches an internal tag table in the DSS file for matching tags. This table
is automatically updated whenever the file is squeezed or cataloged. If the tag is not found in the
internal table (the table has not been updated since the record was added), the main pathname-
hash table will be searched. If the tag is in the tag table, the pathname will be retrieved very
quickly. Otherwise the search will take somewhat longer. However, this is usually faster than
searching the catalog file.

 If several pathnames are to be retrieved based on their tags, it is more efficient to pass all
the tags in the CTAGS array at one time than to call ZTAGPA for each tag.

 When IOUNIT is greater than zero, ZTAGPA will write to that unit a sequence number
(not the catalog reference number), the tag, and the pathname in the format (I6,2X,A8,4X,A80).

Example 1:

 C Get the pathname corresponding to the tag "LA-FLOW".
 CHARACTER CPATH*80, CTAG*8
 C
 C Open the DSS file, etc.
 C CALL ZOPEN (...
 C
 CTAG = 'LA-FLOW'
 CALL ZTAGPA (IFLTAB, 0, CTAG, 1, CPATH, NPATH, NFOUND)
 C Did we find it?
 IF (NFOUND.EQ.0) GO TO 800
 C Yes, process it.
 CALL PROCES (CPATH, NPATH)

Example 2:

 C We have 3 tags. Print their pathnames.
 CHARACTER CTAGS(3)*8, CPATHS(3)*80
 INTEGER NPATHS(3)
 C
 C Open the DSS file, etc.

HECDSS Subroutines ZTAGPA

Chapter 7 - Catalog and Tag Subroutines 7-19

 C CALL ZOPEN (...
 C
 C Set the CTAGS array.
 CTAGS(1) = 'T312'
 CTAGS(2) = 'SB-FLOW'
 CTAGS(3) = 'SB-PREC'
 C
 C Obtain the pathnames.
 CALL ZTAGPA (IFLTAB, 0, CTAGS, 3, CPATHS, NPATHS, NFOUND)
 C Print the pathnames.
 IF (NFOUND.EQ.0) THEN
 WRITE (6,*) 'No pathnames found matching the tags given.'
 ELSE
 DO 40 I=1,3
 IF (NPATHS(I).GT.0)WRITE (6,20)CTAGS(I),CPATHS(I)(1:NPATHS(I))
 20 FORMAT (' Tag: ',A,'; Pathname: ',A)
 40 CONTINUE
 ENDIF

Example 3:

 C Get tags from a command line. Retrieve their pathnames
 C and place them in a scratch file for later processing.
 CHARACTER CTAGS(20)*8, CDUM*1, CLINE*80
 INTEGER NPATHS(20), IBF(20), IEF(20), ILF(20)
 C
 C Open the DSS file, etc.
 C CALL ZOPEN (...
 C
 C Get the tags.
 WRITE (6,*)'Enter Record Tags'
 READ (5,20) CLINE
 20 FORMAT (A)
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 DO 40 I=1,NFIELD
 CTAGS(I) = CLINE(IBF(I):IEF(I))
 40 CONTINUE
 C
 C Open a scratch file.
 OPEN (UNIT=15, STATUS='SCRATCH', ERR=900)
 C
 C Get the pathnames.
 CALL ZTAGPA (IFLTAB, 15, CTAGS, NFIELD, CDUM, NPATHS,
 * NFOUND)
 C
 . . .

ZTAGPA HECDSS Subroutines

7-20 Chapter 7 - Catalog and Tag Subroutines

 C At some later point, get the pathnames and process.
 C
 CHARACTER CTAG*8, CPATH*80
 REWIND (UNIT=15)
 DO 120 I=1,NFOUND
 READ (15, 110, END=800) J, CTAG, CPATH
 110 FORMAT (I6,2X,A8,4X,A)
 CALL PROCES (CTAG, CPATH)
 120 CONTINUE

HECDSS Subroutines ZRETAG

Chapter 7 - Catalog and Tag Subroutines 7-21

7.6 ZRETAG - Change a Record Tag

Purpose:

 Subroutine ZRETAG changes the tag of a single existing record. A new record's tag may
be set by subroutine ZSET.

Calling Sequence:

 CALL ZTAGPA (IFLTAB, CPATH, NPATH, CTAG, LFOUND)

Declarations:

 INTEGER IFLTAB(600), NPATH
 CHARACTER CPATH*80, CTAG*8
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the record whose tag is to be changed.

 NPATH Input The number of characters in CPATH.

 CTAG Input The new tag for the record. The tag must be left justified and

blank padded.

 LFOUND Output A logical flag set to .TRUE. if the record exists and was

retagged. If the record does not exist, LFOUND is set to
.FALSE.

Remarks:

 ZRETAG ignores any file tagging scheme, and sets the tag to that provided. The entire
file may be re-tagged using the file's tagging scheme by calling subroutine ZRTALL.

 Be sure that the new tag meets the tag requirements discussed at the beginning of this
chapter.

ZSTAGS HECDSS Subroutines

7-22 Chapter 7 - Catalog and Tag Subroutines

7.7 ZSTAGS - Set the Tag Scheme for a DSS File

Purpose:

 ZSTAGS sets or changes a DSS file's default tagging scheme. The scheme is set by a
string that identifies the characters of pathname parts to make up the tags. A further description
is given below in remarks.

Calling Sequence:

 CALL ZSTAGS (IFLTAB, CSCHEM, ISTAT)

Declarations:

 INTEGER IFLTAB(600), ISTAT
 CHARACTER CSCHEM*(*)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CSCHEM Input A character string containing the tagging scheme to be set (e.g.,

'B1,B2,...'). To clear the file's tag scheme (so that sequence
numbers will be used for tags), set CSCHEM to blank.

 ISTAT Output A status parameter set to zero if no error occurred. If the

tagging scheme was not recognized, this variable will be
returned as -1.

Remarks:

 A file tag scheme generates tags based on characters from pathnames. A typical tag
might be the location name followed by part of the data parameter. For example, the observed
flow at location NATP might have a tag of "NATP-FO"; the barometric pressure at FLD might
be "FLD-BP". Each character in the tag scheme is set by specifying the pathname part letter (A,
B, C, D, E, or F) followed by the character position number in that part. Tag character identifiers
must be separated by commas. When a character or symbol without a character position is used,
that character is inserted into the tag. For example, the tag "NATP-FO" may be generated by the
following scheme:

B1,B2,B3,B4,-,C1,F1

This generates a tag using the first through fourth characters of the B part, a dash, the first
character of the C part, then the first character of the F part. If no character corresponds to the
position given, that character is ignored.

HECDSS Subroutines ZSTAGS

Chapter 7 - Catalog and Tag Subroutines 7-23

 It is also possible to use characters from the second word of a part by preceding the part
letter with an underscore "_". The tag "FLD-BP", from a pathname with a C part of
"BAROMETRIC PRESSURE", was created using the following scheme:

B1,B2,B3,-,C1,_C1

The underscore causes the first character of the second word to be counted as position one.
Words within a pathname are delimited by any of the following characters:

- @ _ + . ; : <blank>

 If there is not a second word for a part, that tag character is ignored.

 Only one tag scheme may be set for a file.

Example 1:

 INTEGER IFLTAB(600)
 CHARACTER CSCHEM*20
 C
 C Open the DSS file, etc..
 C
 CSCHEM = 'B1,B2,B3,B4,-,C1,_C1'
 CALL ZSTAGS (IFLTAB, CSCHEM, ISTAT)
 C
 IF (ISTAT.NE.0) WRITE (6,20) CSCHEM
 20 FORMAT (' Invalid tagging scheme provided: ',A)

ZRTALL HECDSS Subroutines

7-24 Chapter 7 - Catalog and Tag Subroutines

7.8 ZRTALL - Change All Record Tags in a DSS File

Purpose:

 Subroutine ZRTALL changes all record tags in a DSS file according to the file's tag
scheme (set by ZSTAGS). If no tag scheme is set, the records are re-tagged according to the
current sequence number (e.g., T32).

Calling Sequence:

 CALL ZRTALL (IFLTAB)

Declarations:

 INTEGER IFLTAB(600)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

Remarks:

 Subroutine ZSTAGS is usually called prior to ZRTALL.

 HECDSS Subroutines

Chapter 7 - Catalog and Tag Subroutines 7-25

7.9 Example of Obtaining Pathnames from References on a Command Line

 The following comprehensive example takes a program's input line and obtains the
pathnames identified by the user. The user may specify the pathname, a selective catalog
reference (e.g., "C=FLOW"), catalog reference numbers, record tags, or "ALL". This example is
a complete subroutine, which may be obtained on floppy diskette from the HEC.

 SUBROUTINE GETPAT (IFLTAB, CLINE)
 C
 C Get pathnames for processing (call PROCES).
 C
 C This subroutine takes a command line, figures
 C out what pathnames are referenced, then calls
 C subroutine PROCES with those paths (one at a time).
 C Example command lines are:
 C TA /OHIO/PITTSBURGH/FLOW/01JAN1950/1DAY/OBS/
 C TA 1, 29, 5-8, 3
 C TA C=FLOW F=OBS
 C TA T432, PITT-OF, T53
 C TA ALL
 C
 C CLINE is the command line with the command removed.
 C
 C Written by Bill Charley, HEC, 1990.
 C
 C
 PARAMETER (KTAGS=20)
 CHARACTER CLINE*(*), CPATH*80, CTAG*8, CDSSFI*64
 CHARACTER CPATHS(KTAGS)*80, CTAGS(KTAGS)*8
 INTEGER IFLTAB(*), NPATHS(KTAGS), IBF(20), IEF(20), ILF(20)
 INTEGER*4 IPOS, IBEG, IEND, ICOUNT, NRECS, IDUM
 LOGICAL LEND
 C
 COMMON /LOGS/ LOPNCA, LCATLG, LOPNCD, LCATCD
 LOGICAL LOPNCA, LCATLG, LOPNCD, LCATCD
 C
 C
 C Get the length of the command line.
 CALL CHRLNB (CLINE, NLINE)
 IF (NLINE.EQ.0) GO TO 900
 C
 C
 C Was a regular pathname entered?
 IF (CLINE(1:1).EQ.'/') THEN
 CPATH = CLINE
 CALL PROCES (CPATH)

HECDSS Subroutines

7-26 Chapter 7 - Catalog and Tag Subroutines

 C
 C Was a reference to a catalog file made?
 ELSE IF ((INDEX(CLINE(1:5),'=').NE.0).OR.(CLINE(1:3).EQ.'ALL')
 * .OR.(INDEX('123456789',CLINE(1:1)).GT.0)) THEN
 C
 C Yes. Be sure we have a catalog.
 IF (.NOT.LOPNCA) THEN
 C Get the name of the DSS file.
 CALL ZINQIR (IFLTAB, 'NAME', CDSSFI, IDUM)
 CALL ZOPNCA (CDSSFI, 12, .TRUE., LOPNCA, LCATLG, 13,
 * .FALSE., LOPNCD, LCATCD, NRECS)
 IF (.NOT.LOPNCA) GO TO 910
 C If not cataloged, produce a new complete catalog.
 IF (.NOT.LCATLG) THEN
 C Is a condensed catalog associated with this DSS file?
 IF (LOPNCD) THEN
 ICDUNT = 13
 ELSE
 ICDUNT = 0
 ENDIF
 CALL ZCAT (IFLTAB, 12, ICDUNT, 0, ' ', .FALSE.,
 * .TRUE., LCATCD, NRECS)
 IF (NRECS.LE.0) GO TO 930
 ENDIF
 ENDIF
 C
 C Check for a selective catalog reference.
 IF (INDEX(CLINE(1:5),'=').NE.0) THEN
 C Yes. Open a scratch file to place pathnames in.
 OPEN (UNIT=14, STATUS='SCRATCH')
 REWIND 12
 C Have ZCAT make a selective catalog from the original catalog.
 CALL ZCAT (IFLTAB, 14, 0, 12, CLINE, .TRUE., .FALSE., LCATCD,
 * NRECS)
 IF (NRECS.LE.0) GO TO 900
 C Read through the catalog.
 20 CONTINUE
 CALL ZRDCAT (14, .TRUE., 0, CTAG, 1, CPATH, NPATH, NFOUND)
 C All done?
 IF (NFOUND.EQ.0) THEN
 CLOSE (UNIT=14)
 GO TO 800
 ENDIF
 CALL PROCES (CPATH)
 GO TO 20
 C
 C Were all pathnames specified?

 HECDSS Subroutines

Chapter 7 - Catalog and Tag Subroutines 7-27

 ELSE IF (CLINE(1:3).EQ.'ALL') THEN
 C Yes. Read all pathnames from the catalog.
 40 CONTINUE
 CALL ZRDCAT (12, .TRUE., 0, CTAG, 1, CPATH, NPATH, NFOUND)
 IF (NFOUND.EQ.0) GO TO 800
 CALL PROCES (CPATH)
 GO TO 40
 C Was a catalog reference number given?
 ELSE IF (INDEX('123456789',CLINE(1:1)).GT.0) THEN
 C Yes. Parse the command line.
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 C
 REWIND 12
 IPOS = 0
 C
 C Get the reference number(s).
 DO 80 I=1,NFIELD
 C Is there a dash between two numbers (e.g., "5-8").
 IDASH = INDEX (CLINE(IBF(I):IEF(I)),'-')
 IF (IDASH.GT.0) THEN
 C Yes. Find the beginning and ending number
 IBEG = INTGR (CLINE, IBF(I), IDASH-1, IERR)
 IF (IERR.NE.0) GO TO 920
 IEND = INTGR (CLINE, IBF(I)+IDASH, ILF(I)-IDASH, IERR)
 IF (IERR.NE.0) GO TO 920
 IF (IBEG.GT.IEND) GO TO 920
 ELSE
 C No a single number. Make the end equal
 C the beginning (e.g., 5-5).
 IBEG = INTGR (CLINE, IBF(I), ILF(I), IERR)
 IF (IERR.NE.0) GO TO 920
 IEND = IBEG
 ENDIF
 C
 C Now read the records.
 IF (IBEG.LT.IPOS) THEN
 REWIND 12
 IPOS = 0
 ENDIF
 DO 60 ICOUNT=IBEG,IEND
 CALL ZRDPAT (12, IPOS, ICOUNT, CTAG, CPATH, NPATH,
 …..* LEND)
 IF (LEND) THEN
 WRITE (6,*)'The reference number given is greater than',
 * ' the number cataloged.'
 GO TO 800
 ENDIF

HECDSS Subroutines

7-28 Chapter 7 - Catalog and Tag Subroutines

 CALL PROCES (CPATH)
 60 CONTINUE
 80 CONTINUE
 C
 ENDIF
 C
 ELSE
 C
 C Must be Record Tags.
 C Parse the command line.
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 C
 IF (NFIELD.GT.KTAGS) NFIELD = KTAGS
 C Copy the tags from the line into the CTAGS array.
 DO 100 I=1,NFIELD
 IF (ILF(I).GT.8) GO TO 950
 CTAGS(I) = CLINE(IBF(I):IEF(I))
 100 CONTINUE
 C
 C Get the pathnames from the DSS file.
 CALL ZTAGPA (IFLTAB, 0, CTAGS, NFIELD, CPATHS, NPATHS,
 * NFOUND)
 C
 C Make sure that we found some pathnames.
 IF (NFOUND.EQ.0) GO TO 940
 IF (NFOUND.LT.NFIELD) THEN
 WRITE (6, 120)
 120 FORMAT (' *** Unable to Find Pathnames for the',
 * ' Following Tag(s):')
 DO 160 I=1,NFIELD
 IF (NPATHS(I).EQ.0) WRITE (6, 140) CTAGS(I)
 140 FORMAT (' Tag: ',A)
 160 CONTINUE
 ENDIF
 C
 DO 180 I=1,NFIELD
 IF (NPATHS(I).GT.0) CALL PROCES (CPATHS(I))
 180 CONTINUE
 C
 ENDIF
 C
 C
 800 CONTINUE
 RETURN
 C
 C
 C Error Messages.

 HECDSS Subroutines

Chapter 7 - Catalog and Tag Subroutines 7-29

 90 CONTINUE
 WRITE (6,*)'*** No Pathnames Match the Parameters Specified ***'
 GO TO 800
 C
 910 CONTINUE
 WRITE (6,*)'*** Unable to access the catalog file ***'
 GO TO 800
 C
 920 CONTINUE
 WRITE (6,*)'*** Unrecognizable Catalog Reference Number Given'
 GO TO 800
 C
 930 CONTINUE
 WRITE (6,*)'**** No Records Cataloged - Possible Empty File ***'
 GO TO 800
 C
 940 CONTINUE
 WRITE (6,*)' *** No Pathnames Match the Tag(s) Specified ***'
 GO TO 800
 C
 950 CONTINUE
 WRITE (6,*)'*** Unrecognized Pathname Reference ***'
 GO TO 800
 C
 END

HECDSS Subroutines

7-30 Chapter 7 - Catalog and Tag Subroutines

7.10 Example of a Catalog Display Subroutine

 The following is a comprehensive example of a subroutine that may be used by a
program to process DSS catalog display requests. These requests include displaying the general
catalog, the condensed catalog, and generating a new catalog with a variety of options. It may be
used in conjunction with the previous example (subroutine GETPAT). This example is a
complete subroutine, which may be obtained on floppy diskette from the HEC.

 SUBROUTINE CATALG (IFLTAB, CIN, COPT)
 C
 C General DSS catalog functions.
 C Display catalog, unless options indicate otherwise.
 C On Input:
 C CIN - Input command line with command removed (e.g., "C=FLOW").
 C COPT - Command Options (parsed from command line):
 C A: Abbreviated
 C C: Condensed catalog
 C F: Full (display all the catalog at once - don't pause)
 C M: Catalog Map file
 C N: Generate New catalog
 C P: Send catalog to the printer
 C S: Suppress catalog output
 C U: Generate unsorted catalog (when new)
 C
 C Written by Bill Charley, HEC, 1990
 C
 C
 CHARACTER CIN*(*), COPT*(*), CLINE*132, CPATH*80, CTAG*8
 CHARACTER CDSSFI*64
 INTEGER IFLTAB(*)
 LOGICAL LSORT, LABBR, LGENCD, LEND
 INTEGER*4 ICUR, IBEG, NREC, NORECS
 C
 COMMON /LOGS/ LOPNCA, LCATLG, LOPNCD, LCATCD
 LOGICAL LOPNCA, LCATLG, LOPNCD, LCATCD
 C
 C
 C
 ICUNIT = 12
 ICDUNT = 13
 C
 C Check if the catalog file has been opened yet, or a
 C condensed catalog is requested and is unopened.
 IF ((.NOT.LOPNCA).OR.
 * ((.NOT.LOPNCD).AND.(INDEX(COPT,'C').GT.0))) THEN
 C

 HECDSS Subroutines

Chapter 7 - Catalog and Tag Subroutines 7-31

 C Condensed catalog requested?
 IF (INDEX(COPT,'C').GT.0) THEN
 LGENCD = .TRUE.
 ELSE
 LGENCD = .FALSE.
 ENDIF
 C Get the name of the DSS file.
 CALL ZINQIR (IFLTAB, 'NAME', CDSSFI, IDUM)
 C Open the catalog file(s).
 CALL ZOPNCA (CDSSFI, ICUNIT, .TRUE., LOPNCA, LCATLG,
 * ICDUNT, LGENCD, LOPNCD, LCATCD, NORECS)
 C
 IF (.NOT.LOPNCA) THEN
 WRITE (6,*) ' *** Unable to Access the Catalog File ***'
 GO TO 820
 ENDIF
 C
 ENDIF
 C
 C
 C Are we creating a new catalog?
 IF (INDEX(COPT,'N').GT.0) LCATLG = .FALSE.
 C Are we requesting a condensed catalog, and it does not exist?
 IF ((.NOT.LCATCD).AND.(INDEX(COPT,'C').GT.0).AND.
 * (LOPNCD)) LCATLG = .FALSE.
 C
 C Should the Catalog file be updated?
 IF (LCATLG) THEN
 CALL ZINQIR (IFLTAB, 'NREC', CLINE, NREC)
 IF (NREC.NE.NORECS) THEN
 WRITE (6,20) NREC, NORECS
 20 FORMAT (/,' The Catalog File Needs to be Updated -',/,
 * ' Current Number of Records in the DSS File:',I5,/,
 * ' Number of Records in the Catalog File: ',I5,/)
 ENDIF
 ENDIF
 C
 C New option specified?
 IF (INDEX(COPT,'N').GT.0) LCATLG = .FALSE.
 IF ((.NOT.LCATCD).AND.(INDEX(COPT,'C').GT.0).AND.(LOPNCD))
 * LCATLG = .FALSE.
 C
 REWIND ICUNIT
 IF (LOPNCD) REWIND ICDUNT
 C
 C Should a new catalog be made?

HECDSS Subroutines

7-32 Chapter 7 - Catalog and Tag Subroutines

 IF (.NOT.LCATLG) THEN
 C
 C Check for 'Map' option.
 IF (INDEX(COPT,'M').GT.0) THEN
 OPEN (UNIT=MAPUNT, FILE='T3', IOSTAT=ISTAT)
 IF (ISTAT.EQ.0) THEN
 WRITE (6,*)' Catalog Map file = T3'
 CALL ZSET ('MAP', 'ON', I)
 CALL ZSET ('MAPUNT', ' ', MAPUNT)
 ELSE
 WRITE (6,*)' Unable to Access the Catalog Map File T3.'
 ENDIF
 ENDIF
 C Check for 'Unsorted' option.
 IF (INDEX(COPT,'U').GT.0) THEN
 LSORT = .FALSE.
 IF (INDEX(COPT,'C').GT.0) THEN
 WRITE (6,*)' *** Must Generate a SORTED catalog to produce',
 * ' the condensed version.'
 LSORT = .TRUE.
 ENDIF
 ELSE
 LSORT = .TRUE.
 ENDIF
 C
 C Check for 'Abbreviated' option.
 IF (INDEX(COPT,'A').GT.0) THEN
 LABBR = .TRUE.
 ELSE
 LABBR = .FALSE.
 ENDIF
 C
 C Should we get a condensed catalog?
 IF (.NOT.LOPNCD) ICDUNT = 0
 C
 C Now catalog the file.
 CALL ZCAT (IFLTAB, ICUNIT, ICDUNT, 0, CIN, LABBR, LSORT,
 * LCATCD, NORECS)
 C
 IF (INDEX(COPT,'M').GT.0) CLOSE (UNIT=MAPUNT)
 C
 C Successful catalog ?
 IF (NORECS.LE.0) THEN
 IF (INDEX(CIN(1:5),'=').GT.0) THEN
 WRITE (6,*)'*** No Pathnames Match Parts Specified ***'
 ELSE
 WRITE (6,*)'*** No Records Cataloged: Empty File ***'
 ENDIF

 HECDSS Subroutines

Chapter 7 - Catalog and Tag Subroutines 7-33

 GO TO 820
 ENDIF
 C
 LCATLG = .TRUE.
 C
 ENDIF
 C
 IF (INDEX(COPT,'S').GT.0) GO TO 800
 C
 C Now display the catalog file.
 IUNIT = ICUNIT
 C Do we want to look at the condensed catalog?
 IF ((LCATCD).AND.(INDEX(COPT,'C').GT.0)) IUNIT = ICDUNT
 REWIND IUNIT
 C Set the number of lines to print on the screen at 22.
 JLINE = 22
 C Check for 'Full' option.
 IF (INDEX(COPT,'F').GT.0) JLINE = 30000

 ICUR = 0
 IBEG = 0
 100 CONTINUE
 C
 C Check for abbreviated mode.
 IF ((INDEX(COPT,'A').GT.0).AND.(INDEX(COPT,'C').EQ.0)) THEN
 C
 DO 140 I=1,JLINE
 CALL ZRDPAT (IUNIT, ICUR, IBEG, CTAG, CPATH, NPATH, LEND)
 IF (LEND) GO TO 800
 WRITE (6,120) ICUR, CTAG, CPATH(1:NPATH)
 120 FORMAT (1X,I6,2X,A,2X,A)
 140 CONTINUE
 C
 ELSE
 C Long form, or condensed catalog.
 DO 180 I=1,JLINE
 READ (IUNIT, 150, END=800) CLINE
 150 FORMAT (A)
 CALL CHRLNB (CLINE, NLAST)
 IF (NLAST.EQ.0) NLAST = 1
 WRITE (6, 160) CLINE(1:NLAST)
 160 FORMAT (1X,A)
 180 CONTINUE
 C
 ENDIF
 C
 C Prompt user for next Screen of catalog or next command.

HECDSS Subroutines

7-34 Chapter 7 - Catalog and Tag Subroutines

 IF (ICUR.LT.NORECS) THEN
 WRITE (6,*) 'Press Carriage Return To Continue,',
 * ' or Enter New Command.'
 READ (5,200) CIN
 200 FORMAT (A)
 CALL CHRLNB (CIN, NIN)
 IF (NIN.EQ.0) GO TO 100
 ENDIF
 C
 800 CONTINUE
 C Done displaying pathnames - print file if option given.
 IF (INDEX(COPT,'P').GT.0) CALL PRINTF (IUNIT, 'Catalog')
 C
 820 CONTINUE
 RETURN
 C
 END

 HECDSS Subroutines

Chapter 8 – General Read/Write Subroutines 8-1

8 General Read/Write Subroutines

 The following chapter describes the DSS subroutines for reading or writing individual
records. These subroutines should only be used for data that does not meet any of the standard
DSS conventions (time series data, paired data, or text data). Data stored by one of these
subroutines will not be recognized as a standard data type by the DSS programs. However, the
data may be tabulated by DSSUTL.

 A pathname does not have to follow the DSS conventions, although it cannot be more
than eighty characters or less than four characters long. However, if it does not contain six parts
separated by slashes, DSSUTL will not be able to access the record.

 The basic routine for reading a record is ZREAD, and for writing a record is ZWRITE.
These routines store or retrieve the user header array and the data array. The lengths of these
arrays are treated as short integer words for several computers (e.g., HARRIS, MS-DOS). If
floating point numbers are stored, then the array lengths need to be multiplied by the number of
short integer words per real word. On UNIX workstations, all lengths are in long integer words
(INTEGER*4).

 ZREADX and ZWRITX are extended versions of ZREAD and ZWRITE. These
subroutines will read or write an internal header array and the data compression array as well as
the user header and data arrays. The arrays in ZREADX and ZWRITX are all in long integer
words. There is more control with these subroutines than with ZREAD or ZWRITE.

 ZRDBUF and ZWRBUF can perform "buffered" reading or writing. These subroutines
can read or write a large amount of data in a single record with a relatively small data array.
This is accomplished by calling the subroutine multiple times with the same pathname to store or
retrieve the record. For example, 10,000 data values can be stored 500 at a time by calling
ZWRBUF twenty times. ZWRBUF has the additional capability of being able to store data
whose total number is unknown until the last call is made. For example, a program can read data
from an external file into a relatively small array, then call ZWRBUF when that array becomes
full, instead of having to read all the data into a large array and count the number of data values
before storing it.

ZREAD HECDSS Subroutines

8-2 Chapter 8 – General Read/Write Subroutines

8.1 ZREAD - Read an Individual Record

Purpose:

 ZREAD reads an individual record from a DSS file. It should be called only for data that
does not follow the standard DSS conventions. ZREAD returns the user header and the data
array as short integer words for Harris computers and MS-DOS computers. On other computers
(e.g., UNIX) these arrays are in long integer words (INTEGER*4).

Calling Sequence:

 CALL ZREAD (IFLTAB, CPATH, NPATH, IHEADU, NHEADU, IDATA,
 * NDATA, IPLAN, LFOUND)

Declarations:

 INTEGER NHEADU, NDATA, NPATH, IPLAN
 INTEGER IFLTAB(600), IHEADU(NHEADU), IDATA(NDATA)
 CHARACTER CPATH*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to retrieve. This pathname does not

have to follow the DSS conventions. However, it cannot be
greater than eighty characters or less than four characters long.

 NPATH Input The number of characters in CPATH. Trailing blanks must be

excluded.

 IHEADU Output The user header array.

 NHEADU Input/ The number of elements returned in the user header array. On
 Output input, this should be the dimension of IHEADU. If IPLAN is

set to one, then NHEADU will be returned with the actual
number of elements read. To have ZREAD not retrieve the
user header, set this variable to zero. NHEADU must be a
variable.

 IDATA Output The data array.

 NDATA Input/ The number of elements in the data array. As input, this should
 Output be the dimension of IDATA. If IPLAN is set to one, then this

HECDSS Subroutines ZREAD

Chapter 8 – General Read/Write Subroutines 8-3

 will be returned with the number of data elements read.
NDATA must be a variable.

 IPLAN Input This argument indicates whether the NHEADU and NDATA

variables should be updated to the actual number of values
read. If set to one, NHEADU and NDATA will be updated. If
set to any other value, NHEADU and NDATA will not be
changed.

 LFOUND Output A logical status variable indicating if the record was found or

not. If LFOUND is returned .TRUE., then the record was
retrieved. If LFOUND is returned .FALSE., then the record
does not exists not found, and no data was retrieved.

Remarks:

 The IDATA array may either be real or integer. The number of data elements returned
(NDATA) is given in integer words. On some computers (e.g., HARRIS, MS-DOS), two integer
words are required for each real word and NDATA must be modified to reflect this (if real
numbers are retrieved). The ninth word of the HECLIB common block "WORDS" contains the
number of single integer words per real word. By either multiplying or dividing NDATA by this
value, machine transportable code for retrieving real data can be produced. An example using
this common block follows.

Example:

 C Retrieve the record named "/DATA SET 5/",
 C (which contains floating point numbers).
 INTEGER IFLTAB(600), IHEADU(100)
 REAL RDATA(1000)
 LOGICAL LFOUND
 C
 COMMON /WORDS/ IWORDS(10)
 C
 CALL ZOPEN (...
 C
 NDATA = 1000
 NHEADU = 100
 C
 C The record contains real values, so change NDATA to
 C reflect this. Element 9 in common block "WORDS"
 C contains the number of short integer words in a
 C long (real) word.
 NDATA = NDATA * IWORD(9)
 C
 CALL ZREAD (IFLTAB, '/DATA SET 5/', 12, IHEADU, NHEADU,
 * RDATA, NDATA, 1, LFOUND)

ZREAD HECDSS Subroutines

8-4 Chapter 8 – General Read/Write Subroutines

 IF (.NOT.LFOUND) GO TO 900
 C
 C Change NDATA back to reflect real words.
 NDATA = NDATA / IWORD(9)

HECDSS Subroutines ZREADX

Chapter 8 – General Read/Write Subroutines 8-5

8.2 ZREADX - Read an Individual Record (Extended)

Purpose:

 ZREADX reads an individual record from a DSS file. It not only returns the data and
user header arrays, but the internal header and the compression header as well. ZREADX should
only be called for data that does not follow the standard DSS conventions.

Calling Sequence:

 CALL ZREADX (IFLTAB, CPATH, HEADI, KHEADI, NHEADI,
 * HEADC, KHEADC, NHEADC, HEADU, KHEADU, NHEADU, DATA,
 * KDATA, NDATA, IPLAN, LFOUND)

Declarations:

 INTEGER IFLTAB(600), KHEADI, NHEADI, KHEADC, NHEADC
 INTEGER KHEADU, NHEADU, KDATA, NDATA, IPLAN
 REAL HEADI(KHEADI), HEADC(KHEADC), HEADU(KHEADU),
DATA(KDATA)
 CHARACTER CPATH*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to retrieve. This pathname does not

have to follow the DSS conventions. However, it cannot be
greater than eighty characters or less than four characters long.

 HEADI Output The internal header array. This array contains items such as

the units of the data.

 KHEADI Input The dimension of HEADI. No more than KHEADI elements

will be retrieved.

 NHEADI Output The number of elements returned in HEADI.

 HEADC Output The data compression header array. This array contains

internal information on how the data is compressed.

 KHEADC Input The dimension of HEADC. No more than KHEADC elements

will be retrieved.

 NHEADC Output The number of elements returned in HEADC.

ZREADX HECDSS Subroutines

8-6 Chapter 8 – General Read/Write Subroutines

 HEADU Output The user header array. This array usually may be decoded by
subroutine ZUSTFH.

 KHEADU Input The dimension of HEADU. No more than KHEADU elements

will be retrieved.

 NHEADU Output The number of elements returned in HEADU.

 DATA Output The data retrieved.

 KDATA Input The dimension of the array DATA. No more than KDATA

values will be returned.

 NDATA Output The number of elements returned in the data array.

 IPLAN Input An internal DSS flag. Set to zero.

 LFOUND Output A logical status variable indicating if the record was found or

not. If LFOUND is returned .TRUE., then the record was
retrieved. If LFOUND is returned .FALSE., then the record
does not exist and no data was retrieved.

Remarks:

 The header and data arrays passed to ZREADX are treated as real arrays. They can be
integer arrays as well, but the number variables (KHEADI, NHEADI, etc.) must be modified to
reflect this on some computers. The ninth word of the HECLIB common block "WORDS"
contains the number of single integer words per real word. By dividing the number variable by
this value, machine transportable code for retrieving short integer data can be produced.

HECDSS Subroutines ZRDBUF

Chapter 8 – General Read/Write Subroutines 8-7

8.3 ZRDBUF - Read an Individual Record in a Buffered Mode

Purpose:

 ZRDBUF reads an individual record from a DSS file. It can, if desired, buffer the data by
reading a portion of the record at a time. This is useful when a large amount of data is to be
retrieved. The data array can be relatively small, and multiple calls to ZRDBUF will retrieve all
the data. ZRDBUF should only be called for data that does not follow the standard DSS
conventions.

Calling Sequence:

 CALL ZRDBUF (IFLTAB, CPATH, HEADU, KHEADU, NHEADU, DATA,
KDATA,
 * NDATA, LEND, IPLAN, LFOUND)

Declarations:

 INTEGER IFLTAB(600), KHEADU, NHEADU, KDATA, NDATA, IPLAN
 REAL HEADU(KHEADU), DATA(KDATA)
 CHARACTER CPATH*80
 LOGICAL LEND, LFOUND

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to retrieve. This pathname does not

have to follow the DSS conventions. However, it cannot be
greater than eighty characters or less than four characters long.

 HEADU Output The user header array. If the number of elements stored is

greater than KHEADU, subsequent calls to ZRDBUF will read
the remainder of HEADU.

 KHEADU Input The dimension of the array HEADU. No more than KHEADU

values will be returned at a time.

 NHEADU Output The number of elements returned in the user header array.

 DATA Output The data retrieved. If the number of elements stored is greater

than KDATA, then subsequent calls to ZRDBUF will return
the remainder of the data.

 KDATA Input The dimension of the array DATA. No more than KDATA

values will be returned at a time.

ZRDBUF HECDSS Subroutines

8-8 Chapter 8 – General Read/Write Subroutines

 NDATA Output The number of elements returned in the data array.

 LEND Output A logical variable that is returned .TRUE. if all the data

(including HEADU) has been read for this record. If LEND is
.FALSE., then subsequent call to ZRDBUF (with the same
pathname) will return more data.

 IPLAN Input An internal DSS flag. Set to zero.

 LFOUND Output A logical status variable indicating if the record was found or

not. If LFOUND is returned .TRUE., then the record was
retrieved. If LFOUND is returned .FALSE., then the record
does not exist.

Remarks:

 ZRDBUF may be called for a standard read, or a buffered read. For a buffered read,
ZRDBUF is called multiple times with the same pathname, until LEND is returned as .TRUE..
An example of this follows.

 The header and data arrays passed to ZRDBUF are treated as real arrays. They can be
integer arrays as well, but the number variables (KHEADU, NHEADU, KDATA, and NDATA)
must be modified to reflect this on some computers. The ninth word of the HECLIB common
block "WORDS" contains the number of single integer words per real word. By dividing the
number variable by this value, machine transportable code for retrieving short integer data can be
produced.

Example:

 C Retrieve data and print it.
 C If more data exists than the size of the data array, call
 C ZRDBUF several times to read all of it.
 C
 PARAMETER (KDATA=500, KHEADU=100)
 INTEGER IFLTAB(600)
 REAL DATA(KDATA), HEADU(KHEADU)
 LOGICAL LEND, LFOUND
 CHARACTER CPATH*80
 C
 C Open the DSS file, etc.
 C
 WRITE (6,*)'Enter Pathname'
 READ (5,20) CPATH
 C
 20 CONTINUE
 CALL ZRDBUF (IFLTAB, CPATH, HEADU, KHEADU, NHEADU, DATA,
 * KDATA, NDATA, LEND, 0, LFOUND)

HECDSS Subroutines ZRDBUF

Chapter 8 – General Read/Write Subroutines 8-9

 C
 IF (.NOT.LFOUND) THEN
 WRITE (6,40) CPATH
 40 FORMAT (' *** Record Not Found ***',/,' Pathname: ',A)
 GO TO 900
 ENDIF
 C
 DO 60 I=1,NHEADU
 WRITE (6,*) HEADU(I)
 60 CONTINUE
 C
 DO 80 I=1,NDATA
 WRITE (6,*) DATA(I)
 80 CONTINUE
 C
 IF (.NOT.LEND) GO TO 20

ZWRITE HECDSS Subroutines

8-10 Chapter 8 – General Read/Write Subroutines

8.4 ZWRITE - Write an Individual Record

Purpose:

 ZWRITE writes an individual record to a DSS file. ZWRITE should only be called for
data that does not follow the standard DSS conventions. ZWRITE stores the user header and the
data array as short integer words for Harris computers and MS-DOS computers. On other
computers (e.g., UNIX) these arrays are in long integer words (INTEGER*4).

Calling Sequence:

 CALL ZWRITE (IFLTAB, CPATH, NPATH, IHEADU, NHEADU, IDATA,
 * NDATA, IPLAN, LFOUND)

Declarations:

 INTEGER NHEADU, NDATA, NPATH, IPLAN
 INTEGER IFLTAB(600), IHEADU(NHEADU), IDATA(NDATA)
 CHARACTER CPATH*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. This pathname does not

have to follow the DSS conventions. However, if it does not
contain six parts separated by slashes, utility programs (e.g.,
DSSUTL) will not be able to access the record. The pathname
cannot be greater than eighty characters or less than four
characters long.

 NPATH Input The number of characters in CPATH. Trailing blanks must be

excluded.

 IHEADU Input An array that contains any additional user information to store.

Generally, subroutine ZSTFH is called to prepare this array.

 NHEADU Input The number of elements in IHEADU (in integer words).

 IDATA Input The data to store. This may be either an integer array or a real

array.

 NDATA Input The number of elements in the data array to store (in integer

words). If the array is declared as REAL, this number should

HECDSS Subroutines ZWRITE

Chapter 8 – General Read/Write Subroutines 8-11

 be multiplied by the ninth element in the common block words,
as described under remarks.

 IPLAN Input An argument indicating whether to write over existing data or

not:
 IPLAN Description
 0 Always write the record to the file.
 1 Only write the record if it new (i.e., it does not

currently exist).
 2 Only write the data if the record already exists.
 If IPLAN is set to 1 or 2, and that condition is not met, then an

error message will be written to the output (provided the
message level is set to two or greater).

 LFOUND Output A logical status variable indicating if the record already

existed. If LFOUND is returned .TRUE., then the record
existed, and was written over (unless IPLAN was set to one).
If LFOUND is returned .FALSE., then the record did not
previously exist.

Remarks:

 The data may be real or integer. The number of elements to store is in integer words. On
some computers (e.g., Harris, MS-DOS), two integer words are required for each real word, and
NDATA must be modified to reflect this. The ninth word of the HECLIB common block
"WORDS" contains the number of single integer words per real word. By either multiplying or
dividing NDATA by this value, machine transportable code for storing real data can be
produced. An example using this common block follows.

 When a record is written, ZWRITE issues a message containing the pathname and
version number of the record if the message level is 3 or greater (the default is 3). If an error
occurs (such as IPLAN indicates only a new record may be written, and the record already
exists), then an error message will be given for a message level of 2 or greater. If a fatal error
occurs (e.g., there is no more disk space left), then an error message will be written, regardless of
the message level.

Example:

 C Store a record named "/DATA SET 5/", (containing REAL data).
 INTEGER IFLTAB(600)
 REAL RDATA(1000)
 LOGICAL LFOUND
 C
 COMMON /WORDS/ IWORDS(10)
 C
 . . .
 CALL ZOPEN (...

ZWRITE HECDSS Subroutines

8-12 Chapter 8 – General Read/Write Subroutines

 . . .
 C
 C Compute the data values (and place in array RDATA).
 C . . .
 C
 C The record contains real values, so change NDATA to
 C reflect short integer words. Word 9 in common block
 C "WORDS" contains the number of short (integer) words
 C in a long (real) word.
 C
 NDATA = NDATA * IWORD(9)
 C
 CALL ZWRITE (IFLTAB, '/DATA SET 5/', 12, IHEADU, 0,
 * RDATA, NDATA, 0, LFOUND)

HECDSS Subroutines ZWRITX

Chapter 8 – General Read/Write Subroutines 8-13

8.5 ZWRITX - Write an Individual Record (Extended)

Purpose:

 ZWRITX writes an individual record to a DSS file. It will not only store the data and the
user header array, but will also store an internal header array and a data compression header
array. ZWRITX should only be called for data that does not follow the standard DSS
conventions.

Calling Sequence:

 CALL ZWRITX (IFLTAB, CPATH, NPATH, HEADI, NHEADI,
 * HEADC, NHEADC, HEADU, NHEADU, DATA, NDATA, ITYPE,
 * IPLAN, ISTAT, LFOUND)

Declarations:

 INTEGER IFLTAB(600), NPATH, NHEADI, NHEADC
 INTEGER NHEADU, NDATA, ITYPE, IPLAN, ISTAT
 REAL HEADI(NHEADI), HEADC(NHEADC), HEADU(NHEADU),
DATA(NDATA)
 CHARACTER CPATH*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 IOUNIT Input If desired, the pathnames could be written to a file instead of

returned in the CPATHS array. IOUNIT is the unit number of
this file (which must be opened prior to calling ZTAGPA). If
the pathname(s) are to be returned in variable CPATHS, set
this to zero.

 CPATH Input The pathname of the data to store. This pathname does not

have to follow the DSS conventions. However, if it does not
contain six parts separated by slashes, utility programs (e.g.,
DSSUTL) will not be able to access the record. The pathname
cannot be greater than eighty characters or less than four
characters long.

 NPATH Input) The number of characters in CPATH. Trailing blanks must

be excluded.

 HEADI Input The internal header array. This array usually contains the data

units and similar information.

ZWRITX HECDSS Subroutines

8-14 Chapter 8 – General Read/Write Subroutines

 NHEADI Input The number of elements in HEADI.

 HEADC Input The data compression array.

 NHEADC Input The number of elements in HEADC.

 HEADU Input The user header array. Generally, subroutine ZSTFH is called

to prepare this array.

 NHEADU Input The number of elements in HEADU.

 DATA Input The data array.

 NDATA Input The number of elements in the data array to store.

 IPLAN Input An argument indicating whether to write over existing data or

not:
 IPLAN Description
 0 Always write the record to the file.
 1 Only write the record if it new (i.e., it does not

currently exist).
 2 Only write the data if the record already exists.
 If IPLAN is set to 1 or 2, and that condition is not met, then an

error message will be written to the output (provided the
message level is set to two or greater).

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
stored. The possible values are:

 ISTAT Description
 0 Data stored.
 -1 The record does not exist, and IPLAN was set to

two (write over existing records only).
 -2 The record already exists, and IPLAN was set to

one (do not write over existing records).
 -10 An invalid pathname was given.
 -11 An invalid number of data values (NDATA) were

given.
 -12 The DSS file has read access only.

 LFOUND Output A logical status variable indicating if the record already

existed. If LFOUND is returned .TRUE., then the record
existed, and was written over (unless IPLAN was set to one).
If LFOUND is returned .FALSE., then the record did not
previously exist.

HECDSS Subroutines ZWRITX

Chapter 8 – General Read/Write Subroutines 8-15

Remarks:

 The header and data arrays passed to ZWRITX are treated as real arrays. They can be
integer arrays as well, but the number variables (NHEADI, etc.) must be modified to reflect this
for some computers. The ninth word of the HECLIB common block "WORDS" contains the
number of single integer words per real word. By multiplying the number variable by this value,
machine transportable code for storing short integer data can be produced.

 When a record is written, ZWRITX issues a message containing the pathname and
version number of the record if the message level is three or greater (the default is three). If an
error occurs (such as IPLAN indicates only a new record may be written, and the record already
exists), then an error message will be given for a message level of two or greater. If a fatal error
occurs (e.g., there is no more disk space left), then an error message will be written, regardless of
the message level.

ZWRBUF HECDSS Subroutines

8-16 Chapter 8 – General Read/Write Subroutines

8.6 ZWRBUF - Write an Individual Record in a Buffered Mode

Purpose:

 ZWRBUF writes an individual record to a DSS file. It can, if desired, buffer the data by
storing a portion of it at a time. This is useful when a large amount of the data is stored. The
data array supplied to ZWRBUF can be relatively small, and multiple calls to the subroutine will
store all the data. ZWRBUF should only be called for data that does not follow the standard
DSS conventions.

Calling Sequence:

 CALL ZWRBUF (IFLTAB, CPATH, HEADU, NHEADU, NTOTH, DATA,
NDATA,
 * NTOTD, LEND)

Declarations:

 INTEGER IFLTAB(600), NHEADU, NTOTH, NDATA, NTOTD
 REAL HEADU(NHEADU), DATA(NDATA)
 CHARACTER CPATH*80
 LOGICAL LEND

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. This pathname does not

have to follow the DSS conventions. However, if it does not
contain six parts separated by slashes, utility programs (e.g.,
DSSUTL) will not be able to access the record. The pathname
cannot be greater than eighty characters or less than four
characters long.

 HEADU Input The user header array. Generally, subroutine ZSTFH is called

to prepare this array.

 NHEADU Input The number of elements in HEADU for this call. If the header

array needs to be buffered, then this value will be less than
NTOTH, and subsequent calls will store the remainder of the
array.

 NTOH Input The total number of elements to store in the header area. This

is usually equal to NHEADU, but will be greater if the header
is to be buffered.

HECDSS Subroutines ZWRBUF

Chapter 8 – General Read/Write Subroutines 8-17

 DATA Input The data array.

 NDATA Input The number of elements in DATA for this call. If the data

array needs to be buffered, then this value will be less than
NTOTD, and subsequent calls will store the remainder of the
array.

 NTOTD Input The total number of elements to store in the data area. If this is

not a buffered write, then NTOTD will equal NDATA. If the
write is buffered, then this will be the total number of data
values to be stored. If the amount of data to store is unknown,
then set this variable to -1, and set LEND to indicate when all
of the data has been stored. See remarks for a further
explanation.

 LEND Input A logical flag indicating the end of the data set. If the total

number of data values to store is unknown when ZWRBUF is
first called (NTOTD set to -1), then LEND should be set to
.FALSE. until ZWRBUF is called with the last set of data. If
NTOTD is not minus one, then this argument is ignored.

Remarks:

 ZWRBUF may be called for a standard single write, or a buffered write. For a buffered
write, ZWRBUF is called multiple times with the same pathname, until all the data is stored. If
the write is to be un-buffered, set NTOTD equal to NDATA.

 ZWRBUF can store data where the number of data values to be stored is unknown. To
use the subroutine in this fashion, set NTOTD to minus one and LEND to .FALSE., then call
ZWRBUF as many times as needed to store the data. On the last call for that data set, set LEND
to .TRUE.. When used this way, the data is always stored at the end of the file, which will
produce inactive space if the record already existed. NTOTH must always be specified.

 The header and data arrays passed to ZWRBUF are treated as real arrays. They can be
integer arrays as well, but the number variables (KHEADU, etc.) must be modified to reflect this
for some computers. The ninth word of the HECLIB common block "WORDS" contains the
number of single integer words per real word. By multiplying the number variable by this value,
machine transportable code for retrieving short integer data can be produced.

Example 1:

 PARAMETER (KHEADU=100, KDATA=500)
 INTEGER IFLTAB(600)
 REAL HEADU(KHEADU), DATA(KDATA)
 CHARACTER CPATH*80
 LOGICAL LEND, LDUM

ZWRBUF HECDSS Subroutines

8-18 Chapter 8 – General Read/Write Subroutines

 C
 C Open the DSS file, etc..
 C
 C
 C Store 400 values with ZWRBUF in a non-buffered write.
 READ (5,20) CPATH
 20 FORMAT (A)
 C
 C Get the data values.
 CALL DATVAL (DATA, HEADU)
 NHEADU = 50
 NDATA = 400
 CALL ZWRBUF (IFLTAB, CPATH, HEADU, NHEADU, NHEADU,
 * DATA, NDATA, NDATA, LDUM)
 C

Example 2:

 C Store 10,000 values a buffered mode, where the total
 C number of data values is known.
 READ (5,20) CPATH
 C
 NTOTD = 10000
 ICOUNT = 0
 C
 DO 100 I=1,10000
 ICOUNT = ICOUNT + 1
 C Get a data value.
 CALL GETVAL (DATA(ICOUNT))
 C If we have reached the array dimension limit, store the data.
 IF (ICOUNT.EQ.KDATA) THEN
 CALL ZWRBUF (IFLTAB, CPATH, HEADU, 0, 0,
 * DATA, ICOUNT, NTOTD, LDUM)
 C Reset the counter.
 ICOUNT = 0
 ENDIF
 100 CONTINUE
 C

Example 3:

 C Store data in a buffered mode, where the total
 C number of data values to store is unknown.
 READ (5,20) CPATH
 C

HECDSS Subroutines ZWRBUF

Chapter 8 – General Read/Write Subroutines 8-19

 C We don't know how much to store (but LEND will be set
 C to .TRUE. when we have all the data).
 NTOTD = -1
 ICOUNT = 0
 C
 200 CONTINUE
 ICOUNT = ICOUNT + 1
 C Get a data value.
 CALL GETNUM (DATA(ICOUNT), LEND)
 C If we have reached the array dimension limit, or the last
 C data value has been calculated, store the data array.
 IF ((ICOUNT.EQ.KDATA).OR.(LEND)) THEN
 CALL ZWRBUF (IFLTAB, CPATH, HEADU, 0, 0,
 * DATA, ICOUNT, NTOTD, LEND)
 C Do we need to compute more data?
 IF (LEND) GO TO 300
 C Reset the counter.
 ICOUNT = 0
 ENDIF
 C
 GO TO 200
 C
 C
 300 CONTINUE

 HECDSS Subroutines

Chapter 9 - Utility Subroutines 9-1

9 Utility Subroutines

 The following chapter describes several DSS utility subroutines. Some of these routines
(e.g., ZSTFH) are for use by general application programs, while others (e.g., ZRENAM) are
usually used only by utility programs.

 Subroutine ZSTFH places additional record information in the user header array. Such
information may include a project's latitude and longitude, or the operator's name. Rating tables
often include a datum, shift, offset and transform in the user header. A program can decode
information from the user header with ZUSFTH.

 Subroutine ZCHECK determines if a record exists (similar to ZDTYPE), and returns the
number of data values and user header elements stored. Subroutine ZRECIN will display
information about a record, while ZFILST will display information about a file. These two
subroutines are used for display purposes only; subroutine ZINQIR returns information about a
record or file for a program's internal use.

 Subroutine ZCOREC copies a record from one DSS file to another, or duplicates a record
within the same file. ZCOFIL copies a DSS file to a new DSS file, or appends the file to an
existing DSS file.

 Subroutine ZDELET deletes a record from a DSS file by flagging a record status cell.
The data is not physically removed until the file is squeezed by DSSUTL. The record may be
recovered by calling subroutine ZUNDEL (until file is squeezed). All records in a DSS file that
were deleted by ZDELET may be recovered by ZUDALL. ZUDALL can also display a list of
the deleted records within the file that are recoverable.

 A record can be renamed (its pathname changed) with subroutine ZRENAM.
Information in the DSS file or in the IFLTAB array can be decoded with ZDEBUG. ZDEBUG
is used only for "low level" de-bugging. Subroutine trace statements activated by setting the
message level MLEVEL with ZSET are intended to be used for de-bugging a program interface
with DSS.

ZSTFH HECDSS Subroutines

9-2 Chapter 9 - Utility Subroutines

9.1 ZSTFH - Stuff the User Header Array

Purpose:

 ZSTFH places user information in the user header array in preparation for writing to a
DSS record. The information is stored in Hollerith (alpha-numeric) format. Each header item is
identified by a label indicating what the data is. ZSTFH places a colon (:) between each label
and item, and a semi-colon (;) after each item. For example, if the item 1234.0 has the label
"DATUM", and the item "LOGLOG" has the label "TRANSFORM", the following header array
would be produced:

0032DATUM:1234.0; TRANSFORM:LOGLOG;

The first element in the header will contain the total number of bytes in the array (0032 in this
example).

 ZSTFH can stuff several items in the header at one time, or append information to the
header (allowing multiple calls to ZSTFH to stuff multiple items).

 A user header assembled by ZSTFH can be disassembled by subroutine ZUSTFH.

Calling Sequence:

 CALL ZSTFH (CLABEL, CITEM, NITEM, HEADU, KHEADU, NHEADU,
ISTAT)

Declarations:

 INTEGER NITEM, KHEADU, NHEADU, ISTAT
 CHARACTER CLABEL(NITEM)*(*), CITEM(NITEM)*(*)
 REAL HEADU(KHEADU)

Argument Description:

 CLABEL Input A character string identifying the item to stuff. Usually this is

a single word (e.g., "DATUM"), but it can be more than one
(with embedded blanks). If more than one item is to be stored,
then this must be a character array, and the first element of
CLABEL corresponds to the first element of CITEM. A label
may not contain a colon or semi-colon.

 CITEM Input A character string containing the item to stuff. If the item is a

number, it must be converted to character by an internal write
or with subroutine INTGRC or XREALC. The item may
contain blanks but not a colon or semi-colon. If more than one

HECDSS Subroutines ZSTFH

Chapter 9 - Utility Subroutines 9-3

 item is to be stored, then this must be a character array, and the
first element of CITEM corresponds to the first element of
CLABEL.

 NITEM Input The number of items to store in this call, which is also the

dimension of arrays CLABEL and CITEM. This is often set to
one.

 HEADU Input/ The header array to stuff.
 Output

 KHEADU Input The dimension of HEADU. No more than KHEADU elements

will be stored in HEADU.

 NHEADU Input/ The number of elements in HEADU. On the first call set this
 Output to zero to initialize HEADU.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then information was successfully
added to the user header array. If ISTAT is non-zero, an error
occurred. The possible values are:

 ISTAT Description
 0 Successful operation.
 1 A label contains all blanks.
 2 An item contains all blanks.
 3 The number of elements required for this

information is greater than KHEADU. Increase the
dimension of HEADU.

 4 Array HEADU is invalid. This is most probably
caused by not initializing HEADU for this data set
(set NHEADU to zero on the first call).

 5 NITEM is less than or equal to zero.

Remarks:

 On the first call to ZSTFH set NHEADU to zero. Information in the header cannot be
edited. The array would need to be completely un-stuffed, then re-stuffed.

 The label and item variables can each be up to 60 characters in length. However, it is
recommended to keep the combination of both under 70 characters for manageability.

 Information stored in the user header does not have to be generated by ZSTFH, although
if it is not, it cannot be displayed by DSS utility programs.

ZSTFH HECDSS Subroutines

9-4 Chapter 9 - Utility Subroutines

 The minimum dimension of the header array can be computed from the number of bytes
to be stuffed (the length of the labels and items) and the number of bytes per real word. The
minimum dimension is:

[(number of bytes + (3 * number of items)) / bytes per word] + 2

Usually, a dimension size of fifty words is sufficient for most purposes

 A debug trace is available by setting the message level to nine with ZSET.

Example 1:

 C Store information about a gage in the user header,
 C by appending information to the header.
 PARAMETER (KHEADU=100)
 REAL HEADU(KHEADU)
 C
 NHEADU = 0
 CALL ZSTFH ('USGS GAGE ID', '012345678', 1, HEADU, KHEADU,
 * NHEADU, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 CALL ZSTFH ('LATITUDE', '412345', 1, HEADU, KHEADU,
 * NHEADU, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 CALL ZSTFH ('LONGITUDE', '1212345', 1, HEADU, KHEADU,
 * NHEADU, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 CALL ZSTFH ('DATUM', '1234.56', 1, HEADU, KHEADU,
 * NHEADU, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 CALL ZSTFH ('OPERATOR', 'JOHN DOE', 1, HEADU, KHEADU,
 * NHEADU, ISTAT)
 IF (ISTAT.NE.0) GO TO 900

Example 2:

 C Store information about a gage in the user header,
 C with one call to ZSTFH.
 PARAMETER (KHEADU=100)
 REAL HEADU(KHEADU)
 CHARACTER CLABEL(5)*20, CITEM(5)*20
 C
 DATA CLABEL(1) /'USGS GAGE ID'/
 DATA CLABEL(2) /'LATITUDE'/
 DATA CLABEL(3) /'LONGITUDE'/

HECDSS Subroutines ZSTFH

Chapter 9 - Utility Subroutines 9-5

 DATA CLABEL(4) /'DATUM'/
 DATA CLABEL(5) /'OPERATOR'/
 C
 CITEM(1) = '012345678'
 WRITE (CITEM(2), '(I7)') LAT
 WRITE (CITEM(3), '(I7)') LONG
 WRITE (CITEM(4), '(F10.2)') DATUM
 CITEM(5) = 'JOHN DOE'
 NHEADU = 0
 CALL ZSTFH (CLABEL, CITEM, 5, HEADU, KHEADU, NHEADU,
ISTAT)
 IF (ISTAT.NE.0) GO TO 900

Examples 1 and 2 would generate the following header array:

 0094USGS GAGE ID:012345678; LATITUDE:412345; LONGITUDE:1212345;
 DATUM:1234.56; OPERATOR:JOHN DOE;

ZUSTFH HECDSS Subroutines

9-6 Chapter 9 - Utility Subroutines

9.2 ZUSTFH - Disassemble the User Header Array

Purpose:

 ZUSTFH disassembles a user header array created by ZSTFH. ZUSTFH can either
return all items in the array (returning one at a time), or search for specific items. For a
description of this array, see the ZSTFH documentation.

Calling Sequence:

CALL ZUSTFH (CLABEL, CITEM, NITEM, IPOS, HEADU, NHEADU, ISTAT)

Declarations:

 INTEGER NITEM, IPOS, NHEADU, ISTAT
 CHARACTER CLABEL(NITEM)*(*), CITEM(NITEM)*(*)
 REAL HEADU(NHEADU)

Argument Description:

 CLABEL Input/ If specific items are to be searched for in the header, this is the
 Output labels of those items to search for. Labels must be left-justified

and blank filled. If ZUSTFH is to return all items in the header
(NITEM set to zero), one at a time, then this will be returned
with the label corresponding to CITEM.

 CITEM Output The items corresponding to CLABEL. If you are searching for

specific items, and the label given was not found, then CITEM
will be returned blank filled.

 NITEM Input If ZUSTFH is to search for specific items in the array, then

NITEM is the number of items to search for and CLABEL and
CITEM must be dimensioned to at least NITEM. If all items in
the header array are to be returned (one at a time), then this
should be set to zero on the first call, and ZUSTFH should be
called multiple times, returning one item at a time, until IPOS
is returned with -1.

 IPOS Input/ An internal position variable. If all items are to be returned
 Output from the header (NITEM set to 0), then this variable must be

set to zero on the first call. When all items have been returned,
then IPOS will be returned as -1. If ZUSTFH is to search for
specific items, then this argument is ignored. IPOS must be a
variable.

 HEADU Input The user header array.

HECDSS Subroutines ZUSTFH

Chapter 9 - Utility Subroutines 9-7

 NHEADU Input The number of elements in HEADU.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is zero, then information was successfully returned
from the user header array. If ISTAT is less than zero, an error
occurred and no items were returned. If ISTAT is greater than
zero, an error occurred and portions of the items are returned.
The possible values are:

 ISTAT Description
 0 Successful operation.
 -1 The header array is invalid. (The first element of

HEADU does not contain a valid header count.)
 -2 The internal header count indicates that the header

array is greater than the size passed (NHEADU).
 2 The length of the item or label is greater than the

character variable CITEM or CLABEL. The item
or label is truncated to the variable length.

 4 The length of the item or label is greater than sixty,
an internal dimension limit. The item or label is
truncated to sixty characters.

Remarks:

 The items and labels are returned left-justified, blank filled, with colons and semi-colons
removed. There is no debug trace for ZUSTFH.

Examples:

Given the following user header array:

 0094USGS GAGE ID:012345678; LATITUDE:412345; LONGITUDE:1212345;
 DATUM:1234.56; OPERATOR:JOHN DOE;

 C Example 1
 C Search for the latitude and longitude stored in the user
 C header array, getting one item at a time.
 C
 REAL HEADU(NHEADU)
 CHARACTER CLABEL*20, CITEM*20
 C
 CALL ZUSTFH ('LATITUDE', CITEM, 1, IPOS, HEADU, NHEADU,
ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 WRITE (6,*)'The latitude is: ', CITEM

ZUSTFH HECDSS Subroutines

9-8 Chapter 9 - Utility Subroutines

 CALL ZUSTFH ('LONGITUDE', CITEM, 1, IPOS, HEADU, NHEADU,
ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 WRITE (6,*)'The longitude is: ', CITEM

 C Example 2
 C Search for the latitude and longitude stored in the user
 C header array, getting both items at the same time.
 C
 REAL HEADU(NHEADU)
 CHARACTER CLABEL(2)*20, CITEM(2)*20
 C
 CLABEL(1) = 'LATITUDE'
 CLABEL(2) = 'LONGITUDE'
 CALL ZUSTFH (CLABEL, CITEM, 2, IPOS, HEADU, NHEADU, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 WRITE (6,*)'The latitude is: ', CITEM(1)
 WRITE (6,*)'The longitude is: ', CITEM(2)

Examples 1 and 2 would print:

 The latitude is: 412345
 The longitude is: 1212345

 C Example 3
 C Get all labels and items from the user header.
 C
 REAL HEADU(NHEADU)
 CHARACTER CLABEL*20, CITEM*20
 C
 IPOS = 0
 NITEM = 0
 20 CONTINUE
 CALL ZUSTFH (CLABEL, CITEM, NITEM, IPOS, HEADU, NHEADU,
ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 WRITE (6,40) CLABEL(1), CITEM(1)
 40 FORMAT (' Label: ',A,', Item: ',A)
 IF (IPOS.GT.0) GO TO 20

Using the same header array, this example would print:

HECDSS Subroutines ZUSTFH

Chapter 9 - Utility Subroutines 9-9

 Label: USGS GAGE ID , Item: 012345678
 Label: LATITUDE , Item: 412345
 Label: LONGITUDE , Item: 1212345
 Label: DATUM , Item: 1234.56
 Label: OPERATOR , Item: JOHN DOE

ZCHECK HECDSS Subroutines

9-10 Chapter 9 - Utility Subroutines

9.3 ZCHECK - Check if a Record Exists

Purpose:

 ZCHECK checks for the presence of a record in a DSS file. If the record exists, the
number of elements in the user header and data arrays are returned.

Calling Sequence:

CALL ZCHECK (IFLTAB, CPATH, NPATH, NHEAD, NDATA, LFOUND)

Declarations:

 INTEGER IFLTAB(600), NPATH, NHEAD, NDATA
 CHARACTER CPATH*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the record to check. The pathname does not

have to follow the standard conventions.

 NPATH Input The number of characters in CPATH. Trailing blanks must be

excluded.

 NHEAD Output The number of real elements stored in the user header array.

 NDATA Output The number of real elements stored in the data array.

 KDATA Input The dimension of the array DATA. No more than KDATA

values will be returned at a time.

 NDATA Output The number of elements returned in the data array.

 LFOUND Output A logical status variable that is returned .TRUE. if the record

was found, or .FALSE. if it does not exist.

Remarks:

 ZCHECK is generally used only by lower level routines. Programs typically call
ZDTYPE instead of ZCHECK. No messages are printed by ZCHECK.

HECDSS Subroutines ZCHECK

Chapter 9 - Utility Subroutines 9-11

 Note: Earlier versions of DSS returned the lengths NHEAD and NDATA in short integer
words. Version 6 now returns those values for real arrays. This change is the only incom-
patibility between DSS version 6 and earlier versions.

ZRECIN HECDSS Subroutines

9-12 Chapter 9 - Utility Subroutines

9.4 ZRECIN - Display Information About a Record

Purpose:

 ZRECIN displays information about a record. This information is the same as that
printed in the CHECK command for DSSUTL. It contains the type of data, its last written date
and time, and the program that wrote it. If it is time-series data, then any data compression
statistics or data flag information is also displayed. Examples of the output are given below.

Calling Sequence:

CALL ZRECIN (IFLTAB, IUNIT, MLEVEL, CPATH, BUFF, KBUFF, LFOUND)

Declarations:

 INTEGER IFLTAB(600), IUNIT, MLEVEL, KBUFF
 REAL BUFF(KBUFF)
 CHARACTER CPATH*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 IUNIT Input The unit number to write the information to. This is usually

connected to the standard output.

 MLEVEL Input The message level. If this is set to zero, only a statement

indicating if the record exists or not is displayed. If MLEVEL
is two or more, information about the record is displayed.

 CPATH Input The record pathname.

 BUFF Input A temporary buffer array. The record header and compression

header are read into this array. Its size should be a minimum of
seventy elements.

 KBUFF Input The dimension of BUFF.

 LFOUND Output A logical status variable that is returned .TRUE. if the record

was found, or .FALSE. if it does not exist.

HECDSS Subroutines ZRECIN

Chapter 9 - Utility Subroutines 9-13

Remarks:

 ZRECIN is designed to display information, not as a means of a program obtaining
information about a record. A program should not attempt to read information from it, as items
may be moved in the display in different versions of DSS.

Example Displays:

 Record Found:
 /ALLEGHENY/NATP/PRECIP-INC/01JUL1989/1HOUR/OBS/
 Regular-interval time series; Tag: T1284
 Last Written on 11OCT89, at 09:58 by Program: Undefi
 Version: 1; Number of data: 744; Space Allocated: 10
 Compressed to 4.3%
 Compression Method: 3; Repeat + Delta
 Precision: -2; Element Size: 1; Base: 0.00; User set base: F

 Record Found:
 /ALLEGHENY/BRFP/FLOW/01APR1990/1HOUR/REV/
 Regular-interval time series; Tag: T299
 Last Written on 10JUL90, at 16:43 by Program: DATCHK
 Version: 2; Number of data: 720; Space Allocated: 1440
 Data flags set.

ZFILST HECDSS Subroutines

9-14 Chapter 9 - Utility Subroutines

9.5 ZFILST - Display Information About a DSS File

Purpose:

 ZFILST displays status information about a DSS file. The information displayed is the
same as that displayed in the DSSUTL FQ (File Query) command. It includes items such as the
file size, amount inactive space, and file statistics. The information is written to unit MUNIT
(which can be reset from the default by subroutine ZSET).

Calling Sequence:

 CALL ZFILST (IFLTAB)

Declarations:

 INTEGER IFLTAB(600)

Argument Description:

 IFLTAB Input/ The DSS workspace used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

Remarks:

 ZFILST is designed to display information, not as a means of a program obtaining
information about the file. A program should not attempt to read information from it, as items
may be moved in the display in different versions of DSS.

Example Displays

 --
 DSS File MASTDB; Created on 10JAN90; DSS Version 6-EA
 Number of Records: 3840; Pointer Utilization: 2.50
 File Size: 12210.4 Kilobytes; Percent Inactive Space: 6.06
 Max Hash Code: 1024; Stable Hash Table
 Numb Bins per Block: 32; Size of Bin: 112 words
 Bins Used: 619; Overflow Bins: 181
 Hash Codes Used: 438; Max Paths for one Hash Code: 11
 Average Number of Paths to search: 8.8; (Max Hash Code: 262)
 --

HECDSS Subroutines ZCOREC

Chapter 9 - Utility Subroutines 9-15

9.6 ZCOREC - Copy a Record

Purpose:

 ZCOREC copies a record from one DSS file to another, or duplicates a record within the
same file. A regular-interval time series record can also be compressed (or un-compressed)
according to the new file's default data compression setting, if desired.

Calling Sequence:

 CALL ZCOREC (IFTOLD, IFTNEW, CPOLD, CPNEW, BUFF1, KBUFF1,
 * BUFF2, KBUFF2, ISTAT)

Declarations:

 INTEGER IFTOLD(600), IFTNEW(600), KBUFF1, KBUFF2, ISTAT
 REAL BUFF1(KBUFF1), BUFF2(KBUFF2)
 CHARACTER CPOLD*80, CPNEW*80

Argument Description:

 IFTOLD Input/ The DSS work space used to manage the DSS file. This is the
 Output IFLTAB for the DSS file to copy from.

 IFTNEW Input/ The DSS work space used to manage the DSS file. This is the
 Output IFLTAB for the DSS file to copy to. If the record is to be

duplicated within the same file, this should be array IFTOLD.

 CPOLD Input The pathname of the record to copy.

 CPNEW Input The pathname that the copied record is to have. If the record is

to be copied from one file to another, then this may be CPOLD.
If the record is being duplicated within the file, then this
pathname cannot be the same as CPOLD.

 BUFF1 Input A scratch array that will temporarily hold the data, or portions

of the data. If the data is time series and is to be re-
compressed, this must be large enough to hold all the data
within the record. Otherwise BUFF1 can be smaller, as
buffered reads and writes are used. However, it is more
efficient to make this array large enough to hold all of the data
within the record. A typical dimension for this array is 750.

 KBUFF1 Input The dimension of BUFF1.

ZCOREC HECDSS Subroutines

9-16 Chapter 9 - Utility Subroutines

 BUFF2 Input A scratch array that will temporarily hold the internal header
array. This array does not need to be as large as BUFF1. A
typical dimension for this array is one hundred.

 KBUFF2 Input The dimension of BUFF2.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned as zero, then the record was copied
successfully. If ISTAT is other than zero, the record was not
copied. The possible values are:

 ISTAT Description
 0 Successful operation.
 1 The record to be copied (CPOLD) does not exist.
 2 The new record (CPNEW) already exists, and write

protection was set for the file.
 -1 KBUFF1 or KBUFF2 is zero.
 -2 The buffers supplied (BUFF1 and BUFF2) are too

small for this record. The size required will be
printed if the message level is two or greater.

 -12 The file being copied to is in a read access only
mode.

Remarks:

 Except for time series data that is to be re-compressed, the data is copied by buffered
reads and writes. Thus only portions of the data and user header arrays will be copied at a time
(up to KBUFF1 values). If space is available, setting KBUFF1 to the size of the data array is
most efficient.

 Time series data can be re-compressed (or un-compressed) using the default data
compression settings of the DSS file being copied to by calling ZSET with a parameter of
"COMP", prior to ZCOREC. This will remain set until explicitly set "OFF" by a subsequent call
to ZSET.

Example 1:

 C Copy a record from one DSS file to another.
 INTEGER IFTOLD(600), IFTNEW(600)
 CHARACTER CPATH*80
 PARAMETER (KBUFF1=750, KBUFF2=100)
 REAL BUFF1(KBUFF1), BUFF2(KBUFF2)
 CHARACTER CNOLD*64, CNNEW*64
 C
 READ (5,*) CNOLD, CNNEW
 CALL ZOPEN (IFTOLD, CNOLD, ISTAT)

HECDSS Subroutines ZCOREC

Chapter 9 - Utility Subroutines 9-17

 IF (ISTAT.NE.0) GO TO 900
 CALL ZOPEN (IFTOLD, CNNEW, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 CPATH = '/SACRAMENTO/I ST/FLOW/01JAN1980/1HOUR/OBS/'
 C
 CALL ZCOREC (IFTOLD, IFTNEW, CPATH, CPATH, BUFF1, KBUFF1,
 * BUFF2, KBUFF2, ISTAT)
 IF (ISTAT.NE.0) GO TO 910
 C

Example 2:

 C Duplicate a record within a DSS file.
 INTEGER IFLTAB(600)
 CHARACTER CPOLD*80, CPNEW*80
 PARAMETER (KBUFF1=750, KBUFF2=100)
 REAL BUFF1(KBUFF1), BUFF2(KBUFF2)
 CHARACTER CNAME*64
 C
 READ (5,*) CNAME
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 CPOLD = '/SACRAMENTO/I ST/ELEV-DAMAGE//1980/PLAN B/'
 CPNEW = '/SACRAMENTO/I ST/ELEV-DAMAGE//1980/REVISED/'
 C
 CALL ZCOREC (IFLTAB, IFLTAB, CPOLD, CPNEW, BUFF1, KBUFF1,
 * BUFF2, KBUFF2, ISTAT)
 IF (ISTAT.NE.0) GO TO 910
 C

ZCOFIL HECDSS Subroutines

9-18 Chapter 9 - Utility Subroutines

9.7 ZCOFIL - Copy a DSS File

Purpose:

 ZCOFIL copies a DSS file to a new DSS file, or appends the file to an existing DSS file.
ZCOFIL copies only valid data, so any inactive space is not copied. ZCOFIL is called by
DSSUTL to "squeeze" a DSS file. Regular interval time series records can also be compressed
(or un-compressed) according to the new file default data compression setting, if desired.
ZCOREC should be called if less than the entire file is to be copied.

Calling Sequence:

 CALL ZCOFIL (IFTOLD, IFTNEW, BUFF1, KBUFF1, BUFF2, KBUFF2,
 * LUNDEL, LRETAG)

Declarations:

 INTEGER IFTOLD(600), IFTNEW(600), KBUFF1, KBUFF2
 REAL BUFF1(KBUFF1), BUFF2(KBUFF2
 LOGICAL LUNDEL, LRETAG

Argument Description:

 IFTOLD Input/ The DSS work space used to manage the DSS file. This is the
 Output IFLTAB for the DSS file to copy from.

 IFTNEW Input/ The DSS work space used to manage the DSS file. This is the
 Output IFLTAB for the DSS file to copy to.

 BUFF1 Input A scratch array that will temporarily hold data and internal

arrays. The minimum dimension of this array should be 750
elements.

 KBUFF1 Input The dimension of BUFF1.

 BUFF2 Input A scratch array that will temporarily hold data and internal

arrays. The minimum dimension of this array should be 750
elements.

 KBUFF2 Input The dimension of BUFF2.

 LUNDEL Input A logical flag that should be set to .TRUE. if records that have

been deleted, but not yet physically removed, should be copied.
(They will be undeleted in the new file).

 LRETAG Input A logical flag that should be set to .TRUE. if the records
should be assigned new tag identifiers when they are copied.

HECDSS Subroutines ZCOFIL

Chapter 9 - Utility Subroutines 9-19

 The tags assigned will use the file tag settings. (See Chapter 7
for information on tags.)

Remarks:

 ZCOFIL reads through the file in a "brute force" fashion. Thus, if a file somehow
becomes damaged, ZCOFIL will copy all data that is recoverable. (It cannot tell if data itself has
become corrupt.)

 Buffered reads and writes are used for larger data records. The buffer arrays passed do
not necessarily need to be as large as the record sizes.

ZRENAM HECDSS Subroutines

9-20 Chapter 9 - Utility Subroutines

9.8 ZRENAM - Rename a Record

Purpose:

 ZRENAM changes the pathname of a record in a DSS file.

Calling Sequence:

 CALL ZRENAM (IFLTAB, CPATHO, NPATHO, CPATHN, NPATHN, LFOUND)

Declarations:

 INTEGER IFLTAB(600), NPATHO, NPATHN
 CHARACTER CPATHO*80, CPATHN*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATHO Input The pathname of the record to be renamed.

 NPATHO Input The number of characters in CPATHO.

 CPATHN Input The new pathname to be given to the record.

 NPATHN Input The number of characters in CPATHN

 LFOUND Output A logical status variable that is returned .TRUE. if the record

was found and renamed, or .FALSE. if the original record did
not exist in the DSS file.

Remarks:

 ZRENAM does not change the record's tag or any other information. With a message
level of three or greater, ZRENAM prints a message with the old pathname and the new
pathname. Error messages are printed with a message level of two or greater.

HECDSS Subroutines ZDELET

Chapter 9 - Utility Subroutines 9-21

9.9 ZDELET - Delete a Record

Purpose:

 ZDELET deletes a record from a DSS file by flagging a record status cell. The data is
not physically removed until the file is squeezed by DSSUTL. A deleted record can be
undeleted by DSSUTL or the subroutines ZUNDEL and ZUDALL (until the file is squeezed).

Calling Sequence:

 CALL ZDELET (IFLTAB, CPATH, NPATH, LFOUND)

Declarations:

 INTEGER IFLTAB(600), NPATH
 CHARACTER CPATH*80
 LOGICAL LFOUND

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the record to eliminate. This pathname does

not have to follow the standard conventions.

 NPATH Input The number of characters in CPATH. Trailing blanks must be

excluded.

 LFOUND Output A logical status variable that is returned .TRUE. if the record

was deleted, or .FALSE. if the record did not exist in the DSS
file.

Remarks:

 ZDELET is usually only called by utility programs. With a message level of three or
greater, ZDELET prints a message indicating the record was deleted. Error messages are printed
with a message level of two or greater.

ZUNDEL HECDSS Subroutines

9-22 Chapter 9 - Utility Subroutines

9.10 ZUNDEL - Undelete a Record

Purpose:

 ZUNDEL recovers a DSS record that was previously deleted by ZDELET by modifying
a record status cell. The DSS file must not have been squeezed by DSSUTL since the record
was deleted (as that will physically remove the record). All deleted records within a file can be
recovered by subroutine ZUDALL. ZUDALL can also determine what records are available to
recover.

Calling Sequence:

 CALL ZUNDEL (IFLTAB, CPATH, NPATH, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NPATH, ISTAT
 CHARACTER CPATH*80

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the record to recover.

 NPATH Input The number of characters in CPATH. Trailing blanks must be

excluded.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the record was successfully
recovered. If ISTAT is non-zero, an error occurred. The
possible values are:

 ISTAT Description
 0 Successful operation.
 1 The record could not be found.
 2 The record already exists (it was not deleted).

Remarks:

 With a message level of three or greater, ZUNDEL prints a message indicating the record
was recovered. Error messages are printed with a message level of two or greater.

HECDSS Subroutines ZUDALL

Chapter 9 - Utility Subroutines 9-23

9.11 ZUDALL - Undelete All Records in a DSS File

Purpose:

 ZUDALL recovers all records in a DSS file that were previously deleted by ZDELET.
The DSS file must not have been squeezed by DSSUTL since the records were deleted (as that
will physically remove the records). ZUDALL can also display a list of the deleted records
within the file that are available to recover.

Calling Sequence:

 CALL ZUDALL (IFLTAB, IUNIT)

Declarations:

 INTEGER IFLTAB(600), IUNIT

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 IUNIT Input If the records available to recover are to be displayed, this is

the unit number to write the pathnames of those records to. If
the records are to be recovered, IUNIT must be zero.

Remarks:

 To only display the deleted records in a file, set IUNIT to the unit number of the output
(otherwise IUNIT must be zero). ZUDALL will not recover any records when displaying
available records to recover. The following message is printed for each record available to
recover:

---ZUNDEL; Available: pathname

IUNIT must be set to zero to actually recover records.

 With a message level of 3 or greater, ZUDALL prints a message with the pathname for
each record that was recovered. If no records are available to recover, ZUDALL prints a
message indicating so

ZDEBUG HECDSS Subroutines

9-24 Chapter 9 - Utility Subroutines

9.12 ZDEBUG - Display Coded Information from the File or the IFLTAB
Array

Purpose:

 ZDEBUG displays coded information in the IFLTAB array or an array containing
information read from the DSS file. ZDEBUG is used internally in debugging possible damaged
areas in a file, and for installing the DSS software on a new computer. It is not intended for
debugging programs accessing DSS.

Calling Sequence:

 CALL ZDEBUG (MUNIT, IARRAY, IADD, ILEN)

Declarations:

INTEGER MUNIT, IARRAY(*), IADD, ILEN

 On MS-DOS microcomputers, the address must be INTEGER*4: INTEGER*4 IADD
 On Harris computers, the address must be INTEGER*6: INTEGER*6 IADD

Argument Description:

 MUNIT Input The unit number to print out the information to.

 IARRAY Input The DSS IFLTAB array or other array to display.

 IADD Input The file address or location within the array. (For example, if

you were displaying the IFLTAB array from word thirty-two to
fifty, this would be the number thirty-two.) The address is
displayed in the left-hand column, and incremented for each
word. It is used for informational purposes only.

 ILEN Input The number of large integer words to print.

Remarks:

 The output from ZDEBUG occupies 132 columns. Each word in the array is printed as a
large integer, a character string, a real number, two small integers, and four or six bytes
(depending on the computer). The address, and the address' record and word are printed on the
left side of the information.

HECDSS Subroutines ZDEBUG

Chapter 9 - Utility Subroutines 9-25

Example

 If ZDEBUG is called with the IFLTAB array and a length of thirty after a call to ZOPEN,
the output might appear as the following:

Address Rec Word Offset Large Int Char Real Small Ints Bytes
 1 1 1 (1) 6 ~~~~~~ 0.00 0 6 0 0 0 0 0 6
 2 1 2 (2) 13579 ~~~~5~ 0.00 0 135790 0 0 0 53 11
 3 1 3 (3) 71 ~~~~~G 0.00 0 71 0 0 0 0 0 71
 4 1 4 (4) 71 ~~~~~G 0.00 0 71 0 0 0 0 0 71
 5 1 5 (5) 1 ~~~~~~ 0.00 0 1 0 0 0 0 0 1
 6 1 6 (6) 1 ~~~~~~ 0.00 0 1 0 0 0 0 0 1
 7 1 7 (7) 0 ~~~~~~ 0.00 0 0 0 0 0 0 0
 8 1 8 (8) 4929 ~~~~~A ************ 0 4929 0 0 0 0 19 65
 9 1 9 (9) 2207838 ~~~!~^ ************ 0 2207838 0 0 0 33 176 94
 10 1 10 (10) 1 ~~~~~~ 0.00 0 1 0 0 0 0 0 1
 11 1 11 (11) 0 ~~~~~~ 0.00 0 0 0 0 0 0 0 0
 12 1 12 (12) 0 ~~~~~~ 0.00 0 0 0 0 0 0 0 0
 13 1 13 (13) 0 ~~~~~~ 0.00 0 0 0 0 0 0 0 0
 14 1 14 (14) 0 ~~~~~~ 0.00 0 0 0 0 0 0 0 0
 15 1 15 (15) 49624753831936 ZDSS~~ 0.71 5915731 5439488 90 68 83 83 0 0
 16 1 16 (16) 4193 ~~~~~a ************ 0 4193 0 0 0 0 16 97
 17 1 17 (17) 4194 ~~~~~b ************ 0 4194 0 0 0 0 16 98
 18 1 18 (18) 0 ~~~~~~ 0.00 0 0 0 0 0 0 0 0
 19 1 19 (19) 29784033787904 6-EA~~ 0.42 3550533 4259840 54 45 69 65 0 0
 20 1 20 (20) 2207838 ~~~!~^ ************ 0 2207838 0 0 0 33 176 94
 21 1 21 (21) 127762 ~~~~~~ 0.00 0 127762 0 0 0 1 243 18
 22 1 22 (22) 27041739132473 10JAN ************ 3223626 4279865 49 48 74 65 78 57
 23 1 23 (23) 26388279066624 0~~~~~ 0.37 3145728 0 48 0 0 0 0 0
 24 1 24 (24) 26496278285881 02JAN9 ************ 3158602 4279865 48 50 74 65 78 57
 25 1 25 (25) 26938034880512 1~~~~~ 0.38 3211264 0 49 0 0 0 0 0
 26 1 26 (26) 26511175398202 09:13: ************ 3160378 3224378 48 57 58 49 51 58
 27 1 27 (27) 27049704030208 14~~~~ 0.38 3224576 0 49 52 0 0 0 0
 28 1 28 (28) 1383873 ~~~~~~ 0.00 0 1383873 0 0 0 21 29 193
 29 1 29 (29) 1024 ~~~~~~ 0.00 0 1024 0 0 0 0 4 0
 30 1 30 (30) 2 ~~~~~~ 0.00 0 2 0 0 0 0 0 2

 HECDSS Subroutines

Chapter 10 - Data Compression Subroutines 10-1

10 Data Compression Subroutines

 Regular-interval time series data may be compressed by one or more of three methods.
The method may be selected by the user or by the storing program based on the kind of data that
is being stored. At this time, no other data types can be compressed by DSS.

 The first method is a repeat counter scheme that flags duplicate values. It uses one bit per
value to indicate a repeated value. It is often used for precipitation data, and can compress some
precipitation records by up to 97 percent. This compression method should never be used for
data that is updated frequently (e.g., entering real time data in a master database file), as it would
cause the record to expand often and require excessive rewrites.

 The second method (called the delta method) compresses data by storing the differences
between the data values and the minimum value in the record. This is designed for data where
the difference between the maximum value and the minimum value is not too large, and the
"precision" of the values (the number of digits to the right of the decimal place) is known. The
software determines the amount of space required for the data based on the difference between
the maximum and the minimum (or base) value (excluding missing data flags), and the precision
number. If data is to be updated frequently with this method (e.g., entering real-time data in a
master database file), the base value and a storage size can be specified. This allows the
software to update the data without having to re-compute a base value (and possibly re-compress
the record) each time. Data compressed by this method are typically precipitation and stage
values, and are compressed by fifty or seventy-five percent of their original size.

 The third type of compression stores three significant digits for each value, and is often
used to compress flow data. Data records compressed under with method are reduced in size by
fifty percent.

 The repeat method can be used in combination with the differences method or significant
digits method. The differences method may not be used with the significant digits method.

 The methods discussed in this chapter are often referenced by the software as numbers.
The numbers and their corresponding methods are as follows:

Number Method
0 NONE
1 REPEAT
2 DELTA
3 REPEAT + DELTA
4 SIGNIFICANT DIGITS
5 REPEAT + SIGNIFICANT DIGITS

 The delta method requires a precision exponent parameter indicating the accuracy of the
data. If the data to be stored is measured to the nearest hundredth (0.01) (e.g., precipitation), the
precision exponent would be negative two. If the data is to the nearest thousandth, the precision
exponent would be negative three.

HECDSS Subroutines

10-2 Chapter 10 - Data Compression Subroutines

 In addition, a "base value" and "data size" parameter may be specified for the delta
method. These parameters are typically only used with "real-time data", data that is updated
frequently, and only to increase the efficiency of storing future data. The base value is the
expected minimum value that the data will obtain for that record. For example, the base value
for incremental precipitation would be 0.0. The data size parameter indicates whether one or two
bytes should be pre-allocated for each data value. One byte allocates a difference of 256 units,
two bytes allocates a difference of 65,536 units. Typically, hourly precipitation would pre-
allocate only one byte (up to 2.56 inches per hour), whereas reservoir elevations would pre-
allocate two bytes (up to 65.536 feet difference). If the data changes so that either of the selected
values is invalid, the software will automatically select new values and re-compress the data. If
the parameters are not specified, the software will automatically select values based upon the
data.

 There are two ways to instruct the DSS software to compress regular-interval time series
data. One is to set data compression methods for the entire DSS file based on matching
pathname parts, and the other is to specify the compression method as an argument in the
subroutine that stores the data.

 In the first procedure a header section in the file is set with pathname part(s) and
compression methods. If a new record is stored, and its pathname part(s) match those in the file
header section, then that record will be compressed with the method specified. For example, one
may designate that records with a pathname C part that begins with "PRECIP" be compressed
with the REPEAT + DELTA method, and a pathname C part of "FLOW" be compressed with
the SIGNIFICANT DIGITS method. As many parts/methods as desired may be defined in the
file header. Only new records are compressed by this means, unless the "C" option is used in the
DSSUTL squeeze command. The data compression file header may be set by the Data
Compression command in DSSUTL, or by calling the subroutine ZSETCI.

 For the second procedure subroutine ZSCOMP is called prior to ZSRTS to define a data
compression method, or subroutine ZSRTSX is called instead of ZSRTS, with the data
compression method passed as an argument. In both cases the method passed will override any
default file methods set.

 The compression method used, and its associated parameters, may be obtained for a
record by calling subroutine ZDCINF after retrieving the data. Compression information about a
record can be printed with subroutine ZRECIN, as described in Chapter 9. A DSS file's default
compression methods can be printed with subroutine ZPRTCI.

 Data compression may not be used in conjunction with data flags.

HECDSS Subroutines ZSCOMP

Chapter 10 - Data Compression Subroutines 10-3

10.1 ZSCOMP - Set Data Compression for a Record

Purpose:

 ZSCOMP sets data compression parameters when storing data with subroutine ZSRTS.
ZSCOMP must be call just prior to ZSRTS, and the compression parameters apply only to that
call to ZSRTS.

Calling Sequence:

CALL ZSCOMP (ICOMP, BASEV, LBASEV, LHIGH, IPREC)

Declarations:

 INTEGER ICOMP, IPREC
 REAL BASEV
 LOGICAL LBASEV, LHIGH

Argument Description:

 ICOMP Input The data compression method to use, as described in the

introduction to this chapter.

 BASEV Input When the delta data compression method is used, the base

value may be specified by setting this argument to the base
value and LBASEV to .TRUE.. If the delta method is not used,
this argument is ignored.

 LBASEV Input A logical flag indicating if the argument BASEV has been set.

To let the compression software select a base value, set this
argument to .FALSE.. If the delta method is not used, this
argument is ignored.

 LHIGH Input When the delta data compression method is used, setting

LHIGH to .TRUE. will pre-allocate two bytes of storage per
data value. If LHIGH is set to .FALSE., the compression
software will select the storage size based on the data. If the
delta method is not used, this argument is ignored.

 IPREC Input When the delta data compression method is used; this defines

the precision exponent of the data (required). The precision
exponent may range from negative six to positive six.

ZSCOMP HECDSS Subroutines

10-4 Chapter 10 - Data Compression Subroutines

Remarks:

 ZSCOMP is normally used when adding data compression capabilities to existing code.
The subroutine ZSRTSX includes data compression parameters as arguments, and is typically
called in place of ZSCOMP.

 The compression parameters passed in for ZSCOMP override any default file
compression methods set (unless ICOMP is set to zero). To disallow compression for this data,
set ICOMP to negative one.

 ZSCOMP must be called prior to each call to ZSRTS to set data compression parameters.
The parameters set by ZSCOMP are reset upon exit from ZSRTS. If the record is already
compressed, it will be re-compressed with the new method specified.

Example:

 C If precipitation or flow data is to be stored, compress the data.
 C For precipitation, use the delta + repeat method (method #3).
 C For flow data, use the significant digits method (method #4).
 C
 . . .
 C
 CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)
 C
 C Is this precip data? (If so, compress with delta + repeat).
 IF (CC(1:6).EQ.'PRECIP') THEN
 C Set the compression method to 3, with a base value of 0.0.
 C Store data to the nearest hundredth of an inch. Do not
 C require a two byte space pre-allocation.
 CALL ZSCOMP (3, 0.0, .TRUE., .FALSE., -2)
 ENDIF
 C
 C Is this flow data? (If so, compress with significant digits).
 IF (CC(1:4).EQ.'FLOW') THEN
 C Set the compression method to 4. All other arguments
 C are ignored.
 CALL ZSCOMP (4, DUM, LDUM, LDUM, IDUM)
 ENDIF
 C
 C Now store the data.
 CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,
 * VALUES, CUNITS, CTYPE, IPLAN, ISTAT)

HECDSS Subroutines ZDCINF

Chapter 10 - Data Compression Subroutines 10-5

10.2 ZDCINF - Get Data Compression Information for a Record

Purpose:

 ZDCINF returns data compression parameters for the last regular-interval time series
record read. This includes the compression method, and if the delta method was used, the base
value, the precision, and the number of bytes allocated for each value. The record must have
been retrieved to use this subroutine. To obtain data compression information about a record that
has not been read, call subroutine ZRECIN.

Calling Sequence:

CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, ISTAT)

Declarations:

 INTEGER ICOMP, IPREC, ISIZE, ISTAT
 REAL BASEV
 LOGICAL LBASEV

Argument Description:

 ICOMP Output The data compression method used, as described in the

introduction to this chapter.

 BASEV Output The base (minimum) value of data when the delta compression

method is used. If the delta method is not used, this argument
is undefined.

 LBASEV Output A logical flag set to .TRUE. if the base value was set for the

delta method. If the delta method is not used, this argument is
undefined.

 ISIZE Output If the delta compression method was used, this argument will

contain the number of bytes (one or two) allocated for each
data value. If the delta method is not used, this argument is
undefined.

 IPREC Output If the delta compression method was used, this argument will

contain the precision exponent. If the delta method is not used,
this argument is undefined.

 ISTAT Output A status parameter set to zero if the data was compressed. If

ISTAT is non-zero, the data was not compressed and the
subroutine arguments are undefined.

ZDCINF HECDSS Subroutines

10-6 Chapter 10 - Data Compression Subroutines

Remarks:

 ZDCINF can only be called after the data has been retrieved with ZRRTS or ZRRTSX.
If the data was not compressed, ISTAT will be returned negative, and the arguments will be
unchanged.

Example:

 C Retrieve time-series data and print the data compression
 C information about it.
 C
 C Retrieve the data
 CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,
 * VALUES, CUNITS, IOFSET, ISTAT)
 C
 C "Fatal" error?
 IF (ISTAT.GE.10) GO TO 950
 C No data?
 IF (ISTAT.GE.4) GO TO 960
 C
 C Write pathname, units.
 CALL CHRLNB (CPATH, NPATH)
 WRITE (6,40) CPATH(1:NPATH), CUNITS, CTYPE
 40 FORMAT (' Pathname: ',A,/,' Units: ',A,T20,'Type: ',A)
 C
 C Get compression information.
 CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, JSTAT)
 C
 IF (JSTAT.EQ.0) THEN
 C Does this compression include the delta method?
 IF ((ICOMP.EQ.2).OR.(ICOMP.EQ.3)) THEN
 WRITE (6,60) ICOMP, LBASEV, BASEV, ISIZE, IPREC
 60 FORMAT (' Compression Method:',I3,' Based Set:',L2,
 * ' Base: ',F6.1,/,' Size Allocated:',I2,' Precision:',I3)
 ELSE
 WRITE (6,80) ICOMP
 80 FORMAT (' Compression Method:',I3)
 ENDIF
 ELSE
 WRITE (6,100)
 100 FORMAT (' No Compression Used')
 ENDIF
 C

HECDSS Subroutines ZSETCI

Chapter 10 - Data Compression Subroutines 10-7

10.3 ZSETCI - Set Default Data Compression for a DSS File

Purpose:

 ZSETCI sets the data compression header for a DSS file. The compression method set
will be used on all new regular-interval time series records that match the defined pathname
parts, unless a compression method is specified when storing the data with ZSRTSX or
ZSCOMP. For example, one may designate that records with a pathname C part that begins with
"PRECIP" be compressed with the REPEAT + DELTA method. Any time a new record is
written (from any program), and the C part begins with "PRECIP", the data will be compressed
automatically with the REPEAT + DELTA method (unless overridden). As many parts/methods
settings as desired may be defined in the file header. Only new records are compressed by this
means, unless the "C" option is used in the DSSUTL squeeze command. File compression
settings may also be removed with ZSETCI.

Calling Sequence:

 CALL ZSETCI (IFLTAB, CPARTS, LPARTS, ICOMP, BASEV, LBASEV,
 * LHIGH, IPREC, ISTAT)

Declarations:

 INTEGER IFLTAB(600), ICOMP, IPREC, ISTAT
 CHARACTER CPARTS(6)*32
 REAL BASEV
 LOGICAL LBASEV, LHIGH, LPARTS(6)

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPARTS Input A six element character array containing the pathname parts to

match. Only those elements that are to be matched (as
indicated by LPARTS) need to be defined. The first element of
CPARTS corresponds to the A part of the pathname, the
second element to the B part, etc. The "@" character may be
used as a wild character at the end (only) of a portion of a part,
so only the beginning of the part is matched. For example, if
CPARTS(3) = 'PRECIP@', "PRECIP-CUM", and "PRECIP- ",
will both match.

 LPARTS Input A six element logical array indicating which parts are to be

matched. The first element of LPARTS corresponds to
CPARTS(1) (the "A" part), the second element to CPARTS(2),
etc.. If an element of LPARTS is .FALSE., that part will not

ZSETCI HECDSS Subroutines

10-8 Chapter 10 - Data Compression Subroutines

 be matched. If an element is .TRUE., then that part must
match.

 ICOMP Output The data compression method to use, as described in the

introduction to this chapter. To delete a file setting, set
ICOMP to zero.

 BASEV Output When the delta data compression method is used, the base

value may be specified by setting this argument to the base
value and LBASEV to .TRUE.. If the delta method is not used,
this argument is ignored.

 LBASEV Input A logical flag that should be set to .TRUE. if the argument

BASEV has been set.

 LHIGH Output When the delta data compression method is used, setting

LHIGH to .TRUE. will pre-allocate two bytes of storage per
data value. If LHIGH is set to .FALSE., the compression
software will select the storage size based on the data.

 IPREC Output When the delta data compression method is used; this defines

the precision exponent of the data (required). The precision
exponent may range from negative six to positive six.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the file header was changed
successfully. The possible values are:

 ISTAT Description
 0 The file header was successfully modified.
 -1 The part identifiers were not found (no match).

This only applies when deleting a file setting
(ICOMP is zero).

 1 An invalid compression method (ICOMP) was
specified. ICOMP may range from 0 to 5

 2 An invalid precision value (IPREC) was specified
for use with the delta compression method. IPREC
may range from negative six to positive six.

Remarks:

 If the parts match an existing file setting, then that compression method will be replaced.
A file setting can be deleted by making ICOMP zero (with matching CPARTS).

 As many compression sets may be defined for a DSS file as desired. If a pathname
matches more than one set, the first matching set encountered is used.

 The data compression header may be displayed with subroutine ZSETCI.

HECDSS Subroutines ZSETCI

Chapter 10 - Data Compression Subroutines 10-9

Example:

 C Set a dss file's data compression header so that precipitation
 C and flow data are automatically compressed.
 C
 CHARACTER CPARTS(6)*32
 LOGICAL LPARTS(6)
 . . .
 C
 C Attach units, open the DSS file, etc.
 CALL ZOPEN (...
 C
 C Use the repeated values + delta method for precipitation data.
 C Set the base to zero, and the precision to a hundredth (0.01).
 DO 20 I=1,6
 LPARTS(I) = .FALSE.
 20 CONTINUE
 CPARTS(3) = 'PRECIP@'
 LPARTS(3) = .TRUE.
 CALL ZSETCI (IFLTAB, CPARTS, LPARTS, 3, .TRUE., 0.0,
 * FALSE., -2, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Use the significant digits method for flow data.
 DO 40 I=1,6
 LPARTS(I) = .FALSE.
 40 CONTINUE
 CPARTS(3) = 'FLOW@'
 LPARTS(3) = .TRUE.
 CALL ZSETCI (IFLTAB, CPARTS, LPARTS, 4, .FALSE., 0.0,
 * .FALSE., IDUM, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C

ZPRTCI HECDSS Subroutines

10-10 Chapter 10 - Data Compression Subroutines

10.4 ZPRTCI - Print the Default Data Compression for a DSS File

Purpose:

 ZPRTCI prints information about a DSS file's data compression header. All compression
information, or a portion of it based on matching pathname parts, can be printed. The
information is written to the DSS message unit (MUNIT).

Calling Sequence:

CALL ZPRTCI (IFLTAB, LALL, CPARTS)

Declarations:

 INTEGER IFLTAB(600)
 CHARACTER CPARTS(6)*32
 LOGICAL LALL

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 LALL Input A logical variable indicating if all information is to be printed

out, or just information for specific parts. If LALL is .TRUE.,
then all information is printed, and the argument CPARTS is
ignored. If LALL is .FALSE., the CPARTS is examined for
matching parts to determine what compression information
should be printed.

 CPARTS Input A six element character array containing the pathname parts to

match when LALL is .TRUE.. The first element of CPARTS
corresponds to the A part of the pathname, the second element
to the B part, etc. If a part is not to be matched, it must be
blank filled. The parts must match exactly as specified in the
file header (wild characters are not expanded).

Remarks:

 ZPRTCI will always print a message to MUNIT, regardless if parts match or not. If
LALL is .FALSE. and the parts do not match, the message "No Data Compression Set" will be
printed. The information printed is the same as that displayed with the "DC ?" command in
DSSUTL.

 An example message that might be printed for a file, with LALL set to .TRUE. is:
 Pathname Parts: C=PRECIP@
 Compression Method: 3; Repeat + Delta

HECDSS Subroutines ZPRTCI

Chapter 10 - Data Compression Subroutines 10-11

 Precision: -2
 Compression Software selects allocation space for the Delta scheme.

 Pathname Parts: A=NORTH RIVER, C=STAGE
 Compression Method: 2; Delta
 Precision: -3
 Two bytes allocated for each value.

Example:

 C Print a file's data compression header.
 CHARACTER CPARTS(6)*32
 LOGICAL LALL
 C
 C Attach files, open the DSS file, etc.
 CALL ZOPEN (...
 C
 . . .
 C
 IF (LALL) THEN
 C Print all of the file's data compression header.
 CALL ZPRTCI (IFLTAB, .TRUE., CPARTS)
 ELSE IF (LPRCIP) THEN
 C Print compression information for precipitation data only.
 DO 20 I=1,6
 CPARTS(I) = ' '
 20 CONTINUE
 CPARTS(3) = 'PRECIP@'
 CALL ZPRTCI (IFLTAB, .FALSE., CPARTS)
 ELSE
 . . .

 HECDSS Subroutines

Chapter 11 - Outdated Subroutines 11-1

11 Outdated Subroutines

 The subroutines documented in this chapter were written for previous versions of DSS
and have since been replaced by other routines that are more convenient to use or provide more
capability. These routines are still fully supported, but their replacements should be called
instead when writing new DSS interface code. In fact, most of these routines rearrange
arguments and call their replacements. This chapter is intended as an aid for modifying existing
DSS interface code.

ZFPN HECDSS Subroutines

11-2 Chapter 11 - Outdated Subroutines

11.1 ZFPN - Form DSS Pathname

Purpose:

 ZFPN constructs a record pathname from six pathname parts. ZFPN removes leading
and trailing blanks from each part, and inserts a slash (/) between each part.

Replaced By:

ZPATH

Calling Sequence:

 CALL ZFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE, CF, NF, CPATH, NPATH)

Declarations:

 INTEGER NA, NB, NC, ND, NE, NF, NPATH
 CHARACTER CA*32, CB*32, CC*32, CD*32, CE*32, CF*32, CPATH*80

Argument Description:

 CA Input A character string containing the A (first) part of the pathname.

Up to thirty-two characters may be used in a pathname part.
The part may have leading and trailing blanks which will be
removed by ZFPN.

 NA Input The number of characters in CA. This number may include

leading and trailing blanks. If the part is null, NA may be set
to zero (or CA should contain only blanks).

 CB Input The B part of the pathname.

 NB Input The number of characters in CB.

 CC Input The C part of the pathname.

 NC Input The number of characters in CC.

 CD Input The D part of the pathname.

 ND Input The number of characters in CD.

 CE Input The E part of the pathname.

 NE Input The number of characters in CE.

HECDSS Subroutines ZFPN

Chapter 11 - Outdated Subroutines 11-3

 CF Input The F part of the pathname.

 NF Input The number of characters in CF.

 CPATH Output The completed pathname.

 NPATH Output The number of characters in CPATH, including slashes.

Remarks:

 Each pathname part may contain up to thirty-two characters, and the pathname may
contain up to eighty characters (including slashes). If the sum of the parts and slashes is greater
than eighty characters, the pathname will be truncated to eighty characters.

 A frequent problem encountered is the entrance of control characters (or null characters)
in the pathname. This usually occurs when the pathname part is not blanked prior to usage or the
part length specified is longer than the dimension of the part. It is good practice to initialize
pathname parts with blanks.

Example:

 C Form a pathname, reading the A part from the keyboard,
 C and using the location for the B part.
 CHARACTER CA*32, CB*32, CYEAR*4, CPATH*80
 C
 READ (5,10,END=100,ERR=900) CA
 10 FORMAT (A)
 CB = CLOC
 C
 CALL ZFPN (CA, 32, CB, 32, 'STAGE-DAMAGE', 12, ' ', 0,
 * CYEAR, 4, 'COMPUTED', 8, CPATH, NPATH)
 C
 WRITE (6, 20) CPATH(1:NPATH)
 20 FORMAT (' Pathname: ',A)

ZGTDTS HECDSS Subroutines

11-4 Chapter 11 - Outdated Subroutines

11.2 ZGTDTS - Get Regular-Interval Time Series Data

Purpose:

 ZGTDTS retrieves regular-interval time series data from a DSS file. The data retrieved is
based on a time window and may cross record boundaries (that is, ZGTDTS may read several
records with different D (date) parts to retrieve the data specified).

Replaced By:

ZRRTS and ZRRTSX

Calling Sequence:

 CALL ZGTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
 * JULS, ISTIME, JULE, IETIME, INTL, DUM, 0,
 * IOFSET, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NA, NB, NC, NF, JULS, ISTIME, JULE
 INTEGER INTL, IETIME, IOFSET, NVALS, ISTAT
 REAL VALUES(NVALS), DUM
 CHARACTER CA*32, CB*32, CC*32, CF*32, CUNITS*8, CTYPE*8

 On MS-DOS microcomputers, the Julian dates, the time interval and interval offset must
be INTEGER*4: INTEGER*4 JULS, JULE, IOFSET, INTL

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CA Input A character string containing the A part of the pathname. Up

to thirty-two characters may be used in a pathname part. The
part may have leading and trailing blanks (which will be
removed).

 NA Input The number of characters in CA. This number may include

leading and trailing blanks, if desired. If the part is null, NA
may be set to zero (or CA should contain only blanks).

 CB Input The B part of the pathname.

 NB Input The number of characters in CB.

HECDSS Subroutines ZGTDTS

Chapter 11 - Outdated Subroutines 11-5

 CC Input The C part of the pathname.

 NC Input The number of characters in CC.

 CF Input The F part of the pathname.

 NF Input The number of characters in CF.

 JULS Input The Julian date of the start of the time window. This is in days

since 31DEC1899 (not since the beginning of the current year).

 ISTIME Input The starting time of the time window, in minutes past midnight

(for midnight ISTIME would be 1440, not 0). JULS and
ISTIME define the time of the first data value.

 JULE Input The Julian date of the end of the time window, in days since

31DEC1899.

 IETIME Input The ending time of the time window in minutes past midnight.

 INTL Input The time interval of the data in minutes. For hourly data this

would be sixty. For monthly data set INTL to 43200.

 DUM Unused A dummy variable. This used to be the internal header array,

which now is returned as parameters (e.g., CUNITS, CTYPE).

 0 Unused Zero. This used to be the length of the internal header array.

 IOFSET Output The time offset of the data in minutes. (If hourly data is

recorded at fifteen minutes past the hour, the offset would be
fifteen minutes.) If there is no offset, IOFSET will be returned
as zero. (For Version 4, this was buffer space to hold the
record. Data is now read directly from the disk into the values
array.)

 VALUES Output The actual data values retrieved. The values in this array are

undefined if ISTAT is greater than ten.

 NVALS Input/ As input, this variable must contain the dimension size of
 Output VALUES. NVALS is returned with the number of data values

read. The array VALUES will contain NVALS real elements.

 CUNITS Output The units of the data (e.g., FEET).

 CTYPE Output The type of the data (e.g., PER-AVER).

ZGTDTS HECDSS Subroutines

11-6 Chapter 11 - Outdated Subroutines

 ISTAT Output A status parameter indicating the success of the operation. If
ISTAT is returned with zero, then all the data was successfully
read. If ISTAT is returned with a value between one and three,
then data was retrieved, but some missing values were
detected. If ISTAT is greater than ten, a fatal error occurred,
and no data was returned. The possible values are:

 ISTAT Description
 0 All data retrieved.
 1 Some missing data was detected (missing values set

to -901.0).
 2 Missing record(s) (missing values set to -902.0 for

the record not found), but some data was found.
 3 Missing record(s) and missing data in the data set,

however some data was found.
 4 No data found for this time window, but a record

was found.
 5 No records found (no data is returned).
 GT 10 A "fatal" error occurred:
 11 The number of values requested was less than

one.
 12 A non-standard time interval was provided.
 15 The starting date or time was not recognized.
 20 The data was not recognized as regular-

interval time series.
 24 The pathname given does not meet the

regular-interval time series conventions.
 53 The data could not be un-compressed.

Remarks:

 ZGTDTS calls ZRRTSX.

 CUNITS and CTYPE will contain the units and type for the last record read (when
reading several records). If no data was found (ISTAT=4), or a fatal error occurred, CUNITS
and CTYPE will be unchanged.

 A debug trace will be printed when the message level (MLEVEL) is set to 8 via
subroutine ZSET. This trace will print the pathname, dates, times, and other information used by
the subroutine.

Example:

 C Retrieve the past 50 days of daily data and print them.
 C
 INTEGER IFLTAB(600)

HECDSS Subroutines ZGTDTS

Chapter 11 - Outdated Subroutines 11-7

 INTEGER*4 JULS, JULE, INTL, IOFSET
 CHARACTER CA*32, CB*32, CC*32, CF*32
 CHARACTER CDATE*20, CTIME*4, CUNITS*8, CTYPE*8
 REAL VALUES(100)
 C
 C Open the DSS file, get the pathname parts, time interval, etc.
 CALL ZOPEN (...
 C
 C
 C Get the current date and time.
 CALL CURTIM (JULE, IETIME)
 INTL = 1440
 C Decrement it by 49 days (50 values).
 IDUM = INCTIM (INTL, 0, -49, JULE, IETIME, JULS, ISTIME)
 C
 C Now retrieve the data.
 NVALS = 100
 CALL ZGTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
 * JULS, ISTIME, JULE, IETIME, INTL, DUM, 0, IOFSET,
 * VALUES, NVALS, CUNITS, CTYPE, ISTAT)
 IF (ISTAT.GE.10) GO TO 900
 IF (ISTAT.GE.3) GO TO 100
 C
 C Adjust the starting time to account for any offset.
 CALL ZOFSET (JULS, ISTIME, INTL, 2, IOFSET)
 C
 C Print the data values along with their date and time.
 DO 80 I=1,50
 IDUM = INCTIM (INTL, 0, I-1, JULS, ISTIME, JULE, IETIME)
 CALL JULDAT (JULE, 0, CDATE, NDATE)
 IDUM = M2IHM (IETIME, CTIME)
 WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)
 40 FORMAT (1X,A,2X,A,F10.3)
 80 CONTINUE

ZPTDTS HECDSS Subroutines

11-8 Chapter 11 - Outdated Subroutines

11.3 ZPTDTS - Put Regular-Interval Time Series Data in a DSS File

Purpose:

 ZPTDTS stores regular-interval time series data in a DSS file. The data is based on a
time window, and may cross record boundaries (that is, ZPTDTS may write several records with
different D (date) parts).

Replaced By:

ZSRTS and ZSRTSX

Calling Sequence:

 CALL ZPTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
 * JULS, ISTIME, JULE, IETIME, INTL, DUM1, IDUM,
 * DUM2, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NA, NB, NC, NF, JULS, ISTIME, JULE
 INTEGER INTL, IETIME, IDUM, NVALS, ISTAT
 REAL VALUES(NVALS), DUM1, DUM2
 CHARACTER CA*32, CB*32, CC*32, CF*32, CUNITS*8, CTYPE*8

 On MS-DOS microcomputers, the Julian dates and time interval must be INTEGER*4:

INTEGER*4 JULS, JULE, INTL

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CA Input A character string containing the A part of the pathname. Up

to thirty-two characters may be used in a pathname part. The
part may have leading and trailing blanks (which will be
removed).

 NA Input The number of characters in CA (the dimension). This number

may include leading and trailing blanks, if desired. If the part
is null, NA may be set to zero (or CA should contain only
blanks).

 CB Input The B part of the pathname.

HECDSS Subroutines ZPTDTS

Chapter 11 - Outdated Subroutines 11-9

 NB Input The number of characters in CB.

 CC Input The C part of the pathname.

 NC Input The number of characters in CC.

 CF Input The F part of the pathname.

 NF Input The number of characters in CF.

 JULS Input The Julian date of the start of the time window. This is in days

since 31DEC1899 (not since the beginning of the current year).

 ISTIME Input The starting time of the time window, in minutes past midnight

(for midnight ISTIME would be 1440, not zero). JULS and
ISTIME define the time of the first data value. Any time offset
is implied by these values (e.g., for daily data recorded at 8:00
a.m., set ISTIME to 480, an implied offset of 480 minutes).

 JULE Input The Julian date of the end of the time window, in days since

31DEC1899.

 IETIME Input The ending time of the time window in minutes past midnight.

 INTL Input The time interval of the data in minutes. For hourly data this

would be sixty. For monthly data set INTL to 43200.

 DUM1 Unused A dummy variable. In Version 4 this contained the internal

header array.

 IDUM Unused A dummy variable. In Version 4 this was the length of the

internal header array.

 DUM2 Unused A dummy variable. In version 4 this was a buffer array to hold

the record written to disk. The subroutine now has its own
buffers to accomplish this.

 VALUES Input The actual data values to store. Values in the array that are

missing should be set to -901.

 NVALS Input/ As input, this variable must contain the dimension size of
 Output VALUES. NVALS is returned with the number of data values

stored. The array VALUES must contain NVALS real
elements.

 CUNITS Input The units of the data (e.g., FEET).

ZPTDTS HECDSS Subroutines

11-10 Chapter 11 - Outdated Subroutines

 CTYPE Input The type of the data (e.g., PER-AVER).

 ISTAT Input/ As input, ISTAT is an argument to indicate whether to write
 Output over existing data or not. If ISTAT is set to zero, the data

provided will always replace any existing data (with the same
pathname at the same times). As output, ISTAT is a status
parameter indicating the success of the operation. If ISTAT is
returned with zero, then all the data was successfully stored. If
ISTAT is greater than ten, a fatal error occurred. The possible
values are:

 As Input:
 ISTAT Description
 0 Always write over existing data.
 -1 Only replace missing data flags in the record (-901).
 -2 If all the data are missing data flags (-901), write

the record regardless. (Normally, if all the input
data values are missing, the record will not be
written).

 -4 If an input data value is missing (-901), do not
allow it to replace an existing data value.

 As Output:
 ISTAT Description
 0 The data was successfully stored.
 4 All of the input data provided were missing data

flags (-901). No data was stored.
 GT 10 A "fatal" error occurred:
 11 NVALS is less than one.
 12 An illegal time interval was given.
 15 The starting date is illegal.
 24 The pathname does not meet the regular-

interval time series conventions.

Remarks:

 ZPTDTS calls ZSRTSX.

 The argument NVALS must be set to the dimension of VALUES prior to calling
ZPTDTS. NVALS is not necessarily the number of data values to store; the number of data
values to store is determined by the time window.

 A debug trace may be turned on by setting the message level (MLEVEL) to seven, eight,
or nine via subroutine ZSET. Level seven gives information regarding the arguments being
passed. The higher levels provide information about the steps taking place inside the subroutine.

HECDSS Subroutines ZPTDTS

Chapter 11 - Outdated Subroutines 11-11

 If ISTAT is not returned with zero, an error (or warning) message will be written to the
standard output, provided the message level is set accordingly. The error messages are explicit.
If a fatal error occurs, what the error is, and any relevant information will be printed.

Example:

 C Store NVALS data values.
 C
 INTEGER IFLTAB(600)
 INTEGER*4 JULS, JULE, INTL, IYMDJL
 CHARACTER CA*32, CB*32, CC*32, CF*32, CTIME*4
 REAL VALUES(1000)
 C
 C Open the DSS file, get the pathname parts, etc.
 CALL ZOPEN (...
 CALL ZGPNP (...
 C
 C If the date is in the integer form 12/24/82,
 C convert it to julian.
 JULS = IYMDJL (IYR, IMON, IDAY)
 C Convert the time from 24 hour clock time to minutes.
 ISTIME = IHM2M (CTIME)
 C
 C Increment the time by NVALS-1 periods.
 IDUM = INCTIM (INTL, 0, NVALS-1, JULS, ISTIME, JULE, IETIME)
 C
 C Now store the data.
 ISTAT = 0
 C As input, NVALS is the dimension of VALUES,
 C not necessarily the number of values.
 NVALS = 1000
 CALL ZPTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
 * JULS, ISTIME, JULE, IETIME, INTL, DUM, IDUM, DUM,
 * VALUES, NVALS, 'CFS', 'PER-AVER', ISTAT)
 IF (ISTAT.GT.0) GO TO 900
 C

ZGIRTS HECDSS Subroutines

11-12 Chapter 11 - Outdated Subroutines

11.4 ZGIRTS - Get Irregular-Interval Time Series Data

Purpose:

 ZGIRTS retrieves irregular-interval time series data from a DSS file. The data retrieved
may be based on a time window and can cross record boundaries (i.e., several records with
different D parts may be read with one call to ZGIRTS). If no time window is specified, all the
data from that record will be retrieved (using the D part for the date).

Replaced By:

ZRITS and ZRITSX

Calling Sequence:

 CALL ZGIRTS (IFLTAB, CPATH, NPATH, JULS, ISTIME, JULE, IETIME,
 * DUM1, IDUM1, DUM2, IDUM2, KVALS, DATES, VALUES, NVALS,
 * BDATE, CUNITS, CTYPE, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NPATH, JULS, ISTIME, JULE, IETIME
 INTEGER IDUM1, IDUM2, KVALS, NVALS, ISTAT
 REAL DATES(KVALS), VALUES(KVALS), BDATE, DUM1, DUM2
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8

 On MS-DOS microcomputers, the Julian dates must be INTEGER*4:

INTEGER*4 JULS, JULE

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to read. The pathname must meet the

irregular time-series conventions specified in the HECDSS
User's Guide, including a correct E part. With a time window
specified, the "D part" (date part) will be ignored; as ZGIRTS
will form it internally (there may be several D parts, depending
on the time window). If no time window is specified, a correct
D part must be provided.

 NPATH Input The number of characters in CPATH.

 JULS Input The Julian date of the start of the time window. This is days

since 31DEC1899, not since the beginning of the current year.

HECDSS Subroutines ZGIRTS

Chapter 11 - Outdated Subroutines 11-13

 If no time window is specified, this argument is ignored (see
ISTIME).

 ISTIME Input The starting time of the time window, in minutes past midnight

(for midnight ISTIME would be 1440, not zero). To have no
time window set (and read the entire record), set ISTIME to
negative two. This will use the D part of the pathname to
define the time window.

 JULE Input The Julian date of the end of the time window in days since

31DEC1899. If no time window is set, this argument is
ignored.

 IETIME Input The ending time of the time window in minutes past midnight.

If no time window is set, this argument is ignored.

 DUM1 Unused A dummy variable. In Version 4 this was a buffer array to hold

the record to read. The subroutine now has internal buffers to
read the record with.

 IDUM1 Unused A dummy variable. In Version 4 this was the dimension of the

buffer.

 DUM2 Unused A dummy variable. In Version 4 this was the internal header

array, which now is returned as parameters (e.g., CUNITS,
CTYPE).

 IDUM2 Unused A dummy variable. In Version 4 this was the length of the

internal header array.

 KVALS Input The dimension of arrays DATES and VALUES, or (if desired)

the maximum number of data values to retrieve. No more than
KVALS data values will be retrieved.

 DATES Output An array containing the dates of the data (VALUES), in a one-

to-one correspondence. The dates are given in the number of
days and fraction of a day from BDATE. On computers where
the precision is sufficiently large, BDATE can be added to
each element of DATES to produce Julian days and fractions
of a day since 31DEC1899. DATES will be returned with
NVALS elements.

 VALUES Output The actual data values retrieved.

 NVALS Output The number of data values read. Arrays DATES and VALUES

will contain NVALS elements.

ZGIRTS HECDSS Subroutines

11-14 Chapter 11 - Outdated Subroutines

 BDATE Output The Julian base date (in days since 31DEC1899), usually
equivalent to JULS (with no fractional part). All the dates in
array DATES are relative to this date.

 CUNITS Output The units of the data (e.g., FEET).

 CTYPE Output The type of the data (e.g., PER-AVER).

 ISTAT Output/ A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
read. If ISTAT is greater than ten, a fatal error occurred. The
possible values are:

 ISTAT Description
 0 Successful data retrieval.
 1 The number of data values requested (according to

the time window) exceeds KVALS. The ITIMES
and VALUES arrays will contain KVALS values.

 4 No data found (pathname not found). The output
arguments are undefined.

 GT 10 A "fatal" error occurred:
 20 The data was not recognized as irregular-

interval time series
 21 An internal buffer array is not large enough

to read the record. (This will seldom occur
as the same array is used to store the data,
and the error would be detected at that time.)

 24 The pathname does not meet the irregular-
interval time series-conventions.

Remarks:

 ZGIRTS calls ZRITSX.

 The BDATE argument is provided to take care of precision problems on many
computers. The complete Julian date and fraction of a day requires precision of nine significant
digits (for example a number of 35020.0001). This can be represented by a BDATE of 35000.0
and a DATES(N) value of 20.0001. On machines with a precision of nine or more significant
digits, BDATE can be added to each of the DATES elements to compute a total Julian date and
fraction. This cannot be done on thirty-two bit machines (e.g., a PC), but can be accomplished
on forty-eight bit and larger machines (e.g., HARRIS and CDC). An example of changing this
style of date to a standard style is provided in the example following.

 CUNITS and CTYPE will contain the units and type for the last record read (when
reading several records). If no data was found (ISTAT=4), or a fatal error occurred, CUNITS
and CTYPE will be unchanged.

HECDSS Subroutines ZGIRTS

Chapter 11 - Outdated Subroutines 11-15

 A debug trace may be turned on by setting the message level (MLEVEL) to seven, eight,
or nine via subroutine ZSET. Level seven gives information regarding the arguments being
passed. The higher levels provide information about the steps taking place inside the subroutine.

Example:

 C Retrieve data for the past 60 days and print them.
 C
 INTEGER IFLTAB(600)
 INTEGER*4 INTL, JULS, JULE, JUL, JULR, JULB
 REAL DATES(1000), VALUES(1000), BDATE
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8, CDATE*20, CTIME*4
 C
 C Open the DSS file and get the pathname parts.
 CALL ZOPEN (...
 C
 C Get the current julian date and time.
 CALL CURTIM (JULE, IETIME)
 INTL = 1440
 C Decrement it by 60 days (from midnight).
 IDUM = INCTIM (INTL, 0, -60, JULE, IETIME, JULS, ISTIME)
 ISTIME = 1440
 C
 C Retrieve the data.
 CALL ZGIRTS (IFLTAB, CPATH, NPATH, JULS, ISTIME, JULE, IETIME,
 * DUM1, IDUM1, DUM2, IDUM2, 1000, DATES, VALUES, NVALS, BDATE,
 * CUNITS, CTYPE, ISTAT)
 C
 C Check for errors.
 IF (ISTAT.EQ.4) GO TO 100
 IF (ISTAT.GE.10) GO TO 900
 C
 C Print the data values.
 WRITE (6,20) CUNITS, CTYPE
 20 FORMAT (' Units: ',A,', Type: ',A)
 C
 JULB = INT4(BDATE)
 DO 60 I=1,NVALS
 C Convert julian dates to standard.
 JULR = INT4(DATES(I))
 JUL = JULB + JULR
 FRACT = DATES(I) - REAL(JULR)
 RMIN = (FRACT * 1440.) + 0.6
 MIN = INT(RMIN)
 C Convert to standard date and time.
 CALL JULDAT (JUL, 0, CDATE, NDATE)

ZGIRTS HECDSS Subroutines

11-16 Chapter 11 - Outdated Subroutines

 IDUM = M2IHM (MIN, CTIME)
 C Print the value.
 WRITE (6,40) CDATE(1:NDATE), CTIME, VALUES(I)
 40 FORMAT (1X,A,', ',A,': ',F8.2)
 60 CONTINUE

HECDSS Subroutines ZPIRTS

Chapter 11 - Outdated Subroutines 11-17

11.5 ZPIRTS - Put Irregular-Interval Time Series Data

Purpose:

 ZPIRTS stores irregular-interval time series data in a DSS file. The data is stored based
upon an implied time window which can cross record boundaries. The time window is implied
by the date and times of the first and last values in the time array.

 Irregular-interval time series data is stored with times to the nearest minute. Data for
times of less than a minute cannot be stored with this convention. The times of the data must be
in ascending order, and no value may have the same exact time as another (you cannot have two
data points for the same time in a record).

Replaced By:

ZSITS and ZSITSX

Calling Sequence:

 CALL ZPIRTS (IFLTAB, CPATH, NPATH, DUM1, IDUM1, DUM2,
 * IDUM2, DATES, VALUES, NVALS, BDATE, CUNITS, CTYPE,
 * INFLAG, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NPATH, NVALS, INFLAG, ISTAT, IDUM1, IDUM2
 REAL DATES(NVALS), VALUES(NVALS), BDATE, DUM1, DUM2
 CHARACTER CPATH*80, CUNITS*8, CTYPE*8

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. The pathname must meet

the irregular-interval time series conventions specified in the
HECDSS Users Guide, including a correct E part. The D part
(date part) is ignored, as ZPIRTS will form it internally.

 NPATH Input The number of characters in CPATH.

 DUM1 Unused A dummy variable. In Version 4 this was a buffer array to hold

the record to store. The subroutine now has internal buffers to
accomplish this.

 IDUM1 Unused A dummy variable. In Version 4 this was the dimension of the

buffer.

ZPIRTS HECDSS Subroutines

11-18 Chapter 11 - Outdated Subroutines

 DUM2 Unused A dummy variable. In Version 4 this was the internal header
array.

 IDUM2 Unused A dummy variable. In Version 4 this was the length of the

internal header array.

 DATES Input The array containing the dates of the data (VALUES), in a one-

to-one correspondence. The dates must be given in days and
fraction of a day from BDATE, where the addition of BDATE
and DATES(I) is the date and time of the respective data value.
On computers where the precision is sufficiently large,
BDATE can be set to zero, and each element of DATES may
be the total Julian day and fraction of the day since
31DEC1899. DATES should contain NVALS elements.

 VALUES Input The data values to store.

 NVALS Input The number of data values to store. Arrays DATES and

VALUES must contain NVALS valid elements.

 BDATE Input The base date, which when added with each element of

DATES will give the total Julian day and fraction of a day for
the respective data. All values in array DATES should be
relative to this value. (See remarks).

 CUNITS Input The units of the data (e.g., FEET).

 CTYPE Input The type of the data (e.g., PER-AVER).

 INFLAG Input INFLAG is a flag to indicate whether the data should be

replaced or merged with existing data. Replace will replace all
the data between the implied time window (time of first and
last data). Merge will combine the data with the data already
stored. (Merging data replaces data occurring at the same time
and inserts data at new times.)

 INFLAG = 0 to merge data
 INFLAG = 1 to replace data

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then all the data was successfully
stored. If ISTAT is greater than ten, a fatal error occurred.
The possible values are:

 ISTAT Description
 0 The data was successfully stored.
 4 No data was given to store (NVALS was zero).
 GT 10 A "fatal" error occurred:
 21 An internal buffer array is not large enough

to store this number of data values. If this

HECDSS Subroutines ZPIRTS

Chapter 11 - Outdated Subroutines 11-19

error occurs, the time-block identified by in
the "E part" of the pathname spans too long
of a time period, and holds more data values
than the internal buffers can accommodate.
The time-block should be changed to the next
lower size (e.g., from "IR-MONTH" to "IR-
DAY").

 24 The pathname does not meet the irregular-
interval time series conventions.

 30 The times associated with the data values are
not in an ascending order, or two values
occur at the same time.

Remarks:

 ZPIRTS calls ZSITSX.

 The BDATE argument is provided to take care of precision problems on many
computers. The complete Julian date and fraction of a day require a precision of nine significant
digits (for example a number of 35020.0001). This can be represented by a BDATE of 35000.0
and a DATES(N) value of 20.0001. On machines with a precision of nine or more significant
digits, BDATE can be set to zero, and each of the DATES elements may be a total Julian date
and fraction. Typically this cannot be done on thirty-two bit machines (e.g., a PC), but can be
accomplished on forty-eight bit and larger machines (e.g., HARRIS and CDC). An example of
obtaining this style of date from a standard style is provided in the example following.

 With reference to INFLAG and data already present in the DSS file, replace will replace
all the data within the implied time window, while merge will combine the two data sets, only
replacing those values that occur at exactly the same time (within one minute of significance).
INFLAG has no meaning for a new record. Usually the replace mode is used for editing data,
and the merge mode is used for adding new data to the record.

 A debug trace may be turned on by setting the message level (MLEVEL) to nine via
subroutine ZSET.

Example:

 C Read data from an ASCII file and store in the DSS file.
 INTEGER IFLTAB(600), IBF(5), IEF(5), ILF(5)
 INTEGER*4 JUL
 CHARACTER CPATH*80, CLINE*80, CUNITS*8, CTYPE*8
 REAL DATES(1000), VALUES(1000)
 C
 C Open the DSS file and get the pathname parts.
 CALL ZOPEN (...
 C

ZPIRTS HECDSS Subroutines

11-20 Chapter 11 - Outdated Subroutines

 READ (5,20) CUNITS, CTYPE
 20 FORMAT (A,A)
 NVALS = 0
 C
 100 CONTINUE
 IF (NVALS.GE.1000) GO TO 200
 READ (5,20,END=200) CLINE
 C
 C Parse the line.
 CALL PARSLI (CLINE, 5, NFIELD, IBF, IEF, ILF)
 IF (NFIELD.NE.3) GO TO 900
 C
 C The date should be in the first field, the time in
 C the second, and the data in the third field.
 NVALS = NVALS + 1
 CALL DATJUL (CLINE(IBF(1):IEF(1)), JUL, IERR)
 IF (IERR.NE.0) GO TO 900
 C Set BDATE to the date of the first value.
 IF (NVALS.EQ.1) BDATE = REAL(JUL)
 C
 NTIME = IHM2M (CLINE(IBF(2):IEF(2)))
 IF (NTIME.LT.0) GO TO 900
 C
 DATES(NVALS) = (REAL(JUL) - BDATE) + (REAL(NTIME)/1440.)
 VALUES (NVALS) = XREAL (CLINE, IBF(3), ILF(3), IERR)
 IF (IERR.NE.0) GO TO 900
 C
 GO TO 100
 C
 200 CONTINUE
 C Now store the data.
 IF (NVALS.LE.0) GO TO 800
 CALL ZPIRTS (IFLTAB, CPATH, NPATH, DUM, IDUM, DUM, IDUM,
 * DATES, VALUES, NVALS, BDATE, CUNITS, CTYPE, 0, ISTAT)
 IF (ISTAT.NE.0) GO TO 900

HECDSS Subroutines ZGTPFD

Chapter 11 - Outdated Subroutines 11-21

11.6 ZGTPFD - Get Paired Function Data

Purpose:

 ZGTPFD retrieves paired function data from a DSS file.

Replaced By:

ZRPD

Calling Sequence:

 CALL ZGTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ
 * C1UNIT, C2UNIT, C1TYPE, C2TYPE, CLABEL, KLABEL, NLABEL,
 * DUM, IDUM1, IDUM2, VALUES, KVALS, NVALS, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NPATH, NORD, NCURVE, IHORIZ
 INTEGER KLABEL, NLABEL, IDUM1, IDUM2, KVALS, NVALS, ISTAT
 REAL VALUES(KVALS)
 CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, C1TYPE*8, C2TYPE*8
 CHARACTER CLABEL(KLABEL)*12

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to retrieve. The pathname must meet

the paired function data conventions.

 NPATH Input The number of characters in CPATH.

 NORD Output The number of ordinates read (number of points per curve).

Each curve stored in a single record must have the same
number of ordinates.

 NCURVE Output The number of curves retrieved.

 IHORIZ Output The variable number to appear on the horizontal axis for

plotting (one for first variable, two for second).

 C1UNIT Output The units of the first variable (e.g., 'FEET', or 'PERCENT').

 C2UNIT Output The units of the second variable.

ZGTPFD HECDSS Subroutines

11-22 Chapter 11 - Outdated Subroutines

 C1TYPE Output The type of data for the first variable. The following types are
recognized by the DSS utility programs:

 UNT Untransformed
 LOG Logarithmic - data expressed as logarithms
 PROB Probability - data expressed in percent

 C2TYPE Output The type of data for the second variable.

 CLABEL Output The labels for each curve. For example, if an

ELEVATION-DAMAGE function is retrieved containing
residential, agricultural and commercial damage, then
CLABEL might be returned as:

 CLABEL(1) = 'RESIDENTIAL '
 CLABEL(2) = 'AGRICULTURAL'
 CLABEL(3) = 'COMMERCIAL '
 For this example, NCURVE would be returned with three, and

CLABEL should be dimensioned to at least three.

 KLABEL Input The dimension of CLABEL. No more than KLABEL labels

will be placed into CLABEL.

 NLABEL Output The number of labels read.

 DUM Unused A dummy variable. In Version 4 this contained the internal

header array.

 IDUM1 Unused A dummy variable. In Version 4 this was the dimension of the

internal header array.

 IDUM2 Unused A dummy variable. In Version 4 this was the length of the

internal header array.

 VALUES Output The data values retrieved. The first NORD elements in

VALUES correspond to the first variable. The data for the
second variable begins at element NORD+1.

 KVALS Input The dimension of array VALUES. VALUES must be

dimensioned to at least:
 KVALS = (NCURVE + 1) * NORD

 NVALS Output The number of values retrieved.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
read. The possible values are:

HECDSS Subroutines ZGTPFD

Chapter 11 - Outdated Subroutines 11-23

 ISTAT Description
 0 Successful data retrieval.
 -1 The record does not exist. The output arguments

are undefined.
 1 The dimension of VALUES (KVALS) was not

large enough to retrieve all the data. Only KVALS
values returned; the curves are incomplete.

 20 The record is not paired data.

Remarks:

 ZGTPFD calls ZRPD.

 Up to fifty curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also fifty. Either all curves will have a label, or no curves will have labels. If
the VALUES array is dimensioned smaller than the number of data values in the record, only the
first KVALS values will be retrieved.

 A debug trace will be printed when the message level (MLEVEL) is set to seven (or
above) via subroutine ZSET.

 Points can be located within a singly dimension array by the following example:

 C To print the data (as X, Y1, Y2, Y3, ...):
 DO 20 I=1,NORD
 WRITE (6,10) (VALUES(J),J=I,NVALS,NORD)
 10 FORMAT (' X:',F8.2,', Y(s):',50(2X,F8.2))
 20 CONTINUE

 C To transform the data into a doubly dimensioned array:
 IPOS = 0
 DO 20 I=1,NCURVE+1
 DO 20 J=1,NORD
 IPOS = IPOS + 1
 CURVE(J,I) = VALUES(IPOS)
 20 CONTINUE

Example:

 C Retrieve paired data from a DSS file.
 PARAMETER (KVALS=900, KLABEL=8)
 INTEGER IFLTAB(600)
 REAL VALUES(KVALS)
 CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, C1TYPE*8, C2TYPE*8,
 * CLABEL(KLABEL)*12
 C

ZGTPFD HECDSS Subroutines

11-24 Chapter 11 - Outdated Subroutines

 C Open the DSS file.
 CALL ZOPEN(. . .
 C
 C Get the pathname.
 CALL ZPATH (. . .
 C
 C
 C Retrieve the data.
 CALL ZGTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ
 * C1UNIT, C2UNIT, C1TYPE, C2TYPE, CLABEL, KLABEL, NLABEL,
 * DUM, IDUM1, IDUM2, VALUES, KVALS, NVALS, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Write the record's pathname.
 WRITE (6,20) CPATH(1:NPATH)
 20 FORMAT (' Record Pathname: ',A)
 C
 C Write the label information (if there are labels).
 IF (NLABEL.GE.1) THEN
 WRITE (6,30)
 30 FORMAT (' Curve Labels:')
 DO 50 I=1,NLABEL
 WRITE (6,40) I, CLABEL(I)
 40 FORMAT (' Curve',I3,' Label: ',A)
 50 CONTINUE
 ENDIF
 C
 C Write the data (as point, X, Y1, Y2, Y3, ...).
 DO 80 I=1,NORD
 WRITE (6,60) I, (VALUES(J),J=I,NVALS,NORD)
 60 FORMAT (' Point',I4,'; X:',F8.2,', Y(s):',50(2X,F8.2))
 80 CONTINUE
 C

 Example results for an ELEVATION-DAMAGE function having two damage categories
and eighteen ordinates:

 Input:
 CPATH = /JAMES RIVER/DR1/ELEVATION-DAMAGE//1980/PLAN B/
 NPATH = 48
 KLABEL = 10
 KVALS = 1000

 Output:
 NORD = 18
 NCURVE = 2
 IHORIZ = 2

HECDSS Subroutines ZGTPFD

Chapter 11 - Outdated Subroutines 11-25

 C1UNIT = 'FEET'
 C1TYPE = 'UNT'
 C2UNIT = '$1000'
 C2TYPE = 'UNT'
 NVALS = 54
 LABEL = .TRUE.
 CLABEL(1) = 'S.F. RES'
 CLABEL(2) = 'COMMERCIAL'
 ISTAT = 0

 The VALUES array contains all of the data:
 VALUES(1) through VALUES(18) contain the ELEVATION data.
 VALUES(19) through VALUES(36) contain DAMAGE data for "S.F. RES".
 VALUES(37) through VALUES(54) contain DAMAGE data for "COMMERCIAL".

ZPTPFD HECDSS Subroutines

11-26 Chapter 11 - Outdated Subroutines

11.7 ZPTPFD - Put Paired Function Data

Purpose:

 ZPTPFD stores paired function data in a DSS file.

Replaced By:

ZSPD

Calling Sequence:

 CALL ZPTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C2UNIT, C1TYPE, C2TYPE, CLABEL, KLABEL, NLABEL,
 * DUM, IDUM1, IDUM2, VALUES, KVALS, NVALS, IPLAN, ISTAT)

Declarations:

 INTEGER IFLTAB(600), NPATH, NORD, NCURVE, IHORIZ
 INTEGER KLABEL, NLABEL, KVALS, NVALS, IPLAN, ISTAT
 INTEGER IDUM1, IDUM2
 REAL VALUES(KVALS), DUM
 CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, C1TYPE*8, C2TYPE*8
 CHARACTER CLABEL(KLABEL)*12

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 CPATH Input The pathname of the data to store. The pathname must meet

the paired function data conventions.

 NPATH Input The number of characters in CPATH.

 NORD Input The number of ordinates (number of points per curve). Each

curve to store in a single record must have the same number of
ordinates.

 NCURVE Input The number of curves to store in this record.

 IHORIZ Input The variable number to appear on the horizontal axis for

plotting (one for first variable, two for second).

 IHORIZ Input The variable number to appear on the horizontal axis for

plotting (one for first variable, two for second).

HECDSS Subroutines ZPTPFD

Chapter 11 - Outdated Subroutines 11-27

 C1UNIT Input The units of the first variable (e.g., 'FEET', or 'PERCENT').

 C2UNIT Input The units of the second variable.

 C1TYPE Input The type of data for the first variable. The following types are

recognized by the DSS utility programs:
 UNT Untransformed
 LOG Logarithmic - data expressed as logarithms
 PROB Probability - data expressed in percent

 C2TYPE Input The type of data for the second variable.

 CLABEL Input A optional character array with labels corresponding to each

curve. For example, if an ELEVATION-DAMAGE function is
to be stored containing residential, agricultural and commercial
damage, then CLABEL might be as follows:

 CLABEL(1) = 'RESIDENTIAL '
 CLABEL(2) = 'AGRICULTURAL'
 CLABEL(3) = 'COMMERCIAL '

 KLABEL Input The dimension of CLABEL.

 NLABEL Input The number of curve labels to store. If no labels are to be

stored, set this to zero. If labels are supplied, NLABEL must
be equal to NCURVE.

 DUM Unused A dummy variable. In Version 4 this contained the internal

header array.

 IDUM1 Unused A dummy variable. In Version 4 this was the dimension of the

internal header array.

 IDUM2 Unused A dummy variable. In Version 4 this was the length of the

internal header array.

 VALUES Input The data values to store. The first NORD elements in

VALUES correspond to the first variable (the X axis). The
data for the second variable must begin at element NORD+1
(the Y axis).

 KVALS Input The dimension of VALUES.

 NVALS Output The number of values stored.

 IPLAN Input An argument indicating whether to write over existing data or

not:

ZPTPFD HECDSS Subroutines

11-28 Chapter 11 - Outdated Subroutines

 IPLAN Description
 0 Always write the record to the file.
 1 Only write the record if it is new (i.e., no record

exists with that pathname).
 2 Only write the data if the record already existed in

the file.

 ISTAT Output A status parameter indicating the success of the operation. If

ISTAT is returned with zero, then the data was successfully
stored, otherwise an error occurred. The possible values are

 ISTAT Description
 0 The data was successfully stored.
 -1 IPLAN requested that the record be written only if

it was new, but the file already contained a record
with the pathname supplied.

 -2 IPLAN requested that the record be written only if
it already existed, but the pathname supplied was
not found.

 -3 The pathname does not meet the paired data
conventions).

 -4 The number of ordinates is less than one.
 -5 NCURVE is less than one or greater than 50.

Remarks:

 ZPTPFD calls ZSPD.

 Up to fifty curves (with the same ordinates) can be stored in one record. The maximum
number of labels is also fifty. Either all curves will have a label, or no curves will have labels.

 A debug trace will be printed if the message level (MLEVEL) is set to seven (or above)
via subroutine ZSET.

 Unless the number of data points for the curve(s) is known prior to obtaining them (for
example, if you are reading them from an external file), the data usually must be read into a
buffer, then reorganized into a singly dimensioned array before storing with ZSPD. Points can
be converted from a doubly dimensioned array into a singly dimensioned array by the following
example:

 C
 C The data has been read into array CURVE as X, Y1, Y2, Y3, ...
 IPOS = 0
 DO 20 I=1,NCURVE+1
 DO 20 J=1,NORD
 IPOS = IPOS + 1
 VALUES(IPOS) = CURVE(J,I)
 20 CONTINUE

HECDSS Subroutines ZPTPFD

Chapter 11 - Outdated Subroutines 11-29

Example:

 C Read (a) Curve(s) from an external file, then store it in DSS.
 C Up to 10 curves (in one record) can be stored by this routine.
 C The external file contains data in the form:
 C X, Y1, Y2, . . .
 C X, Y1, Y2, . . .
 C END
 C
 PARAMETER (KVALS=1000, KLABEL=10)
 INTEGER IFLTAB(600), NORD, NCURVE, IHORIZ
 INTEGER ISTAT, IBF(20), IEF(20), ILF(20)
 REAL VALUES(KVALS), CURVES(300,11)
 CHARACTER CPATH*80, C1UNIT*8, C2UNIT*8, C1TYPE*4, C2TYPE*4
 CHARACTER CLABEL(KLABEL)*12, CNAME*64, CLINE*80
 C
 C Open the DSS file.
 CALL ZOPEN (IFLTAB, CNAME, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
 C
 C Get the pathname.
 CALL ZPATH (. . .
 C
 C Get the number of Curves, IHORIZ.
 READ (5,*) NCURVE, IHORIZ
 C
 C Get the data units and type.
 READ (5,20) C1UNIT, C1TYPE, C2UNIT, C2TYPE
 C
 C Read the label information.
 DO 40 I=1,NCURVE
 READ (5,30) CLABEL(I)
 40 CONTINUE
 C
 C Read the data (as X, Y1, Y2, Y3, ...).
 NORD = 0
 50 CONTINUE
 READ (5,60,END=200) CLINE
 60 FORMAT (A)
 C
 C Did we reach the end of the data yet?
 IF (INDEX(CLINE,'END').GT.0) GO TO 100
 C
 C Parse the line.
 CALL PARSLI (CLINE, 20, NFIELD, IBF, IEF, ILF)
 IF (NFIELD.NE.NCURVE+1) GO TO 900
 C Place the data in the curves array.

ZPTPFD HECDSS Subroutines

11-30 Chapter 11 - Outdated Subroutines

 NORD = NORD + 1
 DO 80 I=1,NFIELD
 CURVES(NORD,I) = XREAL (CLINE, IBF(I), ILF(I), IERR)
 IF (IERR.NE.0) GO TO 900
 80 CONTINUE
 C
 C Go back and read the next value.
 GO TO 50
 C
 100 CONTINUE
 C All the data has been read. Transfer the data into
 C a singly dimensioned array.
 IPOS = 0
 DO 120 I=1,NCURVE+1
 DO 120 J=1,NORD
 IPOS = IPOS + 1
 VALUES(IPOS) = CURVES(J,I)
 120 CONTINUE
 C
 C Store the data.
 NLABEL = NCURVE
 CALL ZPTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C2UNIT, C1TYPE, C2TYPE, CLABEL, KLABEL, NLABEL,
 * DUM, IDUM1, IDUM2, VALUES, KVALS, NVALS, 0, ISTAT)
 IF (ISTAT.NE.0) GO TO 900

 Example results for storing an ELEVATION-DAMAGE function having two damage
categories ("S.F. RES" and "COMMERCIAL") and five ordinates:

Elevation

S.F. Res
Damage

Commercial
Damage

500.0 0.0 0.0
502.0 25.8 0.0
504.0 51.2 323.4
506.0 93.8 655.7
508.0 137.9 809.1

 Input:
 CPATH = /JAMES RIVER/DR1/ELEVATION-DAMAGE//1980/PLAN B/
 NORD = 18
 NCURVE = 2
 IHORIZ = 2
 C1UNIT = 'FEET'
 C1TYPE = 'UNT'
 C2UNIT = '$1000'
 C2TYPE = 'UNT'
 LABEL = .TRUE.

HECDSS Subroutines ZPTPFD

Chapter 11 - Outdated Subroutines 11-31

 CLABEL(1) = 'S.F. RES'
 CLABEL(2) = 'COMMERCIAL'
 NHEADU = 0
 IPLAN = 0

 The VALUES array contains all of the ELEVATION-DAMAGE data:
 VALUES(1) through VALUES(5) contain the ELEVATION data.
 VALUES(6) through VALUES(10) contain DAMAGE data for "S.F. RES".
 VALUES(11) through VALUES(15) contain DAMAGE data for "COMMERCIAL".

 For example:
 VALUES(1) = 500.0
 VALUES(2) = 502.0
 ...
 VALUES(5) = 508.0
 VALUES(6) = 0.0
 VALUES(7) = 25.8
 ...
 VALUES(10) = 137.9
 VALUES(11) = 0.0
 VALUES(12) = 0.0
 ...
 VALUES(15) = 809.1

ZOPCAT HECDSS Subroutines

11-32 Chapter 11 - Outdated Subroutines

11.8 ZOPCAT - Open a Catalog File

Purpose:

 ZOPCAT opens a DSS file's catalog file. If the catalog file does not exist, ZOPCAT can
create it. If the file does exist, ZOPCAT returns the number of records in the catalog. ZOPCAT
cannot open the condensed catalog file.

Replaced By:

ZOPNCA

Calling Sequence:

 CALL ZOPCAT (CDSSFI, CATFIL, ICUNIT, LOPEN, LCATLG,
 * LCREAT, NRECS)

Declarations:

 INTEGER ICUNIT, NRECS
 CHARACTER CDSSFI*64, CATFIL*64
 LOGICAL LOPEN, LCATLG, LCREAT

 On MS-DOS microcomputers, NRECS must be INTEGER*4: INTEGER*4 NRECS

Argument Description:

 CDSSFI Input The name of the DSS file whose catalog file is to be opened.

 CATFIL Output The name of the catalog file.

 ICUNIT Input The unit number to open the catalog file with. (Most DSS utility

programs use Unit 12 for the catalog file).

 LOPEN Input A logical variable indicating the status of the open. LOPEN will

be .TRUE. if the catalog file was successfully opened (otherwise
it will be .FALSE.)

 LCATLG Output A logical variable returned as .TRUE. if the file opened is a

valid catalog file. If LCATLG is .FALSE., ZCAT should be
called to generate a catalog of the DSS file.

 LCREAT Input A logical flag indicating whether the catalog file should be

created, if it does not exist. When set to .TRUE., the file will be
created.

HECDSS Subroutines ZOPCAT

Chapter 11 - Outdated Subroutines 11-33

 NRECS Output The number of records in the catalog file. This is the number
shown in the catalog header.

ZCATLG HECDSS Subroutines

11-34 Chapter 11 - Outdated Subroutines

11.9 ZCATLG - Catalog a DSS File

Purpose:

 ZCATLG generates a catalog (or listing) of the record pathnames in a DSS file. The
catalog may be sorted by pathname parts. ZCATLG can create a selective catalog by matching
pathname parts. The selective catalog can be created from a current catalog (reducing resources),
or directly from the DSS file. The catalog file must be opened externally by subroutine ZOPNCA.

 ZCATLG cannot produce a condensed catalog.

Replaced By:

ZCAT

Calling Sequence:

 CALL ZCATLG (IFLTAB, ICUNIT, INUNIT, CINSTR, IBEG, NINSTR,
 * LABREV, LSORT, NRECS)

Declarations:

 INTEGER IFLTAB(600), ICUNIT, INUNIT, IBEG, NINSTR, NRECS
 CHARACTER CINSTR*(*)
 LOGICAL LABREV, LSORT

 On MS-DOS microcomputers, NRECS must be INTEGER*4: INTEGER*4 NRECS

Argument Description:

 IFLTAB Input/ The DSS work space used to manage the DSS file. This is the
 Output same array used in the ZOPEN call.

 ICUNIT Input The unit number of file where the catalog is to be written. If a

new catalog is to be made, this should be the unit number of the
catalog file. If a selective catalog is to be produced from an
existing catalog, this unit should probably be attached to a
scratch file.

 INUNIT Input The input catalog unit number. If a new catalog is to be made,

this must be set to zero. If a selective catalog is to be produced
from an existing catalog, this is the unit number of the existing
catalog. If INUNIT is non-zero, the DSS file will not be
cataloged.

 CINSTR Input A character string containing any instructions for generating the

catalog, such as the sort order or selective pathname parts. For

HECDSS Subroutines ZCATLG

Chapter 11 - Outdated Subroutines 11-35

 example, if CINSTR is 'O=FB, C=FLOW', the catalog will be
sorted in the pathname part order of FBACED, and only those
pathnames with a C part of "FLOW" will be cataloged.
CINSTR is usually a portion of the input line of the program. If
no special instructions are given, set this to blank (' ').

 IBEG Input The beginning position in CINSTR (all characters prior to IBEG

are ignored).

 NINSTR Input The number of characters in CINSTR to use, starting at IBEG.

If there are no instructions, set NINSTR to zero.

 LABREV Input A logical flag indicating whether an abbreviated catalog should

be produced. If set to .TRUE., an abbreviated catalog will be
generated, otherwise the standard catalog will be produced.

 LSORT Input A logical flag indicating whether the pathnames should be

sorted. When LSORT is set to .TRUE., the pathnames are
sorted (this takes longer than an unsorted catalog).

 NRECS Output NRECS(Output) The number of records cataloged. This

number will be the same as the reference number for the last
pathname in the catalog file.

Remarks:

 ZCATLG calls ZCAT.

 A description of the catalog may be found in the "HECDSS User's Guide and Utility
Program Manuals", Overview section. Additional information may also be found in the DSSUTL
documentation, located in the same publication. Information about the selective catalog is located
in Chapter 5 of the DSSUTL documentation.

 The fastest catalog that can be generated is an unsorted abbreviated catalog. In this
procedure, pathnames are just copied from the internal DSS address tables to the catalog. In a
regular extended catalog, each record must be accessed to obtain the program name, date and time,
etc.

 After the catalog has been generated, it may be displayed on the screen by reading directly
from the catalog. ZCATLG should not be used to display the catalog on the screen (do not set
ICUNIT to standard output).

 Pathnames may be read from the catalog file with subroutine ZRDCAT, which is a general
catalog reading routine, or by subroutine ZRDPAT, which obtains pathnames based on their
reference number. If you desire to display an abbreviated catalog and a regular catalog already
exists, use subroutine ZRDPAT to read the pathnames from the catalog.

ZCATLG HECDSS Subroutines

11-36 Chapter 11 - Outdated Subroutines

 Units 66, 67, 68, and 69 are used for sorting. On Harris computers, work files W2, W3,
U1, and U2 are used for sorting (and their contents destroyed). On other computers the files
dsssort.in, dsssort.out, and dsssort.tmp are used then deleted.

 A status line with the percent complete can be displayed on the screen by setting 'CAST' to
'ON' with ZSET before calling ZCATLG. The message unit must be connected to the screen to
display a status line.

 A "catalog map" may be generated by ZCATLG when creating a new catalog. A catalog
map is a listing of the pathnames only (no title or reference numbers), which is useful for creating
an input file of pathnames for some programs. This option is initiated by setting the map options
in subroutine ZSET. The map file must be opened and its unit number passed to ZSET through the
MAPUNT parameter, then the ZSET MAP parameter must be set to 'ON'. The catalog map is only
created when a new catalog is generated. Be sure to call ZSET with MAP set to 'OFF' after the
map has been made.

HECDSS Subroutines ZRDPN

Chapter 11 - Outdated Subroutines 11-37

11.10 ZRDPN - Read Pathnames from a Catalog File by Reference Number

Purpose:

 ZRDPN reads pathnames from a catalog file according to their reference numbers.
ZRDPN may be used in a loop to obtain a set of pathnames, or it can read a single pathname.

Replaced By:

ZRDPAT

Calling Sequence:

CALL ZRDPN (ICUNIT, IPOS, INUMB, CPATH, NPATH)

Declarations:

 INTEGER ICUNIT, IPOS, INUMB, NPATH
 CHARACTER CPATH*80

 On MS-DOS microcomputers, IPOS and INUMB must be INTEGER*4:

INTEGER*4 IPOS, INUMB

Argument Description:

 ICUNIT Input The unit number of the catalog file.

 IPOS Input/ A file position indicator used by ZRDPN. When first reading
 Output from the catalog, the file should be rewound and IPOS set to

zero. (The calling program must always set IPOS to zero when
the catalog is rewound.) Upon reaching the end of the catalog
file, IPOS will be set to 100,000, and no pathname will have
been read (CPATH would be undefined).

 INUMB Input/ The catalog reference number of the pathname to read. When
 Output the end of the catalog file is reached, INUMB will be returned

with the reference number of the last pathname in the catalog. If
IPOS is less than or equal to INUMB on input, ZRDPN will
return the next pathname, and its reference number, in the
catalog.

 CPATH Output The pathname corresponding to the reference number INUMB.

 NPATH Output The number of characters in the pathname.

ZRDPN HECDSS Subroutines

11-38 Chapter 11 - Outdated Subroutines

Remarks:

 ZRDPN calls ZRDPAT.

 The catalog file must be rewound and IPOS set to zero before calling ZRDPN to retrieve a
(set of) pathname(s). ZRDPN only can search for pathnames in a forward direction; NUMB must
always be greater than IPOS. Thus, if a sequence of reference numbers for pathnames to be
retrieved is "12, 18, 9, 20", then the catalog has to be rewound and IPOS set to zero after reading
pathname eighteen before pathname nine will be found. It is more efficient to sort the reference
numbers in ascending order prior to calling ZRDPN.

 If INUMB is less than or equal to IPOS on input, ZRDPN will read the next pathname in
the catalog and return its reference number as INUMB. Thus, the entire catalog file can be read by
rewinding the file, setting IPOS and INUMB both to zero, and then calling ZRDPN until IPOS is
100,000. In this case INUMB does not need to be reset by the program each time ZRDPAT is
called.

Example 1:

 C Read a single pathname (e.g., INUMB=24).
 CALL ZOPNCA (...
 C
 REWIND 12
 IPOS = 0
 INUMB = 24
 CALL ZRDPN (12, IPOS, INUMB, CPATH, NPATH)
 C If IPOS=100,000, then pathname 24 was not found.
 IF (IPOS.GE.100000) GO TO 900

Example 2:

 C Read a series of pathnames from 10 through 60.
 REWIND 12
 IPOS = 0
 INUMB = 9
 10 CONTINUE
 INUMB = INUMB + 1
 CALL ZRDPN (12, IPOS, INUMB, CPATH, NPATH)
 IF (IPOS.GE.100000) GO TO 900
 WRITE (6,20) INUMB, CPATH(1:NPATH)
 20 FORMAT (1X,I6,2X,A)
 IF (INUMB.LT.60) GO TO 10

Example 3:

 C Read the set of pathnames whose reference numbers are
 C contained in the array NUMBS (e.g., 8, 12, 15, 9, 20, 13).

HECDSS Subroutines ZRDPN

Chapter 11 - Outdated Subroutines 11-39

 C
 REWIND 12
 IPOS = 0
 DO 20 I=1,JNUMBS
 INUMB = NUMBS(I)
 C Are the numbers in ascending order?
 C If not, rewind the catalog and reset IPOS.
 IF (INUMB.LE.IPOS) THEN
 REWIND 12
 IPOS = 0
 ENDIF
 CALL ZRDPN (12, IPOS, INUMB, CPATH, NPATH)
 IF (IPOS.GE.100000) GO TO 900
 WRITE (6,10) INUMB, CPATH(1:NPATH)
 10 FORMAT (1X,I6,2X,A)
 20 CONTINUE

HECDSS Subroutines Appendix A - Example Application

 A-1

Appendix A Example Application

 The following example shows how a program may be interfaced with the DSS software for
retrieving and storing data. This example uses regular-interval time series data. Other types of
data follow a similar procedure. The steps in this example are summarized in Chapter 1.

 CHARACTER CNAME*64, CDSSIN*64, CDSSOT*64, CLINE*80
 INTEGER IFLTAB(600)
 LOGICAL LDSSIN
 DATA LDSSIN /.FALSE./
C . . .
C
 Open unit 6 to the standard output via subroutine ATTACH.
 CALL ATTACH (6, 'OUTPUT', 'STDOUT', ' ', CNAME, ISTAT)
C
C Obtain the names of the DSS input and DSS output files.
C ATTACH passes information from the execution line to the program.
C The following code allows either one file specified for both the
C input and output DSS file, or a separate DSS file for input and
C for output.
 CNAME = ' '
 CALL ATTACH (IDUM, 'DSSFILE', ' ', 'NOP', CNAME, ISTAT)
 CALL ATTACH (IDUM, 'DSSIN', CNAME, 'NOP', CDSSIN, ISTAT)
 CALL ATTACH (IDUM, 'DSSOUT', CNAME, 'NOP', CDSSOT, ISTAT)
C
C
C READ INPUT.
C
C As the input file is being read in, look for either a "ZR",
C or a "ZW" card to trigger access to the DSS file.
 READ (5, 20, END=800, ERR=900) CLINE
 20 FORMAT (A)
C
 IF (CLINE(1:2).EQ.'ZR') THEN
 CALL DSSIN (CDSSIN, CLINE, IFLTAB)
C Remember that this DSS file was opened.
 LDSSIN = .TRUE.
 ELSE IF (CLINE(1:2).EQ.'ZW') THEN
C For DSS output, just save the ZW line, until the results
C are computed (subroutine DSSOUT will use CLINE).
 CALL SAVDSS (CLINE)
 ELSE IF . . .
C
 . . .
C
C End of reading input. At this point, any data read from the
C DSS file would have already occurred. Close the DSS input file.

Appendix A - Example Application HECDSS Subroutines

A-2

 IF (LDSSIN) CALL ZCLOSE (IFLTAB)
C
 . . .
 SUBROUTINE DSSIN (CDSSIN, CLINE, IFLTAB)
C
C GET DATA FROM DSS
C
C Read time series data specified on the ZR card from DSS.
C Put flow data in array FLOWIN and precipitation data in PRECIN.
C
 CHARACTER CDSSIN*(*), CLINE*(*)
 INTEGER IFLTAB(600)
C
 CHARACTER CA*32, CC*32, CE*8, CF*32, CPATH*80, CDUM*1
 CHARACTER CLOC(10)*20, CDATE*20, CTIME*4, CTEMP*64
 INTEGER JSTATS(6)
 INTEGER*4 INTL
 REAL VALUES(500), FLOWIN(500,10), PRECIN(500,10)
 LOGICAL LFIRST, LEXIST
C (Several variables are passed by common blocks.)
C
 DATA LFIRST /.TRUE./
 DATA CA, CC, CE, CF, CPATH /5*' '/
C
C
C Open the DSS file the first time this subroutine is executed.
 IF (LFIRST) THEN
 LFIRST = .FALSE.
C Make sure that the DSS input file exists.
 CTEMP = CDSSIN
 CALL ZFNAME (CTEMP, CDSSIN, NDSSIN, LEXIST)
 IF (.NOT.LEXIST) THEN
C The DSS input file does not exist: No data can be read in.
C Print error message and stop.
 WRITE (6,*)'The DSS input file does not exist!', CDSSIN
 STOP
 ENDIF
C Open the DSS file.
 CALL ZOPEN (IFLTAB, CDSSIN, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
C
C Check that a time window (from a time card) has been given.
C Also, make sure that the number of data values to retrieve (NVALS)
C is defined.
 . . .
C
C Put the time interval in the E part.

HECDSS Subroutines Appendix A - Example Application

 A-3

 IS = 2
 CALL ZGINTL (INTL, CE, ND, IS)
 IF (IS.NE.0) GO TO 900
 ENDIF
C
C Obtain the pathname parts from this card. (The locations
C names are already provided in array CLOC).
C First, indicate not to look for the B, D, or E parts.
 JSTATS(2) = -2
 JSTATS(4) = -2
 JSTATS(5) = -2
 CALL ZGPNP (CLINE, CA, CDUM, CC, CDUM, CDUM, CF, JSTATS)
C
C Check that we have a valid "C" part.
 IF ((CC.NE.'FLOW').AND.(CC.NE.'PRECIP')) GO TO 900
C
C Read data from DSS for each location specified.
C
 DO 100 I=1,NLOCS
C
C Put the pathname together.
 CALL ZPATH (CA, CLOC(I), CC, ' ', CE, CF, CPATH, NPATH)
C
C Now retrieve the data.
 CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * CUNITS, CTYPE, IOFSET, ISTAT)
C Check for a fatal error.
 IF (ISTAT.GT.10) GO TO 940
C
C Now transfer the data into the proper input arrays,
C while checking for missing data (-901 or -902). If
C missing data is found, interpolate or set to 0.
 IF (CC(1:4).EQ.'FLOW') THEN
 CALL DATRAN (CC, VALUES, FLOWIN, NVALS, IOFSET, ISTAT)
 ELSE
 CALL DATRAN (CC, VALUES, PRECIN, NVALS, IOFSET, ISTAT)
 ENDIF
 IF (ISTAT.NE.0) GO TO 960
C
 100 CONTINUE
C
C All done reading data for this parameter.
 RETURN
C
C
C ERROR PROCESSING.
 900 CONTINUE
 . . .

Appendix A - Example Application HECDSS Subroutines

A-4

 END
 SUBROUTINE DSSOUT (CDSSOT)
C
C WRITE DATA OUT TO DSS
C
C After all the data has been computed, write out the
C computed flows and stages.
C
 CHARACTER CDSSOT*(*)
C
 CHARACTER CA*32, CE*8, CF*32, CPATH*80, CDUM*1
 CHARACTER CLINE*80, CLOC(10)*20, CDATE*9, CTIME*4
 INTEGER IFLTAB(600), JSTATS(6)
 REAL FLOOUT(500,10), STGOUT(500,10)
 LOGICAL LSTORF(10), LSTORS(10)
 (Several variables are passed by common blocks.)
C
C
C Open the DSS file (it will be created if it does not exist).
 CALL ZOPEN (IFLTAB, CDSSOT, ISTAT)
 IF (ISTAT.NE.0) GO TO 900
C Set the name of the program (COMFLO).
 CALL ZSET ('PROGRAM', 'COMFLO', IDUM)
C
C Obtain the A and F pathname parts from the line saved earlier
C by subroutine CLINE (which is passed via a common block).
C First, indicate not to look for the B, C, D, or E parts.
 JSTATS(2) = -2
 JSTATS(3) = -2
 JSTATS(4) = -2
 JSTATS(5) = -2
 CALL ZGPNP (CLINE, CA, CDUM, CDUM, CDUM, CDUM, CF, JSTATS)
C
C Store data in DSS for each location and parameter specified.
C
 DO 100 I=1,NLOCS
C
C Is the computed flow to be stored?
 IF (LSTORF(I)) THEN
C
C Put the pathname together.
 CALL ZPATH (CA, CLOC(I), 'FLOW', ' ', CE, CF, CPATH, NPATH)
C
C Store the flow data (date and time computed earlier).
 CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,
 * FLOOUT(1,I), 'CFS', 'PER-AVER', 0, ISTAT)
C Check for a fatal error.
 IF (ISTAT.GT.10) GO TO 940

HECDSS Subroutines Appendix A - Example Application

 A-5

C
 ENDIF
C
C Is the computed stage to be stored?
 IF (LSTORS(I)) THEN
C
C Put the pathname together.
 CALL ZPATH (CA, CLOC(I), 'STAGE', ' ', CE, CF, CPATH, NPATH)
C
C Store the stage data (date and time computed earlier).
 CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS,
 * STGOUT(1,I), 'FEET', 'PER-AVER', 0, ISTAT)
C Check for a fatal error
 IF (ISTAT.GT.10) GO TO 940
C
 ENDIF
C
C
 100 CONTINUE
C
C Done storing data.
 CALL ZCLOSE (IFLTAB)
 RETURN
C
C
C Error Processing.
 900 CONTINUE
 . . .
 CALL ZCLOSE (IFLTAB)
 RETURN
 END

HECDSS Subroutines Appendix B - Internal Subroutines

 B-1

Appendix B - Internal Subroutines

 The following describes the subroutines that are used internally to the DSS, and which
DSS subroutines call them. These subroutines are not intended to be called directly by the
programmer; they are provided for general information and as an aid in tracking down program
errors.

ZABORT - Abort upon a Fatal Error

 Purpose: When a fatal (un-recoverable) error occurs (such as no more disk space left),

this causes an abnormal termination of the software.
 Called By: ZBDUMP ZCHECK ZERROR ZGTREC
 ZMULTU ZOPEN ZPTREC ZTAGPA
 ZWRBUF

ZASSIG - Assign DSS File

 Purpose: Makes a "shared assignment" or "exclusive assignment" for DSS files on

HARRIS computers only. Creates the DSS file, if not present.
 Called By: ZOPEN

ZBDUMP - Dump Buffers

 Purpose: Causes all internal buffers (that have been modified) to be written to disk, and

then cleared from memory. This normally occurs at the completion of every
write.

 Called By: ZGTREC ZMULTU ZOPEN ZRRTS
 ZSRTSX

ZBEGDT - Beginning Date

 Purpose: Determines the standard block start date for regular interval time-series data.
 Called By: ZCAOUT ZRRTSX ZSRTSX

ZBKDAT - Block Data

 Purpose: Block data for DSS. This is usually part of the ZINIT subroutine.
 Called By: ZINIT

Appendix B - Internal Subroutines HECDSS Subroutines

B-2

ZCAOUT - Catalog Output

 Purpose: Copies pathnames and information from the intermediate sorted file to the

catalog file and produces the condensed catalog.
 Called By: ZCAT

ZCATDR - Catalog Date Reference

 Purpose: Sets the D part of a time-series pathname to search for, when a date reference is

given (e.g., "D=M-2M").
 Called By: ZSETCA

ZCATFI - Catalog File

 Purpose: This physically searches the DSS file for pathnames when a new catalog is

generated. This routine can also generate an internal tag-hash code table.
 Called By: ZCAT ZCOFIL

ZCATIT - Catalog Title

 Purpose: Writes the catalog title information.
 Called By: ZCAT

ZERROR - Fatal Error Processing

 Purpose: Prints fatal error messages that are common to several subroutines.
 Called By: ZBDUMP ZCAT ZCATFI ZCHECK
 ZDELET ZDTYPE ZOWRIT ZPTREC
 ZRDINF ZRETAG ZRITSX ZRPD
 ZRRTSX ZRTALL ZRTEXT ZRTXTA
 ZSITSX ZSPD ZSRTSX ZSTAGS
 ZSTEXT ZSTXTA ZTAGPA ZUDALL
 ZUNDEL

ZFSIZE - File Size

 Purpose: Determines the internal table sizes for new files.
 Called By: ZOPEN

HECDSS Subroutines Appendix B - Internal Subroutines

 B-3

ZGETAD - Get Address

 Purpose: Gets a file address from a physical record number and word position.
 Called By: ZCOFIL ZNWBIN ZOPEN ZPTREC
 ZTAGFI

ZGETAG - Generate Tag

 Purpose: Generates the tag for a new record.
 Called By: ZNWRIT ZRTALL

ZGETCI - Get Compression Information

 Purpose: Determines if a record's pathname parts match those of the default data

compression scheme for new regular-interval time series records. If it does,
the associated compression method and parameters are returned.

 Called By: ZPRTCI ZSETCI ZSRTSX

ZGETRW - Get Record and Word

 Purpose: Gets the physical file record and relative word position from a word address.
 Called By: ZCOFIL ZDEBUG ZGTREC ZNWBIN
 ZOPEN ZPTREC ZTAGFI

ZGTAGS - Get Tag Scheme

 Purpose: Gets the default tag scheme for a file.
 Called By: External programs

ZGTREC - Get a Disk Record

 Purpose: Obtains a section of the DSS file. If the data requested is in memory, it is

transferred and not physically read.
 Called By: ZCATFI ZCHECK ZCOFIL ZCOREC
 ZDELET ZGETCI ZGTAGS ZMULTU
 ZNWBIN ZOPEN ZOWRIT ZPRTCI
 ZRDBUF ZRDINF ZREADX ZRECIN
 ZRETAG ZRRTSB ZRRTSX ZRTALL
 ZSETCI ZSQPRM ZSRTSX ZTAGFI
 ZTAGPA ZUDALL ZUNDEL ZUPRTS
 ZWRITX

Appendix B - Internal Subroutines HECDSS Subroutines

B-4

ZHASH - Determine the Hash Code

 Purpose: Obtains the hash code for a given pathname and hash table size.
 Called By: ZCHECK

ZINCBK - Increment Block

 Purpose: Increments the dates of a time series block.
 Called By: ZCAOUT ZRRTSX ZSITSX ZSRTSX

ZINIT - Initialize Variables

 Purpose: Initializes the variables used by DSS. This subroutine is only called once

(regardless of the number of DSS files opened).
 Called By: ZINQIR ZOPEN ZSET

ZIRBEG - Irregular Beginning Date

 Purpose: Determines the start date and block length for irregular-interval time series

data.
 Called By: ZCAOUT ZRITSX ZSITSX

ZIRDOW - Irregular Down

 Purpose: Moves data in a buffer array down for insertion of additional data when storing

irregular-interval time series data.
 Called By: ZSITSX

ZLAHEY- Lahey® Open Adjustment

 Purpose: If a Microsoft® FORTRAN program previously wrote to the file, ZLAHEY

adjusts the file size so that the last record can be read by Lahey® FORTRAN.
 Called By: ZOPEN

HECDSS Subroutines Appendix B - Internal Subroutines

 B-5

ZMATCA - Match Catalog Pathname Parts

 Purpose: Matches pathname parts for the selective catalog feature.
 Called By: ZSELCA

ZMIN2R - Minutes to Real

 Purpose: Converts irregular-interval time series minute's array to a real array composed

of Julian dates and fractions of a day.
 Called By: ZGIRTS ZPIRTS

ZMOVBK - Move a Data Block

 Purpose: Transfers data out of a regular-interval time series record into a data array.
 Called By: ZSRTSX

ZMULTU - Multiple User

 Purpose: Initializes and dumps buffers, and takes care of multiple user accesses. This

subroutine is very system dependent.
 Called By: ZCATFI ZCLOSE ZCOFIL ZCOREC
 ZDELET ZRENAM ZRETAG ZRTALL
 ZSETCI ZSETPR ZSRTSX ZSTAGS
 ZTAGFI ZUDALL ZUNDEL ZWRBUF
 ZWRITX

ZNWBIN - New Bin

 Purpose: Generates a new pathname bin when needed.
 Called By: ZNWRIT

ZNWRIT - New Write

 Purpose: Prepares addresses, bins, space and the information block for new records.

This routine is called whenever a new record is written.
 Called By: ZCOFIL ZCOREC ZRENAM ZSRTSX
 ZWRBUF ZWRITX

Appendix B - Internal Subroutines HECDSS Subroutines

B-6

ZORDPN - Order Pathnames

 Purpose: Obtains pathnames from an already existing catalog file for ZCAT.
 Called By: ZCAT

ZOWRIT - Old Write

 Purpose: Updates addresses and the information block when existing records are re-

written.
 Called By: ZCOFIL ZCOREC ZSRTSX ZWRBUF
 ZWRITX

ZPRTC - Print Compression

 Purpose: Prints information about the file's default data compression settings.
 Called By: ZPRTCI

ZPTREC - Put a Disk Record

 Purpose: Stores a set of information in the DSS file. ZPTREC actually transfers data

into memory. It is not written to disk unless all the internal buffers are full or
until the transaction is complete.

 Called By: ZCHECK ZCOFIL ZCOREC ZDELET
 ZNWBIN ZNWRIT ZOPEN ZOWRIT
 ZRENAM ZRETAG ZRTALL ZSETCI
 ZSETPR ZSQPRM ZSRTSX ZSTAGS
 ZTAGFI ZUDALL ZUNDEL ZUPRTS
 ZWRBUF ZWRITX

ZR2MIN -Real to Minutes

 Purpose: Converts a real array composed of Julian dates and fractions of a day to

minutes for irregular-interval time series data.
 Called By: ZPIRTS

ZRDINF - Read Information Block

 Purpose: Reads a record's information block.
 Called By: ZRDBUF ZRECIN ZRRTSX ZWRBUF
 ZWRITX

HECDSS Subroutines Appendix B - Internal Subroutines

 B-7

ZRREC - Read Record

 Purpose: Reads a physical record from the disk. All actual reading from the DSS file

occurs in this subroutine.
 Called By: ZGTREC ZPTREC

ZRRTSB - Retrieve Regular-Interval Time Series Buffer

 Purpose: Reads only the portion of the disk requested for regular-interval time series

data (as opposed to the entire record).
 Called By: ZRRTSX

ZSELCA - Selective Catalog

 Purpose: Determines which pathnames match selective catalog parameters.
 Called By: ZCATFI ZORDPN

ZSETCA - Set Catalog Parameters

 Purpose: Sets parameters to be used by ZSELCA.
 Called By: ZCAT

ZTAGFI - Tag File

 Purpose: Writes a new tag - hash code table when the file is cataloged or squeezed.
 Called By: ZCATFI

ZUPRTS - Update Regular-Interval Time Series

 Purpose: Writes only that portion of a record that needs to be updated when storing

regular-interval time series data. (If only three values are to be written to an
existing record, then only a portion of the record is written instead of the entire
record).

 Called By: ZSRTSX

Appendix B - Internal Subroutines HECDSS Subroutines

B-8

ZWREC - Write Record

 Purpose: Writes a physical record to the disk. All actual writing to the DSS file occurs

in this subroutine.
 Called By: ZBDUMP ZGTREC ZPTREC

HECDSS Subroutines Appendix C - Data Screening Use of Data Flags

 C-1

Appendix C - Data Screening Use of Data Flags

 This appendix illustrates the bit settings of data flags used by data screening software that
may be stored with time-series data. Data flags written to DSS consist of thirty-two bits. The
bits connote the following information about the associated data value:

 Bit Representation

 1: Screened - set when original data has been screened

Quality of original data:

 2: Okay
 3: Missing
 4: Questionable
 5: Reject

 6-7: Range of current data - an integer in [0,3]
 8: Current value is different from original value

 9-11: Who set current value - an integer in [0,7]:
 0 original value, no revision
 1 DATCHK program
 2 DATVUE program
 3 manual entry in the DATVUE program
 4 original value accepted in the DATVUE program

 12-15: Replacement method - an integer in [0,15]:
 0 no revision
 1 linear interpolation
 2 manual changes
 3 replace with missing value

Tests Failed:

 16: absolute magnitude
 17: constant value
 18: rate-of-change
 19 relative magnitude
 20: duration-magnitude
 21: reserved for future use
 22: coefficient of variation
 23: gage list
 24: recurring value

Appendix C - Data Screening Use of Data Flags HECDSS Subroutines

C-2

Other:

 25-31: reserved for future use
 32: protect value from being automatically changed

HECDSS Subroutines Appendix D - Cross Reference Listing

 D-1

Appendix D - Cross Reference Listing

 The following is a cross reference list of which HECLIB subroutines are called by the
DSS routines, and an inverse list showing the DSS subroutines called by the HECLIB routines.
These lists are for aiding the design of a program overlay structure and for general information.
The lists encompass software for several compilers. Not all the routines are necessarily called by
the compiler you are using.

ZABORT calls: ABORT GETNAM WAIT WHEN
 WIND

ZASSIG calls: CASSIG CCREAT CRETYP WAITS

ZBDUMP calls: ZABORT ZERROR ZINQIR ZWREC

ZBEGDT calls: JLIYMD

ZBKDAT calls: Nothing

ZCAOUT calls: CHRLNB DATJUL ZBEGDT ZGINTL
 ZINCBK ZIRBEG ZUPATH

ZCAT calls: CASSIG CCREAT CHRLNB FILEN
 GETI1 GETNAM system ZCAOUT
 ZCATFI ZCATIT ZERROR ZORDPN
 ZSETCA

ZCATDR calls: CHRLNB CURTIM INCTIM INTGR
 IYMDJL JLIYMD JULDAT

ZCATFI calls: CHRWT HOL2CH HOLCHR ZERROR
 ZGTREC ZMULTU ZSELCA ZTAGFI

ZCATIT calls: CHRFLB CHRLNB CURTIM DATJUL
 JULDAT M2IHM ZINQIR

ZCATLG calls: ZCAT

ZCHECK calls: CH2HOL HOL2CH ZABORT ZERROR
 ZGTREC ZHASH ZPTREC

ZCHKPN calls: Nothing

ZCLOSE calls: CHRLNB CLOSF ZINQIR ZMULTU

Appendix D - Cross Reference Listing HECDSS Subroutines

D-2

ZCOFIL calls: CHRWT HOLCHR ZCATFI ZCHECK
 ZCOREC ZGETAD ZGETRW ZGTREC
 ZINQIR ZMULTU ZNWRIT ZOWRIT
 ZPTREC
ZCOREC calls: CHRLNB DATJUL HOLCHR JULDAT
 M2IHM ZCHECK ZGINTL ZGTREC
 ZMULTU ZNWRIT ZOFSET ZOWRIT
 ZPTREC ZREADX ZRRTSX ZSRTSX
 ZUPATH

ZDCINF calls: DHINFO

ZDEBUG calls: GETI1 HOL2CH XREALC ZGETRW

ZDELET calls: HOL2CH ZCHECK ZERROR ZGTREC
 ZMULTU ZPTREC

ZDTYPE calls: CHRLNB ZCHECK ZERROR ZGINTL
 ZUPATH

ZERROR calls: ZABORT

ZFILST calls: CHRFIL CHRLNB ZINQIR

ZFNAME calls: CHRFLB UPCASE

ZFPN calls: ZPATH

ZFSIZE calls: UPCASE

ZFVER calls: HOLCHR ZFNAME

ZGETAD calls: Nothing

ZGETAG calls: ISCAN REMBLK ZUPATH

ZGETCI calls: CHGTYP CHRLNB GETI1 HOLCHR
 ZGTREC

ZGETRW calls: Nothing

ZGINTL calls: Nothing

ZGIRTS calls: ZMIN2R ZRITSX

ZGPNP calls: CHRLNB PARSEQ

HECDSS Subroutines Appendix D - Cross Reference Listing

 D-3

ZGTAGS calls: ZGTREC

ZGTDTS calls: DATCLN JULDAT M2IHM NOPERS
 ZADDHD ZFPN ZGINTL ZRRTSX

ZGTPFD calls: ZRPD

ZGTREC calls: ZABORT ZBDUMP ZGETRW ZRREC
 ZWREC

ZHASH calls: Nothing

ZINCBK calls: IYMDJL JLIYMD

ZINIT calls: ABORT WHEN ZBKDAT

ZINQIR calls: GETNAM HOL2CH HOLCHR ZINIT

ZINTBK calls: IDAYWK INCTIM JLIYMD NOPERS
 ZOFSET

ZIRBEG calls: JLIYMD

ZIRDOW calls: Nothing

ZLAHEY calls: HOLCHR

ZMATCA calls: Nothing

ZMIN2R calls: Nothing

ZMOVBK calls: JULDAT LEQNER NOPERS

ZMULTU calls: FLLKOF FLLKON LOCKF sync
 ZABORT ZBDUMP ZGTREC

ZNWBIN calls: ZGETAD ZGETRW ZGTREC ZPTREC

ZNWRIT calls: CH2HOL CHRHOL GETI1 PUTI1
 ZGETAG ZNWBIN ZPTREC ZUPATH

ZOFSET calls: DATCLL IDAYWK INCTIM IYMDJL
 JLIYMD

ZOPCAT calls: CCREAT CHRLNB CRETYP INTGR
 UPCASE

Appendix D - Cross Reference Listing HECDSS Subroutines

D-4

ZOPEN calls: CH2HOL CHRHOL CHRLNB CLOSF
 CREAF FILEN GETNAM HOLCHR
 LFINFO OPENF WHEN ZABORT
 ZASSIG ZBDUMP ZFNAME ZFSIZE
 ZGETAD ZGETRW ZGTREC ZINIT
 ZLAHEY ZPTREC

ZOPNCA calls: CCREAT CHRLNB CRETYP INTGR
 UPCASE

ZORDPN calls: ZRDPAT ZSELCA

ZOWRIT calls: CHRHOL HOL2CH ZDEBUG ZERROR
 ZGTREC ZPTREC

ZPATH calls: CHRFLB

ZPIRTS calls: ZMIN2R ZR2MIN ZSITS

ZPRTC calls: CHGTYP GETI1 HOLCHR

ZPRTCI calls: CHRLNB ZGETCI ZGTREC ZPRTC

ZPTDTS calls: DATCLN JULDAT M2IHM NOPERS
 ZFPN ZGINTL ZSRTSX

ZPTREC calls: ZABORT ZERROR ZGETAD ZGETRW
 ZINQIR ZRREC ZWREC

ZR2MIN calls: Nothing

ZRDBUF calls: CH2HOL CHRLNB HOL2CH ZGTREC
 ZRDINF

ZRDCAT calls: CHRLNB

ZRDINF calls: CHRLNB HOL2CH ZCHECK ZERROR
 ZGTREC ZINQIR

ZRDPAT calls: CHRLNB

ZRDPN calls: ZRDPAT

ZREAD calls: CHRLNB ZRDBUF ZREADX

ZREADX calls: CHRLNB ZGTREC ZRDBUF

HECDSS Subroutines Appendix D - Cross Reference Listing

 D-5

ZRECIN calls: CHRLNB DHINFO HOLCHR ZGTREC
 ZRDINF

ZRENAM calls: HOLCHR ZCHECK ZDELET ZMULTU
 ZNWRIT ZPTREC

ZRETAG calls: CHRHOL ZCHECK ZERROR ZGTREC
 ZMULTU ZPTREC

ZRITS calls: ZRITSX

ZRITSX calls: CHRLNB DATCLL HOLCHR IYMDJL
 JLIYMD JULDAT ZERROR ZGIRTS
 ZINQIR ZIRBEG ZR2MIN ZREADX
 ZUPATH

ZRPD calls: CHRLNB HOLCHR ZERROR ZINQIR
 ZREADX

ZRREC calls: READF SEEKF

ZRRTS calls: ZRRTSX

ZRRTSB calls: DUREAL JULDAT NOPERS ZGTREC

ZRRTSX calls: CHRLNB DATJUL HOLCHR IDAYWK
 IHM2M INCTIM IYMDJL JULDAT
 M2IHM NINDX NOPERS YMDDAT
 ZBDUMP ZBEGDT ZERROR ZGINTL
 ZGTREC ZINCBK ZOFSET ZRDINF
 ZRRTS ZRRTSB ZUPATH

ZRTALL calls: CHRHOL HOL2CH ZERROR ZGETAG
 ZGTREC ZMULTU ZPTREC

ZRTEXT calls: CHRLNB HOLCHR ZERROR ZINQIR
 ZREADX

ZRTXTA calls: CHRLNB HOLCHR ZERROR ZINQIR
 ZREADX

ZSCOMP calls: Nothing

ZSELCA calls: CHRLNB DATJUL ZGINTL ZMATCA
 ZUPATH

ZSET calls: ZINIT

Appendix D - Cross Reference Listing HECDSS Subroutines

D-6

ZSETCA calls: CHRLNB ZCATDR ZGPNP

ZSETCI calls: CHGTYP CHRHOL CHRLNB PUTI1
 ZGETCI ZGTREC ZMULTU ZPTREC

ZSETPR calls: ZMULTU ZPTREC

ZSITS calls: ZSITSX

ZSITSX calls: CHRHOL CHRLNB DATCLL IYMDJL
 JULDAT M2IHM ZERROR ZINCBK
 ZINQIR ZIRBEG ZIRDOW ZMIN2R
 ZPIRTS ZR2MIN ZREADX ZSET
 ZUPATH ZWRITX

ZSPD calls: CHRHOL CHRLNB ZERROR ZWRITX

ZSQPRM calls: CHRHOL HOLCHR ZGTREC ZPTREC

ZSRTS calls: ZSRTSX

ZSRTSX calls: CHRHOL CHRLNB DATJUL DCREAL
 DUREAL HOL2CH IDAYWK IHM2M
 INCTIM IYMDJL JULDAT M2IHM
 NOPERS YMDDAT ZBDUMP ZBEGDT
 ZCHECK ZERROR ZGETCI ZGINTL
 ZGTREC ZINCBK ZINQIR ZMOVBK
 ZMULTU ZNWRIT ZOFSET ZOWRIT
 ZPATH ZPTREC ZSRTS ZUFPN
 ZUPRTS

ZSTAGS calls: INTGR PARSLI ZERROR ZMULTU
 ZPTREC

ZSTEXT calls: CHRHOL CHRLNB ZERROR ZWRITX

ZSTFH calls: CHRFLB CHRHOL HOLCHR INTGR

ZSTXTA calls: CHRHOL CHRLNB ZERROR ZWRITX

ZTAGFI calls: ZGETAD ZGETRW ZGTREC ZMULTU
 ZPTREC

ZTAGPA calls: HOL2CH ZABORT ZERROR ZGTREC

ZTSINT calls: INCTIM JULDAT M2IHM NOPERS
 ZFPN ZGINTL ZINTBK ZOFSET
 ZRRTS

HECDSS Subroutines Appendix D - Cross Reference Listing

 D-7

ZUDALL calls: HOL2CH ZERROR ZGTREC ZMULTU
 ZPTREC

ZUFPN calls: CHRLNB ZUPATH

ZUNDEL calls: HOL2CH ZCHECK ZERROR ZGTREC
 ZMULTU ZPTREC ZUDALL

ZUPATH calls: CHRLNB

ZUPRTS calls: CHRHOL JULDAT LEQNER NOPERS
 ZGTREC ZPTREC

ZUSTFH calls: CHRLNB GETHOL HOLCHR INTGR

ZWRBUF calls: CH2HOL CHRLNB HOL2CH ZABORT
 ZCHECK ZMULTU ZNWRIT ZOWRIT
 ZPTREC ZRDINF

ZWREC calls: SEEKF WRITF

ZWRITE calls: ZWRITX

ZWRITX calls: ZCHECK ZGTREC ZMULTU ZNWRIT
 ZOWRIT ZPTREC ZRDINF

ABORT is called by: ZABORT ZINIT

CASSIG is called by: ZCAT

CCREAT is called by: ZASSIG ZCAT ZOPCAT ZOPNCA

CH2HOL is called by: ZCHECK ZNWRIT ZOPEN ZRDBUF
 ZWRBUF

CHGTYP is called by: ZGETCI ZPRTC ZSETCI

CHRFIL is called by: ZFILST

CHRFLB is called by: ZCATIT ZFNAME ZPATH ZSTFH

CHRHOL is called by: ZNWRIT ZOPEN ZOWRIT ZRETAG
 ZRTALL ZSETCI ZSITSX ZSPD
 ZSQPRM ZSRTSX ZSTEXT ZSTFH
 ZSTXTA ZUPRTS

Appendix D - Cross Reference Listing HECDSS Subroutines

D-8

CHRLNB is called by: ZCAOUT ZCAT ZCATDR ZCATIT
 ZCLOSE ZCOREC ZDTYPE ZFILST
 ZGETCI ZGPNP ZOPCAT ZOPEN
 ZOPNCA ZPRTCI ZRDBUF ZRDCAT
 ZRDINF ZRDPAT ZREAD ZREADX
 ZRECIN ZRITSX ZRPD ZRRTSX
 ZRTEXT ZRTXTA ZSELCA ZSETCA
 ZSETCI ZSITSX ZSPD ZSRTSX
 ZSTEXT ZSTXTA ZUFPN ZUPATH
 ZUSTFH ZWRBUF

CHRWT is called by: ZCATFI ZCOFIL

CLOSF is called by: ZCLOSE ZOPEN

CREAF is called by: ZOPEN

CRETYP is called by: ZASSIG ZOPCAT ZOPNCA

CURTIM is called by: ZCATDR ZCATIT

DATCLL is called by: ZOFSET ZRITSX ZSITSX

DATCLN is called by: ZGTDTS ZPTDTS

DATJUL is called by: ZCAOUT ZCATIT ZCOREC ZRRTSX
 ZSELCA ZSRTSX

DCREAL is called by: ZSRTSX

DHINFO is called by: ZDCINF ZRECIN

DUREAL is called by: ZRRTSB ZSRTSX

FILEN is called by: ZCAT ZOPEN

FLLKOF is called by: ZMULTU

FLLKON is called by: ZMULTU

GETHOL is called by: ZUSTFH

GETI1 is called by: ZCAT ZDEBUG ZGETCI ZNWRIT
 ZPRTC

GETNAM is called by: ZABORT ZCAT ZINQIR ZOPEN

HECDSS Subroutines Appendix D - Cross Reference Listing

 D-9

HOL2CH is called by: ZCATFI ZCHECK ZDEBUG ZDELET
 ZINQIR ZOWRIT ZRDBUF ZRDINF
 ZRTALL ZSRTSX ZTAGPA ZUDALL
 ZUNDEL ZWRBUF

HOLCHR is called by: ZCATFI ZCOFIL ZCOREC ZFVER
 ZGETCI ZINQIR ZLAHEY ZOPEN
 ZPRTC ZRECIN ZRENAM ZRITSX
 ZRPD ZRRTSX ZRTEXT ZRTXTA
 ZSQPRM ZSTFH ZUSTFH

IDAYWK is called by: ZINTBK ZOFSET ZRRTSX ZSRTSX

IHM2M is called by: ZRRTSX ZSRTSX

INCTIM is called by: ZCATDR ZINTBK ZOFSET ZRRTSX
 ZSRTSX ZTSINT

INTGR is called by: ZCATDR ZOPCAT ZOPNCA ZSTAGS
 ZSTFH ZUSTFH

ISCAN is called by: ZGETAG

IYMDJL is called by: ZCATDR ZINCBK ZOFSET ZRITSX
 ZRRTSX ZSITSX ZSRTSX

JLIYMD is called by: ZBEGDT ZCATDR ZINCBK ZINTBK
 ZIRBEG ZOFSET ZRITSX

JULDAT is called by: ZCATDR ZCATIT ZCOREC ZGTDTS
 ZMOVBK ZPTDTS ZRITSX ZRRTSB
 ZRRTSX ZSITSX ZSRTSX ZTSINT
 ZUPRTS

LEQNER is called by: ZMOVBK ZUPRTS

LFINFO is called by: ZOPEN

LOCKF is called by: ZMULTU

M2IHM is called by: ZCATIT ZCOREC ZGTDTS ZPTDTS
 ZRRTSX ZSITSX ZSRTSX ZTSINT

NINDX is called by: ZRRTSX

NOPERS is called by: ZGTDTS ZINTBK ZMOVBK ZPTDTS
 ZRRTSB ZRRTSX ZSRTSX ZTSINT
 ZUPRTS

Appendix D - Cross Reference Listing HECDSS Subroutines

D-10

OPENF is called by: ZOPEN

PARSEQ is called by: ZGPNP

PARSLI is called by: ZSTAGS

PUTI1 is called by: ZNWRIT ZSETCI

READF is called by: ZRREC

REMBLK is called by: ZGETAG

SEEKF is called by: ZRREC ZWREC

sync is called by: ZMULTU

system is called by: ZCAT

UPCASE is called by: ZFNAME ZFSIZE ZOPCAT ZOPNCA

WAIT is called by: ZABORT

WAITS is called by: ZASSIG

WHEN is called by: ZABORT ZINIT ZOPEN

WIND is called by: ZABORT

WRITF is called by: ZWREC

XREALC is called by: ZDEBUG

YMDDAT is called by: ZRRTSX ZSRTSX

ZABORT is called by: ZBDUMP ZCHECK ZERROR ZGTREC
 ZMULTU ZOPEN ZPTREC ZTAGPA
 ZWRBUF

ZADDHD is called by: ZGTDTS

ZASSIG is called by: ZOPEN

ZBDUMP is called by: ZGTREC ZMULTU ZOPEN ZRRTSX
 ZSRTSX

ZBEGDT is called by: ZCAOUT ZRRTSX ZSRTSX

HECDSS Subroutines Appendix D - Cross Reference Listing

 D-11

ZBKDAT is called by: ZINIT

ZCAOUT is called by: ZCAT

ZCAT is called by: ZCATLG

ZCATDR is called by: ZSETCA

ZCATFI is called by: ZCAT ZCOFIL

ZCATIT is called by: ZCAT

ZCHECK is called by: ZCOFIL ZCOREC ZDELET ZDTYPE
 ZRDINF ZRENAM ZRETAG ZSRTSX
 ZUNDEL ZWRBUF ZWRITX

ZCOREC is called by: ZCOFIL

ZDEBUG is called by: ZOWRIT

ZDELET is called by: ZRENAM

ZERROR is called by: ZBDUMP ZCAT ZCATFI ZCHECK
 ZDELET ZDTYPE ZOWRIT ZPTREC
 ZRDINF ZRETAG ZRITSX ZRPD
 ZRRTSX ZRTALL ZRTEXT ZRTXTA
 ZSITSX ZSPD ZSRTSX ZSTAGS
 ZSTEXT ZSTXTA ZTAGPA ZUDALL
 ZUNDEL

ZFNAME is called by: ZFVER ZOPEN

ZFPN is called by: ZGTDTS ZPTDTS ZTSINT

ZFSIZE is called by: ZOPEN

ZGETAD is called by: ZCOFIL ZNWBIN ZOPEN ZPTREC
 ZTAGFI

ZGETAG is called by: ZNWRIT ZRTALL

ZGETCI is called by: ZPRTCI ZSETCI ZSRTSX

ZGETRW is called by: ZCOFIL ZDEBUG ZGTREC ZNWBIN
 ZOPEN ZPTREC ZTAGFI

Appendix D - Cross Reference Listing HECDSS Subroutines

D-12

ZGINTL is called by: ZCAOUT ZCOREC ZDTYPE ZGTDTS
 ZPTDTS ZRRTSX ZSELCA ZSRTSX
 ZTSINT

ZGIRTS is called by: ZRITSX

ZGPNP is called by: ZSETCA

ZGTREC is called by: ZCATFI ZCHECK ZCOFIL ZCOREC
 ZDELET ZGETCI ZGTAGS ZMULTU
 ZNWBIN ZOPEN ZOWRIT ZPRTCI
 ZRDBUF ZRDINF ZREADX ZRECIN
 ZRETAG ZRRTSB ZRRTSX ZRTALL
 ZSETCI ZSQPRM ZSRTSX ZTAGFI
 ZTAGPA ZUDALL ZUNDEL ZUPRTS
 ZWRITX

ZHASH is called by: ZCHECK

ZINCBK is called by: ZCAOUT ZRRTSX ZSITSX ZSRTSX

ZINIT is called by: ZINQIR ZOPEN ZSET

ZINQIR is called by: ZBDUMP ZCATIT ZCLOSE ZCOFIL
 ZFILST ZPTREC ZRDINF ZRITSX
 ZRPD ZRTEXT ZRTXTA ZSITSX
 ZSRTSX

ZINTBK is called by: ZTSINT

ZIRBEG is called by: ZCAOUT ZRITSX ZSITSX

ZIRDOW is called by: ZSITSX

ZLAHEY is called by: ZOPEN

ZMATCA is called by: ZSELCA

ZMIN2R is called by: ZGIRTS ZPIRTS ZSITSX

ZMOVBK is called by: ZSRTSX

ZMULTU is called by: ZCATFI ZCLOSE ZCOFIL ZCOREC
 ZDELET ZRENAM ZRETAG ZRTALL
 ZSETCI ZSETPR ZSRTSX ZSTAGS
 ZTAGFI ZUDALL ZUNDEL ZWRBUF
 ZWRITX

HECDSS Subroutines Appendix D - Cross Reference Listing

 D-13

ZNWBIN is called by: ZNWRIT

ZNWRIT is called by: ZCOFIL ZCOREC ZRENAM ZSRTSX
 ZWRBUF ZWRITX

ZOFSET is called by: ZCOREC ZINTBK ZRRTSX ZSRTSX
 ZTSINT

ZORDPN is called by: ZCAT

ZOWRIT is called by: ZCOFIL ZCOREC ZSRTSX ZWRBUF
 ZWRITX

ZPATH is called by: ZFPN ZSRTSX

ZPIRTS is called by: ZSITSX

ZPRTC is called by: ZPRTCI

ZPTREC is called by: ZCHECK ZCOFIL ZCOREC ZDELET
 ZNWBIN ZNWRIT ZOPEN ZOWRIT
 ZRENAM ZRETAG ZRTALL ZSETCI
 ZSETPR ZSQPRM ZSRTSX ZSTAGS
 ZTAGFI ZUDALL ZUNDEL ZUPRTS
 ZWRBUF ZWRITX

ZR2MIN is called by: ZPIRTS ZRITSX ZSITSX

ZRDBUF is called by: ZREAD ZREADX

ZRDINF is called by: ZRDBUF ZRECIN ZRRTSX ZWRBUF
 ZWRITX

ZRDPAT is called by: ZORDPN ZRDPN

ZREADX is called by: ZCOREC ZREAD ZRITSX ZRPD
 ZRTEXT ZRTXTA ZSITSX

ZRITSX is called by: ZGIRTS ZRITS

ZRPD is called by: ZGTPFD

ZRREC is called by: ZGTREC ZPTREC

ZRRTS is called by: ZRRTSX ZTSINT

ZRRTSB is called by: ZRRTSX

Appendix D - Cross Reference Listing HECDSS Subroutines

D-14

ZRRTSX is called by: ZCOREC ZGTDTS ZRRTS

ZSELCA is called by: ZCATFI ZORDPN

ZSET is called by: ZSITSX

ZSETCA is called by: ZCAT

ZSITS is called by: ZPIRTS

ZSITSX is called by: ZSITS

ZSPD is called by: ZPTPFD

ZSRTS is called by: ZSRTSX

ZSRTSX is called by: ZCOREC ZPTDTS ZSRTS

ZTAGFI is called by: ZCATFI

ZUDALL is called by: ZUNDEL

ZUFPN is called by: ZSRTSX

ZUPATH is called by: ZCAOUT ZCOREC ZDTYPW ZGETAG
 ZNWRIT ZRITSX ZRRTSX ZSELCA
 ZSITSX ZUFPN

ZUPRTS is called by: ZSRTSX

ZWREC is called by: ZBDUMP ZGTREC ZPTREC

ZWRITX is called by: ZSITSX ZSPD ZSTEXT ZSTXTA
 ZWRITE

HECDSS Subroutines Appendix E - Abort Error Codes

 E-1

Appendix E – Abort Error Codes

 The following is a list of error codes that may be printed if a fatal error is detected by the
basic DSS software that stores or retrieves information. If one these errors occur, a message will
be printed with the error, then the program will be aborted. These "low-level" errors occur
relatively infrequently, and are not the same as the errors for the "high-level" subroutines (such
as ZSRTS). Refer to the individual subroutine documentation for error codes for high-level
subroutines.

 "Keys" within several DSS arrays (such as the IFLTAB) are checked frequently to ensure
that the arrays are not corrupted (by the calling program overwriting memory), and damaging the
database. However, it is possible for an area of a DSS array to be corrupted and stored on disk,
damaging the database file, before being detected.

 Internal addresses are physically stored after the data has been stored, so that if a crash
occurs (e.g., a power failure or the disk space is exceeded), only that record will be lost and the
database will not be damaged. However, occasionally all internal DSS buffers may become
used, and some buffers will be written prior to the data block. If this occurs at the time of a
crash, the file could become damaged. Also, some computers may buffer I/O in a way that
records are not physically written to disk the way that the DSS software expects (such as disk
cashing). This also could cause damage to a database file if a crash occurs.

 A damaged file can usually be recovered by squeezing the file with DSSUTL. (Be sure
there is sufficient disk space to do so.) The cause of the error should be determined before
proceeding. (It should be noted that a file with only minor damage may not be detected for a
while.)

 Code Error Description

 11 Pointer or address array incorrect. The address from the pathname address

array (pathname bin) points to a record information block where the pathname
does not match the bin pathname. This typically indicates that the area read is
not a record information block, and the file is damaged.

 20 Illegal Unit number. An invalid unit number was encountered during a write
or read operation.

 30 Error on Physical Read. An error occurred during a read operation. This
may be caused by a damaged file with an address that points to a location
beyond the file's bounds. Typically, the error occurs when the end-of-file is
reached.

 40 Error on Physical Write. An error occurred during a write operation. This
can occur if the disk space is exceeded. This usually does not indicate a
damaged file (although squeezing the file is a good idea).

 41 Disk Space Exceeded. There is insufficient disk space left for this file to
continue writing.

 50 Corrupt IFLTAB array (Keys don't match). The IFLTAB array has been
overwritten by the calling program. Check your program for a bounds error
that can cause this.

Appendix E - Abort Error Codes HECDSS Subroutines

E-2

 Code Error Description

 60 Incomplete Buffered write. A buffered write using ZWRBUF was not

terminated with LEND set to .TRUE..
 70 DSS File Not Opened. A DSS subroutine was called with an invalid

IFLTAB array (containing only zeros). This error usually occurs when testing
modifications to a program. Usually the routine that opens the DSS file was
not called, or the IFLTAB array was not passed to the routine calling DSS
(e.g., it is not in common), or there is a typographical error in the code (e.g.,
IFLTAB given the wrong name). Less frequently this error may occur if the
IFLTAB array is overwritten by the calling program.

 100 Illegal KTABLE variable (IFLTAB Corrupt). The IFLTAB variable
containing the table type did not contain a valid type. This can only occur if
IFLTAB is overwritten. Check your program for a bounds error.

 110 Illegal Number of Characters per Machine word Set. The DSS software
was not installed correctly, or a common block was destroyed.

 130 Excess writes on a read only file. The file was given "read only" permission,
and excessive writes were attempted. After 40 low-level write attempts the
program is aborted.

 200 Unable to make shared assignment. A file lock was attempted, but was
denied because the file did not have shared access (although it was supposedly
opened with shared access).

 210 Unable to lock file. A lock on the file was denied (nor could it que for a
lock).

 220 Unable to unlock file. The file could not be unlocked. Memory is probably
overwritten for this error to occur.

 300 Incompatible Versions. The DSS file is not a Version 6 file, and the routine
accessed is Version 6 only. If you are sure the file is Version 6, and was
correctly opened, then the IFLTAB array may be invalid or corrupt.

 320 Insufficient Header Space in ZWRBUF. The total amount of user header
data to store is greater than the space allocated in the first call to ZWRBUF.

 330 Insufficient Data Space in ZWRBUF. The total number of data values to
store is greater than the space allocated in the first call to ZWRBUF.

HECDSS Subroutines Appendix F - Summary of Subroutine Calling Sequences

 F-1

Appendix F - Summary of Subroutine Calling Sequences

ZCAT Catalog a DSS File ...7-34
 CALL ZCAT (IFLTAB, ICUNIT, ICDUNT, INUNIT, CINSTR,
 * LABREV, LSORT, LCDCAT, NRECS)

ZCATLG Catalog a DSS file ... 11-34
 CALL ZCATLG (IFLTAB, ICUNIT, INUNIT, CINSTR, IBEG,
 * NINSTR, LABREV, LSORT, NRECS)

ZCHECK Check if a Record Exists ..9-10
 CALL ZCHECK (IFLTAB, CPATH, NPATH, NHEAD, NDATA,
 * LFOUND)

ZCHKPN Check a Pathname ..3-12
 CALL ZCHKPN (CPATH, NPATH, ISTAT)

ZCLOSE Close a DSS File ...2-5
 CALL ZCLOSE (IFLTAB)

ZCOFIL Copy a DSS File ... 9--18
 CALL ZCOFIL (IFTOLD, IFTNEW, BUFF1, KBUFF1, BUFF2, KBUFF2,
 * LUNDEL, LRETAG)

ZCOREC Copy a Record ..9-13
 CALL ZCOREC (IFTOLD, IFTNEW, CPOLD, CPNEW, BUFF1,
 * KBUFF1, BUFF2, KBUFF2, ISTAT)

ZDCINF Get Data Compression Information for a Record ...10-5
 CALL ZDCINF (ICOMP, BASEV, LBASEV, ISIZE, IPREC, ISTAT)

ZDEBUG Print Coded Information in the IFLTAB Array ..9-24
 CALL ZDEBUG (MUNIT, IARRAY, IADD, ILEN)

ZDELET Delete a Record ..9-21
 CALL ZDELET (IFLTAB, CPATH, NPATH, LFOUND)

ZDTYPE Determine a Record's Data Type and if it Exists...2-8
 CALL ZDTYPE (IFLTAB, CPATH, NSIZE, LEXIST, CDTYPE,
 * IDTYPE)

ZFILST Display Information About a DSS File ...9-14
 CALL ZFILST (IFLTAB)

ZFNAME Add File Name Extension and Determine if it Exists ...2-6
 CALL ZFNAME (CNAMIN, CNAME, NNAME, LEXIST)

Appendix F - Summary of Subroutine Calling Sequences HECDSS Subroutines

F-2

ZFPN Form DSS Pathname ..11-2
 CALL ZFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
 * CF, NF, CPATH, NPATH)

ZFVER Get a DSS File's Version..2-20
 CALL ZFVER (CNAME, CVER, IVER)

ZGINTL Get Time Series Interval ..4-40
 CALL ZGINTL (INTL, CE, NVALS, ISTAT)

ZGIRTS Get Irregular-Interval Time Series Data ... 11-12
 CALL ZGIRTS (IFLTAB, CPATH, NPATH, JULS, ISTIME, JULE,
 * IETIME, DUM1, IDUM1, DUM2, IDUM2, KVALS, DATES,
 * VALUES, NVALS, BDATE, CUNITS, CTYPE, ISTAT)

ZGPNP Get Pathname Parts ..3-8
 CALL ZGPNP (CLINE, CA, CB, CC, CD, CE, CF, NPARTS)

ZGTDTS Get Regular-Interval Time Series Data ...11-4
 CALL ZGTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
 * JULS, ISTIME, JULE, IETIME, INTL, DUM, 0,
 * IOFSET, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

ZGTPFD Get Paired Function Data .. 11-21
 CALL ZGTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE,
 * IHORIZ C1UNIT, C2UNIT, C1TYPE, C2TYPE, CLABEL, KLABEL,
 * NLABEL, DUM, IDUM1, IDUM2, VALUES, KVALS, NVALS, ISTAT)

ZINQIR Inquire About DSS Parameters..2-17
 CALL ZINQIR (IFLTAB, CITEM, CSTR, INUMB)

ZOFSET Determine the Time Offset of Time Series Data...4-44
 CALL ZOFSET (JUL, ITIME, INTL, IFLAG, IOFSET)

ZOPCAT -Open a Catalog File.. 11-32
 CALL ZOPCAT (CDSSFI, CATFIL, ICUNIT, LOPEN, LCATLG,
 * LCREAT, NRECS)

ZOPEN Open a DSS File ...2-2
 CALL ZOPEN (IFLTAB, CNAME, IOSTAT)

ZOPNCA Open a Catalog File..7-3
 CALL ZOPNCA (CDSSFI, ICUNIT, LGENCA, LOPNCA, LCATLG,
 * ICDUNT, LGENCD, LOPNCD, LCATCD, NRECS)

ZPATH Construct a Pathname...3-2
 CALL ZPATH (CA, CB, CC, CD, CE, CF, CPATH, NPATH)

HECDSS Subroutines Appendix F - Summary of Subroutine Calling Sequences

 F-3

ZPIRTS Put Irregular-Interval Time Series Data.. 11-17
 CALL ZPIRTS (IFLTAB, CPATH, NPATH, DUM1, IDUM1, DUM2,
 * IDUM2, DATES, VALUES, NVALS, BDATE, CUNITS, CTYPE,
 * INFLAG, ISTAT)

ZPRTCI Print the Default Data Compression for a DSS file.. 10-10
 CALL ZPRTCI (IFLTAB, LALL, CPARTS)

ZPTDTS Put Regular-Interval Time Series Data in a DSS File ...11-8
 CALL ZPTDTS (IFLTAB, CA, NA, CB, NB, CC, NC, CF, NF,
 * JULS, ISTIME, JULE, IETIME, INTL, DUM1, IDUM,
 * DUM2, VALUES, NVALS, CUNITS, CTYPE, ISTAT)

ZPTPFD Put Paired Function Data .. 11-26
 CALL ZPTPFD (IFLTAB, CPATH, NPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C2UNIT, C1TYPE, C2TYPE, CLABEL, KLABEL, NLABEL,
 * DUM, IDUM1, IDUM2, VALUES, KVALS, NVALS, IPLAN, ISTAT)

ZRDBUF Read an Individual Record in a Buffered Mode..8-7
 CALL ZRDBUF (IFLTAB, CPATH, HEADU, KHEADU, NHEADU,
 * DATA, KDATA, NDATA, LEND, IPLAN, LFOUND)

ZRDCAT Read Pathnames from a Catalog File...7-10
 CALL ZRDCAT (ICUNIT, LALL, IOUNIT, CTAGS, NDIM,
 * CPATHS, NPATHS, NFOUND)

ZRDPAT Read a Pathname from a Catalog by Reference Number..7-14
 CALL ZRDPAT (ICUNIT, IPOS, INUMB, CTAG, CPATH, NPATH,
 * LEND)

ZRDPN Read Pathnames from a Catalog File.. 11-37
 CALL ZRDPN (ICUNIT, IPOS, INUMB, CPATH, NPATH)

ZREAD Read an Individual Record...8-2
 CALL ZREAD (IFLTAB, CPATH, NPATH, IHEADU, NHEADU,
 * IDATA, NDATA, IPLAN, LFOUND)

ZREADX Read an Individual Record (Extended)..8-5
 CALL ZREADX (IFLTAB, CPATH, HEADI, KHEADI, NHEADI,
 * HEADC, KHEADC, NHEADC, HEADU, KHEADU, NHEADU, DATA,
 * KDATA, NDATA, IPLAN, LFOUND)

ZRECIN Display Information About a Record...9-12
 CALL ZRECIN (IFLTAB, IUNIT, MLEVEL, CPATH, BUFF, KBUFF,
 * LFOUND)

Appendix F - Summary of Subroutine Calling Sequences HECDSS Subroutines

F-4

ZRENAM Rename a Record..9-20
 CALL ZRENAM (IFLTAB, CPATHO, NPATHO, CPATHN, NPATHN,
 * LFOUND)

ZRETAG Change a Record Tag ...7-21
 CALL ZTAGPA (IFLTAB, CPATH, NPATH, CTAG, LFOUND)

ZRITS Retrieve Irregular-Interval Time Series Data ..4-22
 CALL ZRITS (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME,
 * ITIMES, VALUES, KVALS, NVALS, JBDATE, CUNITS, CTYPE
 * , ISTAT)

ZRITSX Retrieve Irregular-Interval Time Series Data (Extended) ...4-26
 CALL ZRITSX (IFLTAB, CPATH, JULS, ISTIME, JULE, IETIME,
 * ITIMES, VALUES, KVALS, NVALS, JBDATE, FLAGS, LFLAGS,
 * LFREAD, CUNITS, CTYPE, HEADU, KHEADU, NHEADU, INFLAG,
 * ISTAT)

ZRPD Retrieve Paired Data...5-2
 CALL ZRPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C1TYPE, C2UNIT, C2TYPE, VALUES, KVALS, NVALS,
 * CLABEL, KLABEL, LABEL, HEADU, KHEADU, NHEADU, ISTAT)

ZRRTS Retrieve Regular-Interval Time Series Data ...4-3
 CALL ZRRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * CUNITS, CTYPE, IOFSET, ISTAT)

ZRRTSX Retrieve Regular-Interval Time Series Data (Extended) ..4-8
 CALL ZRRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * FLAGS, LFLAGS, LFREAD, CUNITS, CTYPE, HEADU, KHEADU,
 * NHEADU, IOFSET, ICOMP, ISTAT)

ZRTALL - Change all Record Tags in a DSS file...7-24
 CALL ZRTALL (IFLTAB)

ZRTEXT Retrieve Text Data (Into a File) ...6-2
 CALL ZRTEXT (IFLTAB, CPATH, IUNIT, HEADU, KHEADU, NHEADU,
 * LCCNTL, NLINES, ISTAT)

ZRTXTA Retrieve Text Data (Into an Array)..6-5
 CALL ZRTXTA (IFLTAB, CPATH, CARRAY, KLINES, NLINES,
 * HEADU, KHEADU, NHEADU, ISTAT)

ZSCOMP Set Data Compression for a Record...10-3
 CALL ZSCOMP (ICOMP, BASEV, LBASEV, LHIGH, IPREC)

HECDSS Subroutines Appendix F - Summary of Subroutine Calling Sequences

 F-5

ZSET Set DSS Parameters..2-11
 CALL ZSET (CITEM, CSTR, INUMB)

ZSETCI Set Default Data Compression for a DSS File ..10-7
 CALL ZSETCI (IFLTAB, CPARTS, LPARTS, ICOMP, BASEV,
 * LBASEV, LHIGH, IPREC, ISTAT)

ZSITS Store Irregular-Interval Time Series Data ...4-32
 CALL ZSITS (IFLTAB, CPATH, ITIMES, VALUES, NVALS, JBDATE,
 * CUNITS, CTYPE, INFLAG, ISTAT)

ZSITSX Store Irregular-Interval Time Series Data (Extended) ..4-37
 CALL ZSITSX (IFLTAB, CPATH, ITIMES, VALUES, NVALS,
 * JBDATE, FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU,
 * INFLAG, ISTAT)

ZSPD Store Paired Data..5-7
 CALL ZSPD (IFLTAB, CPATH, NORD, NCURVE, IHORIZ,
 * C1UNIT, C1TYPE, C2UNIT, C2TYPE, VALUES,
 * CLABEL, LABEL, HEADU, NHEADU, IPLAN, ISTAT)

ZSRTS Store Regular-Interval Time Series Data...4-14
 CALL ZSRTS (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * CUNITS, CTYPE, IPLAN, ISTAT)

ZSRTSX Store Regular-Interval Time Series Data (Extended) ...4-17
 CALL ZSRTSX (IFLTAB, CPATH, CDATE, CTIME, NVALS, VALUES,
 * FLAGS, LFLAGS, CUNITS, CTYPE, HEADU, NHEADU, IPLAN,
 * ICOMP, BASEV, LBASEV, LHIGH, IPREC, ISTAT)

ZSTAGS Set the Tag Scheme for a DSS file...7-22
 CALL ZSTAGS (IFLTAB, CSCHEM, ISTAT)

ZSTEXT - Store Text Data (From a File)..6-8
 CALL ZSTEXT (IFLTAB, CPATH, IUNIT, HEADU, NHEADU,
 * NLINES, ISTAT)

ZSTFH Stuff the User Header Array ..9-2
 CALL ZSTFH (CLABEL, CITEM, NITEM, HEADU, KHEADU,
 * NHEADU, ISTAT)

ZSTXTA Store Text Data (From an Array)...6-11
 CALL ZSTXTA (IFLTAB, CPATH, CARRAY, NLINES, HEADU,
 * NHEADU, ISTAT)

ZTAGPA Get Pathnames from Tags ..7-17
 CALL ZTAGPA (IFLTAB, IOUNIT, CTAGS, NDIM, CPATHS,
 * NPATHS , NFOUND)

Appendix F - Summary of Subroutine Calling Sequences HECDSS Subroutines

F-6

ZUDALL Undelete All Records in a DSS File ..9-23
 CALL ZUDALL (IFLTAB, IUNIT)

ZUFPN Unform a Pathname..3-6
 CALL ZUFPN (CA, NA, CB, NB, CC, NC, CD, ND, CE, NE,
 * CF, NF, CPATH, NPATH, ISTAT)

ZUNDEL Undelete a Record ..9-22
 CALL ZUNDEL (IFLTAB, CPATH, NPATH, ISTAT)

ZUPATH Determine a Pathname's Parts..3-4
 CALL ZUPATH (CPATH, IBPART, IEPART, ILPART, ISTAT)

ZUSTFH Unstuff the User Header Array ..9-6
 CALL ZUSTFH (CLABEL, CITEM, NITEM, IPOS, HEADU, NHEADU,
 * ISTAT)

ZWRBUF Write an Individual Record in a Buffered Mode...8-16
 CALL ZWRBUF (IFLTAB, CPATH, HEADU, NHEADU, NTOTH,
 * DATA, NDATA, NTOTD, LEND)

ZWRITE Write an Individual Record..8-10
 CALL ZWRITE (IFLTAB, CPATH, NPATH, IHEADU, NHEADU,
 * IDATA, NDATA, IPLAN, LFOUND)

ZWRITX Write an Individual Record (Extended)...8-13
 CALL ZWRITX (IFLTAB, CPATH, NPATH, HEADI, NHEADI,
 * HEADC, NHEADC, HEADU, NHEADU, DATA, NDATA, ITYPE,
 * IPLAN, ISTAT, LFOUND)

	Front Cover
	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - General Subroutines
	ZFVER - Get a DSS File's Version
	ZFNAME - Add Filename Extension and Determine if the File Exists
	ZINQIR - Inquire About DSS Parameters
	ZOPEN - Open a DSS File
	ZCLOSE - Close a DSS File
	ZDTYPE - Determine a Record's Data Type and if it Exists
	ZSET - Set Dss Parameters

	Chapter 3 - Pathname Manipulation Subroutines
	ZPATH - Construct a Pathname
	ZUPATH - Determine a Pathname's Part
	ZUFPN - Split a Pathname into Sequence Parts
	ZGPNP - Get Pathname Parts
	ZCHKPN - Check a Pathname

	Chapter 4 - Time Series Subroutines
	ZRRTS - Retrieve Regular-Interval Time Series Data
	ZRRTSX - Retrieve Regular-Interval Time Series Data (Extended Version)
	ZSRTS - Store Regular-Interval Time Series Data
	ZSRTSX - Store Regular-Interval Time Series Data (Extended Version)
	ZRITS - Retrieve Irregular-Interval Time Series Data
	ZRITSX - Retrieve Irregular-Interval Time Series Data (Extended Version)
	ZSITS - Store Irregular-Interval Time Series Data
	ZSITSX - Store Irregular-Interval Time Series Data (Extended Version)
	ZGINTL - Get Time Series Interval
	ZOFSET - Determine the Time Offset of Time Series Data

	Chapter 5 - Paired Data Subroutines
	ZRPD - Retrieve Paired Data
	ZSPD - Store Paired Data

	Chapter 6 - Text Subroutines
	ZRTEXT - Retrieve Text Data (Into a File)
	ZRTXTA - Retrieve Text Data (Into an Array)
	ZSTEXT - Store Text Data (From a File)
	ZSTXTA - Store Text Data (From an Array)

	Chapter 7 - Catalog and Tag Subroutines
	ZOPNCA - Open a Catalog File
	ZCAT - Catalog a DSS File
	ZRDCAT - Read Pathnames from a Catalog File
	ZRDPAT - Read a Pathname from a Catalog File by Reference Number
	ZTAGPA - Get Pathnames from Tags
	ZRETAG - Change a Record Tag
	ZSTAGS - Set the Tag Scheme for a DSS File
	ZRTALL - Change All Record Tags in a DSS File
	Example of Obtaining Pathnames from References on a Command Line
	Example of a Catalog Display Subroutine

	Chapter 8 - General Read/Write Subroutines
	ZREAD - Read an Individual Record
	ZREADX - Read an Individual Record (Extended)
	ZRDBUF - Read an Individual Record in a Buffered Mode
	ZWRITE - Write an Individual Record
	ZWRITX - Write an Individual Record (Extended)
	ZWRBUF - Write an Individual Record in a Buffered Mode

	Chapter 9 - Utility Subroutines
	ZSTCH - Stuff the User Header Array
	ZUSTFH - Disassemble the User Header Array
	ZCHECK - Check if a Record Exists
	ZRECIN - Display Information About a Record
	ZFILST - Display Information About a DSS File
	ZCOREC - Copy a Record
	ZCOFIL - Copy a DSS File
	ZRENAM - Rename a Record
	ZDELET - Delete a Record
	ZUNDEL - Undelete a Record
	ZUDALL - Undelete All Records in a DSS File
	ZDEBUG - Display Coded Information from the File or the IFLTAB Array

	Chapter 10 - Data Compression Subroutines
	ZSCOMP - Set Data Compression for a Record
	ZDCINF - Get Data Compression Information for a Record
	ZSETCI - Set Default Data Compression for a DSS File
	ZPRTCI - Print the Default Data Compression for a DSS File

	Chapter 11 - Outdated Subroutines
	ZFPN - Form DSS Pathname
	ZGTDTS - Get Regular-Interval Time Series Data
	ZPTDTS - Put Regular-Interval Time Series Data in a DSS File
	ZGIRTS - Get Irregular-Interval Time Series Data
	ZPIRTS - Put Irregular-Interval Time Series Data
	ZGTPFD - Get Paired Function Data
	ZPTPFD - Put Paired Function Data
	ZOPCAT - Open a Catalog File
	ZCATLG - Catalog a DSS File
	ZRDPN - Read Pathnames from a Catalog File by Reference Number

	Appendix A - Example Application
	Appendix B - Internal Subroutines
	Appendix C - Data Screening Use of Data Flags
	Appendix D - Cross Reference Listing
	Appendix E - Abort Error Codes
	Appendix F - Summary of Subroutine Calling Sequences

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

